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Abstract— The low-rank tensor factorization (LRTF) technique
has received increasing attention in many computer vision
applications. Compared with the traditional matrix factorization
technique, it can better preserve the intrinsic structure informa-
tion and thus has a better low-dimensional subspace recovery
performance. Basically, the desired low-rank tensor is recovered
by minimizing the least square loss between the input data
and its factorized representation. Since the least square loss is
most optimal when the noise follows a Gaussian distribution,
L1-norm-based methods are designed to deal with outliers.
Unfortunately, they may lose their effectiveness when dealing
with real data, which are often contaminated by complex noise.
In this paper, we consider integrating the noise modeling tech-
nique into a generalized weighted LRTF (GWLRTF) procedure.
This procedure treats the original issue as an LRTF problem
and models the noise using a mixture of Gaussians (MoG),
a procedure called MoG GWLRTF. To extend the applicabil-
ity of the model, two typical tensor factorization operations,
i.e., CANDECOMP/PARAFAC factorization and Tucker factor-
ization, are incorporated into the LRTF procedure. Its parame-
ters are updated under the expectation–maximization framework.
Extensive experiments indicate the respective advantages of
these two versions of MoG GWLRTF in various applications
and also demonstrate their effectiveness compared with other
competing methods.

Index Terms— Expectation–maximization (EM) algorithm,
generalized weighted low-rank tensor factorization (GWLRTF),
mixture of Gaussians (MoG) model, tensor factorization.
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I. INTRODUCTION

IN RECENT years, the data to be processed have become
increasingly massive and high dimensional. The problem

of how to learn the low-dimensional subspaces from such
high-dimensional data has arisen in many areas, such as
computer vision, machine learning, and data mining. To solve
this issue, efforts have been made in many applications,
e.g., face recognition with robustness to varying expressions,
illumination and occlusion [1]–[4], camera motion and scene
geometry recovery from image sequences [5], 3-D object
recognition and pose estimation from its image appearance [6],
and segmentation of multiple rigid-body motions from point
correspondences [7]. Traditionally, by employing the matri-
cizing technique, matrix-based approaches, including low-rank
matrix factorization (LRMF) and robust principal component
analysis (RPCA) [8], are used to deal with these applications.
However, in these applications, the data to be analyzed have
intrinsically high-dimensional multilinear structures, and these
matrix-based approaches fail to exploit the structure infor-
mation, as mentioned in [9]. Therefore, it would be more
reasonable to formulate the data as higher order tensors, which
can better preserve the intrinsic structure. Moreover, a higher
order tensor can be viewed as the natural generalization of
a vector and matrix. To better illustrate the procedure of our
tensor method and how it differs from the matrix technique,
Fig. 1 provides a framework of these two techniques when
dealing with higher order data. Compared with the matrix
technique, which needs to first matricize the original higher
order data to obtain the corresponding matrix form, the tensor
technique is directly applied to its high-order tensor form.

The low-rank tensor factorization (LRTF) is an effective
way to learn the low-dimensional subspace of a higher
order tensor. Unlike the LRMF framework, which has the
ability to obtain a unique factorization and rank definition,
the corresponding forms in the tensor case are nonunique.
Basically, there are two definitions of tensor factorizations:
CANDECOMP/PARAFAC (CP) factorization and Tucker
factorization.

CP factorization can be regarded as a higher order
generalization of the matrix singular value decomposi-
tion (SVD) [10]–[12]. It has already been used in many areas,
such as image inpainting [13], [14], collaborative filtering [15],
and data mining [16]. The idea of CP factorization is to
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Fig. 1. Framework of higher order data processed by our tensor technique
and the traditional matrix technique. Compared with the matrix technique,
which needs to first matricize the original data to obtain the corresponding
matrix data, the tensor technique is directly applied to its high-order tensor
form. In our tensor method, mixture of Gaussians (MoG) noise modeling is
incorporated into the procedure of LRTF. Here, CP is taken for illustration.

represent a tensor as the summation of a finite number of
rank-1 tensors, and the corresponding rank is defined as the
smallest number of rank-1 tensors [17], [18]. Mathematically,
assuming an N-order tensor X of size I1 × I2 × · · · × IN ,
the CP factorization is defined as

X =
r∑

d=1

ud ◦ vd ◦ · · · ◦ td (1)

where ◦ and r are the vector outer product and the rank
of tensor X , respectively. The mode matrix is defined
as the combination of vectors in the rank-1 tensors,
e.g., U = [u1, u2, . . . , ur ]; the same is true for the others.
Accordingly, the elements in tensor CP factorization can be
represented as

xi1,i2,...,iN =
r∑

d=1

ui1,dvi2,d . . . tiN ,d . (2)

Tucker factorization can be viewed as a form of higher order
principal component analysis [10]–[12], [19], and it has been
widely used in many applications [20]–[26]. The tensor Tucker
factorization is achieved by multiplying a core tensor by its
mode matrices, that is,

X = G×1U×2V · · · ×N T

=
r1∑

d1=1

r2∑

d2=1

. . .

rN∑

dN =1

gd1,d2,...,dN ud1 ◦ vd2 ◦ · · · ◦ tdN (3)

where ×n denotes the n-mode matrix product and G is the
core tensor, which is used to control the interaction between
the mode matrices. The rank of Tucker factorization is defined
by the n-rank of X , denoted as rankn(X ). It is composed of
the mode-n rank rn of the tensor. Therefore, tensor X is also
called a rank-(r1, r2, . . . , rN ) tensor. Elementwise, the Tucker
factorization in (3) is

xi1,i2,...,iN

=
r1∑

d1=1

r2∑

d2=1

. . .

rN∑

dN =1

gd1,d2,...,dN ui1,d1vi2 ,d2 . . . tiN ,dN . (4)

Traditionally, the Frobenius norm function (i.e., the
L F -norm) is employed to perform LRTF. It is effective when
the noise variable follows a Gaussian distribution according to
the maximum likelihood estimation. However, the Frobenius-
norm-function-based LRTF approach loses its effectiveness
when the data are corrupted by gross outliers, which affect
only a small fraction of the data but are large in magnitude.
This kind of noise has arisen in many real applications, such as
functional magnetic resonance imaging neuroimaging [27] and
video surveillance [28]. Commonly, the L1-norm [29], [30]
is an alternative to the L F -norm when dealing with gross
outliers. From the perspective of modeling, the observation
model is represented as a superposition of the low-rank
term, the sparse corruption term, or/and the Gaussian noise
term, which was widely considered in [8] and [31]–[33].
It works well only when the noise follows a simple mixture
of the Gaussian distribution and the Laplacian distribution.
Unfortunately, the noise often follows very complex statistical
distributions in many real applications [34]–[36], which moti-
vates us to introduce a more robust noise modeling technique
into the LRTF procedure.

Considering that an MoG can be used to perform a uni-
versal approximation of a continuous distribution, Meng and
De la Torre [34] considered applying the MoG noise model to
the LRMF framework. Zhao et al. [35] further introduced it
into the RPCA model under the Bayesian framework. Inspired
by the fine results they obtained, along this line, we introduce
the MoG noise model into the framework of low-rank tensor
CP factorization [37], which can be regarded as a higher order
generalization of the LRMF case. To better explore the under-
lying structure of tensors and further enhance the applicability
of the model, in this paper, we apply the MoG noise model
to the two typical tensor factorization strategies and derive a
generalized model for low-rank subspace estimation.

The major contributions of this paper are summarized as
follows: 1) MoG distribution is introduced into the framework
of LRTF to model complex noise; 2) a generalized weighted
LRTF (GWLRTF) is proposed for low-rank subspace learning,
i.e., the GWLRTF integrated with CP (GWLRTF-CP) and the
GWLRTF integrated with Tucker (GWLRTF-Tucker); 3) the
parameters of the MoG are calculated using the maximum
log-likelihood function, and the low-rank subspace parameters
are estimated by solving the GWLRTF model; and 4) the
effectiveness of MoG GWLRTF compared with other compet-
ing methods is validated via extensive experiments, with the
two proposed factorization versions exhibiting different advan-
tages in various applications. The source codes of this paper
can be obtained at http://vision.sia.cn/our%20team/Hanzhi-
homepage/vision-ZhiHan(English).html.

The remainder of this paper is organized as follows.
Section II introduces the notations and common tensor
operations used in this paper. In Section III, a gener-
alized low-rank tensor model integrated with the MoG
is introduced. The corresponding algorithms are derived
under the expectation–maximization (EM) framework in
Section IV. Section V demonstrates the results of extensive
experiments. The conclusion and discussion are provided
in Section VI.
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II. NOTATIONS AND PRELIMINARIES

In this section, we introduce the notations and common
tensor operations used throughout this paper. Lowercase letters
(a, b, . . .) and their bold forms (a, b, . . .) are used to denote
scalars and vectors, respectively. Uppercase letters (A, B, . . .)
and their corresponding calligraphic forms (A,B, . . .)
denote the matrices and higher order tensors, respectively.
Vector and matrix elements are represented as (ai , b j , . . .) and
(ai, j , bi, j , . . .), respectively.

Assuming an N-order tensor X ∈ R
I1×I2×···×IN , the positive

integer In(n = 1, 2, . . . N) is used to denote the size of
each order (or dimension or mode). An element of the tensor
can be expressed as xi1,...,in ,...,iN . The tensor slices can be
obtained by fixing every index but two. The mode matrix
of a tensor is obtained by unfolding the tensor along the
corresponding mode, which is denoted as X(n) = unfoldn(X ).
Its inverse operation is the mode-n folding, represented as
X = foldn(X(n)). The mode-n rank of X is defined by its
mode-n matrix, i.e., X(n) : rn = rank(X(n)). The matrix
vectorizing operation is defined as vec : R

w×h → R
wh .

Mathematically, a rank-1 tensor is defined by the outer
product of N vectors as follows: X = u ◦ v ◦ · · · ◦ t,
with elements xi1,i2,...,iN = ui1 vi2 . . . tiN . The mode-n
product of tensor X and its mode matrix U is defined
by X ×n U ∈ R

I1×···×In−1×Jn×In+1×···×IN with element
(X ×n U)i1,...,in−1, jn,in+1,...,iN = ∑

in

xi1,...,in ,...,iN u jn,in . The

inner product of two tensors with the same size can be
represented as 〈X ,Y〉 = ∑

i1

∑
i2 . . .

∑
iN

xi1,...,iN yi1,...,iN .
The three commonly used types of norm, i.e., L F -norm,
L0-norm, and L1-norm, are defined as: ‖X‖F = 〈X ,X 〉1/2.
‖X‖0 counts the number of nonzero entries in X , and
‖X‖1 = ∑

i1,...,iN
|xi1,...,iN |.

III. GENERALIZED LOW-RANK TENSOR MODEL

INTEGRATED WITH MOG

In this section, we propose a generalized low-rank tensor
model integrated with the MoG for modeling complex noise.
To optimize the parameters, we aim to maximize the log-
likelihood form of the model.

Considering the noise case (denoted as E), the observed
tensor X can be modeled as

X = L + E (5)

where L denotes the low-rank tensor, the corresponding ele-
mentwise form of which is

xi1,i2,...,iN = li1,i2,...,iN + εi1,i2,...,iN . (6)

Suppose that each noise element in (5) follows the MoG
distribution, which is defined as:

p(ε) ∼
K∑

k=1

πkN
(
ε|μk, σ

2
k

)
(7)

where {πk |πk ≥ 0,
∑K

k=1 πk = 1} is the mixing propor-
tion and (μk, σk) are the Gaussian distribution parameters.

Each element xi1,i2,...,iN of X follows:

p(xi1,i2,...,iN |�,�,�) =
K∑

k=1

πkN
(
xi1,i2,...,iN |�k, σ

2
k

)
(8)

where � = {π1, π2, . . . , πK },� = {�1,�2, . . . ,�K },
� = {σ1, σ2, . . . , σK }, and �k = li1,i2,...,iN +μk . Correspond-
ingly, we have the following likelihood form of the observed
tensor X :

p(X |�,�,�) =
∏

i1,i2,...,iN ∈�

K∑

k=1

πkN
(
xi1,i2,...,iN |�k, σ

2
k

)

(9)

where � is used to indicate the nonmissing entries in X .
Alternatively, we choose to maximize the logarithmic form

of (9) as follows:

(�∗,�∗,�∗)
= argmax

�,�,�
log p(X |�,�,�)

= argmax
�,�,�

∑

i1,i2,...,iN ∈�

log
K∑

k=1

πkN
(
xi1,i2,...,iN |�k, σ

2
k

)
. (10)

Assuming that the mean value in (7) is zero, the original
problem becomes a Gaussian scale mixture problem [38], [39].
Thus, our goal is to maximize

(�∗,L∗,�∗)
= argmax

�,�,�
log p(X |�,L,�)

= argmax
�,�,�

∑

i1,i2,...,iN ∈�

log
K∑

k=1

πkN
(
xi1,i2,...,iN |li1,i2,...,iN , σ 2

k

)
.

(11)

IV. ALGORITHMS UNDER EM FRAMEWORK

It is known that an effective method for solving the
problem of the maximum log-likelihood function is the EM
method [40]. Therefore, by assuming a higher order latent
variable, we employ the EM method to solve (10). The
parameters of the MoG model are estimated using the max-
imum log-likelihood method under the EM framework, and
the low-rank subspace parameters are computed using the
newly developed algorithms. Thus, the whole algorithm is
achieved by iteratively updating between the computation
of Gaussian responsibility (E Step) and the estimation of
parameters �,�,L in the model (M Step).

E Step: Assuming that higher order latent variable
{zi1,i2,...,iN ,k|zi1,i2,...,iN ,k ∈ {0, 1},∑K

k=1 zi1,i2,...,iN ,k = 1}
represents the assigned value of each MoG distribution,
the posterior responsibility of the kth Gaussian mixture for
generating xi1,i2,...,iN can be computed as

E(zi1,i2,...,iN ,k) = γi1,i2,...,iN ,k

= πkN (xi1,i2,...,iN |li1,i2,...,iN , σ 2
k )

∑K
k=1 πkN (xi1,i2,...,iN |li1,i2,...,iN , σ 2

k )
. (12)
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M Step: Maximize the upper bound given in the E Step
with respect to parameters L,�, and �

EZ p(X , Z |L,�,�)

=
∑

i1,i2,...,iN ∈�

K∑

k=1

γi1,i2,...,iN ,k

×
(

logπk − log
√

2πσk − (xi1,i2,...,iN − li1,i2,...,iN )2

2πσ 2
k

)
.

(13)

The maximization procedure for this problem can be alter-
natively achieved by iteratively computing the MoG parame-
ters and estimating the low-rank tensor in the model.

Update �,�: The MoG parameters have the following
closed-form solutions:

mk =
∑

i1,i2,...,iN

γi1,i2,...,iN ,k, πk = mk∑
k mk

σ 2
k = 1

mk

∑

i1,i2,...,iN

γi1,i2,...,iN ,k(xi1,i2,...,iN − li1,i2,...,iN )2. (14)

Update L: Once the MoG parameters are known, (13) can
be rewritten with respect to L as

∑

i1,i2,...,iN ∈�

K∑

k=1

γi1,i2,...iN ,k

(
− (xi1,i2,...,iN − li1,i2,...,iN )2

2πσ 2
k

)

= −
∑

i1,i2,...,iN ∈�

K∑

k=1

(
γi1,i2,...,iN ,k

2πσ 2
k

)
(xi1,i2,...,iN − li1,i2,...,iN )2

= −‖W � (X − L)‖2
L F

(15)

where L is evaluated by solving the GWLRTF model
minL‖W � (X − L)‖2

L F
. We use � to denote the Hadamard

product (componentwise multiplication). The element
wi1,i2,...,iN in weighted tensor W ∈ R

I1×I2×···×IN is computed
using

wi1,i2,...,iN =

⎧
⎪⎪⎨

⎪⎪⎩

√√√√
K∑

k=1

γi1,i2,...,iN ,k

2πσ 2
k

, i1, i2, . . . , iN ∈ �

0, i1, i2, . . . , iN /∈ �.

(16)

The whole procedure for solving the proposed model is
summarized in Algorithm 1.

In this paper, the two typical factorizations are introduced
into the GWLRTF model, and the corresponding optimization
algorithms are proposed.

A. GWLRTF Integrated With CP

Assuming that tensor X has a size of R
I×J×K in the

GWLRTF model, the low-rank CP factorization form is

min
U,V , T

∥∥∥∥∥W �
(
X −

r∑

d=1

u:,d ◦ v:,d ◦ t:,d

)∥∥∥∥∥
L F

(17)

where L = ∑r
d=1 u:,d ◦ v:,d ◦ t:,d and U ∈ R

I×r , V ∈ R
J×r ,

and T ∈ R
K×r are mode matrices with rank r . The element

of weighted tensor W is dependent on the above-obtained
standard variance.

Algorithm 1 MoG GWLRTF

Input: observed data in tensor form X ∈ R
I1×I2×···×IN

Output: the recovered low-rank tensor L
1: Initialize the parameters �,�,L in the model, and preset

the number of MoGs K , the iteration and the value of
threshold ε.

2: while not converged do
3: E Step for Gaussian responsibility:

Evaluate γi1,i2,··· ,iN ,k using Eq. (12).
4: M Step for MoG parameters �,�:

Evaluate πk, σ
2
k using Eq. (14)

5: M Step for low-rank tensor L:
Estimate L by solving the following GWLRTF model
min
L

‖W � (X − L)‖2
L F

,

in which W is calculated using Eq. (16).
6: end while

We adopt the alternating least squares (ALS) technique
to iteratively update the parameters of the low-rank tensor.
Considering that the low-rank tensor is the summation of
finite rank-1 tensors, the tensor slice can be represented by the
linear combination of the corresponding slice of the finite rank-
1 tensors. We use matrices MF , MH , and ML to denote the
vectorized form of tensor frontal, horizontal, and lateral slices.

The first term in the GWLRTF-CP model can be
represented by

Xweight = W � X . (18)

To update mode matrix T , we first rewrite (18) in the vector-
ized form

MF = [
vec

(
Xweight

:,:,1
)| . . . |vec

(
Xweight

:,:,K

)] ∈ R
I J×K . (19)

The i th vectorized frontal slice of the second term in the
GWLRTF-CP model with respect to mode matrix T can be
expressed as

Fi = [
vec

(
W:,:,i � (

uold:,1 ◦ vold:,1
))|

. . . |vec
(
W:,:,i � (

uold:,r ◦ vold:,r
))] ∈ R

I J×r . (20)

The i th vector of mode matrix T can be updated using

T new
i,: = (

F†
i MF :,i

)T ∈ R
1×r (21)

where † and T denote the pseudoinverse form and the trans-
posed form of the matrix, respectively.

Similarly, we have the i th vector of mode matrices V and U ,
which are updated as follows:

ML = [
vec

(
Xweight

:,1,:
)| . . . |vec

(
Xweight

:,J,:
)] ∈ R

I K×J (22)

Li = [
vec

(
W:,i,: � (

tnew:,1 ◦ uold:,1
))|

. . . |vec
(
W:,i,: � (

tnew:,r ◦ uold:,r
))] ∈ R

I K×r (23)

V new
i,: = (

L†
i ML :,i

)T ∈ R
1×r (24)

MH = [
vec

(
Xweight

1,:,:
)| . . . |vec

(
Xweight

I,:,:
)] ∈ R

J K×I (25)

Hi = [
vec

(
Wi,:,: � (

vnew:,1 ◦ tnew:,1
))|

. . . |vec
(
Wi,:,: � (

vnew:,r ◦ tnew:,r
))] ∈ R

J K×r (26)

Unew
i,: = (

H †
i MH :,i

)T ∈ R
1×r . (27)

The whole optimization procedure is summarized in
Algorithm 2.
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Algorithm 2 GWLRTF-CP

Input: the original tensor X ∈ R
I×J×K and the weighted

tensor W , initialized mode matrices U, V , T , the number
of iterations and the value of threshold ε.

Output: mode matrices U, V , T .
1: while not converged do
2: update mode matrix T with Eqs. (19), (20), and (21);
3: update mode matrix V with Eqs. (22), (23), and (24);
4: update mode matrix U with Eqs. (25), (26), and (27).
5: end while

B. GWLRTF Integrated With Tucker

The GWLRTF model with Tucker factorization has the
following form:

min
G,U,V ,...,T

‖W � (X − G×1U×2V · · ·×N T )‖L F
. (28)

We apply the coordinate descent technique to solve this
optimization problem, considering its effectiveness in solving
the convex optimization problems [41]–[43]. This problem
can be reduced to solving a series of scalar minimization
subproblems, with the goal of updating the entries of the mode
matrices and the core tensor with respect to the coordinates.

1) Update the Mode Matrices U, V , . . . , T : First, we refor-
mulate (28), such that the function is minimized against only
one of the unknown mode matrices (take H for example) at
a time, with the others fixed, as follows:

‖W � (X − D×n H )‖L F
(29)

where

D = G×1U×2V · · · ×n−1 F×n+1 K · · ·×N T . (30)

Unfolding the tensors along mode-n, it can be reformulated
as the following subproblem:

‖W(n) � (X(n) − H D(n))‖L F

=
∥∥∥∥∥∥

W(n) �
⎛

⎝X(n) −
rn∑

j=1

h:, j dT:, j

⎞

⎠

∥∥∥∥∥∥
L F

= ∥∥W(n) � (
E − h:,kdT:,k

)∥∥
L F

(31)

where

E = X(n) −
∑

j �=k

h:, j dT:, j .

Then, the original problem (28) can be separated into the
following single-scalar parameter optimization subproblems:

min
hi,k

‖wk,: � (ek,: − dk,:hi,k )‖L F

= min
hi,k

‖wk,: � ek,: − wk,: � dk,:hi,k‖L F
. (32)

Algorithm 3 GWLRTF-Tucker

Input: input the original tensor X ∈ R
I1×I2×···×IN and the

weighted tensor W , initialized mode matrices U, V , . . . , T
and core tensor G, the number of iterations and the thresh-
old ε.

Output: mode matrices U, V , .., T and core tensor G.
1: while not converged do
2: update the entries of mode matrices U, V , . . . , T by

solving Eq. (32);
3: update the entries of core tensor G using Eq. (35);
4: end while

2) Update the Core Tensor G: Likewise, for the equivalent
formulation of (28),
∥∥∥∥∥∥
W �

⎛

⎝X −
r1∑

d1=1

. . .

rN∑

dN =1

gd1,d2,...,dN ud1 ◦ vd2 ◦ · · · ◦ tdN

⎞

⎠

∥∥∥∥∥∥
L F

(33)

can be rewritten as

‖W � (E − gk1,...,kN U)‖L F
(34)

where

E = X −
∑

d1 �=k1,...,dN �=kN

gd1,d2,...,dN ud1 ◦ vd2 ◦ · · · ◦ tdN

U = uk1 ◦ vk2 ◦ · · · ◦ tkN .

Then, (33) can be broken down into the following optimiza-
tion subproblems:

min
gk1 ,...,kN

‖w � (e − ugk1,...,kN )‖L F

= min
gk1 ,...,kN

‖w � e − w � ugk1,...,kN )‖L F
(35)

where w = vec(W), e = vec(E), and u = vec(U).
Note that the solutions to (32) and (35) can be obtained

using the ALS technique. The whole optimization procedure
is summarized in Algorithm 3.

3) Termination Conditions: We stop Algorithm 1 when the
change in the log-likelihood between the consecutive iterations
is smaller than a prespecified small threshold (we set ε =
1.0e − 50) or the maximum number of iterations (we set
iter = 15) is reached. We stop Algorithms 2 and 3 when the
change in U between the consecutive iterations is smaller than
a prespecified small threshold (we set ε = 1.0e − 50) or the
maximum number of iterations (we set iter = 15) is reached.

V. EXPERIMENTS

Extensive experiments are conducted in this section.
All experiments are implemented using a workstation with
a 3.6 GHz Intel Core i7 CPU and 24 GB of RAM. The
supporting software is MATLAB R2012a. The MATLAB
Tensor Toolbox [44] is employed to perform tensor compu-
tations. The proposed MoG-based tensor factorization method
(MoG GWLRTF) is compared with the following methods:
1) MoG-based LRMF—MoG LRMF [34]; 2) L2-norm-based
low-rank tensor completion and recovery—high accuracy
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TABLE I

COMPLETION PERFORMANCE OF COMPETING METHODS WITH VARYING MISSING RATIO. THE FIRST AND
SECOND BEST RESULTS ARE HIGHLIGHTED AND UNDERLINED, RESPECTIVELY

TABLE II

RECONSTRUCTION RESULTS OBTAINED BY COMPETING METHODS WITH DIFFERENT NOISES. THE FIRST

AND SECOND BEST RESULTS ARE HIGHLIGHTED AND UNDERLINED, RESPECTIVELY

low-rank tensor completion (HaLRTC) [9]; 3) L2-norm-
based low-rank tensor CP factorization—PARAFAC [45];
4) L2-norm-based low-rank tensor Tucker factorization—low-
rank tensor approximation approximation (LRTA) [46] and
MSI DL [47], and the MSI DL method also utilizes the
nonlocal prior for better recovery; and 5) L1-norm-based
low-rank tensor Tucker factorization—cyclic weighted median
low-rank tensor factorization (CWM LRTF) [41].

Specifically, the results of MoG GWLRTF-Tucker and MoG
GWLRTF-CP are listed to carry out a performance comparison
regarding various applications.

We conduct numerical experiments on synthetic data and
real applications, including single RGB image reconstruction,
face modeling, multispectral image recovery, real hyperspec-
tral image restoration, and heavy-tailed noise removal.

A. Synthetic Data

Considering a tensor Xgt of size 10 × 10 × 10 and rank 5,
we generate mode matrices U ∈ R

10×5, V ∈ R
10×5, and

T ∈ R
10×5 independent of the standard normal distribution

N (0, IR) and set Xgt = [[U, V , T ]]. The following four
situations are considered.

1) Vary missing ratio ρm = 0.2, ρm = 0.4, and ρm = 0.6.
2) Fix missing ratio ρm = 0.2 and Gaussian noise

N (0, 0.1) with scale ratio ρs = 0.2.
3) Fix missing ratio ρm = 0.2 and sparse noise drawn

from uniform distribution [−5,5] with scale ratio
ρs = 0.2.

4) Fix missing ratio ρm = 0.2 and mixture noise
drawn from uniform distribution [−5,5] with scale ratio

ρs = 0.2, Gaussian noise N (0, 0.2) with scale ratio
ρs = 0.2, and Gaussian noise N (0, 0.01) with scale
ratio ρs = 0.4.

We use the following measurements to assess the perfor-
mance of each method:

E1 = ‖W � (Xno − Xrec)‖L1
, E3 = ‖Xgt − Xrec‖L1

E2 = ‖W � (Xno − Xrec)‖L F
, E4 = ‖Xgt − Xrec‖L F

where Xno, Xrec, and Xgt denote the noisy, recovered, and
ground-truth tensor, respectively. The results obtained using
each method are listed in Tables I and II. The first and second
best results are highlighted and underlined, respectively. When
the data missing rate varies, our methods perform better
according to all evaluation indices. Compared with the other
methods, which are optimal only when the noise follows a
Gaussian distribution or uniform distribution, our methods
obtain a relatively better performance under both simple and
complex noise conditions.

B. Single RGB Image Reconstruction

In this section, the three-order benchmark RGB image data,
i.e., a building facade of size 493×517×3, are used to validate
the effectiveness of each method in reconstructing a single
RGB image. Two experimental cases are considered here.

In the first case, the data with the original magnitude [0,255]
are randomly corrupted by a relatively small-magnitude com-
plex noise: 20% missing entries, 20% uniform distribution
over [−35,35], 20% Gaussian distribution N (0, 20), and 40%
Gaussian distribution N (0, 10). The visual results obtained
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Fig. 2. Building facade with a relatively small-magnitude complex noise. (a) Noisy image. (b) MoG LRMF. (c) HaLRTC. (d) LRTA. (e) PARAFAC.
(f) MSI DL. (g) CWM LRTF. (h) MoG GWLRTF-CP. (i) MoG GWLRTF-Tucker. (j) Original image.

Fig. 3. Building facade with a relatively large-magnitude complex noise. (a) Noisy image. (b) MoG LRMF. (c) HaLRTC. (d) LRTA. (e) PARAFAC.
(f) MSI DL. (g) CWM LRTF. (h) MoG GWLRTF-CP. (i) MoG GWLRTF-Tucker. (j) Original image.

using each method are given in Fig. 2; the result of a local
region is also enlarged in this demonstration. The results
show that our proposed MoG GWLRTF method has a better
performance in reconstructing the image details compared with
the typical matrix-based and tensor-based methods.

To further quantitatively evaluate the quality of the com-
peting methods, feature similarity (FSIM) [48], peak signal-
to-noise ratio (PSNR), and relative standard error (RSE)
are employed to measure the image quality. It is known
that larger FSIM and PSNR and smaller RSE values indi-
cate better image quality. The quantitative results obtained
using each method are given in Table III (the small mag-
nitude case). Compared with the other methods, our pro-
posed methods have better performances in reconstructing
the image details. Specifically, MoG GWLRTF-Tucker and

MoG GWLRTF-CP have comparable results both qualitatively
and quantitatively.

In the second case, we continue to increase the magnitude
of the noise to further test the effectiveness in robust image
construction. Here, the image is rescaled to [0,1]. A rela-
tively large-magnitude complex noise is added as follows:
20% missing entries, 20% uniform distribution over [-5,5],
20% Gaussian noise N (0, 0.2), and 40% Gaussian distribu-
tion N (0, 0.01). The qualitative and quantitative results are
given in Fig. 3 and Table III (the large magnitude case),
respectively. Similarly, the enlarged results of a local region are
demonstrated in Fig. 3. From the results, we can see that with
the increase in noise magnitude, the MoG GWLRTF-Tucker
method performs better than the MoG GWLRTF-CP method
in reconstructing image details. Both are still superior to the
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TABLE III

FACADE RECONSTRUCTION PERFORMANCE OF COMPETING METHODS WITH MIXTURE NOISE. IN EACH EXPERIMENT, THE FIRST
BEST PERFORMANCE IS HIGHLIGHTED IN BOLD AND THE SECOND BEST IS UNDERLINED

Fig. 4. Sampling images of the first people under nine illuminations.

Fig. 5. Face modeling results by different methods. (a) Original face images. (b) MoG LRMF. (c) HaLRTC. (d) LRTA. (e) PARAFAC. (f) MSI DL.
(g) CWM LRTF. (h) MoG GWLRTF-CP. (i) MoG GWLRTF-Tucker.

other competing methods, which lose the image structure
information.

C. Face Modeling

In this section, we evaluate the face modeling performances
of the proposed methods for different objects under different
illuminations. This is different from the traditional methods
for dealing with the face modeling problem, which always
focus only on one kind of object under different illuminations.

The data set used here is the Extended Yale B database [49],
which contains 45 faces of 5 objects and 9 illuminations with a
size of 192×168. The original tensor is thus generated with a
size of 192×168×9×5. Considering that some tensor methods
are designed to deal with only three-order tensors and that
the matrix methods were originally designed to solve matrix
data, in this case, the original four-order tensor is vectorized
into a three-order tensor with a size of 192 × 168 × 45 and
matrix data with a size of 32 256 × 45 before processing.
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Fig. 6. Randomly selected bands of strawberries recovered by competing methods. (a) Noisy bands. (b) MoG LRMF. (c) HaLRTC. (d) LRTA. (e) PARAFAC.
(f) MSI DL. (g) CWM LRTF. (h) MoG GWLRTF-CP. (i) MoG GWLRTF-Tucker. (j) Original bands.

The sampling images from this data subset are plotted
in Fig. 4. Typical face images and the corresponding mod-
eling results obtained using all the competing methods
are demonstrated in Fig. 5. The Tucker-based methods

(MoG GWLRTF-Tucker and CWM LRTF) outperform MoG
GWLRTF-CP and other competing methods in reconstructing
the faces. Specifically, MoG GWLRTF-Tucker has a better
performance than that of CWM LRTF when performing MoG
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Fig. 7. 31st band of multispectral images. (a) Noisy band. (b) MoG LRMF. (c) HaLRTC. (d) LRTA. (e) PARAFAC. (f) MSI DL. (g) CWM LRTF.
(h) MoG GWLRTF-CP. (i) MoG GWLRTF-Tucker. (j) Original band.

noise modeling to remove the cast shadows and saturations in
the nose area on the face.

D. Multispectral Image Recovery

The Columbia Multispectral Image database [50]1

contains 32 scenes of a wide range of real-world objects.
It contains 31 spectral bands, and the images are of size
512 × 512. We use 8 of them (Jelly beans, Paints, Flowers,
Egyptian statue, Chart and Stuffed toy, Beers, Glass tiles,
and Strawberries) to test the effectiveness of our methods.
The images used are resized by half and rescaled to [0,1].
We add large-magnitude complex noise to these images.

For a better comparison of each method in recovering each
band, we randomly choose ten bands of the strawberry images
for this demonstration. From Fig. 6, we can see that our
methods have a relatively better performance in obtaining the
image structure and protecting the spectral information of each

1http://www1.cs.columbia.edu/CAVE/databases/multispectral.

band compared with the other methods. Note that to remove
the noise from the images, the ranks used in MoG LRMF are
all set to 1. As we can see, the recovered bands obtained via
MoG LRMF have fine structure information, but their spectral
information is lost.

Furthermore, we provide the recovery results for the 31st
band of the multispectral images in Fig. 7. Quantitative results
are given in Table IV according to the PSNR, RSE, and
FSIM quality measure indices. The proposed MoG GWLRTF
method outperforms the other competing methods in both
structure information recovery and spectral information pro-
tection. Specifically, the MoG GWLRTF-CP performs better
than the MoG GWLRTF-Tucker in this application.

E. Real Hyperspectral Image Restoration

In this section, we further employ the proposed methods
for the real hyperspectral image restoration application to test
their effectiveness compared with that of other methods.
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TABLE IV

MULTISPECTRAL IMAGE RESTORATION RESULTS OBTAINED BY COMPETING METHODS UNDER COMPLEX NOISE.
THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLD AND THE SECOND IS UNDERLINED

Fig. 8. Real hyperspectral image restoration. (a) Original polluted bands. (b) MoG LRMF. (c) HaLRTC. (d) LRTA. (e) PARAFAC. (f) MSI DL. (g) CWM
LRTF. (h) MoG GWLRTF-CP. (i) MoG GWLRTF-Tucker.

The data used here are the HYDICE urban image,2

which contains 210 bands with an image size of 307 × 307.
Some of these bands are seriously corrupted by the
atmosphere and water absorption. The existence of these
contaminated bands poses steep challenges regarding the
effectiveness of the current methods. These bands are some-
times discarded before applying the current methods for
further vision tasks [36]. In contrast, we directly apply

2http://www.tec.army.mil/hypercube.

our methods to all these bands and try to restore all of
them.

Four typical polluted bands are demonstrated in the first col-
umn of Fig. 8. The corresponding restoration results obtained
using the MoG GWLRTF-CP, MoG GWLRTF-Tucker, and
other competing methods are given in the following
columns.

Similar to the case of multispectral image recovery,
the MoG GWLRTF-CP is continued to obtain relatively better
results compared with those of the MoG GWLRTF and the
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Fig. 9. Heavy-tailed noise removal by competing methods. (a) Small-scale Cauchy noise. (b) Large-scale Cauchy noise. (c) Complex noise.

other competing methods in this real hyperspectral image
restoration experiment.

F. Heavy-Tailed Noise Removal

In radar and sonar systems, the observed data are susceptible
to the atmosphere and water absorption [51]. Different from
the Gaussian density curve, which has very light tails, the dis-
tribution curve of the noise in these observed data often has
heavy tails, though it becomes smoother near zero compared
with the Laplacian curve [52]. Some specific algorithms have
been designed to deal with this kind of noise, such as the tensor
approaches with regularized redescending M-estimators [53],
Cauchy noise removal via the nonconvex alternating direction
method of multiplier [54], and the variational approach for
restoring images with Cauchy noise [55].

In this section, we pay attention to the noise that arises
in these applications and further test the robustness of our
proposed methods on this kind of data. Instead of continuing to
use the original competing methods, we compare our proposed
methods with the methods that correspond to heavier tails:

1) matrix-based MoG denoising method (MoG LRMF);
2) tensor-based L1-norm denoising method (CWM LRTF);
3) the typical Cauchy denoising method [Welsch loss soft

thresholding (W-ST)] [53];
4) our CP-based LRTF model (GWLRTF-CP);
5) our Tucker-based LRTF model (GWLRTF-Tucker).
Three noise situations are considered.

1) Small-Scale Cauchy Noise: Random outliers drawn from
the chi-square distribution with a small scale of 0.1.

2) Large-Scale Cauchy Noise: Random outliers drawn from
the chi-square distribution with a large scale of 4.

3) Complex Noise: 20% missing entries, nonmissing pix-
els with a 20% small-scale chi-square distribution,
20% uniform distribution over [−5, 5], 20% Gaussian
distribution N (0, 0.2), and 20% Gaussian distribution
N (0, 0.01).

A visual comparison based on multispectral strawberry
images is given in Fig. 9. The specific Cauchy noise removal
method W-ST obtains slightly better results than those of our

methods (MoG GWLRTF-CP and MoG GWLRTF-Tucker) in
removing the small-scale Cauchy noise. In addition, CWM
LRTF has results comparable to those of ours, whereas
GWLRTF-CP and GWLRTF-Tucker perform worse. MoG
LRMF can preserve the structure information very well
but loses the spectral information, as shown in Fig. 6(b).
In the large-scale Cauchy noise case, W-ST demonstrates
a much better recovery performance than that of the oth-
ers. The denoising performances of the GWLRTF-CP and
GWLRTF-Tucker decrease sharply compared with those of
the MoG GWLRTF-CP and MoG GWLRTF-Tucker. How-
ever, when dealing with complex noise, our methods
(MoG GWLRTF-CP and MoG GWLRTF-Tucker) outperform
W-ST and CWM LRTF. In addition, the GWLRTF-CP and
GWLRTF-Tucker begin to lose their recovery effectiveness.
Specifically, the MoG GWLRTF-CP still performs better than
the MoG GWLRTF, as demonstrated in the spectral image
recovery Sections D and E.

VI. CONCLUSION AND DISCUSSION

As an extension of the shorter version of our work [37],
this paper proposes a generalized LRTF model integrated with
MoG noise modeling, which is shown to be robust to complex
noise and to have wider applicability. To better estimate the
low-rank subspaces from high-dimensional data, we employ
two typical tensor factorizations, i.e., CP factorization and
Tucker factorization, in the low-rank tensor recovery proce-
dure. The MoG parameters are calculated using the maximum
log-likelihood function, and the low-rank subspace parameters
are estimated by solving the GWLRTF model. Our extensive
experiments demonstrate the effectiveness of MoG GWLRTF
compared with that of other competing methods.

Specifically, the Tucker-based MoG GWLRTF is achieved
better results in single RGB image reconstruction and face
modeling than those of the CP-based MoG GWLRTF. As a
multilinear version of PCA, the Tucker-based method is
good at leveraging its mode matrices. Therefore, it has an
advantage in applications in which the observed data have
completely different physical meanings in different modes.
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The CP-based MoG GWLRTF is performed relatively well
in all spectral image recovery applications. In these spectral
applications, the observed data along each mode are similar
enough, especially along the spectral mode. As a higher order
generalization of matrix SVD, the CP-based method does
well in low-rank subspace learning and data compression,
as expected. The different properties between these two fac-
torization versions indicate their complementary advantages in
various applications.

Inspired by this observation, we will further inves-
tigate the difference between MoG GWLRTF-CP and
MoG GWLRTF-Tucker by applying them to additional real
applications and by integrating them with the Markov random
field to further evaluate their video processing performances.
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