
Deep Spectral Ranking

İlkay Yıldız ∗ Jennifer Dy ∗ Deniz Erdoğmuş ∗ Susan Ostmo †

J. Peter Campbell † Michael F. Chiang †† Stratis Ioannidis ∗

∗ ECE Dept., Northeastern Univ., Boston, MA, USA, {yildizi, jdy, erdogmus, ioannidis}@ece.neu.edu
† Casey Eye Inst., Oregon Health and Science Univ., Portland, OR, USA, {ostmo, campbelp}@ohsu.edu

†† National Eye Inst., National Institutes of Health, Bethesda, MD, USA, {chiangm}@ohsu.edu

Abstract

Learning from ranking observations arises in
many domains, and siamese deep neural net-
works have shown excellent inference perfor-
mance in this setting. However, SGD does not
scale well, as an epoch grows exponentially
with the ranking observation size. We show
that a spectral algorithm can be combined
with deep learning methods to significantly
accelerate training. We combine a spectral
estimate of Plackett-Luce ranking scores with
a deep model via the Alternating Directions
Method of Multipliers with a Kullback-Leibler
proximal penalty. Compared to a state-of-
the-art siamese network, our algorithms are
up to 175 times faster and attain better pre-
dictions by up to 26% Top-1 Accuracy and
6% Kendall-Tau correlation over five real-life
ranking datasets.

1 Introduction

Learning from ranking observations arises in many do-
mains, including, e.g., econometrics (McFadden, 1973;
Ryzin and Mahajan, 1999), psychometrics (Thurstone,
1927; Bradley and Terry, 1952), sports (Elo, 1978), and
medicine (Tian et al., 2019), to name a few. Rank-
ing observations are (potentially noisy and incomplete)
orderings of subsets of samples. Given a dataset of
such ranking observations, probabilistic inference typ-
ically assumes the existence of an underlying total
ordering and aims to recover it. The Plackett Luce
model (Plackett, 1975) is a prominent parametric model
in this setting; it postulates that (a) each sample is

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

Figure 1: Training time and Top-1 prediction accuracy
(indicated next to each marker) of DSR-KL, DSR-l2, and
siamese network vs. query size (K) on the Movehub-Cost
dataset partitioned w.r.t. rank partitioning. Siamese net-
work training grows exponentially with K; both our algo-
rithm, DSR-KL, and the one by Yıldız et al. (2020) scale
more gracefully w.r.t. K. However, DSR-KL has a consid-
erably higher accuracy, comparable to (or better than) the
one attained by the less efficient siamese network.

parametrized by a score and (b) the probability that
a sample is ranked higher than a set of alternatives is
proportional to this score.

Ranking regression assumes that Plackett-Luce scores
are a parametric function of sample features, regressed
from ranking observations. Maximum-Likelihood Esti-
mation (MLE) in this setting has received significant
attention in the literature, via both shallow (Joachims,
2002; Pahikkala et al., 2009; Guo et al., 2018; Tian
et al., 2019) and deep neural network (DNN) models
(Burges et al., 2005; Chang et al., 2016; Dubey et al.,
2016; Han, 2018; Yıldız et al., 2019). Siamese neural
networks (Bromley et al., 1994) perform extremely well
in this setting: for example, Yıldız et al. (2019) train a
5.9M parameter siamese neural network from pairwise
comparisons on just 80 images, attaining 0.92 AUC.

A siamese network assumes that the score of each
sample is determined by a base network: training over

Deep Spectral Ranking

ranking observations replicates this base network for
every sample present in a ranking. However, siamese
network training does not scale well with ranking size:
the number of possible ranking observations is O(nK),
where n is the number of samples and K is the ranking
size. Datasets can span this regime, e.g., when multiple
labelers generate rankings. For instance, consider a
scenario where the n samples are papers submitted to
a conference, and rankings are generated by a large
pool of reviewers. In a conference with thousands of
submissions, each reviewer is assigned K � n papers
to rank, and a global ranking is to be inferred by the
(potentially Θ(nK)) dataset of partial rankings.

Consequently, stochastic gradient descent (SGD)
epochs can grow exponentially with K. Moreover,
the presence of K samples in each ranking observation
increases the memory footprint of a batch; conversely,
large values of K limit the size of batches that can be
stored in memory. In particular, when K = Θ(n), SGD
requires loading large–and potentially different–subsets
of the dataset with each ranking; this further deteri-
orates performance. In practice, a single epoch over
K = 7-way rankings takes 4.5 hours on an NVIDIA
V100 GPU, even when samples have only 5 features.

An efficient algorithm for ranking regression over shal-
low models was recently proposed by Yıldız et al. (2020).
Building on earlier work by Maystre and Grossglauser
(2015), Yıldız et al. (2020) employ the Alternating Di-
rections Method of Multipliers (ADMM) (Boyd et al.,
2011) to separate the learning of regression model pa-
rameters from sample scores. On one hand, this sepa-
ration allows them to express the MLE of scores as the
stationary distribution of a continuous-time Markov-
Chain, and learn scores from an O(nK)-sized dataset
using a fast spectral method. On the other hand, the
separation allows regressing the linear model parame-
ters from the scores, which are O(n). This separation
yields significant performance improvements; their al-
gorithm is up to 579 times faster than traditional opti-
mization methods for MLE, including, e.g., Newton’s
method (Boyd and Vandenberghe, 2004).

Unfortunately, this approach does not generalize well to
deep models. Particularly, Yıldız et al. (2020) regress
scores by minimizing a squared-error proximal penalty,
resulting in a regression sub-problem. It is well-known
that in positive-valued regression, the small bounded
range of the squared loss makes DNN training prone to
vanishing gradients and reaching stationary points far
from local minima (Caruana and Niculescu-Mizil, 2004;
Golik et al., 2013; Bosman et al., 2020). To address
these issues, we make the following contributions:

• We replace the standard `2-norm proximal penalty
in ADMM with Kullback-Leibler (KL) divergence

(Kullback and Leibler, 1951). This leads to training
the DNN regressor with max-entropy loss and an
additional linear term at each ADMM iteration.

• We prove that this new penalty is still amenable to
fast inference via a spectral approach, generalizing
Yıldız et al. (2020). Our resulting algorithm, DSR-
KL, accelerates ranking regression problem for DNN
models by incorporating this spectral solver. To the
best of our knowledge, we are the first in bridging
the gap between state-of-the-art DNN models and
efficient spectral algorithms for ranking regression.

• We show experimentally that our method signifi-
cantly outperforms standard siamese networks and
the `2-penalty ADMM used by Yıldız et al. (2020).

These performance benefits are illustrated in Figure 1.
Siamese network training grows exponentially with K;
both our algorithm, DSR-KL, and the one by Yıldız
et al. (2020) scale more gracefully. However, DSR-KL
has a considerably higher accuracy, comparable to the
one attained by (the less efficient) siamese network.

2 Related Work

Ranking regression via the Plackett-Luce (PL) (Plack-
ett, 1975) model has a long history, mostly focusing
on pairwise comparisons, i.e., restricted to K = 2; this
case is also known as the Bradley-Terry (BT) model
(Bradley and Terry, 1952). Among shallow regressors,
RankSVM (Joachims, 2002) learns a target ranking
from features via a linear Support Vector Machine
(SVM), with constraints imposed by all possible com-
parisons. Pahikkala et al. (2009) propose a regularized
least-squares based algorithm for learning to rank from
comparisons. Several works (Joachims, 2002; Pahikkala
et al., 2009; Guo et al., 2018; Tian et al., 2019) regress
comparisons via maximum-likelihood estimation (MLE)
over BT (Bradley and Terry, 1952) models.

Deeper models for regressing comparisons have also
been extensively explored in the BT setting (Burges
et al., 2005; Chang et al., 2016; Dubey et al., 2016;
Doughty et al., 2018; Yıldız et al., 2019). Burges et al.
(2005) estimate comparisons via a fully connected neu-
ral network called RankNet, using the BT model to
construct a cross-entropy loss. Several works (Chang
et al., 2016; Dubey et al., 2016; Doughty et al., 2018;
Yıldız et al., 2019) learn from comparisons via siamese
networks (Bromley et al., 1994). Chang et al. (2016)
and Yıldız et al. (2019) learn from comparisons using
MLE on the BT model. Dubey et al. (2016) predict
image comparisons, via a loss function combining cross-
entropy and hinge loss. Doughty et al. (2018) learn
similarities and comparisons of videos via hinge loss.
All of the above methods generalize to rankings under
the PL model, but suffer from the complexity issues

Yıldız, Dy, Erdoğmuş, Ostmo, Campbell, Chiang, Ioannidis

outlined in the introduction.

Cao et al. (2007); Xia et al. (2008) and Ma et al. (2020)
focus on learning from star/relevance ratings rather
than rankings; they train a neural network called List-
Net that treats ratings as Plackett-Luce scores. Partic-
ularly, given a dataset of n ratings, ListNet constructs
all n!

(n−K)! possible K-sized rankings; it is then trained
by minimizing the cross entropy between the Plackett-
Luce probabilities that a given K-ranking comprises
the top samples among all n, with scores being (a)
the predicted scores and (b) the ground-truth ratings,
respectively. Hence, although ListNet solves a very
different problem than ranking regression, it is related
to the siamese methods mentioned above through its
(exponential in K) objective.

Virtually all shallow and deep models for ranking re-
gression rely on classic optimization methods for direct
parameter inference, resulting in prohibitively slow
training for large rankings. An efficient algorithm for
ranking regression over shallow models was recently
proposed by Yıldız et al. (2020). Yıldız et al. (2020)
solve the ranking regression problem via Alternating
Directions Method of Multipliers (ADMM) (Boyd et al.,
2011) with an `2 proximal penalty. This allows them
to express the MLE of scores as the stationary dis-
tribution of a Markov-Chain (MC), extending the ap-
proach developed by Maystre and Grossglauser (2015)
in the feature-less setting. Our approach extends Yıldız
et al. (2020) by generalizing (i) the regression model
to DNNs, and (ii) the proximal penalty of ADMM
to Kullback-Leibler (KL) divergence (Kullback and
Leibler, 1951); this has significant performance impli-
cations (c.f. Sec. 5). To the best of our knowledge, we
are the first to accelerate ranking regression of deep
models via a spectral method.

ADMM is typically used when training deep neural
networks to enforce sparsity. One application is com-
pressed sensing, in which a signal is recovered from
undersampled measurements via a DNN transforma-
tion (Sun et al., 2016; Yang et al., 2020; Li et al., 2018;
Ma et al., 2019; Liu et al., 2018). The training objective
combines a standard regression loss with a norm penalty
on measurements, including, e.g., `1, `2, Frobenius, or
nuclear norm. Another application is model pruning
(Ye et al., 2018, 2019; Zhao and Liao, 2019): ADMM
is used to enforce weight sparsity by replacing norm
penalties with (possibly non-convex) low-cardinality set
constraints. Zhao et al. (2018) train a DNN classifier
to recover samples distorted by additive adversarial
noise, using an objective that combines a classification
loss with an `0, `1, `2, or `∞ norm penalty.

We use ADMM with a Kullback-Leibler (KL) diver-
gence proximal penalty as an alternative to `2. Wang

and Banerjee (2014) show that ADMM with a Breg-
man divergence proximal penalty converges with linear
rate for convex objectives. Wang et al. (2018) extend
this convergence guarantee to local optima of non-
convex problems. Several works (Shi et al., 2017; Yu
et al., 2018; Yu and Açıkmeşe, 2019) employ a Breg-
man ADMM algorithm for distributed optimization of
separable problems.

3 Problem Formulation

Plackett-Luce Model. We introduce here the
Plackett-Luce discriminative model that we use in
our analysis; before describing it for ranking obser-
vations, we first consider the simpler “maximal choice”
setting. Consider a dataset of n samples, indexed by
i ∈ [n] ≡ {1, . . . , n}. Every sample i ∈ [n] has a corre-
sponding d-dimensional feature vector xi ∈ Rd. There
exists an underlying total ordering of these n samples.
A labeler of this dataset acts as a (possibly noisy) ora-
cle revealing this total ordering: when presented with
a query A ⊆ [n], i.e., a set of alternatives, the noisy
labeler chooses the maximal sample in A w.r.t. the un-
derlying total ordering. Formally, our “labeled” dataset
D = {(c`, A`)}m`=1 consists of m observations (c`, A`),
` ∈ [m] ≡ {1, ...,m}, where A` ⊆ [n] is the `-th query
submitted to the labeler and c` ∈ A` is her respective
`-th maximal choice (i.e., the label). For every sample
i ∈ [n], we denote by Wi = {` ∈ [m] | i ∈ A`, c` = i}
the set of observations where sample i ∈ [n] is chosen,
and by Li = {` ∈ [m] | i ∈ A`, c` 6= i} the set of
observations where sample i ∈ [n] is not chosen.

The Plackett-Luce model asserts that every sample i ∈
[n] is associated with a non-negative deterministic score
πi ∈ R+. Given π = [πi]i∈[n] ∈ Rn+: (i) observations
(c`, A`), ` ∈ [m] are independent, and (ii) for a query
A`, the probability that sample c` ∈ A` is chosen is:

P(c` |A`,π) = πc`/
∑
j∈A`

πj = π`/
∑
j∈A`

πj , (1)

where, in the last equation, we abuse notation to write
the score of the chosen sample as π` ≡ πc` . Note
that P(c` |A`,π) = P(c` |A`, sπ), for all s > 0; thus,
w.l.o.g., we assume (or enforce via rescaling) that
Plackett-Luce scores satisfy 1>π = 1 , i.e., π is a
distribution over [n].

Plackett-Luce readily extends to datasets of (partial)
ranking observations. In this setting, when presented
with a query A` ⊆ [n] of K = |A`| samples, the labeler
ranks the samples in A` into an ordered sequence α`1 �
α`2 � · · · � α`K . Under the Plackett-Luce model, this
ranking is expressed as K − 1 maximal choice queries:

Deep Spectral Ranking

α`1 over A`, α`2 over A` \ {α`1}, etc., so that:

P(α`1�α`2�· · ·�α`K |A`,π)=

K−1∏
t=1

(
πα`

t
/

K∑
s=t

πα`
s

)
. (2)

The product form of (2) implies that a ranking obser-
vation in response to a query A` can be converted to
K−1 independent maximal-choice observations (again,
α`1 over A`, α`2 over A` \ {α`1}, and so forth), each
governed by (1), that yield the same joint probabil-
ity. MLE over a dataset of ranking observations thus
reduces to MLE over a dataset of maximal choice ob-
servations. For notational simplicity, we present our
analysis over maximal-choice datasets in Sec. 4, keeping
the above reduction in mind.

Parameter Inference and Regression. Given ob-
servations D, Maximum Likelihood Estimation (MLE)
of the Plackett-Luce scores π ∈ Rn+ amounts to mini-
mizing the negative log-likelihood:

L(D | π) ≡
∑m
`=1

(
log
∑
j∈A`

πj − log π`
)
. (3)

To regress scores π from sample features X =
[x1, ..,xn]

T ∈ Rn×d, we assume that there exists a func-
tion π̃ : Rd × Rd′ → [0, 1] (e.g., a DNN), parametrized
by W ∈ Rd′ , such that:

πi = π̃(xi;W), for all i ∈ [n] . (4)

Then, MLE amounts to minimizing the following ob-
jective w.r.t. W ∈ Rd′ :

L
(
D|W

)
≡

m∑
`=1

(
log
∑
j∈A`

π̃(xj ;W)−log π̃(x`;W)
)
. (5)

In the case of deep models, virtually all state-of-the-
art ranking regression methods minimize Eq. (5) via
SGD (Chang et al., 2016; Dubey et al., 2016; Doughty
et al., 2018; Yıldız et al., 2019). Note that the objec-
tive (5) corresponds to a siamese network architecture
(Bromley et al., 1994) with base network π̃: for each
observation (c`, A`) in D, the base network needs to be
evaluated (and back-propagation needs to happen over)
all samples in A`. Hence, if each query A` has size
K = |A`|, the siamese network contains K identical
base networks, each receiving the feature vector xi of
a sample i ∈ A`; this is further exacerbated in rank-
ing queries, since each corresponds to K − 1 maximal
choice queries. Overall, the siamese nature of objective
(5) implies that K samples need to be loaded in RAM
to process a single ranking or maximal choice query.
This, in addition to the fact that the size of possible
rankings/maximal queries in D grows as

(
n
K

)
= O(nK)

(c.f. Figures 1 and 2c), can make the cost of a single
SGD epoch over Eq. (5) prohibitive.

4 Deep Spectral Ranking Algorithm

We wish to devise an efficient algorithm to minimize
(5). To do so, we extend the Alternating Directions
Method of Multipliers (ADMM) (Boyd et al., 2011)
used by Yıldız et al. (2020). To this end, we rewrite
the minimization of (5) as:

Minimize
π,W

L(D |π) ≡
m∑
`=1

(
log
∑
j∈A`

πj− log π`
)

(6a)

subject to: π = π̃(X;W), π ≥ 0, (6b)

where π̃(X;W) ∈ Rn+ is the vector map whose co-
efficients π̃i ∈ R+ are given by π̃i = π̃(xi;W). To
solve (6) via ADMM, consider the following augmented
Lagrangian:

Lρ(π,W ,y) = L(D |π) + y>(π − π̃(X;W))

+ ρ ·Dp(π||π̃(X;W)), (7)

where y ∈ Rn is the Lagrangian dual variable corre-
sponding to the equality constraint in (6b), ρ ≥ 0 is a
penalty parameter, and Dp(·||·) is a proximal penalty
term. This term satisfies: (i) Dp(π||π̃) ≥ 0 for all
π, π̃ ∈ Rn+, and (ii) Dp(π||π̃) = 0 if and only if
π̃ = π. Classic ADMM involves using the usual `2
proximal penalty, i.e., Dp(π||π̃) =‖ π̃ − π ‖22. We
depart from this by considering more generic Dp; as
we discuss below, using KL-divergence instead, i.e.,
Dp(π||π̃) =

∑n
i=1 πi log πi

π̃i
has significant advantages

in our setting.

Decoupling Optimization and a Spectral Algo-
rithm. In its general form, ADMM alternates between
optimizing π andW until convergence via the following
primal-dual algorithm on the augmented Lagrangian:

πk+1 = arg min
π∈Rn

+

Lρ(π,W
k,yk) (8a)

W k+1 = arg min
W∈Rd′

Lρ(π
k+1,W ,yk) (8b)

yk+1 = yk + ρ(πk+1 − π̃(X;W k+1)). (8c)

This has the following immediate computational ad-
vantages. First, step (8b) is equivalent to:

W k+1 = arg min
W∈Rd′

ρDp

(
πk+1||π̃(X;W)

)
− yk>π̃(X;W).

(9)

Note that this operation does not depend on D: the
model π̃(X;W) is regressed directly from the present
score estimates πk+1 via penalty Dp, with the addi-
tional linear dual term. In particular, as discussed
below, Dp leads to a least squares regression in the
case of the `2-proximal penalty, and a max-entropy
penalty in the case of KL-divergence; both can be

Yıldız, Dy, Erdoğmuş, Ostmo, Campbell, Chiang, Ioannidis

solved efficiently via SGD. Crucially, an epoch of this
SGD iterates over the O(n) samples, instead of the
O(nK) ranking observations, which would be the case
under the siamese approach.

Most importantly, step (8a)–which does depend on
D–admits a highly efficient spectral implementation;
ADMM (8) therefore delegates solving the “expensive”
portion of the problem to a highly efficient algorithm.
This is a consequence of the following theorem, which
we prove in Appendix A:

Theorem 4.1. Given π̃k ≡ π̃(X;W k) ∈ Rn+ and
yk ∈ Rn, a stationary point π ∈ Rn+ of the Aug-
mented Lagrangian (7) satisfies the balance equations of
a continuous-time Markov Chain (MC) with transition
rates:

µji(π)=


λji(π)+

2πiσi(π)σj(π)∑
t∈[n]−

πtσt(π)−
∑

t∈[n]+

πtσt(π)

if j ∈ [n]+ and i ∈ [n]−
λji(π) otherwise,

(10)

where

σi(π) = ρ
∂Dp(π||π̃k)

∂πi
+ yki , for i ∈ [n] (11)

λji(π) =
∑

`∈Wi∩Lj

(∑
t∈A`

πt
)−1≥ 0, for i, j ∈ [n] , (12)

and ([n]+ , [n]−) is a partition of [n] such that σi(π) ≥ 0
for all i ∈ [n]+ and σi(π) < 0 for all i ∈ [n]−.

Theorem 4.1 generalizes Theorem 4.2 of Yıldız et al.
(2020), which holds only for an `2 penalty for Dp;
Maystre and Grossglauser (2015) had established a
similar result for stationary points of L(D|π). Our
theorem implies that a stationary point can be ob-
tained through the following iterative algorithm, called
ILSRX by Yıldız et al. (2020). Let ssd(M) be the sta-
tionary distribution of an MC with transition matrix
M = [µji(π)]i,j∈[n], where µji(π) are given by (10).
When matrix M is fixed (i.e., the transition rates are
known), the vector ssd(M) is a solution to the linear
system defined by the balance equations π = Mπ and
1>π = 1, as it is a distribution. However, the tran-
sition matrix M = M(π) in Theorem 4.1 is itself a
function of π, and is therefore a priori unknown. Thus,
following Yıldız et al. (2020); Maystre and Grossglauser
(2015), we can find π through:

πq+1 = ssd (M(πq)) , for q = 0, 1, 2, (13)

We note that the dataset D appears in the computa-
tion of the rate matrix M , via sets Wi and Lj ; the
computation of these weights can be easily parallelized.
The linear system determined by the balance equations
involves n unknowns and can be computed efficiently

by uniformizingM , i.e., increasing self-transition rates
until all states have the same outgoing rate, and finding
the leading left eigenvector via, e.g., the power method
(Lei et al., 2016).

Yıldız et al. (2020) focus on the case where (i) Plackett-
Luce scores are affine functions of sample features, i.e.,
π̃(X;W) = XW , and (ii) Dp(π||π̃) =‖ π̃−π‖22. The
generalization to KL-divergence is naturally suited to
Problem (6): this is because the scores computed by
(13) form, by construction, a distribution over [n].

Our main technical contribution is to show that this
generalization to KL penalty is still amenable to a
spectral solution via (13); in practice, this also leads
to a significantly improved performance over an `2-
proximal penalty (by up to 56% Top-1 accuracy and
25% Kendall-Tau correlation, as discussed in Sec. 5).
As shown in Eq. (15) below, the KL-divergence penalty
leads to training π̃(X;W) with a max-entropy loss
and an additional linear term at each ADMM iteration.
Compared to the `2-proximal penalty by Yıldız et al.
(2020), max-entropy has been observed to converge
faster and lead to better fitting (Caruana and Niculescu-
Mizil, 2004; Golik et al., 2013; Bosman et al., 2020).
Finally, ADMM with Bregman divergence proximal
penalties, including KL divergence, has been shown
to offer local convergence guarantees for non-convex
problems (Wang et al., 2018); this further motivates us
to employ KL over other distance measures between
probability distributions.

Overall Algorithm. Putting everything together, our
Deep Spectral Ranking (DSR) algorithm solving Eq. (6)
is summarized in Algorithm 1. We initialize all samples
with equal scores, i.e., π = π̃ = 1

n1. We iteratively
update π, W , and y via Eq. (8) until convergence. At
each ADMM iteration k, we initialize π with πk−1,
and update π via ILSRX given by Eq. (13). Then, we
initialize the DNN parametersW withW k−1, and fine
tune the DNN π̃(X;W) via SGD over Eq. (9). Each
iteration of DSR involves the three steps in Eq. (8).
One iteration of ILSRX at step (8a) is O(Km+n2) for
constructing the transition rates via Eq. (10) and for
finding the stationary distribution π via, e.g., a power
method, respectively. The update of y given π̃ and
π is O(n). Finally, constructing the loss function (9)
at each epoch of step (8b) is O(n), while each epoch
goes over O(n) samples of dimension d to train the d′
weights.

We implement DSR with the two proximal penalty
functions Dp(π||π̃) mentioned above: Kullback-Leibler
(KL) divergence (Kullback and Leibler, 1951) and `2
norm. We describe implementation specifics for each
of these cases below.

KL proximal penalty. For Dp(π||π̃) =
∑n
i=1 πi log πi

π̃i
,

Deep Spectral Ranking

Algorithm 1 DSR
1: procedure ADMM(X,D, ρ)
2: Initialize π ≡ π̃ ← 1

n1; y ← 0

3: repeat
4: π ← ILSRX(ρ,π, π̃,y)
5: W ← SGD over Eq. (9)
6: π̃ ← π̃(X;W)
7: y ← y + ρ(π − π̃)
8: until convergence
9: return W , π
10: end procedure
1: procedure ILSRX(ρ,π, π̃,y)
2: repeat
3: Calculate [σi(π)]i∈[n] via Eq. (11)
4: Calculate M(π) = [µji(π)]i,j∈[n] via Eq. (10)
5: π ← ssd (M(π))
6: until convergence
7: return π
8: end procedure

Spec. Dataset

ROP ICLR-3/4 Movehub-
Cost-4/5

Movehub-
Quality-4/5 IMDB-4

K 2 3/4 4/5 4/5 4

n 100 50

d 224× 224 768 6 5 36

m 29, 705
120, 324/
2, 248, 524

230, 298/
2, 118, 756

230, 298/
2, 118, 756

85, 583

X image numerical

Table 1: No. of samples (n), no. of features (d), no. of
observations (m), and query size (K) for datasets with
image or numerical features (X)

we have:

σi(π) = ρ
∂Dp(π||π̃k)

∂πi
+yki =ρ(1+log

πi
π̃ki

)+yki , (14)

for all i ∈ [n] in the transition rates (10). Moreover,
the optimization (9) for training π̃(X;W) becomes:

arg min
W∈Rd′

n∑
i=1

(−y
k
i

ρ
π̃i − πk+1

i log π̃i), (15)

which corresponds to max-entropy with an additional
linear term.

`2 proximal penalty. For Dp(π||π̃) =‖ π̃ − π‖22:

σi(π)=ρ
∂Dp(π||π̃k)

∂πi
+yki =2ρ(πi−π̃ki)+yki , (16)

for all i ∈ [n] in the transition rates (10). Moreover,
(9) becomes a least squares minimization of the form:

arg min
W∈Rd′

‖ π̃(X;W)− (πk+1 +
1

ρ
yk)‖22 . (17)

5 Experiments

5.1 Experiment Setup

We evaluate DSR on real-life datasets summarized in
Table 1; additional details are given in App. B. We

partition each dataset into training and test sets in two
ways. In rank partitioning, we partition the dataset
w.r.t. [m], using 90% of the m observations for training,
and the remaining 10% for testing. In sample parti-
tioning, we partition [n], using 90% of the n samples
for training, and the remaining 10% for testing. In
this setting, observations containing samples from both
training and validation/test sets are discarded. We per-
form 3-fold cross validation on the resulting training
sets.

We implement1 five competing algorithms. DSR with
KL penalty (DSR-KL), DSR with `2 norm penalty
(DSR-l2), and siamese network competitor regress
scores via a DNN π̃(X;W) with parametersW . SR-l2
(Yıldız et al., 2020) and SR-KL use an affine regressor
π̃ = Xβ + b1 with parameters β and b, and solve (6)
via ADMM with `2 and KL penalties, respectively.

We execute all experiments on NVIDIA V100 GPUs
with Intel Gold 6132@2.60Ghz CPUs and 128GB RAM.
We explain the network architecture and the training
procedure of π̃(X;W) in Section 5.2, and the imple-
mentation details of all algorithms, including, e.g. the
convergence criteria in Section 5.3. To evaluate the
convergence speed of each algorithm, we measure the
elapsed time, including time spent in initialization,
in seconds (Time). Moreover, we measure the pre-
diction performance by Top-1 accuracy (Top-1 Acc.)
and Kendall-Tau correlation (KT) (Kendall, 1938) on
validation and test sets (c.f. Section 5.4). We report
averages and standard deviations over folds for all al-
gorithms except for the siamese network method: as
training takes several hours, we execute only one fold.

5.2 Network Architecture and Training

To evaluate each method on ROP, we choose π̃(X;W)
as a state-of-the-art convolutional neural network ar-
chitecture, namely GoogLeNet (Szegedy et al., 2015),
followed by a fully connected output layer comprising
a single neuron with sigmoid activation. We initialize
the convolutional layers with weights pre-trained on
the ImageNet dataset (Deng et al., 2009). For other
datasets, we design π̃(X;W) as a fully-connected ar-
chitecture with relu activation for hidden layers and an
output layer comprising a single neuron with sigmoid
activation. We add `2 regularizers to all layers. For
each configuration of (i) `2 regularization parameter
varying in [2× 10−5, 2× 10−2], (ii) learning rate vary-
ing in [10−4, 10−2], and (iii) number of layers varying
in [1, 10] for fully connected π̃(X;W), we run each
method until convergence (c.f. Section 5.3 for criteria).
We determine the best set of hyperparameters w.r.t. the
prediction performance via 3-fold cross validation.

1
Our code is publicly available at

https://github.com/neu-spiral/DeepSpectralRanking

https://github.com/neu-spiral/DeepSpectralRanking

Yıldız, Dy, Erdoğmuş, Ostmo, Campbell, Chiang, Ioannidis

5.3 Algorithms

DSR-KL and DSR-l2 are explained in Section 4
and summarized in Algorithm 1. We compute the
stationary distribution at each iteration of ILSRX
(c.f. Eq. (13)) using the power method (Lei et al., 2016).
At each ADMM iteration, we fine tune the DNN re-
gressor π̃(X;W) via Adam optimization (Kingma and
Ba, 2015) over Eq. (9). We check the convergence of L
on the training set and Kendall-Tau correlation (KT)
evaluations on the validation set (c.f. Section 5.4) as
the stopping criterion for: (i) fine-tuning π̃(X;W) at
each ADMM iteration, and (ii) overall DSR-KL algo-
rithm. We declare convergence when KT on validation
set does not change for 5 iterations, for maximum total
of 50 iterations, with relative tolerance rtol = 10−4.
We use the same relative tolerance for the stopping
criterion of the power method.

To aid convergence in practice (Boyd et al., 2011), we
update the dual variable at each ADMM iteration with
a multiplicative smoothing parameter γk = 1/k. We
also adapt the penalty parameter as:

ρk+1 =


τρk, if ‖ π̃k − πk ‖22> β ‖ π̃k−π̃k−1 ‖22
ρk

τ , if ‖ π̃k−πk ‖22< β ‖ π̃k−π̃k−1 ‖22
ρk, otherwise,

where τ = 2 and β = 10.

The siamese network competitor minimizes Eq. (5)
w.r.t.W via SGD. We train a siamese network architec-
ture with base network π̃ on observations D via Adam
optimization (Kingma and Ba, 2015) over Eq. (5). We
employ the same convergence criterion and experiment
setup as DSR-KL and DSR-l2 to train and optimize
the siamese network.

Finally, we implement two spectral algorithms that
regress Plackett-scores via an affine model, i.e., π̃ =
Xβ+b1: SR-l2 proposed by Yıldız et al. (2020), and its
variant SR-KL that uses KL proximal penalty instead of
`2 norm penalty for ADMM. As the stopping criterion
for both algorithms, we use ‖πk−πk−1‖2< rtol ‖πk‖2
and ‖(Xβk+bk1)− (Xβk−1 +bk−11‖2< rtol ‖Xβk+
bk1‖2. Following Yıldız et al. (2020), we set the ADMM
penalty parameter as ρ = 1.

5.4 Evaluation Metrics

Let the test set be Drank = {(α`, A`) | ` ∈
{1, ...,mtest}}, where α` = α`1 � α`2 � · · · � α`K is
an ordered sequence of the samples in A`. Given A`,
we predict the `-th choice as ĉ` = arg maxi∈A`

π̃i. We
calculate the Top-1 accuracy (Top-1 Acc.) as:

Top-1 Acc. =

∑mtest

`=1 1(ĉ` = α`1)

mtest

∈ [0, 1]. (18)

We also predict the ranking as α̂` = arg sort[π̃i]i∈A`
,

i.e. sequence of the samples in A` ordered w.r.t. their
estimated scores. We calculate Kendall-tau correla-
tion (KT) (Kendall, 1938) as a measure of the corre-
lation between each true ranking α` and predicted
ranking α̂`, ` ∈ {1, ...,mtest}. For observation `,
let T` =

∑K
t=1

∑K
s=1 1(α̂`t � α̂`s ∧ α`t � α`s) be the

number correctly predicted ranking positions, and
F` =

∑K
t=1

∑K
s=1 1(α̂`t � α̂`s ∧ α`s � α`t) be the number

incorrectly predicted ranking positions. Then, KT is
computed by:

KT =

∑mtest

`=1 (T` − F`)/
(
K
2

)
mtest

∈ [−1, 1], (19)

where
(
K
2

)
is the number of sample pairs.

5.5 Results

Training Time vs. Prediction Performance. Fig-
ure 2a and 2b show the training time of DSR-KL and
siamese network vs. Top-1 Acc. and KT on test sets
of Movehub-Cost-4, Movehub-Quality-4, and IMDB-4
datasets, partitioned with rank partitioning. For all
datasets, DSR-KL results lie on the top left region of
both Top-1 Acc. and KT plots: DSR-KL consistently
leads to much faster training and better predictions
than the siamese counterpart.

Table 2 shows the training time and test set prediction
performance of DSR-KL, DSR-l2, siamese network, SR-
l2, and SR-KL trained on all datasets (c.f. Table 1),
partitioned with rank partitioning. DSR-KL and DSR-
l2 are 1.5− 142 times faster than siamese network over
all datasets. Moreover, DSR-KL consistently attains
equivalent or better prediction performance than both
siamese network and DSR-l2 w.r.t. both Top-1 Acc. and
KT. DSR-KL leads to particularly better performance
in ranking predictions, by up to 6% higher KT than
siamese and 25% higher KT than DSR-l2 on IMDB-4.

Deeper regression methods consistently outperform the
predictions of shallow regression methods. Particularly,
our deep spectral algorithms DSR-KL and DSR-l2 lead
to significantly better predictions than the shallow
versions SR-l2 and SR-KL, up to 38% Top-1 Acc. and
41% KT on IMDB-4. The training times of DSR-KL
and DSR-l2 are also not noticeably larger than the
ones of shallow versions; SR-KL converges even slower
than DSR-KL, by up to 12 times on Movehub-Quality-
5. Unlike SR-l2 that solves a least-squares problem
with closed form solution, parameter update step of
SR-KL (c.f. 15) requires an iterative optimization at
each ADMM iteration.

Table 3 shows the training time and test set predic-
tion performance of DSR-KL, DSR-l2, siamese network,
SR-l2, and SR-KL trained on all datasets, partitioned

Deep Spectral Ranking

102 103

Time (s)

0.84

0.86

0.88

0.90

T
e
s
t

A
c
c
.

(a) Training time vs. Top-1 Acc.

102 103

Time (s)

0.78

0.80

0.82

0.84

0.86

0.88

T
e
s
t

K
T

(b) Training time vs. KT

2 3 4 5
K

102

103

C
o
n
v
.
T
im

e
 (

s
)

0.88

0.89
0.88

0.85

0.58

0.85

0.82

0.62

0.89 0.88

0.88

0.89

(c) Query size (K) vs. performance

Figure 2: (a)-(b). Training time of DSR-KL and siamese network vs. Top-1 Acc. and KT on test sets of Movehub-Cost-4,
Movehub-Quality-4, and IMDB-4 datasets, partitioned w.r.t. rank partitioning. (c). Training time and prediction
performances of DSR-KL, DSR-l2, and siamese network vs. query size (K) on Movehub-Quality dataset partitioned
w.r.t. rank partitioning. Top-1 accuracy for each K is next to the corresponding marker.

Dataset Method Time (s) ↓ Performance on the Test Set
Top-1 Acc. ↑ KT ↑

ICLR-3 DSR-KL 152.86 ± 29.98 0.9 ± 0.0 0.86 ± 0.0

DSR-l2 165.59 ± 22.63 0.79 ± 0.0 0.5 ± 0.0

Siamese 1445.77 0.88 0.8
SR-KL 529.02 ± 117.26 0.37 ± 0.0 0.02 ± 0.0

SR-l2 20.59 ± 3.02 0.87 ± 0.0 0.82 ± 0.0

Movehub-
Cost-4

DSR-KL 49.54 ± 34.2 0.88 ± 0.07 0.85 ± 0.09

DSR-l2 73.38 ± 32.82 0.72 ± 0.02 0.58 ± 0.03

Siamese 523.64 0.87 0.82
SR-KL 29.64 ± 3.59 0.47 ± 0.0 0.27 ± 0.0

SR-l2 19.7 ± 0.72 0.8 ± 0.0 0.54 ± 0.0

Movehub-
Quality-4 DSR-KL 63.05 ± 4.14 0.88 ± 0.0 0.84 ± 0.0

DSR-l2 531.86 ± 212.91 0.82 ± 0.07 0.75 ± 0.08

Siamese 710.35 0.88 0.82
SR-KL 98.02 ± 3.73 0.17 ± 0.0 -0.1 ± 0.0

SR-l2 18.98 ± 4.11 0.84 ± 0.0 0.62 ± 0.0

IMDB-4 DSR-KL 23.93 ± 16.15 0.9 ± 0.0 0.9 ± 0.05

DSR-l2 54.16 ± 13.22 0.78 ± 0.035 0.38 ± 0.07

Siamese 3409.03 0.87 0.78
SR-KL 57.93 ± 0.87 0.16 ± 0.0 -0.04 ± 0.0

SR-l2 9.43 ± 1.02 0.52 ± 0.0 0.08 ± 0.0

ICLR-4 DSR-KL 84.93 ± 1.76 0.88 ± 0.01 0.62 ± 0.06

DSR-l2 84.78 ± 1.21 0.63 ± 0.01 0.19 ± 0.01

Siamese 623.18 0.84 0.76
SR-KL 347.29 ± 39.6 0.29 ± 0.0 ± 0.0

SR-l2 503.11 ± 40.35 0.86 ± 0.82 ± 0.0

ROP DSR-KL 776.71 ± 136.74 0.89 ± 0.0 0.79 ± 0.0

DSR-l2 694.99 ± 431.12 0.84 ± 0.03 0.68 ± 0.064

Siamese 1152.06 0.86 0.73
SR-KL 610.91 ± 20.69 0.5 ± 0.0 0.0 ± 0.0

SR-l2 3.08 ± 0.59 0.89 ± 0.0 0.79 ± 0.0

Movehub-
Cost-5

DSR-KL 183.6 ± 48.2 0.85 ± 0.047 0.84 ± 0.08

DSR-l2 216.5 ± 64.34 0.81 ± 0.04 0.69 ± 0.02

Siamese 7986.22 0.89 0.83
SR-KL 189.85 ± 0.72 0.45 ± 0.0 0.28 ± 0.0

SR-l2 209.5 ± 1.5 0.78 ± 0.0 0.55 ± 0.0

Movehub-
Quality-5 DSR-KL 79.35 ± 2.91 0.85 ± 0.05 0.79 ± 0.08

DSR-l2 91.87 ± 6.31 0.62 ± 0.04 0.5 ± 0.05

Siamese 2241.49 0.89 0.83
SR-KL 924.07 ± 0.2 0.13 ± 0.0 -0.1 ± 0.0

SR-l2 208.1 ± 0.1 0.84 ± 0.0 0.65 ± 0.0

Table 2: Rank Partitioning

Dataset Method Time (s) ↓ Performance on the Test Set
Top-1 Acc. ↑ KT ↑

ICLR-3 DSR-KL 145.76 ± 9.78 0.48 ± 0.06 0.28 ± 0.09

DSR-l2 122.92 ± 75.43 0.51 ± 0.02 0.07 ± 0.08

Siamese 827.05 0.48 0.05
SR-KL 96.49 ± 90.02 0.48 ± 0.0 0.0 ± 0.0

SR-l2 4.91 ± 4.6 0.47 ± 0.0 0.06 ± 0.0

Movehub-
Cost-4

DSR-KL 17.65 ± 7.68 0.61 ± 0.07 0.45 ± 0.12

DSR-l2 19.85 ± 3.7 0.05 ± 0.08 -0.3 ± 0.22

Siamese 216.22 0.6 0.66
SR-KL 7.45 ± 0.3 0.31 ± 0.0 0.44 ± 0.0

SR-l2 4.13 ± 0.2 0.5 ± 0.0 0.71 ± 0.0

Movehub-
Quality-4 DSR-KL 31.41 ± 5.02 0.88 ± 0.0 0.74 ± 0.05

DSR-l2 34.72 ± 8.68 0.67 ± 0.11 0.81 ± 0.31

Siamese 258.87 0.88 0.88
SR-KL 7.68 ± 0.2 0.48 ± 0.0 0.05 ± 0.0

SR-l2 4.69 ± 0.1 0.51 ± 0.0 0.55 ± 0.0

IMDB-4 DSR-KL 526.01 ± 11.57 0.73 ± 0.29 -0.14 ± 0.25

DSR-l2 27.73 ± 26.63 0.21 ± 0.21 -0.02 ± 0.08

Siamese 1240.98 0.47 0.02
SR-KL 31.33 ± 13.26 0.04 ± 0.0 0.05 ± 0.0

SR-l2 6.97 ± 2.71 0.6 ± 0.06 0.04 ± 0.06

ICLR-4 DSR-KL 288.45 ± 3.84 0.48 ± 0.13 0.06 ± 0.18

DSR-l2 280.72 ± 270.75 0.47 ± 0.02 0.032 ± 0.1

Siamese 10142.55 0.32 -0.07
SR-KL 131.8 ± 120.01 0.45 ± 0.0 -0.07 ± 0.0

SR-l2 198.49 ± 6.87 0.37 ± 0.03 -0.01 ± 0.0

ROP DSR-KL 25.3 ± 15.4 0.8 ± 0.01 0.6 ± 0.02

DSR-l2 210.45 ± 47.16 0.79 ± 0.01 0.59 ± 0.02

Siamese 4438.61 0.82 0.65
SR-KL 527.76 ± 163.76 0.61 ± 0.0 0.23 ± 0.0

SR-l2 1.96 ± 1.1 0.45 ± 0.0 -0.08 ± 0.0

Movehub-
Cost-5

DSR-KL 111.13 ± 31.61 0.76 ± 0.29 0.67 ± 0.15

DSR-l2 137.14 ± 65.55 0.19 ± 0.05 0.52 ± 0.34

Siamese 2842.12 0.62 0.74
SR-KL 30.51 ± 0.3 0.16 ± 0.0 0.39 ± 0.0

SR-l2 30.14 ± 0.2 0.37 ± 0.0 0.73 ± 0.0

Movehub-
Quality-5 DSR-KL 114.03 ± 30.18 0.92 ± 0.06 0.35 ± 0.25

DSR-l2 46.99 ± 13.23 0.57 ± 0.34 0.73 ± 0.46

Siamese 752.06 0.76 0.08
SR-KL 29.68 ± 1.2 0.62 ± 0.0 0.08 ± 0.0

SR-l2 30.03 ± 1.1 0.39 ± 0.0 0.59 ± 0.0

Table 3: Sample Partitioning

Training time vs. Top-1 Acc. and KT on test sets of all datasets (c.f. Table 1), partitioned w.r.t. rank and sample
partitioning, respectively. We report averages and standard deviations over folds for all algorithms except for siamese. Our
algorithms, as well as the algorithm that attains the best performance for each dataset are indicated in bold.

Yıldız, Dy, Erdoğmuş, Ostmo, Campbell, Chiang, Ioannidis

(a) Convergence on Movehub-Cost-4

0 50 100

Time (s)

250000

200000

150000

L
o
g
 L

ik
e
li
h
o
o
d

0 50 100

Time (s)

0.2

0.4

0.6

0.8

V
a
li
d
a
ti

o
n
 A

c
c
.

(b) Convergence on Movehub-Quality-4

Figure 3: Log-likelihood −L on training and Top-1 Acc. on validation sets of Movehub-Cost-4 and Movehub-Quality-4
datasets, partitioned w.r.t. rank partitioning. Each point for DSR-KL and DSR-l2 correspond to an iteration of ADMM,
while each point for siamese corresponds to a training epoch.

Dataset Method Performance on the Test Set
Top-1 Acc. ↑ KT ↑

Movehub-
Cost-4

DSR-KL 0.88 0.85

One-iter.-DSR-KL 0.67 0.53
Movehub-
Quality-4 DSR-KL 0.88 0.84

One-iter.-DSR-KL 0.75 0.73

Figure 4: Test set predictions of DSR-KL vs. One-iter.-
DSR-KL on Movehub-Cost-4 and Movehub-Quality-4.

with sample partitioning. Note that this is the set-
ting when regressing scores from features is essential,
as training samples cannot participate in any obser-
vations in validation or test sets. Agreeing with the
speed gain in rank partitioning, DSR-KL and DSR-l2
are 8− 175 times faster than the siamese network over
all datasets. Moreover, DSR-KL leads to particularly
better performance in maximal-choice predictions, by
up to 26% higher Top-1 Acc. than siamese on IMDB-4
and 56% higher Top-1 Acc. than DSR-l2 on Movehub-
Cost-4. Finally, deeper regression methods DSR-KL,
DSR-l2, and siamese network, outperform the predic-
tions of shallow counterparts SR-l2 and SR-KL, by up
to 39% Top-1 Acc. and 11% KT on Movehub-cost-5
and ICLR-3, respectively.

Impact of K. Figures 1 and 2c show training time
and prediction performances of DSR-KL, DSR-l2, and
siamese network vs. query size (K) on Movehub-Cost
and Movehub-Quality datasets partitioned w.r.t. rank
partitioning. The speed gain of DSR-KL and DSR-
l2 over siamese reach up to 43 times as K increases,
as each epoch of siamese grows exponentially with K.
Moreover, agreeing with Table 2, DSR-KL consistently
outperforms the predictions of DSR-l2, validating the
extension of ADMM penalty to KL divergence.

Details on Convergence. Figure 3 shows the log-
likelihood −L on training and Top-1 Acc. on valida-
tion sets of Movehub-Cost-4 and Movehub-Quality-4
datasets, partitioned w.r.t. rank partitioning. Each
point for DSR-KL and DSR-l2 correspond to an over-
all iteration of ADMM (c.f. (8)), while each point for

siamese corresponds to a training epoch. DSR-KL
consistently attains higher log-likelihood and better
validation performance than both siamese network and
DSR-l2, while converging faster.

Comparison to Naïve Approach. A naïve spectral
algorithm can be constructed by a single iteration of
the primal steps in (8): (i) solving (8a) to learn π via
repeated iterations of (13), and (ii) given π, solving
(8b) by training the DNN regressor π̃(X;W) via SGD
over Eq. (9). Intuitively, this ignores/does not exploit
the fact that samples with similar features ought to
have similar scores. We denote this naive approach as
One-iter.-DSR-KL. Unlike One-iter.-DSR-KL, our algo-
rithm DSR-KL has the capability of repeatedly adapt-
ing both π and W by solving (6) via ADMM. This
advantage is illustrated in Figures 3a and 3b, where not
only π̃(X;W), but also π are adjusted until conver-
gence. Moreover, Figure 4 shows the corresponding test
set predictions of DSR-KL vs. One-iter.-DSR-KL on
Movehub-Cost-4 and Movehub-Quality-4; DSR-KL out-
performs One-iter.-DSR-KL by 13-21% Top-1 Acc. and
6-15% KT.

6 Conclusion

We model Plackett-Luce scores as deep neural network
(DNN) functions of sample features. We solve the max-
imum likelihood estimation problem for the scores via
ADMM and demonstrate that the scores are equiva-
lent to the stationary distribution of a Markov Chain.
Our method significantly outperforms standard siamese
networks and state-of-the art spectral algorithms for
ranking regression. Given that the number of rank-
ings grows exponentially in query size, designing active
learning algorithms to identify which rankings to solicit
from labelers is an interesting open problem. Gener-
alizing existing active learning algorithms for shallow
models, e.g. Guo et al. (2018), to deeper models via
our efficient algorithms is a promising direction.

Deep Spectral Ranking

Acknowledgments

Our work is supported by NIH (R01EY019474), NSF
(SCH-1622542 at MGH, SCH-1622536 at Northeastern,
SCH-1622679 at OHSU), Facebook Statistics Research
Award, and by unrestricted departmental funding from
Research to Prevent Blindness (OHSU).

Bibliography

Ataer-Cansızoğlu, E. (2015). Retinal image analytics: A
complete framework from segmentation to diagnosis.
Northeastern University.

Blitzer (2017). Movehub city rankings. https://www.
kaggle.com/blitzr/movehub-city-rankings?
select=movehubqualityoflife.csv.

Bosman, A. S., Engelbrecht, A., and Helbig, M. (2020).
Visualising basins of attraction for the cross-entropy
and the squared error neural network loss functions.
Neurocomputing.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein,
J. (2011). Distributed optimization and statistical
learning via the Alternating Direction Method of
Multipliers. Foundations and Trends R© in Machine
Learning, 3(1):1–122.

Boyd, S. and Vandenberghe, L. (2004). Convex opti-
mization. Cambridge University Press.

Bradley, R. A. and Terry, M. E. (1952). Rank analysis
of incomplete block designs: I. the method of paired
comparisons. Biometrika, 39(3/4):324–345.

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E.,
and Shah, R. (1994). Signature verification using a
"siamese" time delay neural network. In Advances in
Neural Information Processing Systems (NeurIPS),
pages 737–744.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds,
M., Hamilton, N., and Hullender, G. (2005). Learn-
ing to rank using gradient descent. In Proceedings of
the International Conference on Machine Learning
(ICML), pages 89–96. ACM.

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., and Li, H.
(2007). Learning to rank: from pairwise approach
to listwise approach. In Proceedings of the 24th
International Conference on Machine learning, pages
129–136.

Caruana, R. and Niculescu-Mizil, A. (2004). Data min-
ing in metric space: an empirical analysis of super-
vised learning performance criteria. In Proceedings of
the tenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
69–78.

Chang, H., Yu, F., Wang, J., Ashley, D., and Finkel-
stein, A. (2016). Automatic triage for a photo series.
ACM Transactions on Graphics (TOG), 35(4):148.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. (2009). Imagenet: A large-scale hierar-
chical image database. In Conference on Computer
Vision and Pattern Recognition (CVPR), pages 248–
255.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186.

Doughty, H., Damen, D., and Mayol-Cuevas, W. (2018).
Who’s better? who’s best? pairwise deep ranking for
skill determination. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 6057–6066.

Dubey, A., Naik, N., Parikh, D., Raskar, R., and Hi-
dalgo, C. A. (2016). Deep learning the city: Quanti-
fying urban perception at a global scale. In European
Conference on Computer Vision (ECCV), pages 196–
212. Springer.

Elo, A. E. (1978). The rating of chessplayers, past and
present. Arco Pub.

Golik, P., Doetsch, P., and Ney, H. (2013). Cross-
entropy vs. squared error training: a theoretical and
experimental comparison. In Interspeech, volume 13,
pages 1756–1760.

Guo, Y., Tian, P., Kalpathy-Cramer, J., Ostmo, S.,
Campbell, J. P., Chiang, M. F., Erdoğmuş, D., Dy,
J. G., and Ioannidis, S. (2018). Experimental design
under the Bradley-Terry model. In International
Joint Conference on Artificial Intelligence (IJCAI),
pages 2198–2204.

Han, B. (2018). DATELINE: Deep Plackett-Luce model
with uncertainty measurements. arXiv preprint
arXiv:1812.05877.

Joachims, T. (2002). Optimizing search engines using
clickthrough data. In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 133–142. ACM.

Kendall, M. G. (1938). A new measure of rank correla-
tion. Biometrika, 30(1/2):81–93.

Kingma, D. P. and Ba, J. (2015). Adam: A method
for stochastic optimization. In ICLR (Poster).

Kullback, S. and Leibler, R. A. (1951). On informa-
tion and sufficiency. The Annals of Mathematical
Statistics, 22(1):79–86.

Lei, Q., Zhong, K., and Dhillon, I. S. (2016).
Coordinate-wise power method. In Advances in Neu-
ral Information Processing Systems (NeurIPS), pages
2064–2072.

https://www.kaggle.com/blitzr/movehub-city-rankings?select=movehubqualityoflife.csv
https://www.kaggle.com/blitzr/movehub-city-rankings?select=movehubqualityoflife.csv
https://www.kaggle.com/blitzr/movehub-city-rankings?select=movehubqualityoflife.csv

Yıldız, Dy, Erdoğmuş, Ostmo, Campbell, Chiang, Ioannidis

Leka, O. (2016). IMDB movies dataset. https://www.
kaggle.com/orgesleka/imdbmovies.

Li, Y., Cheng, X., and Gui, G. (2018). Co-robust-
ADMM-net: Joint ADMM framework and DNN for
robust sparse composite regularization. IEEE Access,
6:47943–47952.

Liu, R., Jiang, Z., Fan, X., Li, H., and Luo, Z. (2018).
Single image layer separation via deep ADMM un-
rolling. In 2018 IEEE International Conference on
Multimedia and Expo, pages 1–6.

Ma, J., Liu, X.-Y., Shou, Z., and Yuan, X. (2019). Deep
tensor ADMM-net for snapshot compressive imaging.
In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), pages 10223–10232.

Ma, J., Yi, X., Tang, W., Zhao, Z., Hong, L., Chi, E. H.,
and Mei, Q. (2020). Learning-to-rank with parti-
tioned preference: Fast estimation for the plackett-
luce model. arXiv preprint arXiv:2006.05067.

Maystre, L. and Grossglauser, M. (2015). Fast and
accurate inference of Plackett-Luce models. In Ad-
vances in Neural Information Processing Systems
(NeurIPS), pages 172–180.

McFadden, D. (1973). Conditional logit analysis of
qualitative choice behavior.

Pahikkala, T., Tsivtsivadze, E., Airola, A., Järvinen,
J., and Boberg, J. (2009). An efficient algorithm for
learning to rank from preference graphs. Machine
Learning, 75(1):129–165.

Plackett, R. L. (1975). The analysis of permutations.
Applied Statistics, pages 193–202.

Ryzin, G. v. and Mahajan, S. (1999). On the rela-
tionship between inventory costs and variety ben-
efits in retail assortments. Management Science,
45(11):1496–1509.

Shi, Z., Zhang, X., and Yu, Y. (2017). Bregman diver-
gence for stochastic variance reduction: saddle-point
and adversarial prediction. In Advances in Neural
Information Processing Systems (NeurIPS), pages
6031–6041.

Sun, J., Li, H., Xu, Z., et al. (2016). Deep ADMM-Net
for compressive sensing MRI. In Advances in Neural
Information Processing Systems (NeurIPS), pages
10–18.

Sun, S.-H. (2020). Crawl and visualize ICLR 2020 open-
review data. https://github.com/shaohua0116/
ICLR2020-OpenReviewData.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed,
S., Anguelov, D., Erhan, D., Vanhoucke, V., and
Rabinovich, A. (2015). Going deeper with convolu-
tions. In Computer Vision and Pattern Recognition
(CVPR), 2015.

Thurstone, L. L. (1927). The method of paired com-
parisons for social values. The Journal of Abnormal
and Social Psychology, 21(4):384.

Tian, P., Guo, Y., Kalpathy-Cramer, J., Ostmo, S.,
Campbell, J. P., Chiang, M. F., Dy, J., Erdoğmuş,
D., and Ioannidis, S. (2019). A severity score for
Retinopathy of Prematurity. In Proceedings of the
25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1809–
1819.

Wang, F., Cao, W., and Xu, Z. (2018). Convergence of
multi-block Bregman ADMM for nonconvex compos-
ite problems. Science China Information Sciences,
61(12):122101.

Wang, H. and Banerjee, A. (2014). Bregman Alternat-
ing Direction Method of Multipliers. In Advances in
Neural Information Processing Systems (NeurIPS),
pages 2816–2824.

Xia, F., Liu, T.-Y., Wang, J., Zhang, W., and Li,
H. (2008). Listwise approach to learning to rank:
theory and algorithm. In Proceedings of the 25th
international conference on Machine learning, pages
1192–1199.

Yang, Y., Sun, J., Li, H., and Xu, Z. (2020). ADMM-
CSNet: A deep learning approach for image compres-
sive sensing. IEEE Transactions on Pattern Analysis
and Machine Intelligence PAMI, 42(3):521–538.

Ye, S., Feng, X., Zhang, T., Ma, X., Lin, S., Li, Z.,
Xu, K., Wen, W., Liu, S., Tang, J., Fardad, M., Lin,
X., Liu, Y., and Wang, Y. (2019). Progressive DNN
compression: A key to achieve ultra-high weight
pruning and quantization rates using ADMM.

Ye, S., Zhang, T., Zhang, K., Li, J., Xie, J., Liang,
Y., Liu, S., Lin, X., and Wang, Y. (2018). A uni-
fied framework of DNN weight pruning and weight
clustering/quantization using ADMM.

Yıldız, İ., Dy, J., Erdoğmuş, D., Kalpathy-Cramer, J.,
Ostmo, S., Campbell, J. P., Chiang, M. F., and Ioan-
nidis, S. (2020). Fast and accurate ranking regression.
In International Conference on Artificial Intelligence
and Statistics (AISTATS).

Yıldız, İ., Tian, P., Dy, J., Erdoğmuş, D., Brown, J.,
Kalpathy-Cramer, J., Ostmo, S., Campbell, J. P.,
Chiang, M. F., and Ioannidis, S. (2019). Classifica-
tion and comparison via neural networks. Neural
Networks.

Yu, Y. and Açıkmeşe, B. (2019). Stochastic breg-
man parallel direction method of multipliers for dis-
tributed optimization. In 2019 IEEE 58th Conference
on Decision and Control (CDC), pages 5550–5555.
IEEE.

https://www.kaggle.com/orgesleka/imdbmovies
https://www.kaggle.com/orgesleka/imdbmovies
https://github.com/shaohua0116/ICLR2020-OpenReviewData
https://github.com/shaohua0116/ICLR2020-OpenReviewData

Deep Spectral Ranking

Yu, Y., Açıkmeşe, B., and Mesbahi, M. (2018). Breg-
man parallel direction method of multipliers for dis-
tributed optimization via mirror averaging. IEEE
Control Systems Letters, 2(2):302–306.

Zhao, H. and Liao, P. (2019). CAE-ADMM: Implicit
bitrate optimization via ADMM-based pruning in
compressive autoencoders.

Zhao, P., Liu, S., Wang, Y., and Lin, X. (2018). An
ADMM-based universal framework for adversarial at-
tacks on deep neural networks. In Proceedings of the
26th ACM International Conference on Multimedia,
page 1065–1073, New York, NY, USA. Association
for Computing Machinery.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urta-
sun, R., Torralba, A., and Fidler, S. (2015). Aligning
books and movies: Towards story-like visual expla-
nations by watching movies and reading books. In
Proceedings of the IEEE International Conference
on Computer Vision, pages 19–27.

Yıldız, Dy, Erdoğmuş, Ostmo, Campbell, Chiang, Ioannidis

A Proof of Theorem 4.1

Let a stationary point π ∈ Rn+ of the Augmented Lagrangian (7) be such that:

∂Lρ(π,W
k,yk)

∂πi
= 0 ∀i ∈ [n] (20a)

⇔ ∂L(D|π)

∂πi
+ yki + ρ

∂Dp(π||π̃k)

∂πi
= 0. ∀i ∈ [n] (20b)

Let σi(π) = ρ
∂Dp(π||π̃k)

∂πi
+ yki , for all i ∈ [n]. Then, Eq.(20a) is equivalent to:

∂L(D|π)

∂πi
+ σi(π) = 0 ∀i ∈ [n] . (21)

Partial derivatives of the negative log-likelihood L(D|π) are given by:

∂L(D|π)

∂πi
=
∑
`∈Wi

(
1∑

t∈A`
πt
− 1

πi

)
+
∑
`∈Li

1∑
t∈A`

πt
, (22)

for all i ∈ [n], where Wi = {` |i ∈ A`, c` = i} is the set of observations where sample i ∈ [n] is chosen and
Li = {` |i ∈ A`, c` 6= i} is the set of observations where sample i ∈ [n] is not chosen. Setting ∂L(D|π)

∂πi
from Eq. (22)

to Eq. (21), we have:

∂Lρ(π,W
k,yk)

∂πi
=
∑
`∈Wi

(
1∑

t∈A`
πt
− 1

πi

)
+
∑
`∈Li

1∑
t∈A`

πt
+ σi(π) = 0, (23)

for all i ∈ [n]. Multiplying both sides of Eq. (23) with −πi, i ∈ [n], we have:

∑
`∈Wi

(∑
j 6=i∈A`

πj∑
t∈A`

πt

)
−
∑
`∈Li

(
πi∑
t∈A`

πt

)
− πiσi(π)= 0, (24)

for all i ∈ [n]. Note that
∑
`∈Wi

∑
j 6=i∈A`

· =
∑
j 6=i
∑
`∈Wi∩Lj

· and
∑
`∈Li
· =

∑
j 6=i
∑
`∈Wj∩Li

·. Accordingly, we
rewrite Eq. (24) as:

∑
j 6=i

∑
`∈Wi∩Lj

(
πj∑
t∈A`

πt

)
−
∑
j 6=i

∑
`∈Wj∩Li

(
πi∑
t∈A`

πt

)
− πiσi(π) = 0, (25)

for all i ∈ [n]. Then, the stationarity condition given by Eq.(20a) is equivalent to:∑
j 6=i

πjλji(π)−
∑
j 6=i

πiλij(π) = πiσi(π) ∀i ∈ [n] , (26)

where λji(π), i, j ∈ [n] , i 6= j are given by Eq. (12).

It is not evident that Eq.(26) corresponds to the balance equations of an MC as, in general, σ(π) = [σi(π)]i∈[n] 6= 0.

Nevertheless, for σi(π) = ρ
∂Dp(π||π̃k)

∂πi
+yki , i ∈ [n], Eq.(26) has the same form as the balance equations in Theorem

4. 2 established by Yıldız et al. (2020). By this theorem, a stationary π ∈ Rn+ satisfying (20a) is also the stationary
distribution of the continuous-time MC with transition rates given by Eq. (10).

B Datasets

Retinopathy of Prematurity (ROP). The Retinopathy of Prematurity (ROP) dataset contains n = 100
vessel-segmented retina images with dimensions d = 224× 224 (Ataer-Cansızoğlu, 2015). Experts are provided

Deep Spectral Ranking

with two images and are asked to choose the image with higher severity of the ROP disease. Five experts
independently label 5941 image pairs; the resulting dataset contains m = 29705 pairwise comparisons. Note that
some pairs are labelled more than once by different experts.

International Conference on Learning Representations (ICLR). The ICLR Dataset contains abstracts
and reviewer ratings of 2561 papers that are submitted to ICLR 2020 conference and are available on OpenReview
website (Sun, 2020). We choose the top n = 100 papers, and extract d = 768 numerical features from each
abstract using the Deep Bidirectional Transformers (BERT) (Devlin et al., 2019) architecture, pre-trained on
the Books Corpus dataset (Zhu et al., 2015) and English Wikipedia. We normalize X to have 0 mean and unit
variance over samples [n]. We generate all possible m = 120, 324(2, 248, 524) K = 3(4)-way rankings w.r.t. the
relative order of the average reviewer ratings. We add noise to the resulting rankings following the same process
as Movehub-Cost.

Movehub-Cost. The Movehub-Cost dataset contains the total ranking of 216 cities w.r.t. cost of living (Blitzer,
2017). Each city is associated with d = 6 numerical features, which are average costs for cappuccino, cinema,
wine, gasoline, rent, and disposable income. We normalize X to have 0 mean and unit variance over samples [n].
We select n = 50 cities and generate all m = 230, 298(2, 118, 756) K = 4(5)-way rankings w.r.t. the relative order
of the queried cities in the total ranking. To mimic the real-life noise introduced by human labelling, we apply
the following post-processing to the resulting rankings: For each ranking, we sample a value uniformly at random
in [0, 1]. If the value is less than 0.1, we add noise to the ranking by a cyclic permutation of the ranked samples.

Movehub-Quality. The Movehub-Quality dataset contains total ranking of the same 216 cities as Movehub-Cost,
this time w.r.t. quality of life. Each city is associated with d = 5 numerical features, including overall scores
for purchase power, healthcare, pollution, quality of life, and crime. We normalize X to have 0 mean and unit
variance over samples [n]. We select n = 50 cities and generate all m = 230, 298(2, 118, 756) K = 4(5)-way
rankings w.r.t. the relative order of the queried cities in the total ranking. We add noise to the rankings following
the same process as Movehub-Cost.

IMDB. The IMDB Movies Dataset contains IMDB ratings of 14,762 movies, each of which is associated with
d = 36 numerical features (Leka, 2016). We normalize X to have 0 mean and unit variance over samples [n]. We
select n = 50 movies and generate all possible m = 85, 583 K = 4-way rankings w.r.t. the relative order of the
ratings of queried movies. We add noise to the resulting rankings following the same process as Movehub-Cost.

	Introduction
	Related Work
	Problem Formulation
	Deep Spectral Ranking Algorithm
	Experiments
	Experiment Setup
	Network Architecture and Training
	Algorithms
	Evaluation Metrics
	Results

	Conclusion
	Proof of Theorem 4.1
	Datasets

