
How Do Your Code LLMs perform? Empowering Code Instruction Tuning
with Really Good Data

Anonymous ACL submission

Abstract001

Recently, there has been a growing interest in002
studying how to construct better code instruc-003
tion tuning data. However, we find Code mod-004
els trained with these datasets exhibit high per-005
formance on HumanEval but perform worse006
on other benchmarks such as LiveCodeBench.007
Upon further investigation, we discover many008
datasets suffer from significant data leakage.009
After cleaning up most of the leaked data, we010
find that some datasets previously considered011
high-quality perform poorly. This discovery012
reveals a new challenge: identifying which013
dataset genuinely qualify as high-quality code014
instruction data. To address this, we propose an015
efficient code data selection strategy for select-016
ing samples. Our approach is based on three017
dimensions: instruction complexity, response018
quality, and instruction diversity. Based on our019
selected data, we present XCoder, a family of020
models finetuned from LLaMA3. Experiments021
show Xcoder achieves new state-of-the-art per-022
formance using fewer training data, which ver-023
ify the effectiveness of our data strategy. More-024
over, we perform a comprehensive analysis on025
the data composition and find existing code026
datasets have different characteristics accord-027
ing to their construction methods, which pro-028
vide new insights for future code LLMs.029

1 Introduction030

Code pre-trained models have achieved remark-031

able progress in the era of large language models032

(LLMs), such as Codex (Chen et al., 2021b), Al-033

phaCode (Li et al., 2022), PaLM-Coder (Chowd-034

hery et al., 2022) and StarCoder (Li et al., 2023).035

Training on large code corpora (Kocetkov et al.,036

2022) has been shown to enhance the coding ca-037

pabilities of current LLMs (Lozhkov et al., 2024b;038

Rozière et al., 2023). In addition to costly pre-039

training, recent research has garnered increased in-040

terest in code instruction tuning and obtains promis-041

ing results on several code benchmarks (Chaudhary,042

clean

clean

Figure 1: The left figure shows performance comparison
on different benchmarks and the right displays varying
results after data decontamination. Magicoder Evol-
Instruct and Code-Feedback may have data leakage on
HumanEval.

2023; Luo et al., 2023a; Wei et al., 2023a; Muen- 043

nighoff et al., 2023a; Wang et al., 2024). 044

Differing from the high demand of pre-training 045

for data quantity, instruction tuning aligns existing 046

model abilities towards a desired direction using 047

high-quality but much smaller datasets. To con- 048

struct code instruction datasets, earlier research pre- 049

dominantly relies on heuristic automation (e.g. dis- 050

tillation from ChatGPT) or manual selection. For 051

example, Code Alpaca (Chaudhary, 2023) and Wiz- 052

ardCoder (Luo et al., 2023a) use distillation signals 053

from ChatGPT via self-instruct and evol-instruct. 054

Other methods such as OctoPack (Muennighoff 055

et al., 2023a) and Magicoder (Wei et al., 2023a) 056

construct code instructions from pre-training code 057

corpora. Although these code instruction datasets 058

seem excellent on popular code benchmarks like 059

HumanEval1, we find some of them dramatically 060

drop on another contamination-free benchmark 061

LiveCodeBench (Jain et al., 2024b) which con- 062

tinuously collects new problems over time from 063

online contests. As shown in Figure 1, Magicoder 064

Evol-Instruct and Code-Feedback (Zheng et al., 065

2024) achieve top ranks on HumanEval but drop 066

on LiveCodeBench. We perform a further decon- 067

tamination process and find that several existing 068

code models achieve abnormally high performance 069

1https://github.com/openai/human-eval

1

Instruction

Unit Test

Response

Unit Test ModelComplexity ScorerEvolved
Instructions

Data pool

Complexity Scorer

Unit Test Model
XCoder

Diversity-based
SamplingSorted data

Figure 2: Illustration of our data selection approach.

on HumanEval because of the potential use of the070

benchmark or benchmark-similar data. Thus, it071

remains unclear what good code instruction data072

is and how these datasets actually work. Besides,073

all the data come from different pipelines and have074

no unified principle to ensure good quality. We075

need to systematically define what constitutes good076

examples of data for code instruction tuning and077

establish an effective principle for achieving com-078

petitive performance using only highly valuable079

samples.080

In this work, we aim to define the characteristics081

of good data for code instruction tuning based on a082

diverse range of existing code datasets. Our goal083

is to select the most influential samples through a084

comprehensive and quantitative data assessment085

measure. Drawing inspiration from Liu et al.086

(2024); Ni et al. (2024), we propose a paradigm of087

data-efficient instruction tuning for code capabili-088

ties. Generally, we assume good code samples are089

complex, of high quality, and diverse. For the com-090

plexity aspect, we adopt the evolved complexity091

scorer to predict the complexity of a given instruc-092

tion. The scorer is trained on evolved samples via093

the complexity prompt (Luo et al., 2023a) with094

ChatGPT. For the aspect of quality, we train a veri-095

fied model to generate multiple test cases given an096

(instruction, response) pair and evaluate its qual-097

ity via the pass rate of the generated test cases.098

For the aspect of diversity, we select the sample099

with a large distance to a data pool via instruction100

embeddings. Combining the three measures, our101

simple but effective data selection strategy pursues102

valuable code instruction data and achieves more103

efficient instruction tuning where fewer training104

samples yield performance on par with, or even105

surpassing, models trained on significantly larger106

datasets. Moreover, we also analyze the composi-107

tion of our selected data mixture and give sugges- 108

tions for future code instruction tuning research. 109

We present XCoder, a family of models fine- 110

tuned from LLaMA32 using our selected code 111

instruction data mixture. Experiments on Live- 112

CodeBench and HumanEval demonstrate that 113

XCoder is able to outperform or be on par with 114

state-of-the-art code instruction models such as 115

WizardCoder (Luo et al., 2023a), Magicoder (Wei 116

et al., 2023a), StarCoder2-Instruct3 and Open- 117

CodeInterpreter (Zheng et al., 2024) while using 118

fewer automatically selected data examples. For ex- 119

ample, XCoder-8B based on LLaMA3-8B achieves 120

43.66 LiveCodeBench-Easy and 54.9 HumanEval 121

when trained on only 40K data samples. Besides, 122

our XCoder-70B based on LLaMA3-70B achieves 123

top-tier results compared to the state-of-the-art 124

open-source models, just behind the recently re- 125

leased Codestral4. 126

2 Deep Dive into Existing Datasets 127

We present mainstream and open-source Code In- 128

struction Tuning datasets in Appendix Table 7. And 129

then we select several influential datasets from 130

these for training and test their performance on 131

the HumanEval and LiveCodeBench benchmarks, 132

with the results shown in Table 1. 133

From the results, we observe that different train- 134

ing datasets lead to significant performance differ- 135

ences on HumanEval, but the differences on Live- 136

CodeBench are minimal. This phenomenon leads 137

us to suspect whether the remarkably high perfor- 138

mance of some data in HumanEval is due to data 139

leakage. Therefore, we propose the Test Leakage 140

2https://llama.meta.com/llama3/
3https://github.com/bigcode-project/starcoder2-self-align
4https://mistral.ai/news/codestral/

2

Dataset Size TLI HumanEval LiveCodeBench

Base-Pass@1 Plus-Pass@1 Pass@1 Easy-Pass@1
Codefuse-Evol-Instruct 66862 8.9 61.0 53.7 13.5 34.5
+Clean 66404 (-0.7%) 4.8 (-4.1) 59.1 (-1.9) 53.7 (0) 12.3 (-1.3) 33.1 (-1.4)
Magicoder-Evol-Instruct 111183 43.2 68.3 64.0 15.3 38.7
+Clean 108063 (-2.8%) 4.9 (-4.0) 65.9 (-2.4) 59.8 (-4.2) 13.0 (-2.3) 34.5 (-4.2)
Code-Feedback 66383 30.5 64.0 57.3 13.8 35.2
+Clean 64134 (-3.4%) 4.6 (-25.9) 56.7 (-7.3) 51.8 (-5.5) 14.8 (+1.0) 38.0 (+2.8)

Table 1: Comparison of performance across three datasets with data leakage and their cleaned versions on Hu-
manEval and LiveCodeBench. TLI measures the extent of data leakage in the training set on HumanEval. Size and
performance changes after cleaning are highlighted in red.

Index (TLI) to detect the degree of data leakage for141

each dataset in the test set.142

TLI The Test Leakage Indicator is a metric for143

quantifying the extent of data leakage from a train-144

ing set to a test set. To compute TLI, n-grams are145

generated for both datasets, and the overlap be-146

tween the n-grams of each test sample and those147

of all training samples is measured. The similar-148

ity score S(ti, rj) between a test sample ti and a149

training sample rj is calculated as the fraction of150

common n-grams over the total n-grams in the test151

samples. For each test sample, the maximum simi-152

larity score among all training samples is recorded.153

The final TLI metric is the average of these max-154

imum similarity scores across all test set. Higher155

TLI values indicate greater risks of leakage, high-156

lighting significant similarities between the training157

and test data.158

We calculate the TLI metrics for different159

datasets on HumanEval, as shown in Table 1. More160

dataset can be viewed in Appendix B. we find that161

most datasets maintain a TLI of around 5% on Hu-162

manEval, but Codefuse-Evol-Instruct, Magicoder-163

Evol-Instruct, and Code-Feedback exhibit TLI in-164

dices exceeding 30%. Therefore, we further clean165

these datasets ensuring that the TLI of all cleaned166

datasets is controlled at 5%, and then conduct re-167

experiments with these datasets. From the result168

we can observe that the cleaned datasets, after filter-169

ing only a small portion, show a significant perfor-170

mance drop on HumanEval, but their performance171

on LiveCodeBench remains almost unchanged or172

even slightly improved. For example, after filter-173

ing out 3.4% samples from the Code-Feedback174

dataset, its performance on the HumanEval Base-175

Pass@1 metric drops by 7.3%, but its performance176

on LiveCodeBench slightly increases. This further177

substantiates the presence of data leakage. Addi-178

tionally, we discover numerous cases where the179

training data are almost identical to the test data in180

HumanEval, confirming the serious data leakage 181

in these datasets,which is a serious issue, causing 182

many datasets that are considered high-quality to 183

perform well solely because the training set is sim- 184

ilar to the test set. The leaked cases can be viewed 185

in Appendix B. 186

3 What Characteristics Do Good Data 187

Have 188

Inspired by Deita (Liu et al., 2024), we select the 189

samples in the Data Pool from three dimensions: 190

instruction complexity, response quality, and in- 191

struction diversity. For a data pool P , we first use 192

the a complexity score C and Unit Test Model U to 193

calculate the complexity score c and quality score q 194

for each data. Then, we use linearly combine c′ and 195

q′ to obtain a score s representing complexity and 196

quality. Finally, we sort the data pool P and apply 197

the Diversity-based Sampling to iteratively select 198

samples from the data pool into the final training 199

set D, until D reaches the budget size. Our data 200

selection approach is illustrated in the Figure 2 and 201

Algorithm 1. The details of Complexity Score, Unit 202

Test Model and Diversity-based Sampling are as 203

follows. 204

3.1 Instruction Complexity: Complexity 205

Scorer 206

Inspired by Evol Complexity(Liu et al., 2024), 207

which is a complexity measure based on evolution. 208

We use evolved instructions to train our complexity 209

scorer. Specifically, we use Self-Instruct to obtain 210

a small-scale dataset Seed = {S1, S2, . . . , SN} 211

as the seed for evolution. Then, we apply the In- 212

Depth Evolving Prompt from WizardCoder for M 213

rounds of evolution. This process results in an 214

instruction set where each seed instruction si has 215

M evolved instructions and their corresponding 216

rounds {(Si, 0), (I1, 1), . . . , (IM ,M)}. We then 217

treat the rounds as a complexity measure and train 218

3

Algorithm 1 Data Selection Algorithm For
XCoder

1: Input: Code Instructing Tuning Data Pool
P = {(I1, R1), (I2, R2), . . . , (IN , RN)},
Number of data samples to be selected Q,
Complexity Scorer C, Unit Test Model U ,
Code Interpreter E, Hyperparameter τ , Weight
α

2: Output: The selected subset D
3: Initialize Empty Dataset D
4: for i = 1 to N do
5: ci←C(Ii)
6: ui←U(Ii, Ri)
7: qi←E(ui)
8: end for
9: for i = 1 to N do

10: c′i← Normalized(ci)
11: q′i← Normalized(qi)
12: si ← α× c′i + (1− α)× q′i
13: end for
14: P ∗ ← sort(P, key = s, reverse = True)
15: for k = 1 to N do
16: // distance(Ik, D) denotes the distance be-

tween Ik and its nearest neighbor in D
17: if distance(Ik, D) < τ then
18: D ← D ∪ {(Ik, Rk)}
19: end if
20: if |D| ≥ Q then
21: break
22: end if
23: end for

the complexity scorer to predict the complexity219

score given the input instruction. In multi-turn dia-220

logues, we score each turn separately and use the221

sum of them as the final score.222

3.2 Response Quality: Unit Test Model223

In this work, we train a unit test model which can224

generate a complete executable unit test program225

based on the given instruction and code snippet for226

testing. We denote the instruction as I , the code227

solution as R, and the generated unit test as T . Our228

unit test model U can be formulated as:229

T = U(I,R)230

We collect numerous samples containing instruc-231

tions, code solutions, and test cases as the training232

dataset {(Ii, Ri, Ti)}Ni=1. We show some cases out-233

put by our unit test model in Appendix C.234

3.3 Instruction Diversity: Diversity-based 235

Sampling 236

We use Diversity-based Sampling method to en- 237

sure the diversity of the selected data. The it- 238

erative method selects samples Pi one by one 239

from the pool P , and when pi contributes to the 240

diversity of the selected dataset D, it is added 241

to D. This process continues until the budget 242

Q is reached or all samples pi in P have been 243

enumerated. Specifically, the benefit of the di- 244

versity brought by the newly considered sample 245

pi can be formulated as an indicator function 246

F (pi, D) := distantce(pi, D) < τ , which equals 247

1 only when F (pi, D) is true, otherwise it is 0. 248

Only when F (pi, D) equals 1, pi will be added to 249

D. We use the embedding distance between the 250

sample pi and its nearest neighbor in D to calculate 251

distantce(pi, D). And τ is a hyperparameter. 252

4 Experiments 253

4.1 Benchmarks 254

• HumanEval: HumanEval(Chen et al., 2021a) 255

is a widely researched benchmark test for 256

code language models, specifically designed 257

to evaluate the ability of code generation. It 258

includes 164 hand-written programming prob- 259

lems, each problem includes a function sig- 260

nature, docstring, body, and several unit tests, 261

with an average of 7.7 tests per problem. 262

• LiveCodeBench: LiveCodeBench(Jain et al., 263

2024a) is a comprehensive and pollution-free 264

benchmark for evaluating Large Language 265

Models in code assessment. It updates new 266

problems in real-time from competitions on 267

three competitive platforms (LeetCode, At- 268

Coder, and CodeForces). 269

4.2 Implementaion Details 270

Data Pools: To construct the best Code Instruc- 271

tion Tuning dataset, we gathered various avail- 272

able open-source datasets, as detailed in Table 1. 273

This resulted in a collection of 2.5M data sam- 274

ples. However, this amount of data is excessively 275

large. To control the size of the Data Pools, we 276

implemented a straightforward filtering process ac- 277

cording to the following rules: Firstly, We include 278

datasets proposed by academic work: Magicoder- 279

OSS-Instruct, Magicoder-Evol-Instruct, and Code- 280

Feedback. And then we select the longest 200K 281

samples to add to the Data Pools. Following this, 282

4

Dataset Size LiveCodeBench HumanEval

Pass@1 Easy-Pass@1 Base-Pass@1 Plus-Pass@1
Code-Alpaca 20k 0.0 0.0 30.5 25.6
StarCoder2-Self-Align 50k 9.5 24.7 37.8 34.8
Codefuse-Evol-Instruct* 66k 12.3 33.1 59.1 53.7
Magicoder-OSS-Instruct 75k 12.8 33.8 54.3 50.0
Magicoder-Evol-Instruct* 100k 13.0 34.5 65.9 59.8
Code-Feedback-Clean* 64k 14.8 38.0 56.7 51.8
XCoder 40k 16.5 43.7 54.9 50.6
XCoder 80k 16.8 43.7 57.3 53.0

Table 2: Comparison of the performance using XCoder data and other mainstream data on HumanEval and
LiveCodeBench. All models are trained based on Llama3—8B-Base and use greedy decoding. For HumanEval, we
report both Base-Pass@1 and Plus-Pass@1 results, where Plus-Pass@1 uses more test cases compared to Base-
Pass@1 during evaluation. On LiveCodeBench, we report Pass@1 and Easy-Pass@1 results, with Easy-Pass@1
considering only problems categorized as easy, making it more stable and providing better differentiation than
Pass@1. * means that this dataset has data leakage, and we performe a simple decontamination.

we sort the data by complexity score and add the283

top 200K highest-scoring samples. Finally, we per-284

formed deduplication on the Data Pools, resulting285

in a final dataset of 336K samples.286

Complexity Scorer: We use ChatGPT to evolve287

the dataset over 4 iterations on Code-Alpaca as the288

training set and train on Llama3-8B-Instruct with a289

learning rate of 2e-5 for 1 epoch.290

Unit Test Model: We use 6k TACO data to train291

our unit test model based on Llama3-70B-Base.292

TACO is a dataset for code generation that each293

sample contains question, code solutions and test294

cases. We train the final unit test model using a295

learning rate of 5e-6 over 3 epochs.296

Diversity: We use Llama3-8B-Base to get the297

embedding. We set to 0.945 which means we298

consider an example pi could increase the diversity299

of selected dataset D when the embedding distance300

between xpi and its nearest neighbor is smaller301

than 0.945.302

4.3 Main Results303

To validate the effectiveness of XCoder, we con-304

ducted experiments on Llama3-8B-Base, with the305

results shown in Table 2. From the results we can306

observe that XCoder achieves the best results on307

LiveCodeBench among other open-source dataset.308

It also also achieves the best level performance309

on HumanEval among the non-leak datasets. Ad-310

ditionally, we observe that XCoder is highly ef-311

ficient with samples, achieving superior perfor-312

mance on LiveCodeBench with only 40K data313

compared to baseliens on LiveCodeBench. As314

Method Data Size LiveCodeBench

Pass@1 Easy-Pass@1
Random 40k 11.5 31.0
Complexity 40k 13.3 34.5
+ Quality 40k 15.0 39.4
+ Diversity 40k 16.5 43.7
Random 80k 11.8 30.3
Complexity 80k 15.0 37.3
+ Quality 80k 16.8 41.6
+ Diversity 80k 16.8 43.7

Table 3: We conduct ablation experiments based on
Llama3-8B-Base with two data sizes to validate the
effectiveness of each dimension.

the data size increases further, XCoder contin- 315

ues to improve on HumanEval, surpassing Code- 316

Feedback, which contains leaked data. We also 317

notice that Magicoder-Evol-Instruct and Codefuse- 318

Evol-Instruct still achieve leading results on Hu- 319

manEval. The reason may be that the decontam- 320

ination algorithm cannot completely filter out all 321

leaked data, so some data leakage still exists within 322

these training sets on HumanEval. 323

We also train XCoder-70B based on Llama3- 324

70B-Base. Figure 7 shows that XCoder-70B is one 325

of the best open-source Code LLMs. 326

4.4 Analysis 327

4.4.1 Ablation Study 328

To validate the effectiveness of each data select- 329

ing dimension, we conducted ablation experiments 330

with the results shown in Table ??. As observed 331

across both data sizes, the model’s final perfor- 332

mance on LiveCodeBench improves with the addi- 333

tion of each dimension, indicating the effectiveness 334

of each dimension. 335

5

Figure 3: Comparison of the performance of XCoder and other mainstream models on HumanEval and Live-
CodeBench. Results for other models are sourced from Eval Plus Leaderboard(Eva) and LiveCodeBench Leader-
board(Liv). For XCoder, we maintain the same settings with other models, where for HumanEval we use a greedy
decoding strategy and for LiveCodeBench we use 0.2 temperature, sampling 10 solutions for each question. The
full name of CQ-7B-Chat is CodeQwen15-7B-chat.

Measures Data Size LiveCodeBench

Pass@1 Easy-Pass@1
Random 40k 11.5 31.0
PPL 40k 11.8 31.0
Length 40k 13.0 33.1
Complexity Scorer 40k 13.6 34.5

Table 4: Comparison of performance on Live-
CodeBench using different complexity measurement
methods. All models are trained based on Llama3-8B-
Base and use Greedy decoding. We calculate PPL for
each data point using Llama3-8B-Base. For the length
strategy, we only count the instruction length.

4.4.2 Complexity Dimension336

Table 4 illustrates the performance of models337

trained on 40K selected data samples using var-338

ious complexity measures on LiveCodeBench. The339

Complexity Scorer measure exhibits the best perfor-340

mance across all measures, surpassing the Random341

method by 2.1% on Pass@1 and by 3.5% on Easy-342

Pass@1. The results also indicate that instruction343

length is a good measure for observing the Code344

Instruction Tuning data, second only to Complexity345

Scorer, which contrasts with observations made on346

general alignment data. Interestingly, perplexity, as347

an intuitive measure of complexity, performs com-348

parably to the random selection method, consistent349

with observations by Liu et al. (2024).350

Method BoN-Base-Pass@1 BoN-Plus-Pass@1
Random 62.6 54.9
GPT-4 72.6 62.8
Unit Test Model 76.2 65.2

Table 5: Performance comparison of various methods
for evaluating code quality. We report the Best-of-N
metric on HumanEval. "Random" indicates selecting
a solution randomly from the candidates. "GPT-4" in-
volves direct evaluation of each candidate using GPT-
4-0409. The "Unit Test Model" represents using our
unit test model to generate and rank based on test cases
passed.

4.4.3 Quality Dimension 351

Using Unit Test for Ranking To validate our 352

Unit Test Model’s ability to rank the quality of code, 353

we conducted the following experiment. Specifi- 354

cally, we generate 10 candidate solutions for each 355

question in HumanEval, then use our unit test 356

model to generate test cases for each solution, rank- 357

ing them based on the number of test cases passed. 358

We select the best one as the final solution. And we 359

use random selection from the candidate solutions 360

as the baseline. The results are shown in Table 5. 361

Additionally, we consider another method where 362

using LLMs to output the correctness of the code 363

directly. We choose GPT-4-0409 to do that. From 364

the results, we observe that compared to random 365

selection, using the unit test model significantly im- 366

proves the accuracy of the chosen answers, with an 367

increase of nearly 13.6% in the Base-Pass@1 met- 368

6

Figure 4: Comparison of the accuracy of Unit Test
Models trained on different sizes when generating test
cases. We also additionally evaluated the ability of GPT-
4 to generate test cases.

ric and 10.3% in the Plus-Pass@1 metric. Notably,369

the unit test model trained on Llama3-80B-Base370

also outperforms GPT-4, with improvements of371

around 3% in both metrics.372

From the results, we can observe that using unit373

tests improves the BoN-Pass@1 metric by approxi-374

mately 14%, which is higher than merely using lan-375

guage model judgment. However, we also notice a376

gap in evaluation accuracy per solution compared377

to GPT-4. We believe this discrepancy may arise378

because, for unit tests, a solution must pass all the379

test cases to be considered correct. Any error in380

generating a test case can cause the solution to fail.381

Nevertheless, the effectiveness of unit tests in the382

Best-of-N metric demonstrates that this approach383

might be more suitable for ranking the quality of384

code solutions.385

Accuracy of Generated Test Cases We also ex-386

perimented with the impact of different model sizes387

on the accuracy of the Unit Test Model in generat-388

ing test cases. Specifically, we instructed the model389

to generate 10 test cases for the golden solutions390

in HumanEval, execute them, and count the num-391

ber of passing test cases. The results are shown392

in Figure 4. Additionally, we evaluated GPT-4’s393

capability in generating test cases.394

We observed that increasing the model param-395

eters significantly improves the accuracy of gen-396

erating test cases, from 64.8% to 78.7%. Further,397

we find that the test case model trained on Llama3-398

70B performs very close to GPT-4 in generating399

test cases, with a difference of less than 2%.400

4.4.4 Data Scaling401

To study the impact of our data selection strategy on402

data scaling efficiency, we conduct experiments us-403

Method Data Size LiveCodeBench

Pass@1 Easy-Pass@1
Random 10k 9.8 26.1
Random 40k 11.5 31.0
Random 80k 11.8 30.3
Random 160k 15.0 38.8
Random 320k 16.8 44.4
XCoder 10k 14.5 38.0
XCoder 40k 16.5 43.7
XCoder 80k 16.8 43.7
XCoder 160k 17.0 44.4

Table 6: Comparison of performance on Live-
CodeBench with different datasets as the data scales
up. We conducted the training on Llama3-8B-Base.

ing different data budgets. Table 6 shows the exper- 404

imental results of XCoder outperforms randomly 405

sampled data across different data sizes. Surpris- 406

ingly, XCoder achieves performance comparable 407

to using 160K training samples with only 10K sam- 408

ples, and it matches the performance of using the 409

full dataset at 80K samples. This demonstrates the 410

high efficiency of XCoder’s data samples and the 411

effectiveness of XCoder in data selection. 412

4.5 Data Analysis 413

In this section, we analyze the data composition 414

of XCoder, reassess the strengths and weaknesses 415

of different data sources, and develop new insights 416

into different data generation methods. The data 417

composition of XCoder is shown in Figure 5. 418

Complexity: Figure 5(a) shows the contribution 419

of different data sources in the top 160K complex- 420

ity samples. We observe that the multi-turn Code- 421

Feedback dataset, which includes code refinement 422

data, contributes the largest amount of samples. 423

And OctoPack, which uses real Git commit infor- 424

mation as instructions, results in limited instruction 425

complexity and contributes only 0.1%. However, 426

We also observe that StarCoder2-Self-Align con- 427

tributes the second largest amount of samples, indi- 428

cating that, besides Evol-Instruct, converting pre- 429

training data appropriately can also yield complex 430

instructions. 431

Quality: In Figure 5(b), we observe a data com- 432

position that is markedly different from that of 433

complexity. Despite having very low complex- 434

ity, OctoPack, which uses real code data, exhibits 435

higher quality. Moreover, we notice that although 436

Magicoder-Evol-Instruct, which used GPT-4, con- 437

tribute a similar number of complexity samples, 438

there is a significant difference in quality. More ca- 439

pable models clearly generate higher quality train- 440

7

ing data. And Code Alpaca, generated with text-441

davinci-003, contributes the fewest high-quality442

samples. Notably, StarCoder2-Self-Align data con-443

tributes a considerable amount, which we think is444

potentially due to its use of self-synthesized test445

cases and the rejection of samples that do not exe-446

cute correctly.447

Diversity: Figures 5(c) and 5(d) illustrate the im-448

pact on data composition when applying the diver-449

sity dimension. We find that after applying diver-450

sity measures, OctoPack jumps from the lowest451

contribution to the second highest, indicating, con-452

sistent with researchers’ expectations, that instruc-453

tion data constructed from real-world data exhibits454

better diversity.455

Overall, we find that in terms of complexity: be-456

sides Evol-Instruct, generating instructions from457

real data approximately can also achieve sufficient458

complexity. Moreover, reasonable transformation459

of data forms, such as converting single-turn data to460

multi-turn data and covering a richer variety of task461

types, can further enhance the complexity of in-462

structions. In terms of quality: datasets constructed463

with real code data generally exhibit better qual-464

ity. Using appropriate feedback signals to filter the465

training set can also lead to a high-quality dataset.466

And the quality of model-distilled datasets is often467

related to the capability of the model. In terms of468

diversity: real-world data tends to be more diverse469

than Evol data generated using fixed seeds.470

5 Related Work471

Code Instruction Tuning Recently, LLMs have472

shown remarkable abilities in understanding and473

generating code(OpenAI, 2023; Bai et al., 2023;474

Daya Guo, 2024; Lozhkov et al., 2024a). Code in-475

struction tuning is a neceesarry step for models to476

accurately understant human instructions and gen-477

erate relevant code responses. Many works foucs478

on annotating a high-quality code instruction tun-479

ing dataset(Lei et al., 2024). Self-Instruct (Chaud-480

hary, 2023) used text-davinci-003 to generate 20K481

instruction data. Luo et al. (2023b) apply the482

Evol-Instruct method proposed by WizadLM(Xu483

et al., 2023) to 20K Code-Alpaca dataset and get484

a 79K code instruction dataset. Muennighoff et al.485

(2023b) take git commits as natural instruction data.486

They collect 4TB git commits across 350 program-487

ming language to fine-tuning OctoCoder. (Wei488

et al., 2023b) proposed OSS-Instruct, which lever-489

ages open-source code cnippets to generate high-490

quality instructions. They also propose Magicoder- 491

Evol-Instruct dataset and train Magicoder-S, which 492

is the first 7B model to exceed 70% on HumanEval 493

Pass@1. However, we find this dataset suffers from 494

serious data contamination. Based on Magicoder- 495

Evol-Instruct, OpenCodeInterpreter(Zheng et al., 496

2024) and AutoCoder(Lei et al., 2024) leverages 497

GPT-4 and Code Interpreter as code feedback to 498

generate multi-turn instruction data which instruct 499

model to refine incorrect code snippets acrroding 500

to feedback information. 501

Data Selection for LLMs Data selection is cru- 502

cial for LLMs during the instruction fine-tuning 503

phase. While instruction fine-tuning primarily re- 504

lies on a large volume of data, research such as 505

LIMA (Zhou et al., 2024) indicates that data qual- 506

ity is more critical than quantity. INSTRUCT- 507

MINING (Cao et al., 2023) introduces a linear 508

rule-based method for assessing the quality of in- 509

structional data. Furthermore, Instag (Lu et al., 510

2023) uses an open-domain, tag-based data filter- 511

ing method, achieving promising performance in 512

MT-Bench. Deita (Liu et al., 2024) integrates a mul- 513

tifaceted approach for selecting instruction data, fo- 514

cusing on complexity, quality, and diversity. Wave- 515

Coder (Yu et al., 2023) centers on enhancing LLMs 516

through an instruction improvement technique, in- 517

corporating generated data with a particular empha- 518

sis on the data filtering phase. 519

6 Conclusion And Future Work 520

Code LLMs have raised great interest in cur- 521

rent LLM research and plenty of code instruction 522

datasets are proposed over time. However, although 523

many of them claim that good results are achieved 524

on the popular benchmark HumanEval, we find sev- 525

eral datasets may have data leakage by using bench- 526

mark samples as seed data in self-instruct or evolve- 527

instruct. In this paper, we aim to identify which 528

dataset genuinely qualifies as high-quality code in- 529

struction data and propose an efficient code data 530

selection strategy for selecting valuable samples. 531

Based on three dimensions of assessing data, we 532

present XCoder, a family of models finetuned from 533

LLaMA3 on our selected dataset. XCoder achieves 534

superior performance than the SOTA baselines us- 535

ing fewer training samples. From the composition 536

of our selected data mixture, we find existing code 537

datasets have different characteristics correspond- 538

ing to their construction methods, which provide 539

new insights for developing better code LLMs. 540

8

7 Limitation541

Our limitations are two-fold: (1) We only explore542

our method on the Llama3-Base model. More ex-543

periments on different model bases are needed to544

confirm our conclusions. (2) We only focus on the545

Code Generation task, and in the future, we need546

to incorporate data containing more tasks.547

8 Broader Impacts548

Similar to the other LLMs, our XCoder could also549

generate unethical, harmful, or misleading informa-550

tion, which is not considered in our work. Future551

research to address the ethical and societal impli-552

cations is needed. XCoder is also susceptible to553

hallucination in ungrounded generation use cases554

due to its smaller size. This model is solely de-555

signed for research settings, and its testing has only556

been carried out in such environments. It should557

not be used in downstream applications, as addi-558

tional analysis is needed to assess potential harm559

or bias in the proposed application560

References561

Bigcode/self-oss-instruct-sc2-exec-filter-50k.562
https://huggingface.co/datasets/bigcode/563
self-oss-instruct-sc2-exec-filter-50k.564

a. Codefuse-ai/codeexercise-python-27k. https:565
//huggingface.co/datasets/codefuse-ai/566
CodeExercise-Python-27k.567

b. Codefuse-ai/evol-instruction-66k. https:568
//huggingface.co/datasets/codefuse-ai/569
Evol-instruction-66k.570

a. Cognitivecomputations/code-290k-571
sharegpt-vicuna. https://huggingface.572
co/datasets/cognitivecomputations/573
Code-290k-ShareGPT-Vicuna.574

b. Cognitivecomputations/leet10k-alpaca.575
https://huggingface.co/datasets/576
cognitivecomputations/leet10k-alpaca.577

c. Cognitivecomputations/oa_leet10k.578
https://huggingface.co/datasets/579
cognitivecomputations/oa_leet10k.580

Evalplus leaderboard. https://evalplus.github.581
io/leaderboard.html. (Accessed on 06/16/2024).582

Glaiveai/glaive-code-assistant-v3. https:583
//huggingface.co/datasets/glaiveai/584
glaive-code-assistant-v3.585

Juyongjiang/codeup: Codeup: A multilingual code586
generation llama2 model with parameter-efficient587
instruction-tuning on a single rtx 3090. https:588
//github.com/juyongjiang/CodeUp.589

Livecodebench leaderboard. https:// 590
livecodebench.github.io/leaderboard.html. 591
(Accessed on 06/16/2024). 592

Sahil2801/codealpaca-20k. https://huggingface. 593
co/datasets/sahil2801/CodeAlpaca-20k. 594

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, 595
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei 596
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, 597
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, 598
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, 599
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong 600
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng- 601
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, 602
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, 603
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx- 604
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang 605
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang 606
Zhu. 2023. Qwen technical report. arXiv preprint 607
arXiv:2309.16609. 608

Yihan Cao, Yanbin Kang, and Lichao Sun. 2023. In- 609
struction mining: High-quality instruction data se- 610
lection for large language models. arXiv preprint 611
arXiv:2307.06290. 612

Sahil Chaudhary. 2023. Code alpaca: An instruction- 613
following llama model for code generation. https: 614
//github.com/sahil280114/codealpaca. 615

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 616
Henrique Ponde de Oliveira Pinto, Jared Kaplan, 617
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg 618
Brockman, et al. 2021a. Evaluating large lan- 619
guage models trained on code. arXiv preprint 620
arXiv:2107.03374. 621

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 622
Yuan, Henrique Ponde, Jared Kaplan, Harrison Ed- 623
wards, Yura Burda, Nicholas Joseph, Greg Brockman, 624
Alex Ray, Raul Puri, Gretchen Krueger, Michael 625
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, 626
Brooke Chan, Scott Gray, Nick Ryder, Mikhail 627
Pavlov, Alethea Power, Lukasz Kaiser, Moham- 628
mad Bavarian, Clemens Winter, Philippe Tillet, Fe- 629
lipe Petroski Such, David W. Cummings, Matthias 630
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel 631
Herbert-Voss, William H. Guss, Alex Nichol, Igor 632
Babuschkin, S. Arun Balaji, Shantanu Jain, Andrew 633
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan 634
Morikawa, Alec Radford, Matthew M. Knight, Miles 635
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 636
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 637
Sutskever, and Wojciech Zaremba. 2021b. Evaluat- 638
ing large language models trained on code. ArXiv, 639
abs/2107.03374. 640

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 641
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul 642
Barham, Hyung Won Chung, Charles Sutton, Sebas- 643
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha 644
Tsvyashchenko, Joshua Maynez, Abhishek Rao, 645
Parker Barnes, Yi Tay, Noam M. Shazeer, Vinod- 646
kumar Prabhakaran, Emily Reif, Nan Du, Benton C. 647

9

https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k
https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k
https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k
https://huggingface.co/datasets/codefuse-ai/CodeExercise-Python-27k
https://huggingface.co/datasets/codefuse-ai/CodeExercise-Python-27k
https://huggingface.co/datasets/codefuse-ai/CodeExercise-Python-27k
https://huggingface.co/datasets/codefuse-ai/CodeExercise-Python-27k
https://huggingface.co/datasets/codefuse-ai/CodeExercise-Python-27k
https://huggingface.co/datasets/codefuse-ai/Evol-instruction-66k
https://huggingface.co/datasets/codefuse-ai/Evol-instruction-66k
https://huggingface.co/datasets/codefuse-ai/Evol-instruction-66k
https://huggingface.co/datasets/codefuse-ai/Evol-instruction-66k
https://huggingface.co/datasets/codefuse-ai/Evol-instruction-66k
https://huggingface.co/datasets/cognitivecomputations/Code-290k-ShareGPT-Vicuna
https://huggingface.co/datasets/cognitivecomputations/Code-290k-ShareGPT-Vicuna
https://huggingface.co/datasets/cognitivecomputations/Code-290k-ShareGPT-Vicuna
https://huggingface.co/datasets/cognitivecomputations/Code-290k-ShareGPT-Vicuna
https://huggingface.co/datasets/cognitivecomputations/Code-290k-ShareGPT-Vicuna
https://huggingface.co/datasets/cognitivecomputations/leet10k-alpaca
https://huggingface.co/datasets/cognitivecomputations/leet10k-alpaca
https://huggingface.co/datasets/cognitivecomputations/leet10k-alpaca
https://huggingface.co/datasets/cognitivecomputations/oa_leet10k
https://huggingface.co/datasets/cognitivecomputations/oa_leet10k
https://huggingface.co/datasets/cognitivecomputations/oa_leet10k
https://evalplus.github.io/leaderboard.html
https://evalplus.github.io/leaderboard.html
https://evalplus.github.io/leaderboard.html
https://huggingface.co/datasets/glaiveai/glaive-code-assistant-v3
https://huggingface.co/datasets/glaiveai/glaive-code-assistant-v3
https://huggingface.co/datasets/glaiveai/glaive-code-assistant-v3
https://huggingface.co/datasets/glaiveai/glaive-code-assistant-v3
https://huggingface.co/datasets/glaiveai/glaive-code-assistant-v3
https://github.com/juyongjiang/CodeUp
https://github.com/juyongjiang/CodeUp
https://github.com/juyongjiang/CodeUp
https://livecodebench.github.io/leaderboard.html
https://livecodebench.github.io/leaderboard.html
https://livecodebench.github.io/leaderboard.html
https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k
https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k
https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472

Hutchinson, Reiner Pope, James Bradbury, Jacob648
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,649
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,650
Sunipa Dev, Henryk Michalewski, Xavier García,651
Vedant Misra, Kevin Robinson, Liam Fedus, Denny652
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,653
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,654
David Dohan, Shivani Agrawal, Mark Omernick, An-655
drew M. Dai, Thanumalayan Sankaranarayana Pil-656
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,657
Rewon Child, Oleksandr Polozov, Katherine Lee,658
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark659
Díaz, Orhan Firat, Michele Catasta, Jason Wei, Kath-660
leen S. Meier-Hellstern, Douglas Eck, Jeff Dean, Slav661
Petrov, and Noah Fiedel. 2022. Palm: Scaling lan-662
guage modeling with pathways. J. Mach. Learn. Res.,663
24:240:1–240:113.664

Dejian Yang Zhenda Xie Kai Dong Wentao Zhang665
Guanting Chen Xiao Bi Y. Wu Y.K. Li Fuli Luo666
Yingfei Xiong Wenfeng Liang Daya Guo, Qihao Zhu.667
2024. Deepseek-coder: When the large language668
model meets programming – the rise of code intelli-669
gence.670

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia671
Yan, Tianjun Zhang, Sida Wang, Armando Solar-672
Lezama, Koushik Sen, and Ion Stoica. 2024a. Live-673
codebench: Holistic and contamination free eval-674
uation of large language models for code. arXiv675
preprint arXiv:2403.07974.676

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fan-677
jia Yan, Tianjun Zhang, Sida I. Wang, Armando678
Solar-Lezama, Koushik Sen, and Ion Stoica. 2024b.679
Livecodebench: Holistic and contamination free eval-680
uation of large language models for code. ArXiv,681
abs/2403.07974.682

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia683
Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine684
Jernite, Margaret Mitchell, Sean Hughes, Thomas685
Wolf, Dzmitry Bahdanau, Leandro von Werra, and686
Harm de Vries. 2022. The stack: 3 tb of permissively687
licensed source code. ArXiv, abs/2211.15533.688

Bin Lei, Yuchen Li, and Qiuwu Chen. 2024. Autocoder:689
Enhancing code large language model with AIEV-690
INSTRUCT. Preprint, arXiv:2405.14906.691

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas692
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc693
Marone, Christopher Akiki, Jia Li, Jenny Chim,694
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,695
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,696
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,697
Nicolas Gontier, Nicholas Meade, Armel Zebaze,698
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,699
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo700
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp701
Patel, Dmitry Abulkhanov, Marco Zocca, Manan702
Dey, Zhihan Zhang, Nourhan Fahmy, Urvashi Bhat-703
tacharyya, W. Yu, Swayam Singh, Sasha Luccioni,704
Paulo Villegas, Maxim Kunakov, Fedor Zhdanov,705
Manuel Romero, Tony Lee, Nadav Timor, Jennifer706

Ding, Claire Schlesinger, Hailey Schoelkopf, Jana 707
Ebert, Tri Dao, Mayank Mishra, Alexander Gu, 708
Jennifer Robinson, Carolyn Jane Anderson, Bren- 709
dan Dolan-Gavitt, Danish Contractor, Siva Reddy, 710
Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Car- 711
los Muñoz Ferrandis, Sean M. Hughes, Thomas Wolf, 712
Arjun Guha, Leandro von Werra, and Harm de Vries. 713
2023. Starcoder: may the source be with you! ArXiv, 714
abs/2305.06161. 715

Yujia Li, David H. Choi, Junyoung Chung, Nate Kush- 716
man, Julian Schrittwieser, Rémi Leblond, Tom, Ec- 717
cles, James Keeling, Felix Gimeno, Agustin Dal 718
Lago, Thomas Hubert, Peter Choy, Cyprien de, 719
Masson d’Autume, Igor Babuschkin, Xinyun Chen, 720
Po-Sen Huang, Johannes Welbl, Sven Gowal, 721
Alexey, Cherepanov, James Molloy, Daniel Jaymin 722
Mankowitz, Esme Sutherland Robson, Pushmeet 723
Kohli, Nando de, Freitas, Koray Kavukcuoglu, and 724
Oriol Vinyals. 2022. Competition-level code genera- 725
tion with alphacode. Science, 378:1092 – 1097. 726

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, 727
and Junxian He. 2024. What makes good data 728
for alignment? a comprehensive study of auto- 729
matic data selection in instruction tuning. Preprint, 730
arXiv:2312.15685. 731

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed- 732
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi, 733
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, 734
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur 735
Zucker, Younes Belkada, Zijian Wang, Qian Liu, 736
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen- 737
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue 738
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, 739
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, 740
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, 741
Niklas Muennighoff, Xiangru Tang, Muhtasham 742
Oblokulov, Christopher Akiki, Marc Marone, Cheng- 743
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, 744
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas 745
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten 746
Scholak, Sebastien Paquet, Jennifer Robinson, Car- 747
olyn Jane Anderson, Nicolas Chapados, Mostofa Pat- 748
wary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz 749
Ferrandis, Lingming Zhang, Sean Hughes, Thomas 750
Wolf, Arjun Guha, Leandro von Werra, and Harm 751
de Vries. 2024a. Starcoder 2 and the stack v2: The 752
next generation. Preprint, arXiv:2402.19173. 753

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed- 754
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi, 755
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, 756
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur 757
Zucker, Younes Belkada, Zijian Wang, Qian Liu, 758
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen- 759
Ding Li, Megan L. Risdal, Jia Li, Jian Zhu, Terry Yue 760
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, 761
W. Yu, Lucas Krauss, Naman Jain, Yixuan Su, Xuanli 762
He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas 763
Muennighoff, Xiangru Tang, Muhtasham Oblokulov, 764
Christopher Akiki, Marc Marone, Chenghao Mou, 765
Mayank Mishra, Alexander Gu, Binyuan Hui, Tri 766

10

https://api.semanticscholar.org/CorpusID:247951931
https://api.semanticscholar.org/CorpusID:247951931
https://api.semanticscholar.org/CorpusID:247951931
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://api.semanticscholar.org/CorpusID:268379413
https://api.semanticscholar.org/CorpusID:268379413
https://api.semanticscholar.org/CorpusID:268379413
https://api.semanticscholar.org/CorpusID:254044610
https://api.semanticscholar.org/CorpusID:254044610
https://api.semanticscholar.org/CorpusID:254044610
https://arxiv.org/abs/2405.14906
https://arxiv.org/abs/2405.14906
https://arxiv.org/abs/2405.14906
https://arxiv.org/abs/2405.14906
https://arxiv.org/abs/2405.14906
https://api.semanticscholar.org/CorpusID:258588247
https://api.semanticscholar.org/CorpusID:246527904
https://api.semanticscholar.org/CorpusID:246527904
https://api.semanticscholar.org/CorpusID:246527904
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173

Dao, Armel Zebaze, Olivier Dehaene, Nicolas Pa-767
try, Canwen Xu, Julian McAuley, Han Hu, Torsten768
Scholak, Sébastien Paquet, Jennifer Robinson, Car-769
olyn Jane Anderson, Nicolas Chapados, Mostofa Pat-770
wary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz771
Ferrandis, Lingming Zhang, Sean Hughes, Thomas772
Wolf, Arjun Guha, Leandro von Werra, and Harm773
de Vries. 2024b. Starcoder 2 and the stack v2: The774
next generation. ArXiv, abs/2402.19173.775

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Jun-776
yang Lin, Chuanqi Tan, Chang Zhou, and Jingren777
Zhou. 2023. instag: Instruction tagging for analyz-778
ing supervised fine-tuning of large language models.779
Preprint, arXiv:2308.07074.780

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-781
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,782
Qingwei Lin, and Daxin Jiang. 2023a. Wizardcoder:783
Empowering code large language models with evol-784
instruct. ArXiv, abs/2306.08568.785

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo786
Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing-787
wei Lin, and Daxin Jiang. 2023b. Wizardcoder:788
Empowering code large language models with evol-789
instruct. arXiv preprint arXiv:2306.08568.790

Niklas Muennighoff, Qian Liu, Qi Liu, Armel Ze-791
baze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,792
Swayam Singh, Xiangru Tang, Leandro von Werra,793
and S. Longpre. 2023a. Octopack: Instruction tuning794
code large language models. ArXiv, abs/2308.07124.795

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai796
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam797
Singh, Xiangru Tang, Leandro von Werra, and798
Shayne Longpre. 2023b. Octopack: Instruction799
tuning code large language models. Preprint,800
arXiv:2308.07124.801

Xinzhe Ni, Yeyun Gong, Zhibin Gou, Yelong Shen, Yu-802
jiu Yang, Nan Duan, and Weizhu Chen. 2024. Explor-803
ing the mystery of influential data for mathematical804
reasoning. ArXiv, abs/2404.01067.805

OpenAI. 2023. Gpt-4 technical report. Preprint,806
arXiv:2303.08774.807

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,808
Sten Sootla, Itai Gat, Xiaoqing Tan, Yossi Adi,809
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom810
Kozhevnikov, I. Evtimov, Joanna Bitton, Manish P811
Bhatt, Cristian Cantón Ferrer, Aaron Grattafiori, Wen-812
han Xiong, Alexandre D’efossez, Jade Copet, Faisal813
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,814
Thomas Scialom, and Gabriel Synnaeve. 2023. Code815
llama: Open foundation models for code. ArXiv,816
abs/2308.12950.817

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann818
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,819
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:820
An instruction-following llama model. https://821
github.com/tatsu-lab/stanford_alpaca.822

Yejie Wang, Keqing He, Guanting Dong, Pei Wang, Wei- 823
hao Zeng, Muxi Diao, Yutao Mou, Mengdi Zhang, 824
Jingang Wang, Xunliang Cai, and Weiran Xu. 2024. 825
Dolphcoder: Echo-locating code large language mod- 826
els with diverse and multi-objective instruction tun- 827
ing. ArXiv, abs/2402.09136. 828

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and 829
Lingming Zhang. 2023a. Magicoder: Source code is 830
all you need. ArXiv, abs/2312.02120. 831

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and 832
Lingming Zhang. 2023b. Magicoder: Source code is 833
all you need. arXiv preprint arXiv:2312.02120. 834

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 835
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin 836
Jiang. 2023. Wizardlm: Empowering large language 837
models to follow complex instructions. Preprint, 838
arXiv:2304.12244. 839

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang, 840
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng 841
Yin. 2023. Wavecoder: Widespread and versatile 842
enhanced instruction tuning with refined data genera- 843
tion. arXiv preprint arXiv:2312.14187. 844

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, 845
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang 846
Yue. 2024. Opencodeinterpreter: Integrating code 847
generation with execution and refinement. ArXiv, 848
abs/2402.14658. 849

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, 850
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping 851
Yu, Lili Yu, et al. 2024. Lima: Less is more for align- 852
ment. Advances in Neural Information Processing 853
Systems, 36. 854

A Other Implementation Details 855

Training Details: We trained on Llama3-8B- 856

Base and Llama3-70B-Base. For the 8B model, 857

we train with a learning rate of 2e-5, while for the 858

70B model, we use a learning rate of 5e-6. All 859

models are trained for 2 epochs. The batch size 860

during training varies according to the dataset size: 861

for datasets with fewer than 40K samples, the batch 862

size is set to 256; for datasets between 40K and 80K 863

samples, the batch size is set to 512; for datasets 864

between 80K and 160K samples, the batch size 865

is set to 1024; and for datasets larger than 160K 866

samples, the batch size is set to 2048. 867

B Case Study on Data Leakage 868

We show examples of data leakage in Codefuse- 869

Evol-Instruct, Magicoder-Evol-Instruct and Code- 870

Feed-back in Figure 6. The statistical information 871

of data leakage can be seen in Table 8. 872

11

https://api.semanticscholar.org/CorpusID:268063676
https://api.semanticscholar.org/CorpusID:268063676
https://api.semanticscholar.org/CorpusID:268063676
https://arxiv.org/abs/2308.07074
https://arxiv.org/abs/2308.07074
https://arxiv.org/abs/2308.07074
https://api.semanticscholar.org/CorpusID:259164815
https://api.semanticscholar.org/CorpusID:259164815
https://api.semanticscholar.org/CorpusID:259164815
https://api.semanticscholar.org/CorpusID:259164815
https://api.semanticscholar.org/CorpusID:259164815
https://api.semanticscholar.org/CorpusID:260886874
https://api.semanticscholar.org/CorpusID:260886874
https://api.semanticscholar.org/CorpusID:260886874
https://arxiv.org/abs/2308.07124
https://arxiv.org/abs/2308.07124
https://arxiv.org/abs/2308.07124
https://api.semanticscholar.org/CorpusID:268820002
https://api.semanticscholar.org/CorpusID:268820002
https://api.semanticscholar.org/CorpusID:268820002
https://api.semanticscholar.org/CorpusID:268820002
https://api.semanticscholar.org/CorpusID:268820002
https://arxiv.org/abs/2303.08774
https://api.semanticscholar.org/CorpusID:261100919
https://api.semanticscholar.org/CorpusID:261100919
https://api.semanticscholar.org/CorpusID:261100919
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://api.semanticscholar.org/CorpusID:267657844
https://api.semanticscholar.org/CorpusID:267657844
https://api.semanticscholar.org/CorpusID:267657844
https://api.semanticscholar.org/CorpusID:267657844
https://api.semanticscholar.org/CorpusID:267657844
https://api.semanticscholar.org/CorpusID:265609970
https://api.semanticscholar.org/CorpusID:265609970
https://api.semanticscholar.org/CorpusID:265609970
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://api.semanticscholar.org/CorpusID:267782452
https://api.semanticscholar.org/CorpusID:267782452
https://api.semanticscholar.org/CorpusID:267782452

Dataset Data Size Instruction Source Response Source
Code-290k-ShareGPT-Vicuna (Cog, a) 289k - -
CodeExercise-Python-27k (Cod, a) 270k GPT GPT
NL2Code (Juy) 19k GPT(Self-Instruct) GPT
Glaive-code-assistant-v3-(Gla) 950k Glaive Glaive
oa_leet10k (Cog, c) 23k - -
CodeAlpaca-20k (Sah) 20k GPT(Self-Instruct) GPT
Evol-instruction-66k (Cod, b) 66k GPT(Evol-Instruct) GPT
Magicoder-Evol-Instruct-110K (Wei et al., 2023b) 110k GPT(Evol-Instruct) GPT
Magicoder-OSS-Instruct-75K (Wei et al., 2023b) 75k GPT(OSS-Instruct) GPT
CommitPackFT (Muennighoff et al., 2023b) 702k GitHub GitHub
self-oss-instruct-sc2-exec-filter-50k (Big) 50k StarCoder2(OSS-Instruct) StarCoder2
Leet10k_alpaca (Cog, b) 10k - -

Table 7: Mainstream and open-source Code Instruction Tuning datasets. Self-Instruct(Taori et al., 2023) uses LLMs
to generate new instructions based on a seed instruction set. Evol-Instruct(Xu et al., 2023; Luo et al., 2023b) use
In-Depth Prompts to generate more compelxity instructions. OSS-Instruct(Wei et al., 2023b) synthesises diversity
instructions through real code snippests.

Dataset Size TLI HumanEval LiveCodeBench

Base-Pass@1 Plus-Pass@1 Pass@1 Easy-Pass@1
Code-Alpaca 20022 3.4 30.5 25.6 0.0 0.0
StarCoder2-Self-Align 50661 4.7 37.8 34.8 9.5 24.7
Magicoder-OSS-Instruct 75197 4.5 54.3 50.0 12.8 33.8
Codefuse-Evol-Instruct 66862 8.9 61.0 53.7 13.5 34.5
Magicoder-Evol-Instruct 111183 43.2 68.3 64.0 15.3 38.7
Code-Feedback 66383 30.5 64.0 57.3 13.8 35.2
Codefuse-Evol-Instruct-clean 66404 (-0.7%) 4.8 (-4.1) 59.1 (-1.9) 53.7 (0) 12.3 (-1.3) 33.1 (-1.4)
Magicoder-Evol-Instruct-clean 108063 (-2.8%) 4.9 (-4.0) 65.9 (-2.4) 59.8 (-4.2) 13.0 (-2.3) 34.5 (-4.2)
Code-Feedback-clean 64134 (-3.4%) 4.6 (-25.9) 56.7 (-7.3) 51.8 (-5.5) 14.8 (+1.0) 38.0 (+2.8)

Table 8: Data Leakage Statistics on HumanEval

C Example of input and output for unit873

test model874

We present an input and output case of unit test875

model in Figure 8.876

12

33.97%

24.16%

13.98%

13.78%

9.03%
2.60%

2.20%

33.49%

25.36%

16.0%

11.73%

7.48%
5.90%

17.83%

17.71%

15.65% 14.82%

13.37%

11.16%

7.42%
2.04%

32.23%

19.75% 15.41%

12.57%

11.70%

6.60%
1.28%

(a) (b)

(c) (d)
Figure 5: The contribution ratio of different data sources to XCoder, with (a) representing the source of the 160K
samples with the highest complexity, (b) representing the 160K samples with the highest quality, and (c) and (d)
reflecting which dataset has better diversity.

13

Case of HumanEval:

def closest_integer(value):
 '''Create a function that takes a value
(string) representing a number and returns
the closest integer to it. If the number is
equidistant from two integers, round it
away from zero.

 Examples
 >>> closest_integer("10")
 10
 >>> closest_integer("15.3")
 15

 Note:
 Rounding away from zero means that if
the given number is equidistant
 from two integers, the one you should
return is the one that is the
 farthest from zero. For example
closest_integer("14.5") should
 return 15 and closest_integer("-14.5")
should return -15.
 '''
Case of data leaked in Code-Feedback:

Add two more constraints to the existing code problem:
Firstly, validate if the input is a legitimate integer、or float,
otherwise return an error.Secondly, verify if the rounded
integer is a prime number. If not, return the nearest prime
number. Modify the given Python function:

def closest_prime_integer(value):
 ''' Craft a function that accepts a string (representing a
number), verifies it to be a valid integer or float, and then
rounds it to the nearest integer; you are not permitted to use
the built-in round() function. In case the input is not a valid
representation, return an error message. If this rounded
number is not a prime, your task is to find the closest prime
number. When the numerical value is mid-way between two
integers, you should round away from zero.

 Examples
 >>> closest_prime_integer("10")
 11
 >>> closest_prime_integer("15.3")
 13
 >>> closest_prime_integer("invalid")
 "Error: Invalid input."

 Note:
 ‘Rounding away from zero’ implies that for a number
equally distanced between two integers, you should choose
the integer that is furthest from zero. So,
closest_prime_integer(“14.5”) should return 15, whilst
closest_prime_integer("-14.5") should
 return -15.
 '''

Case of HumanEval:

def common(l1: list, l2: list):
 """Return sorted unique common
elements for two lists.
 >>> common([1, 4, 3, 34, 653, 2,
5], [5, 7, 1, 5, 9, 653, 121])
 [1, 5, 653]
 >>> common([5, 3, 2, 8], [3, 2])
 [2, 3]

 """

Case of data leaked in Codefuse-
Evol-Instruct:

Formulate a function that delivers the
unique entities present in two input catalogs,
arranged in an ascending sequence. The
function's time complexity must align with
or surpass O(nlogn), while discarding
Python's built-in catalog functions when it
comes to sorting the outcome or eliminating
redundancy:

def shared_elements(list1: list, list2: list):
 """Produce an ascending-ordered catalog
of singular entities from two provided
catalogs, refraining from using Python's
catalog-builtin functionality. The designed
time complexity stands at O(nlogn) or
superior.
 >>> shared_elements([1, 4, 3, 34, 653, 2,
5], [5, 7, 1, 5, 9, 653, 121])
 [1, 5, 653]
 >>> shared_elements([5, 3, 2, 8], [3, 2])
 [2, 3]

 """

Case of HumanEval:

def solution(lst):
 """Given a non-empty list of integers, return the
sum of all of the odd elements that are in even
positions.

 Examples
 solution([5, 8, 7, 1]) ==> 12
 solution([3, 3, 3, 3, 3]) ==> 9
 solution([30, 13, 24, 321]) ==>0
 """

Case of data leaked in Magicoder-Evol-
Instruct:

Refine the provided code to precisely calculate the
sum of odd elements situated at even indices in a
non-empty list of integers. Additionally, ensure your
code operates efficiently for large inputs (up to
10^6 elements). The solution should use a multi-
step reasoning approach.

def solution(lst):
 """Given a non-empty list of integers, return the
sum of all of the odd elements that are in even
positions.

 Examples
 solution([5, 8, 7, 1]) ==> 12
 solution([3, 3, 3, 3, 3]) ==> 9
 solution([30, 13, 24, 321]) ==>0
 """

Figure 6: Examples of data leakage.

14

Figure 7: Comparison of the performance of XCoder and other mainstream models on HumanEval and Live-
CodeBench. Results for other models are sourced from Eval Plus Leaderboard(Eva) and LiveCodeBench Leader-
board(Liv). For XCoder, we maintain the same settings with other models, where for HumanEval we use a greedy
decoding strategy and for LiveCodeBench we use 0.2 temperature, sampling 10 solutions for each question. The
full name of GPT-4, Glaude-3, Gemini Pro 1.5, GPT-3.5-Turbo and CQ-7B-Chat are GPT-4o-2024-05-13, GPT-4-
Turbo-2024-04-09, Claude-3-opus, Gemini Pro 1.5-May, GPT-3.5-Turbo-0125 and CodeQwen15-7B-chat.

15

Please write a hard-coded unit test script according to the provided task description and the solution to be tested, following the format in the demonstration.
Test script framework demonstration:
def test_code_name(x, y): # The unit test script needs to contain the code to be tested

return x + y

def test_script(): # The entry point of the test script needs to be called test_script(), and unittest, pytest and other libraries are not used in the test script.
 # use hard code to descripe test case, each test_case is stored in the list in the form of a tuple,

input_output = [((1,2),(3)),
 ((2,-4),(-2)),
((-100,99),(-1))]

for id, (input, output) in enumerate(input_output):
try: # avoid program interruption

result = test_code_name(*input) == output # The test result is stored as a boolean type
print(f'Test case {{id+1}}: {{result}}') # print in specified format

except:
pass

if __name__ == '__main__': test_script()

Task Description:
Can you provide a comprehensive analysis on the estimation of the complexity of the selection sort algorithm, encompassing both the time and space
aspects and their implications on system performance? Could you please generate a code snippet for the topic we're discussing?
Python program for implementation of Selection Sort
def selection_sort(arr):

for i in range(len(arr)):
Find the minimum element in remaining unsorted array
min_index = i
for j in range(i+1, len(arr)):

if arr[min_index] > arr[j]:
min_index = j

Swap the found minimum element with the first element of unsorted array
arr[i], arr[min_index] = arr[min_index], arr[i]

return arr
Testing the algorithm with an array
arr = [64, 25, 12, 22, 11]
print("Sorted array is:", selection_sort(arr))

1.Give a complete unit test script, which needs to include the code snippet to be tested, referring to the test_code_name function in the test script framework demonstration.
2. If the code to be tested needs standard input and output, please simulate the standard input and output environment.
3. It needs to be strictly generated according to the test script framework, do not use unittest and other libraries.
4. Each unit test script includes 3 test cases.
5. Test cases need to use a hard-coded approach.
6. Test cases need to follow the same format as the demonstration.

Input:

Output:
Python program for implementation of Selection Sort
def selection_sort(arr):

for i in range(len(arr)):
Find the minimum element in remaining unsorted array
min_index = i
for j in range(i+1, len(arr)):

if arr[min_index] > arr[j]:
min_index = j

Swap the found minimum element with the first element of unsorted array
arr[i], arr[min_index] = arr[min_index], arr[i]

return arr
Testing the algorithm with an array
arr = [64, 25, 12, 22, 11]
print("Sorted array is:", selection_sort(arr))

Figure 8: Input and output case of unit test model.

16

	Introduction
	Deep Dive into Existing Datasets
	What Characteristics Do Good Data Have
	Instruction Complexity: Complexity Scorer
	Response Quality: Unit Test Model
	Instruction Diversity: Diversity-based Sampling

	Experiments
	Benchmarks
	Implementaion Details
	Main Results
	Analysis
	Ablation Study
	Complexity Dimension
	Quality Dimension
	Data Scaling

	Data Analysis

	Related Work
	Conclusion And Future Work
	Limitation
	Broader Impacts
	Other Implementation Details
	Case Study on Data Leakage
	Example of input and output for unit test model

