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Abstract

A widely discussed hypothesis regarding the cause of visual models’ lack of ro-
bustness is that they can exploit human-imperceptible high-frequency components
(HFC) in images, which in turn leads to model vulnerabilities, such as the adversar-
ial examples. However, (1) inconsistent findings regarding the validation of this
hypothesis reflect in a limited understanding of HFC, and (2) solutions inspired
by the hypothesis tend to involve a robustness-accuracy trade-off and leaning to-
wards suppressing the model’s learning on HFC. In this paper, inspired by the
long-tailed characteristic observed in frequency spectrum, we first formally define
the HFC from long-tailed perspective and then revisit the relationship between
HFC and model robustness. In the frequency long-tailed scenario, experimental
results on common datasets and various network structures consistently indicate
that models in standard training exhibit high sensitivity to HFC. We investigate the
reason of the sensitivity, which reflects in model’s under-fitting behavior on HFC.
Furthermore, the cause of the model’s under-fitting behavior is attributed to the
limited information content in HFC. Based on these findings, we propose a Balance
Spectrum Sampling (BaSS) strategy, which effectively counteracts the long-tailed
effect and enhances the model’s learning on HFC. Extensive experimental results
demonstrate that our method achieves a substantially better robustness-accuracy
trade-off when combined with existing defense methods, while also indicating the
potential of encouraging HFC learning in improving model performance.

1 Introduction

The disparity between deep visual models and the human visual system (HVS) in image signal
processing enables the models to outperform the HVS on vision benchmarks [16, 33]. However, it is
worth noting that most visual models lack the robustness exhibited by HVS [36, 17]. Specifically, the
generalization advancement of visual models can be partially explained by the utilization of human-
imperceptible information, such as high frequency components (HFC) [4, 39, 29]. Additionally,
the adversarial vulnerability is also closely related to this information, as observed in adversarial
examples phenomena [36]. The coexistence of both conditions gives rise to a widely discussed
hypothesis: the vulnerability of the model stems from the utilization of imperceptible high-frequency
information in images.

Based on this hypothesis, a line of research has been conducted to explain and enhance the robustness
of the model [43, 1, 7, 9, 8, 35, 13]. However, these works share a common limitation: most of them
solely rely on qualitative analysis of frequency components observed by humans, without further
delving into the statistical properties. This limitation gives rise to the following issues in existing
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works: (i) the division of the frequency spectrum is intuitively based on manually set radius, resulting
in inconsistent conclusions across different datasets and models; and (ii) The understanding of high
frequency utilization is limited. For example, improving model robustness often involves suppressing
the learning on HFC, which is in stark contrast to the promotion of high frequency utilization to
improve generalization performance. This leads to a trade-off between robustness and accuracy in
some defense methods.

In this paper, to overcome the challenges posed by the aforementioned limitation, we are motivated
by the long-tailed characteristics in the spectrum. Specifically, the power spectral density of an
image naturally follows a power-law distribution, where a few low-frequency bands accounts for
the majority of the spectrum power while a large number of high-frequency bands maintains a low
power distribution. This new realization encourages us to revisit the significance of high-frequency
components in addressing the problem of model robustness under the guidance of deep long-tailed
learning.

In deep long-tailed learning [46], the presence of a large number of tail classes plays a critical role in
improving model performance. These tail classes offer benefits such as ensuring data integrity and
diversity [5] and capturing rare events [28]. However, it is commonly observed that models tend to
under-fit these classes due to their numerical disadvantage. Intuitively, the long-tailed characteristics
of the frequency spectrum also exhibit similar phenomena. We confirm the model’s (standard training)
under-fitting behavior on high frequencies through the lens of loss landscape [27]. Under the context
of model under-fitting, the discussion regarding HFC and model generalization performance can
be compatible in most studies [29, 39], as the common underlying cause is the low generalization
resulting from under-fitting. In this paper, we establish a link between under-fitting behavior and
model robustness, specifically identifying that the model’s under-fitting of high-frequency components
leads to high sensitivity towards them. We validate this relationship across different datasets and
models, consistently confirming our findings. Model’s under-fitting behavior on high frequency
leads to both low generalization and high sensitivity towards HFC. Thus, it is crucial to improve the
under-fitting behavior and further mitigate the trade-off between accuracy and robustness.

Drawing inspiration from deep long-tail learning, we introduce spectral entropy as a measure of the
information content of frequency components and provide an explanation for model’s under-fitting
behavior on HFC. We attribute model’s under-fitting behavior to the low spectral entropy of HFC.
Based on this perspective, the principle of maximum entropy [23, 3, 32] guides us in constructing an
image spectrum with a more balanced energy distribution to address the issue of low information
entropy. Finally, our quantitative experiments and theoretical analyses inspire us to propose a simple
yet highly effective Balance Spectrum Sampling (BaSS) strategy, which can work in conjunction with
different training paradigms and enables the model to achieve a better trade-off between robustness
and accuracy.

Our major contributions are as follows: (1) To the best of our knowledge, we are the first to propose
focusing on the long-tailed distribution in instance-wise , specifically in the frequency domain. This
novel perspective provides insights for analyzing and improving model performance. (2) We revisit
the relationship between HFC and model robustness, revealing the under-fitting phenomenon and its
association with high sensitivity and low generalization at high frequencies. To address the trade-off
between accuracy and robustness, we propose to enhance the high-frequency learning. (3) We explain
the under-fitting behavior through the lens of spectral entropy. Drawing inspiration from the principle
of maximum entropy, we propose a simple yet highly effective spectral sampling strategy (BaSS) to
improve the model’s under-fitting behavior. By incorporating BaSS with other training paradigms,
such as adversarial training and AugMix, model achieves better trade-off between accuracy and
robustness. Comprehensive experiments and analyses reveal the effectiveness of our method.

2 The long-Tailed Distribution in Frequency Domain

2.1 Notations and Preliminaries

Image Processing in the Frequency Domain. We perform 2-D discrete Fourier transform (referred
to as the DFT) F on image X ∈ RH×W to get Fourier spectrum X̃ ∈ CH×W . Unless otherwise
specified, the low frequencies are shifted towards the center of the Fourier spectrum. We denote
X̃[u, v] as the frequency component where u ∈ {0, . . . ,H − 1} and v ∈ {0, . . . ,W − 1}. Addition-
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ally, ωu,v denotes the Fourier Basis function [38] and ru,v denotes the Euclidean Distance from the
spectrum coordinate [u, v] to the center of spectrum, where a larger distance correspond to a higher
frequency, and vice versa.

Power Spectral Density. The power spectral density is defined by azimuthally averaging the
magnitude of Fourier coefficients over radial frequencies. Specifically, the value of power density is
estimated as the azimuthal integration (referred to as AI) over radial frequencies ϕ according to Eq.1.

AI(rk) =

∫ 2π

0

∥X̃[rk · cosϕ, rk · sinϕ]∥2dϕ (1)

where rk is the Euclidean Distance from the kth frequency band to the center of the spectrum [6, 14],
k ∈ {0, . . . ,H/2 + 1}.

2.2 Definition of Frequency Long-Tailed Scenario

Real-world data generally demonstrates a long-tailed distribution, where a small number of dominant
categories comprise the majority of the data, and a large number of minority categories possess
limited samples. Although previous studies [46, 37] have primarily investigated the degradation
in model performance due to the long-tailed problem at the class level, they have not adequately
considered the potential existence of a long-tailed issue within individual images. Through our
analysis of the Fourier spectrum, we observe that the power spectral density follows a power-law
distribution, which also exhibits the long-tailed characteristics. Specifically, the distribution (y-axis)
of ith frequency band (x-axis) is calculated by the proportion of power in ith band to the total power
of the spectrum, which is denoted as πi = AI(ri)/

∑
k AI(rk). Without loss of generality, {πi}

naturally present in decreasing trend (i.e., if k1 < k2, then πk1 < πk2 ).

Consequently, we summarize the statistics of the frequency feature from the long-tailed model
perspective as follows: (i) The head part, which is consisted of a few low-frequency bands, accounts
for the majority of the spectrum power and is highly semantic and information dense; (ii) The
tail part, which is composed of a large number of high-frequency bands, however maintains a low
power distribution. This part includes high-frequency semantic information (e.g., texture) as well as
human-imperceptible information.

LFC = {X̃[u, v] |max
n

n∑
i=0

πi ≤ 80%, ru,v ≤ rn}

HFC = {X̃[u, v] |min
n

H/2+1∑
i=n

πi ≥ 20%, ru,v ≥ rn}

(2)

Long Tail based Spectrum Division. Previous analysis [15, 39, 31] indicating that a few low-
frequency components form the image’s main content, while most high-frequency components
comprise a minor part. The rule that few factors determine main outcomes is encapsulated by the
Pareto Principle and the "80/20" quantitative rule, found across various domains, where 80% of effects
are caused by 20% of the reasons. Guided by this rule, we defined the boundary between frequencies
using an 80/20 spectral energy ratio. We formally define the low- and high-frequencies according
to the Eq.2, where the rn is the Euclidean Distance from the nth frequency band to the center of
the spectrum. The set composed of X̃[u, v] occupying 80% of the total power in the spectrum is
defined as the low-frequency component, and the remaining portion of the spectrum is defined as the
high-frequency component. We experimented with various datasets, finding that different resolution
images’ high-low frequency boundaries are at a 20% radius from the spectrum’s center (as shown
in Appendix B.2). This confirms the stability and reasonableness of the classification system using
spectral energy and the Pareto Principle.

3 Investigating and Explaining Model Robustness Behaviors: A Frequency
Long-tailed View

Vision models have demonstrated a capability in learning frequency information [24, 39, 29, 43].
Intuitively, model’s behavior could be affected by the long-tailed characteristics in the frequency
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Figure 1: Loss landscape visualization of HFC (a) and LFC (b). We conduct experiments on ResNet-
18 naturally trained on CIFAR10 dataset. The black star symbol represents model parameters θ.
A noticeable phenomenon is that the model exhibits a learning bias towards different frequency
components: specifically, the learning for high-frequency components has not converged, while the
learning for low-frequency components has already reached a local optimum.

domain, which has not been fully explored in previous studies, and is crucial for improving model
performance in visual tasks. In this section, we first summarize the impact of long-tailed characteris-
tics as a phenomenon of the model’s under-fitting of HFC (Sec. 3.1). We then explore the model’s
sensitivity to HFC from the perspective of under-fitting, and revisit the relationship between HFC
and robustness (Sec. 3.2). Finally we explain the model’s under-fitting behavior from the perspective
of spectral entropy (Sec. 3.3)

3.1 Model’s Under-fitting Behavior on HFC

In the long-tailed theory, the tail part is considered more deserving of attention than the head part. On
one hand, the tail part is often overlooked by the system due to its numerical disadvantage(e.g., the
sample size of the tail class is far less than that of the head class in the context of class-wise long
tail). On the other hand, it plays a crucial role in enhancing the system’s performance, primarily
due to two characteristics (i) providing data integrity and diversity [5], and (ii) capturing rare events
[28]. In this subsection, we explore the learning behavior of models regarding frequency components.
Specifically, we visualize and analyze the loss landscape [27] of the classifier on both LFC and HFC.
We present the detailed experimental procedure in the Appendix C.

Phenomenon of Model Under-fitting on HFC. The convergence result of LFC and HFC learning
exhibits significant differences as shown in Fig. 1. Fig. 1(b) suggests that the loss landscape on
LFC exhibits a benign characteristic: the parameter space around the model θ is relatively flat and
close to the local minima, indicating that the model has precisely converged on LFC. In contrast, the
loss landscape on HFC shown in Fig. 1(a) manifests a dramatic non-convexity in certain regions. It
can be observed that the model θ are located in a steep region of the landscape, with loss rapidly
decreasing when moving along the gradient directions (i.e., which are perpendicular to the contours).
Additionally, in the bottom-left region of the Fig. 1(a), we also observe a better local minimum
far away from current model. These observations indicate that the model still has the potential to
improve its ability to learn HFC.

Positive Correlation between Generalization and HFC Learning. It is widely recognized that
under-fitting is a cause of low generalization performance. Recent works have confirmed that models
exhibit lower generalization ability on HFC compared to LFC [39, 29]. Meanwhile, ignoring the
HFC can lead to inaccurate representation of the data distribution, resulting in a degradation in model
generalization [39, 4]. This correlation can be attributed to the first characteristic of tail components
mentioned above. Hence, it is vital to devise and employ strategies that alleviate or eliminate the
under-fitting of HFC, as it substantially contributes to the enhancement of model generalization.
performance [39, 29].
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(c) ImageNet

Figure 2: Model sensitivity to frequency components on CIFAR10, Tiny-ImageNet and ImageNet
datasets. We present the sorted average gradient magnitude on test set in the first row, with the x-axis
denoting the rank index. In the second row, we select part of rank positions, and display the density
distribution of frequency radius. The gray dashed line is served as the boundary between low- and
high-frequencies. The overall phenomenon is that naturally trained model is highly sensitive to tail
frequency components.

3.2 Revisiting the Relationship between HFC and Model Robustness

3.2.1 Motivation

The phenomenon of under-fitting inspires us to revisit the issue of model robustness. Robustness
is typically expressed as the sensitivity of model outputs to perturbations in inputs, and it can be
evaluated in two ways: (i) changes of the outputs leaded by introducing additional perturbations to the
inputs; and (ii) inputs gradients with respect to outputs. The results shown in Fig. 1(a) indicate that
standard training classifier still exhibit significant loss values in HFC and may have large gradients
with respect to high-frequencies, thus resulting in model vulnerability. In the context of long-tailed
theory, the tail part usually represents special or extreme cases and thus is more likely to be affected
by rare events, making HFC crucial for evaluating and analyzing model robustness. Existing studies
[43, 7, 9] suggest that the vulnerability of models is attributed to HFC, however, this conclusion is
not consistent across different datasets and models. We attribute the potential causes of inconsistency
to the definition of HFC. We aim to further explore relationship between HFC and model robustness.

3.2.2 Analyzing Model Sensitivity to Frequency Components

Model sensitivity to different frequency components has been explored using the Fourier heatmap,
which quantifies the changes in outputs when applying Fourier basis perturbations to images [43].
However, there are a few concerns about its applicability: (i) The theory of Fourier basis is based on
linear networks while deep neural networks typically exhibit high non-linearity, (ii) The perturbations
is excessively sensitive to the magnitude of the basis disturbance. Thus, we take inspiration from
[29, 7] and employ the loss gradient across various frequency components to examine sensitivity.

Estimation of Model Sensitivity. Given an input image X with label y, the output of classifier f is
f(X). The objective function of model’s training is formulated as L(f(X), y). Consequently, the
gradient of the loss w.r.t. the original input X can be expressed as g = ∇XL(f(X), y) ∈ RH×W ,
whose magnitude can indicate the sensitivity of the classifier to pixel domain perturbations. To further
assess the model’s sensitivity in frequency domain, we employ the set of orthogonal Fourier basis
vectors {ωu,v} and project g into frequency domain coordinate system. The corresponding coordinate
of projection in ωu,v is defined as follows:

cu,v = ⟨g, ωu,v⟩ =
H−1∑
m=0

W−1∑
n=0

g[m,n] · exp{−i2π · (mu

H
+

nv

W
)}. (3)
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The sensitivity of model to the frequency components corresponding to the spectrum point [u, v] is
measured by the gradient magnitude on ωu,v, which is defined as ∥cu,v∥2. In order to identify the
frequency domain sensitivity patterns of the model at the dataset level, we first sort wu,v according to
∥cu,v∥2 on a single image. For ease of statistical analysis, we replace wu,v with the frequency radius
ru,v as the feature vector. Finally, we get the set of feature vector for all images and estimate the
density of frequency radius using kernel density estimation (KDE) within the same rank index. We
analyze the frequency sensitivity across the CIFAR10 [25], Tiny-ImageNet [26], and ImageNet [12]
datasets with resolutions of 322, 642, and 2242 pixels, respectively. We show detailed settings in the
Appendix D.

Results and Discussions. From the first row of Fig. 2, we observe an imbalanced distribution of
gradients in different frequency bands, and the degree of imbalance is quite pronounced, resembling
a similar long-tailed distribution. The results in the second row of Fig. 2 indicate that the density
peaks of frequency radius in high-magnitude gradients are mainly concentrated in the tail high-
frequencies (i.e., represented by the darker colored curves). These observations clearly demonstrate
the relationship between HFC and model vulnerability, indicating that perturbations in HFC are more
easier to cause errors in the model. In the result of ImageNet as shown in Fig. 2, we notice a particular
phenomenon where there are also large gradient magnitude in the head components. This could be
due to the wide spectral range causing similar vulnerabilities in the head components. However, this
phenomenon does not affect the consistency of our conclusions. It also suggests that addressing
robustness in the ImageNet dataset is a more challenging task.

3.3 Reasons leads to the Under-fitting Behavior

In deep long-tailed learning, the lack of sufficient generalizable information on tail classes directly
causes biased behavior in models. Similar phenomena inspire us to explain the under-fitting of the
tail part from an information-theoretic perspective in the case of frequency long-tailed problems.

3.3.1 The Spectral Entropy of HFC is Much Lower than LFC

Spectral Entropy To quantitatively characterize the amount of information contained in a given
image, spectral entropy is utilized analogously to Shannon entropy in information theory. The
continuous frequency domain is discretized and represented by a discrete variable ξ, with ξl and ξh
as its minimum and maximum values, respectively. Given that the spectral density of natural images
follows a power-law distribution, its density function can be computed and normalized as follows:
p(ξ = k) = 1−α

ξ1−α
h −ξ1−α

l

· k−α, where α is the parameter determining the magnitude of the long-tailed
effect, and its smaller value indicates a more significant long-tailed effect. We use πi to estimate
pi, and then the spectral entropy of kth band is derived by applying the Shannon entropy formula:
Hk = −πk log πk. Consequently, the flat spectrum corresponds to maximal spectral entropy, while
the spectrum of a single frequency signal has minimal spectral entropy, which is zero.

Theorem 1 Given any natural image X , k represents the order of frequency band, then the spectral
entropy Hk is given by: Hk = (αAα log k +H(A(α))) · k−α, where A(α) = (1 − α) · (ξ1−α

h −
ξ1−α
l )−1. Then we have, limk→0 Hk = ∞ and limk→∞ Hk = 0.

Theorem 1 demonstrates an inverse proportional relationship between the frequency band and spectral
entropy, decreasing at an α order. This indicates that high-frequency bands in the tail contain
substantially less information than low-frequency bands in the head. Unlike measuring the number of
image samples, we provide a new way to measure image information from the frequency domain
perspective, explaining the model’s under-learning behavior for low-information data. Moreover,
Theorem 1 also suggests that high-resolution data, such as ImageNet, often lack effective generalizable
information in the tail. This finding aligns with Fig. 2, illustrating that the model fails to generate
gradient components in the ultra-high frequency range of ImageNet data.

3.3.2 Balanced Spectral Entropy Benefits the Under-fitting Phenomena

The maximum entropy principle seeks to make reliable predictions on unknown data distributions
by selecting probability distributions with the highest entropy, without introducing unnecessary
biases or prior knowledge. Both generalization and robustness reflect a model’s ability to infer
unknown samples, which depends on its capacity to capture information during training. Based on
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our analysis, we suggest that this principle explains the model’s under-fitting on HFC: the model
prioritizes utilizing LFC with higher information entropy to improve its capacity for fitting unknown
data, leading to the observed under-fitting in high frequencies. To address under-fitting in HFC, we
aim to increase the amount of information, and the maximum entropy principle offers a solution.

Theorem 2 Given the prior data ξ, and its corresponding probability distribution p(ξ), the principle
of maximum entropy consider the following optimization: p̂ = {argmaxp∈P H(p) | p(ξ) ≥
0,
∫
Ω
p(ξ)dξ = 1,

∫
Ω
p(ξ)ri(ξ)dξ = αi, i = 1, · · ·m}. Without considering the moment constraints,

the uniform distribution p(ξ) = 1
ξh−ξl

1[ξl,ξh](ξ) satisfies the principle of maximum entropy.

Theorem 2 demonstrates that a uniform distribution with balanced information adheres to the max-
imum entropy principle when fitting an unknown distribution. Intuitively, this corresponds to fair
learning for tail classes, which has been extensively studied in deep long-tailed learning to improve
tail class generalization using techniques like re-weighting or re-sampling. This insight drives us to
tackle the under-fitting issue of HFC by redistributing spectral energy through a balanced sampling
strategy.

4 Methodology and Experiments

4.1 Balanced Spectrum Sampling (BaSS)

Previous analyses encourage us to HFC learning by balancing the power spectral density. Nonethe-
less, it is essential to consider the potential negative effects of noise present in the image while
implementing a balanced spectrum. Noise components, often found in ultra-high-frequency parts,
have been proven less beneficial for classification tasks [39, 29]. Moreover, uniformly allocating
noise and other frequency components may (i) amplify noise influence on model learning, and (ii)
allocate less energy to remaining frequency bands, both negatively impacting model learning. To
address these challenges and achieve spectral balance, we propose a spectral sampling strategy in this
subsection.

π̂i =
logτ AI(ri)∑B
j=1 logτ AI(rj)

(4)

Sampling Strategy. For the ith frequency band, we sample the power spectral density according to
Eq. 4 with a probability of π̂i, where τ ≥ 1 denotes the base and B is the maximum frequency band
of the spectrum. Our approach is inspired by two background pieces of knowledge: solutions for
the long-tail distribution of image categories and image sampling. The solution for the class-wise
long-tail distribution adjusts the sampling frequency of samples with different class quantities through
the inverse weighting of category quantities. However, features in images (like spatial pixels and
spectral density) can not usually be directly chosen via the sampling theorem. Therefore, we refer
to the method of sampling image pixels in the spatial domain: (i) discretizing image features that
corresponds to the spectrum obtained from the Fourier transform; (ii) selecting and combining
feature values from different regions: we re-weight features at different frequency bands based on the
sampling probability π̂i and obtain a new image through the inverse Fourier transform.

Specifically, we employ a logarithmic function to: (i) establish a smooth connection between the
power density of head and tail parts, mitigating the impact of ultra-high frequency components on the
overall distribution, and (ii) adjust spectral power values in the head part to a reasonable range, while
diminishing the power disparity between head and tail frequency bands, yielding a more balanced
distribution overall.

4.2 Working Mechanism Exploration of BaSS
In this subsection, we validate the potential of the Balanced Spectrum Sampling strategy (BaSS).
Specifically, we examine two paradigms for utilizing the sampled images: (i) Data augmentation,
where each training image is performed by BaSS with a probability of γ. In this paradigm, the model
will be validated on a test set comprised only of natural images. (ii) New dataset, where both the
training and testing sets consist entirely of sampled images.

Experiments Settings. We refer to the dataset performing BaSS on CIFAR10 [25] as CIFAR10-B.
For different values of γ, we obtain a set of ResNet-18 [19] models with standard training. We
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Figure 3: Results of exploring potention of BaSS. (a) clean data accuracy, (b) robust accuracy
evaluated on CIFAR10-C, (c) robust accuracy against PGD attack with 20 steps, and (d) clean and
robust acc comparison on CIFAR10 and CIFAR10-B
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Figure 4: Visualization of Loss Landscape on models that training with CIFAR10-B as data augmen-
tation at a ratio of γ. The black star symbol represents model parameters θ.

use clean accuracy, corruption robustness and adversarial robustness as the metric to measure the
potential of BaSS strategy. Specifically, (i) the clean accuracy is evaluated on both CIFAR10 and
CIFAR10-B test set. (ii) To evaluate the corruption robustness, we first construct a corruption
version for CIFAR10-B, referring to the construction method of CIFAR10-C [20] and denotes as
CIFAR10-B-C. We then calculate the mean accuracy across 19 corruption types and 5 severities from
CIFAR10-C and CIFAR10-B-C. (iii) We perform PGD attack [30] with 20 steps and ℓ∞ constraint
ϵ = 1/255, 2/255, 4/255, 8/255 to evaluate adversarial robustness.

CIFAR10-B as Data Augmentation. The results in Fig. 4 indicate that as the proportion of CIFAR10-
B images increases (from Fig. 4(a) to Fig. 4(c)), the model converges more on the high-frequency
components (the black stars are closer to the local minimum). The results from Fig. 3(a), Fig.3(b)
and Fig. 3(c) indicate that the data-augmented model achieves a better trade-off between robustness
and accuracy. Specially, the corruption robustness is improved across all categories, further achieving
a more balanced performance. The enhancement of adversarial robustness under small perturbation
(e.g., ϵ=1/255, 2/55) is quite significant, with the improvement magnitude positively correlated with
the mixing ratio. However, the issue of model robustness under large perturbations still remains.

CIFAR10-B as an New Dataset. The naturally trained model achieves a better robustness-accuracy
trade-off on the CIFAR10-B than on the CIFAR-10 dataset, as shown in Fig.3(d). What attracts us is
the improvement in adversarial robustness. From the more detailed results in the Appendix F.2.1, the
performance of CIFAR10-B is superior to that of CIFAR-10 and all mixed datasets. Based on the
anaylsis shown in the Appendix F.2.1, we observed that the model trained on the CIFAR10-B dataset
has a more balanced gradient distribution across different frequency domains. This indicates that
when facing adversarial attacks, the model’s vulnerabilities aren’t concentrated in the high-frequency
direction of the image. As a result, the adversarial attack process needs to generate adversarial
noise containing patterns from multiple frequency domains. This insight suggests that we use the
CIFAR10-B dataset in place of the original dataset during the adversarial training process.

4.3 BaSS Working in Conjunction with Adversarial Training

Adversarial Training has been the most successful defense strategy, where models are explicitly
trained to be robust in the presence of adversarial attacks [30, 2, 34, 45]. In this subsection, We
utilize the BaSS strategy to modify the input image and train the models in conjunction with PGD-AT
[30], TRADES [45] and MART [40].
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Table 1: Clean and Robust Accuracy(%) on CIFAR10 and CIFAR100.

CIFAR10 ResNet-18 WRN-34 CIFAR100 ResNet-18 WRN-34
Clean PGD20 AA Clean PGD20 AA Clean PGD20 AA Clean PGD20 AA

PGD-AT 83.50 52.72 48.90 86.71 55.13 51.98 PGD-AT 56.33 29.29 24.88 61.78 30.48 27.93
+BaSS 89.22 59.61 55.90 91.08 63.65 60.91 +BaSS 63.91 31.61 27.95 67.07 34.87 32.21
∆ +5.72 +6.89 +7.00 +4.37 +8.52 +8.93 ∆ +7.58 +2.32 +3.07 +5.29 +4.39 +4.28

TRADES 82.15 52.50 49.05 85.66 56.54 53.77 TRADES 58.30 29.90 25.52 61.06 31.83 27.09
+BaSS 87.20 60.01 56.27 91.20 65.38 62.69 +BaSS 64.17 32.94 27.77 69.01 37.03 33.03
∆ +5.05 +7.51 +7.22 +5.54 +8.84 +8.92 ∆ +5.87 +3.04 +2.25 +7.95 +5.20 +5.94

MART 81.38 54.74 49.48 83.78 56.75 51.42 MART 57.80 30.73 26.26 58.10 33.46 28.36
+BaSS 88.75 60.43 56.93 89.63 63.71 59.09 +BaSS 63.94 32.95 28.01 64.02 37.79 32.20
∆ +7.37 +5.69 +7.45 +5.85 +6.96 +7.67 ∆ +6.14 +2.22 +1.75 +5.92 +4.33 +3.84

Table 2: State-of-the-art performance on
CIFAR10 and CIFAR100.

Method CIFAR10 CIFAR100
Clean AA Clean AA

DAJAT[2] 88.71 58.04 68.75 31.85
PORT[34] 86.68 60.27 65.93 31.15

Ours 91.20 62.69 69.01 33.03

Table 3: Clean and Robust Accuracy(%) on
Restricted-ImageNet.

Method Restricted-ImageNet
PGD-AT +BaSS TRADES +BaSS

Clean 65.13 66.76 64.79 66.90
PGD20 49.44 57.63 51.71 57.96

AA 33.37 41.77 35.50 42.80

Experiment Settings: We conducted experiments on the following three datasets: CIFAR10, CI-
FAR100 [25] and Restricted-ImageNet [12], using ResNet-18, WideResNet-34-10 [44] and ResNet-
50 [19] as backbone. We compare the performance of our method with the baseline defenses PGD-AT
[30], TRADES [45], MART [40], and also state-of-the-art defenses DAJAT [2] and PORT [34] from
the Robust Bench leaderboard [10]. To fairly evaluate each model, we assessed (a) clean accuracy
(i.e., clean test data), robust accuracy under (b) PGD20 attack, the PGD attack [30] with 20 steps and
(c) AutoAttack(AA) [11]. The ℓ∞ attack perturbation was bounded to ϵ = 8/255 with a step size of
2/255 in both the training and test processes of CIFAR-10 and CIFAR-100. For Restricted-ImageNet,
ϵ = 4/255 with a step size of 1/255. Detailed settings are available in the Appendix F.2.2.

Results. As shown in Tab. 1 and Tab. 2, by processing the dataset with BaSS strategy, our method
consistently achieves a better robust-accuracy trade-off across datasets and architectures. Moreover,
as shown in Tab. 3, our approach trained with WRN-34-10 achieves state-of-the-art performance
compared with existing defenses on CIFAR10 and CIFAR100. Adversarial training has been observed
to exhibit a more pronounced data hunger compared to natural training [2]. Existing defense methods
that are capable of improving both generalization and robustness performance typically involve
adversarial training on an enlarged training set [41, 18], which is accompanied by a substantial
training overhead. It is worth noting that BaSS strategy barely increase the training cost (including
the training time and the data size, comparison details are available in the Appendix F.2.2), and
achieve a competitive performance. This further demonstrates the effectiveness of BaSS.

4.4 BaSS Working in Conjunction with AugMix

AugMix [21] generates complex and diverse images through data augmentation, improving the
model’s robustness to different types of corruption. Specifically, for the original data x, xaugmix are
generated by combining multiple simple data augmentation, then a consistency constraint is applied to
the xaugmix and x during the training process. Experiments typically involve two AugMix processes
to obtain xaugmix1 and xaugmix2. To verify that our method of increasing data information, BaSS,
can be combined with the AugMix method, we perform BaSS operations on one of the augmented
input data x to obtain xb and then perform AugMix to obtain xb

augmix1. The model training process
constrains the consistency of x, xb

augmix1, and xaugmix2.

Experiment Settings: We conduct experiments on CIFAR10 and CIFAR100, and utilize CIFAR10-B
and CIFAR100-B in training process as mentioned above. We use various architectures including
ResNet-50, WideResNet-40-2, DenseNet-29 [22], and ResNeXt [42]. During the testing phase, we
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Table 4: AugMix improves both clean accuracy and corruption robustness combined with BaSS.

Dataset Model Method Clean(%) Robust Acc (%)
Noise Blur Weather Digital Mean

CIFAR10

WRN-40-2 AugMix 95.66 84.62 91.31 91.95 90.90 89.91
+BaSS 95.83 88.66 91.37 93.04 90.77 90.96

DenseNet AugMix 95.79 83.08 90.54 91.72 90.00 89.05
+BaSS 95.99 88.36 91.47 93.14 90.53 90.87

ResNeXt-29 AugMix 96.29 82.99 91.63 92.62 91.38 89.94
+BaSS 96.08 89.37 92.10 93.43 90.94 91.44

ResNet-50 AugMix 95.95 85.15 91.56 92.21 91.37 90.29
+BaSS 96.00 89.85 91.90 93.27 91.53 91.64

CIFAR100

WRN-40-2 AugMix 77.53 55.43 69.08 68.24 67.13 65.41
+BaSS 77.90 60.38 69.07 70.74 66.92 66.91

DenseNet AugMix 77.46 51.83 67.74 67.49 65.19 63.53
+BaSS 78.44 59.08 68.89 70.31 65.93 66.19

ResNeXt-29 AugMix 78.68 55.93 70.12 68.82 67.92 66.16
+BaSS 80.17 60.02 71.27 72.47 68.38 68.24

ResNet-50 AugMix 79.01 58.90 71.26 69.95 69.74 67.90
+BaSS 80.83 64.95 72.24 73.33 69.96 70.21

evaluated the clean accuracy on the test sets of CIFAR10 and CIFAR100, and assessed the corruption
robustness on CIFAR10-C and CIFAR100-C [20] datasets.

Results. Our method further improves the performance of AugMix as shown in Tab. 4, achieving a
better trade-off between generalization and robustness across all model structures. Different classes
of corruption usually have their own frequency-domain characteristics [43], thus leads to a bias
towards a certain type of corruption in existing defense methods (e.g., adversarial training and
AugMix). Notably, our method significantly enhances the model’s capabilities in defending against
high-frequency patterns corruption (e.g., improving Noise corruption robustness by approximately
4%). This improvement enables the model to achieve a more balanced defense, indicating that our
method has indeed enhanced in learning HFC.

We noticed that the BaSS strategy did not help the model’s robustness in the "Digital" column of the
in Tab. 4. Different types of perturbations usually act on different frequency bands of the image[43],
bringing the challenge of diversity of frequency domain information. The Fourier heatmaps [43] show
that the type of "Digital" corruption have a common feature: irregular range perturbations exist from
low to high frequencies in the image. AugMix resists the above-mentioned irregular frequency band
perturbations more efficiently by adopting random data augmentation strategies, producing images
with better diversity in frequency domain information. The BaSS method we provided replaced one
of the random data augmentation branches in AugMix, thus affecting the original performance of
AugMix under the "Digital" type perturbations to some extent.

5 Conclusions

In this paper, we have gained a deeper understanding of the relationship between high frequency
components (HFC) and model robustness by defining the frequency long-tailed problem. Observations
and analyses have revealed that (i) the high sensitivity to HFC stems from the model’s under-fitting
behavior of HFC, (ii) the cause of the model’s under-fitting behavior is attributes to the limited
information content of HFC. Based on these insights, we have proposed a balanced spectrum
sampling strategy (BaSS) that effectively improves the trade-off between robustness and accuracy
when combined with different training paradigms. Our current results are mainly focused on the
image classification tasks while we believe it is also rewarding to develop new techniques to other
vision tasks. We also expect that this work could inspire a future explanations and defense method
from model perspective such as, exploring model-side improvement that can work with BaSS strategy.
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