
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRAINING MICE TO COMPETE WITH ELEPHANTS:
A GUIDE FOR CUSTOMIZING SMALL-SIZED LLMS ON
KNOWLEDGE AND SKILLS DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Customizing large language models (LLMs) is increasingly in demand by enter-
prises and individual developers. It allows LLMs to be tailored for domain ex-
pertise, aligned with organizational guidelines, and enhanced for user experience.
Effective customization hinges on three core elements: a small-size model, large-
scale domain-specific datasets, and an effective training strategy to help the model
acquire relevant knowledge and skills from the data. In this paper, we focus on the
third element by conducting an in-depth study on fine-tuning LLMs (3B to 7B pa-
rameters) using large-scale instruction tuning datasets across multiple knowledge
domains and skills. We examine various training configurations and strategies on
three pretrained LLMs. Our results question several common training practices,
including hyperparameter recommendations from TULU and phased training rec-
ommended by Orca.
Key insights from our work include: (i) larger batch sizes paired with lower learn-
ing rates lead to improved model performance on benchmarks such as MMLU,
MTBench, and Open LLM Leaderboard; (ii) early-stage training dynamics, such
as lower gradient norms and higher loss values, are strong indicators of better final
model performance, allowing for early termination of sub-optimal runs and sig-
nificant computational savings; (iii) skipping warmup and using a constant learn-
ing rate do not compromise performance; and (iv) stacked training outperforms
phased training. With these findings holding robustly across model families and
sizes, we hope this study serves as a comprehensive guide for practitioners fine-
tuning small LLMs.

1 INTRODUCTION

Large language models (LLMs) are growing in size, but bigger is not always better. Small-sized
LLMs (3B to 7B parameters) are becoming the backbone of enterprise AI systems due to their
adaptability and efficiency (RedHat, 2024; Zhang et al., 2023; Lee, 2024). Customizing these mod-
els allows them to be tailored for specific tasks, domains, or organizational needs. Compared to
larger LLMs, fine-tuning and deploying these models is faster, more cost-effective, and does not re-
quire specialized infrastructure or extensive hardware like GPUs and TPUs. Moreover, they can be
hosted on consumer-grade machines, making them accessible to smaller organizations and individ-
ual researchers while delivering performance comparable to much larger models on many special-
ized tasks. Importantly, these models offer users full control over their data and fine-tuned versions,
reducing the risk of data breaches or non-compliance with regulations such as GDPR (2016).

Instruction tuning small LLMs using large-scale domain-specific data is an effective method for
enhancing domain knowledge and skills. Our work focuses on supervised fine-tuning (SFT), as it
is the most widely used approach for instruction tuning and aligns with our goal of customizing
LLMs using knowledge and skills data. Traditionally, instruction tuning has focused on enabling
LLMs to follow user instructions and improve zero-shot capabilities (Ouyang et al., 2022). More
recently, it has been used to fine-tune LLMs for customization by leveraging large-scale knowledge
and skills instruction datasets. For example, a telecommunications company might customize LLMs
for customer service tasks. In this case, skills data, such as annotated conversations and summarized
customer support logs, can improve the model’s ability to classify interactions, detect sentiment, and

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

adjust its language. Meanwhile, knowledge data, such as device troubleshooting guides and service
plans, can teach the model domain-specific information. These customized knowledge and skills
datasets are often accessible and of high quality (Gunasekar et al., 2023). Additionally, a growing
body of work is focused on generating large-scale knowledge and skills instruction data (Sudalairaj
et al., 2024; Wang et al., 2023b; Taori et al., 2023; Xu et al., 2023; Li et al., 2024). However, there
is limited research on how to effectively fine tune small-sized LLMs on large-scale knowledge and
skills data.

Practitioners have limited resources to reference when searching for optimal training strategies and
hyper-parameters for instruction-tuning small LLMs on knowledge and skills data. Many LLMs are
closed-source, and even those that are open-source often lack detailed technical reports describing
how to set up hyper-parameters or which configurations were attempted but unsuccessful. As a
result, critical factors like batch size and learning rate, as well as their impact on final model per-
formance, remain unclear. Additionally, phase training is increasingly used for instruction tuning,
where LLMs are fine-tuned progressively, starting with simple instruction-following data (e.g., gen-
eral knowledge from elementary or middle school), then moving to foundational knowledge (e.g.,
graduate-level content), and finally to skills-based data. However, it is unclear how well phase train-
ing outperforms traditional stacked training where all data is combined into a single phase. Identi-
fying an effective set of hyper-parameters is especially difficult for users with limited computational
resources. This motivates the main question we aim to study:

How can we effectively fine-tune a small-size LLM (3B–7B parameters) on large-scale instruction
tuning datasets that cover diverse knowledge and skills?

In this paper, we present a comprehensive empirical study on fine-tuning small-size LLMs and com-
pare our findings with existing research on this topic. We experiment with 3 open-source models—
Granite 3B, Granite 7B, LLaMA 3.2 3B, and Mistral 7B—fine-tuning them on five
datasets: an instruction-following dataset with 308,343 samples, a foundational knowledge dataset
with 231,178 samples, a complex skills dataset with 285,966 samples, the TULU mixture v2 dataset,
and a domain-specific math, reasoning, and coding dataset. Through a series of experiments, we sys-
tematically vary hyper-parameters and training strategies and collect experimental results. Our find-
ings challenge several widely accepted practices, including those recommended by TULU (Wang
et al., 2023a; Ivison et al., 2023), which is often considered a gold standard for LLM fine-tuning. For
example, they use a (small) batch size of 128 samples, which we find to underperform in our experi-
ments. We conjecture that this choice was driven by their computational constraints, as larger batch
sizes can produce models with higher downstream performance but require much longer training
time under limited computing resources. Additionally, while learning rate schedulers with warm-up
and cosine decay are widely used in neural network training, including in TULU, our results show
that these techniques have minimal impact on model downstream performance.

Our key observations are: (i) larger batch sizes combined with lower learning rates improve gener-
alization and performance on benchmarks like MMLU (Hendrycks et al., 2020), MTBench (Zheng
et al., 2023), and Open LLM Leaderboard v2; (ii) early-stage training dynamics, such as lower
gradient norms and higher loss values, are strong indicators of final model performance, enabling
early termination of sub-optimal runs and significant computational savings; (iii) omitting warmup
steps and using constant learning rates does not compromise performance; and (iv) stacked train-
ing frequently outperforms phased training. We also address adaptations for new architectures and
emphasize the importance of efficient data handling techniques, such as bucketing and balanced
compute distribution across GPUs. Our findings aim to provide practitioners with actionable in-
sights to fine-tune LLMs more effectively, optimizing performance while simplifying the training
process. This can benefit the open-source community focused on instruction tuning and serve as a
reference for practitioners with limited computational resources.

RELATED WORK

Instruction Tuning Data. Instruction tuning with diverse, large-scale datasets can effectively im-
prove LLM performance across downstream tasks (Wang et al., 2023b; Honovich et al., 2023; Chung
et al., 2024; Isik et al., 2024; Cheng et al., 2024). Recent studies have found that large-scale instruc-
tion tuning data focusing on knowledge and skills is particularly beneficial for adapting LLMs to
customized domains or applications, improving factual recall and reducing hallucinations (Cheng

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

et al., 2023; Allen-Zhu & Li, 2023; Yang et al., 2024). This observation has led to a growing body
of research introducing novel instruction tuning datasets. For instance, several works leveraged
larger, more powerful LLMs (e.g., ChatGPT (OpenAI, 2023; 2022) and Mistral models (Jiang et al.,
2023; 2024)) to distill instruction tuning data from them using seed examples provided by users
(Mitra et al., 2024; Xu et al., 2023; Ding et al., 2023; Peng et al., 2023; Mukherjee et al., 2023).
GLAN (Li et al., 2024) and LAB (Sudalairaj et al., 2024) further advanced this area by proposing
taxonomy-driven frameworks to enhance the diversity of synthetic instruction tuning data. Building
on these datasets, many studies explored strategies to optimize dataset composition, select represen-
tative data subsets, and evaluate data quality before incorporating them into model training (Ivison
et al., 2023; Liu et al., 2023; Li et al., 2023; Xie et al., 2023). While these advancements have driven
rapid progress in instruction-tuned LLMs, limited work has focused on how to effectively use such
data during training to achieve optimal performance, or how training outcomes vary with different
compute budgets (e.g., GPUs and TPUs). In this paper, we fill this gap by conducting an extensive
set of experiments to investigate various training strategies and hyperparameters for customizing
small LLMs on these datasets, analyzing how different configurations interact with available com-
pute resources to impact the downstream performance of fine-tuned models.

Training Dynamics. Training configurations and hyper-parameter setups play a pivotal role in
training LLMs, as they directly influence model performance, convergence stability, and resource
efficiency. Most research has focused on the pre-training phase, as it is the most resource-intensive
part of LLM development (Yang et al., 2022; Hägele et al., 2024; Bi et al., 2024; Kaplan et al., 2020;
Rosenfeld et al., 2019; Gunter et al., 2024; Dubey et al., 2024). For example, Sardana et al. (2024);
Hoffmann et al. (2022) introduced scaling laws to determine optimal model sizes for given datasets
and Hägele et al. (2024) proposed novel learning rate schedulers as alternatives to conventional co-
sine decay. Additionally, recent research proposed to incorporate instruction tuning data alongside
pre-training data as part of a decay phase in pre-training, linking to the body of research on con-
tinual pre-training (Hu et al., 2024; Ibrahim et al., 2024; Lesort et al., 2021; Scialom et al., 2022).
In contrast, our work shifts the focus to customizing pre-trained LLMs through instruction tuning,
highlighting under-explored challenges in training strategies and hyper-parameter configurations for
this stage. Many instruction tuning studies either omit the reporting of hyperparameters altogether
(Mukherjee et al., 2023) or only provide a selective set of hyperparameters used in successful runs
(Wang et al., 2023a; Ivison et al., 2023; Xu et al., 2023), often without disclosing failed experiments
or alternative configurations explored during their research. In contrast, we conduct extensive ex-
periments, exploring a range of hyper-parameters and training strategies. Our findings challenge
several widely used practices, including TULU, and we hope that our work can serve as a valuable
reference for practitioners and spark discussions on a deeper understanding of training dynamics for
fine-tuning LLMs.

Traditional Wisdom in Neural Networks Training. Identifying effective training configurations
to improve model generalization has been an active area of research long before the rise of LLMs
(Zhang et al., 2017; Srivastava et al., 2014; Ioffe & Szegedy, 2015). For example, Jiang et al.
(2019) conducted extensive experiments to analyze how different generalization measures predict
final model performance, offering insights for hyper-parameter tuning. However, many established
findings do not always extend to LLMs. For example, Keskar et al. (2016) found that large batch
sizes led to poor generalization due to sharp minima. In contrast, our work shows that using large
batches results in higher scores on MT-Bench, indicating improved generalization on downstream
performance. This discrepancy arises due to the difference in experimental settings, where both
architecture (CNNs and MLPs vs. Transformers), and task domains (CV vs. NLP) vary significantly;
and importantly LLMs are pre-trained on massive datasets which drastically changes the starting
point for supervised fine tuning (Peng et al., 2023). Additionally, fine-tuning LLMs poses unique
challenges, as it often requires state-of-the-art clusters spanning multiple machines, each equipped
with multiple GPUs, and advanced networking to optimize speed, memory efficiency, and scalability
using frameworks such as Deepspeed (Rasley et al., 2020), PyTorch’s FSDP (Zhao et al., 2023)
or Megatron-LM (Narayanan et al., 2021). These requirements are not typically encountered in
conventional deep learning workflows.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2 EXPERIMENTAL SETUP

This section outlines the pre-trained LLMs, the datasets curated for fine-tuning these models, the
training strategies used, and the hyper-parameters tested in our experiments. Details on the training
infrastructure and optimization techniques used in our experiments can be found in Appendix A.3.
We directly present the experiments and results in the following sections. For readers interested in
the detailed experimental design and hypotheses, please refer to Appendix A.4.

2.1 BASE MODELS AND DATASETS

We conduct experiments using three open-source, small-sized LLMs: Granite 3B1, Granite
7B, LLaMA 3.2 3B, and Mistral 7B. The Granite models (Mishra et al., 2024), developed by
IBM Research, are based on the transformer architecture (Vaswani et al., 2017) and differ primarily
in their model sizes. The LLaMA model (Touvron et al., 2023), also based on the transformer
architecture, is widely recognized for its efficient scaling laws and serves as a strong baseline for
general-purpose LLMs. The Mistral model (Jiang et al., 2023), developed by Mistral AI, is also a
transformer-based architecture with 7 billion parameters, incorporating architectural optimizations
for improved performance. We include the Granite, LLaMA, and Mistral models to ensure that our
findings on fine-tuning strategies generalize across varying architectures and model sizes within the
small-sized LLM category.

We curate a comprehensive set of data designed to progressively enhance the base models’ capa-
bilities in instruction following (phase 00), foundational knowledge (phase 05), and complex skills
(phase 10). The datasets are organized into three phases, each focused on specific aspects of lan-
guage understanding and generation (see Appendix A.2 for details). We also conducted experi-
ments with the TULU dataset (Wang et al., 2023a; Ivison et al., 2023), a diverse mix of complex,
instruction-tuning data from human and GPT-4 sources. Finally, we test our findings on a synthet-
ically generated Math, Reasoning, and Code dataset, similar to our other datasets, with a focus on
tasks in these domains to ensure they hold for domain-specific datasets.

2.2 TRAINING STRATEGIES

We explore two training strategies—sequential phased training and stacked training. Phased train-
ing follows the approach adopted by recent instruction tuning research (Sudalairaj et al., 2024; Mitra
et al., 2023; Pang et al., 2024), where the base model is fine-tuned on different data types in a pre-
determined sequence. This strategy aims to mitigate catastrophic forgetting and allows the model to
build progressively on knowledge and skills acquired in earlier stages. In our experiments, models
are fine-tuned in multiple phases, each focusing on a specific type of data (see Appendix A.2 for de-
tails on the datasets used in each phase). At the end of each phase, the best-performing checkpoint is
selected based on evaluation metrics before proceeding to the next phase. Stacked training combines
all data from different phases into a single training phase, exposing the model to diverse data simul-
taneously. This approach simplifies the training pipeline by eliminating the need for phase-wise data
curation.

2.3 HYPERPARAMETERS

Our experiments explore various hyperparameter configurations to analyze their impact on training
dynamics and model performance.

• Batch Size. We investigate effective batch sizes of 128 (small), 3,840 (medium), and 7,680
(large) samples. The effective batch size is achieved through a combination of micro-batch sizes
and gradient accumulation steps. For instance, on 64 GPUs, we can process a batch of 3,840
samples in a single micro-batch, whereas on 1 GPU or 8 GPUs, we use gradient accumulation
to approximate the same batch size. We confirm that gradient accumulation on a single node
produces equivalent results to multi-node distributed training, with details in Appendix A.5.10.

• Learning Rate and Warmup Steps. We experiment with various goal learning rates: 2× 10−5,
3 × 10−5, 4 × 10−5, 6 × 10−5, 8 × 10−5, and 1 × 10−4. Warmup steps are varied among 0,

1We got early access to a preview version of the Granite 3B model.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Summary of hyperparameter configurations.

Hyperparameter TULU TULU++ LAB
Effective Batch Size 128 samples Same as TULU 3,840 or 7,680 samples

Learning Rate Warmup ratio: 0.03 Same as TULU Warmup ratio: 0.01 (25 steps linear warmup)
Scheduler Linear decay until the end of training No decay (constant rate after warmup)

Number of Epochs 3 4 10

Goal Learning Rate 2× 10−5 3× 10−5 2× 10−5 (also tested with higher rates)

25, and 100, corresponding to different numbers of samples processed before reaching the goal
learning rate. The learning rate schedule typically involve a linear warmup to the goal learning
rate, followed by either a constant learning rate or the cosine decay schedule.

• Training Configurations. We consider three main hyperparameters configurations: LAB (Su-
dalairaj et al., 2024), TULU (Wang et al., 2023a; Ivison et al., 2023), and a new configuration
introduced in this paper, TULU++. Details of these configurations are provided in Table 1.

We used the LAB hyperparameter configuration for all experiments where we varied a single factor
(e.g., batch size, learning rate, learning rate schedule, training strategy) while keeping all other
settings constant to isolate its effect. For comparisons between TULU and LAB, we directly used
the respective configurations. LAB and TULU were chosen as primary configurations due to their
prominence: TULU is widely regarded as a gold standard for fine-tuning LLMs with high-quality
instruction datasets, while LAB introduces a multi-phase tuning framework leveraging knowledge
and skills data to reduce reliance on human annotations.

2.4 EVALUATION METRICS

Benchmarks. To assess the models’ performance and ability to generalize, we use two primary
benchmarks: MMLU (Hendrycks et al., 2020) and MTBench (Zheng et al., 2023). MMLU assesses
the models’ knowledge and reasoning across a wide range of subjects. It includes questions from 57
subjects spanning STEM, humanities, social sciences, and more, testing the model’s ability to recall
factual knowledge and apply reasoning skills to answer multiple-choice questions. MTBench eval-
uates multi-turn conversational abilities and generalization to unseen tasks. It measures the quality
of responses in dialogue settings, focusing on coherence, relevance, informativeness, and adherence
to instructions. The benchmark covers diverse tasks such as reasoning, coding, mathematics, and
other skill-based domains. Additionally, we evaluated our models on MMLU-Pro, GPQA, MuSR,
MATH, IFEval, and BBH from the Open LLM Leaderboard v22. For the comparison with the TULU
dataset, we used the same benchmarks as in the TULU paper (Wang et al., 2023a; Ivison et al.,
2023): MMLU, GSM8K, BBH, ToxiGen, and TruthfulQA. Finally, we also include evaluations on
ARC (Clark et al., 2018) and GSM8K (Cobbe et al., 2021).

Efficiency Metrics. In our experiments, sample efficiency and compute efficiency effectively rep-
resent the same metric. This is because, whether we use multiple GPUs for faster fine-tuning or a
single GPU, the total GPU compute and aggregate training hours remain the same. Thus, methods
that are more sample-efficient also exhibit better compute efficiency.

3 MAIN RESULTS

In this section, we present the empirical findings of our experiments, focusing on the impact of
different training strategies, batch sizes, and hyperparameter configurations on the fine-tuning per-
formance of LLMs. We present results using the Granite 7B model and provide additional experi-
ments to other model sizes and architectures (Granite 3B, LLaMA 3B, and Mistral 7B models) in
Appendix A.5.8 to validate the robustness and generalizability of our findings. We include baseline
scores for the Granite and LLaMA base pretrained models in applicable tables to facilitate easier
interpretation of fine-tuned performance. MTBench scores are not provided for baseline models, as
these benchmarks evaluate instruction-following and conversational capabilities not present in base
models.

2https://huggingface.co/docs/leaderboards/open_llm_leaderboard/about

5

https://huggingface.co/docs/leaderboards/open_llm_leaderboard/about


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.1 STACKED TRAINING VS. SEQUENTIAL PHASED TRAINING

We conducted a comprehensive comparison between stacked training and sequential phased training
to evaluate their effectiveness in fine-tuning small sized LLMs. The analysis was performed using
the Granite 7B model and evaluated on the MMLU, MTBench, ARC, GSM8K, and Leaderboard
(BBH, MATH, MuSR) benchmarks. We observed that stacked training outperformed sequential
phased training in both performance and sample efficiency across all batch sizes – 128 and 3,840.
The detailed comparison of performance across batch sizes is presented in Appendix A.5.1, along
with corresponding figures.

Table 2: Comparison of Stacked vs. Phased Training Strategies. Samples indicate the number of
data points required to reach peak performance for each benchmark. Cells highlighted in green
indicate better scores, and blue indicates higher sample efficiency (fewer samples used).

Benchmark Score Samples

Granite Base Stacked Phased Stacked Phased

MMLU 0.48 0.53 0.52 3,694,080 7,859,902
MTBench - 6.77 6.76 4,392,960 8,057,918
Leaderboard (BBH) 0.09 0.10 0.10 3,694,080 8,057,918
Leaderboard (MATH Lvl 5) 0.01 0.01 0.00 3,694,080 8,057,918
Leaderboard (MuSR) 0.01 0.08 0.07 3,694,080 8,057,918
ARC 0.78 0.76 0.74 3,694,080 8,057,918
GSM8K 0.11 0.39 0.37 3,694,080 8,057,918

As shown in Table 2, we compare the performance of stacked and phased training strategies using
the LAB hyperparameter configuration, which provided the best overall results for both approaches.
Stacked training achieves slightly better performance on most benchmarks and comparable perfor-
mance on the rest, while also being more sample-efficient, requiring significantly fewer samples to
reach peak performance. Detailed plots and scores over all checkpoints during training are provided
in Appendix A.5.1.

These findings suggest that the stacked training approach improves performance by enabling the
model to learn from diverse data simultaneously. Additionally, phased training demands extra time
and samples to identify the optimal checkpoint for transitioning between phases. This requires run-
ning the model longer to determine peak performance. The increased overhead further diminishes
the sample efficiency of phased training compared to the stacked approach.

3.2 IMPACT OF BATCH SIZE

We investigated the effect of batch size on model performance by experimenting with effective
batch sizes of 128, 3,840, and 7,680 samples. The experiments were conducted using the Granite
7B model and evaluated on the MMLU and MTBench benchmarks. To ensure a fair comparison,
we ran each experiment for approximately the same number of gradient steps.

Observations. Larger batch sizes lead to better final performance but may require more computa-
tional resources and training samples. For stacked training, larger batch sizes uniformly resulted in
improved performance on both MMLU and MTBench. The consistent gains from larger batch sizes
may stem from the increased data diversity within each batch, which proves especially beneficial
when working with datasets that combine multiple task types and knowledge domains. For phased
training, the batch size of 3,840 samples outperformed the smaller batch size of 128 samples. While
larger batch sizes still yield better overall performance, the impact is less pronounced compared to
stacked training. This could be due to each phase concentrating on a specific data type, thereby
limiting diversity within batches. Table 3 illustrates the performance of different batch sizes in both
stacked and phased training on the MMLU and MTBench benchmarks.

Trade-off. We observed that models trained with smaller batch sizes achieved higher performance
faster in terms of the number of processed samples but plateaued earlier compared to those trained
with larger batch sizes. Conversely, models with larger batch sizes required longer training time to
reach similar performance levels due to fewer gradient updates per epoch. This trend is illustrated in

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Comparison of Batch Sizes Across Stacked and Phased Training Strategies on MMLU and
MTBench Benchmarks. Green cells indicate better scores, while blue cells highlight higher sample
efficiency (fewer samples required).

Benchmark Strategy
Score Samples

Granite Base 128 4K 8K 128 4K 8K

MMLU
Stacked 0.48 0.516 0.526 0.529 2,099,328 3,694,080 8,885,760

Phased 0.48 0.513 0.524 - 2,915,233 7,859,902 -

MTBench
Stacked - 6.406 6.768 6.831 1,799,424 4,392,960 8,586,240

Phased - 6.325 6.756 - 2,815,265 8,057,918 -

Appendix A.5.2, where the performance curves for larger batch sizes span a greater number of train-
ing samples. However, with extended training, larger batch sizes led to higher final performance.

3.3 EFFECT OF LEARNING RATE SCHEDULES ON LARGE BATCH SIZES

We explored whether using a cosine decay learning rate schedule improves model performance
when training with large batch sizes. Cosine decay is often thought to facilitate convergence by
allowing higher initial learning rates and gradually reducing them. It can be particularly beneficial
when training with large batches that may require larger steps to make meaningful progress. We
conducted experiments using the Granite 7B model with an effective batch size of 3,840 samples.
We compared two learning rate schedules: a constant learning rate and a cosine decay schedule. The
learning rate tested was 2× 10−5.

Table 4: Effect of Cosine Decay on MMLU and MTBench Scores at Learning Rate 2 × 10−5.
Cells highlighted in green indicate better scores, and blue indicates higher sample efficiency (fewer
samples used).

Benchmark Score Samples

Granite Base No Decay Cosine Decay No Decay Cosine Decay

MMLU 0.48 0.5242 0.5251 2,475,200 1,188,096
MTBench - 6.7562 6.6813 2,673,216 1,188,096

Observations. As shown in Table 4, the models trained with a constant learning rate (no decay)
performed on par with those trained with a cosine decay schedule on both MMLU and MTBench,
and in some cases even outperformed them, particularly on MTBench. Detailed plots are provided
in Appendix A.5.5.

Analysis. Our findings suggest that, contrary to common practice, cosine decay may not improve
model performance when fine-tuning small-size LLMs with large batch sizes. Instead, a constant
learning rate ensures consistent progress throughout training, under the assumption that the initial
rate is suitable for stable training. For practitioners, this implies that using a constant learning rate
could simplify the training process without compromising performance, and may even offer slight
improvements.

3.4 TULU VS. LAB

We compared the TULU and LAB hyperparameter configurations to assess their effectiveness in
enhancing the model’s memorization and generalization capabilities. Memorization was evaluated
using a subset of the MMLU benchmark focused on factual knowledge domains, while generaliza-
tion was assessed using the MTBench benchmark, which tests the model’s ability to perform diverse
and complex tasks requiring various skills. Detailed plots and scores over all checkpoints during
training are provided in Appendix A.5.4, along with performance results for the Leaderboard (BBH,
MATH Lvl 5, MuSR), ARC, and GSM8K benchmarks. Tables 8 and 9 show that LAB outperforms
TULU across all benchmarks.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Cross-Dataset Evaluation with the TULU Dataset. To further investigate the impact of batch
size on fine-tuning performance, we conducted an experiment using the TULU dataset (Wang et al.,
2023a; Ivison et al., 2023). This dataset is a refined mixture of instruction-tuning data, integrating
both human and GPT-4-generated instructions that are complex and cover various domains. We
fine-tuned the Granite 7B model on the TULU dataset using two configurations: batch size of 128
as recommended by TULU, and our configuration with a larger batch size of 3,840 (denoted as 4k).
The rationale for testing across datasets was to determine whether the advantages of larger batch
sizes observed on our datasets would generalize to different fine-tuning datasets. We evaluated
the models using the same benchmarks as in the TULU paper: MMLU (Hendrycks et al., 2020),
GSM8K (Cobbe et al., 2021), BBH (Suzgun et al., 2022), ToxiGen (Hartvigsen et al., 2022), and
TruthfulQA (Lin et al., 2021). The results in Table 5 demonstrate the broad applicability of larger
batch sizes in fine-tuning, with the 4k batch size outperforming the 128 batch size across all but one
metric (TruthfulQA).

Table 5: Evaluation results for TULU Dataset across batch sizes. Cells highlighted in green indicate
better scores. “Ours” refers to the configuration with a batch size of 4k, while “Theirs” uses the
original batch size of 128.

Benchmark Theirs (128 Batch Size) Ours (4k Batch Size)

MMLU 0.48 0.50
BBH 0.40 0.44
GSM8K 0.25 0.28
ToxiGen 0.54 0.55
TruthfulQA 0.45 0.44

3.5 EFFECT OF LEARNING RATE

We examined how different learning rates impact the model’s downstream performance, using Gran-
ite 7B as a base model. We used the LAB hyperparameter configuration since it outperformed
TULU. We conducted a learning rate sweep from 2× 10−5 to 1× 10−4. All other hyperparameters
were kept constant to isolate the effect of the learning rate. We evaluated on MMLU, MTBench,
Leaderboard (BBH, MuSR), ARC, and GSM8K benchmarks after the final phase of phased train-
ing. As shown in Table 6, the lowest learning rate of 2 × 10−5 yielded the best performance on
most benchmarks and comparable performance on the rest. As the learning rate increased, there
was a consistent decline in benchmark performance. This trend suggests that lower learning rates
enhance the model’s ability to generalize to unseen tasks requiring knowledge, complex reasoning,
and instruction following.

Table 6: Effect of Learning Rate Sweep on Benchmark Scores. Cells highlighted in green indicate
better scores.

Benchmark Granite Base Pretrained Learning Rates

2e-5 4e-5 8e-5 1e-4

MMLU 0.48 0.52 0.52 0.52 0.52
MTBench - 6.76 6.64 6.53 6.47
Leaderboard (BBH) 0.09 0.10 0.09 0.09 0.08
Leaderboard (MuSR) 0.01 0.08 0.07 0.08 0.06
ARC 0.78 0.74 0.75 0.75 0.73
GSM8K 0.11 0.38 0.36 0.37 0.30

Lower learning rates may aid in retaining knowledge from previous training phases (e.g., instruction
following and memorization) by preventing abrupt changes to the model’s parameters. This is par-
ticularly important when fine-tuning on complex skills in Phase 10, as it requires the model to build
upon its existing capabilities without forgetting prior knowledge. Additionally, our experiments re-
vealed that larger batch sizes did not require higher learning rates. Further details are provided in
Appendix A.5.3.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

3.6 EFFECT OF WARMUP STEPS

We investigated the impact of the number of warmup steps on the training process and final model
performance. The warmup phase is traditionally considered crucial for stabilizing training, es-
pecially when using higher learning rates, by gradually increasing the learning rate from a small
value to its target value over a specified number of steps (Goyal et al., 2017). We ran experiments
with the Granite 7B model in the stacked setting using LAB hyperparameters—our best configura-
tion—across three warmup setups: 0, 25, and 100 warmup steps, corresponding to approximately
0, 96,000, and 384,000 samples processed before reaching the target learning rate, respectively. As
shown in Appendix A.5.6, the model trained without warmup steps achieved better performance
on the MMLU benchmark and similar performance on MTBench compared to models trained with
25 or 100 warmup steps. The training curves for all configurations followed a similar trajectory,
converging to comparable performance levels within approximately the same number of training
steps, indicating that omitting warmup steps does not negatively affect the final model performance.
Although omitting the warmup simplifies the training process, it offers no advantage in terms of
faster convergence. Furthermore, we monitored training dynamics such as gradient norms and loss
values across the different warmup configurations. As shown in Appendix A.5.6, the gradient norms
and loss values exhibited similar patterns across all configurations, indicating stable training even
without a warmup phase.

3.7 EARLY TRAINING DYNAMICS AS PREDICTORS OF FINAL PERFORMANCE

We consistently observed that models exhibiting lower gradient norms and higher training loss val-
ues during training achieved better final performance on MMLU and MTBench. Figures 1 and 2
illustrate the correlation between early training dynamics—gradient norms and loss values—and
final benchmark performances.

0 1 2
Number of Samples 1e6

2

0

2

Log-Transformed Gradient Norm
LAB Phase 10 (Phase 05 LAB Model)
Tulu Phase 10 (Phase 05 LAB Model)

0 1 2
Number of Samples 1e6

0.50

0.51

0.52

MMLU Score

LAB Phase 10 (Phase 05 LAB Model)
Tulu Phase 10 (Phase 05 LAB Model)

0 1 2
Number of Samples 1e6

5.5

6.0

6.5

MTBench Score

LAB Phase 10 (Phase 05 LAB Model)
Tulu Phase 10 (Phase 05 LAB Model)

Figure 1: Correlation between early training dynamics and final performance on MMLU and MT-
Bench benchmarks for TULU vs. LAB Phase 10 training.

0 1 2
Number of Samples 1e6

2

1

0

1
Log-Transformed Gradient Norm

LR: 2e-5
LR: 4e-5
LR: 6e-5
LR: 8e-5
LR: 1e-4

0 1 2
Number of Samples 1e6

0.0

0.2

0.4

0.6

0.8
Total Loss

LR: 2e-5
LR: 4e-5
LR: 6e-5
LR: 8e-5
LR: 1e-4

0 1 2
Number of Samples 1e6

5.5

6.0

6.5
6.7566.6446.747

6.531 6.475

MTBench Score

LR: 2e-5
LR: 4e-5
LR: 6e-5
LR: 8e-5
LR: 1e-4

Figure 2: LAB Learning Rate (LR) Sweep: Training Dynamics and MTBench Performance. MMLU
results are provided in Appendix A.5.9.

TULU vs. LAB Phase 10 Training (Figure 1). The LAB configuration achieved better final per-
formance with lower gradient norms compared to the TULU configuration.

LAB Learning Rate Sweep Experiments. Models trained with a learning rate of 2×10−5 demon-
strated lower gradient norms initially, which increased toward the end of training, and higher loss
throughout, ultimately resulting in superior final performance compared to models trained with
higher learning rates. For the most effective learning rates, the gradient norm started at its low-
est value and increased towards the end of training (Figure 2). Despite the higher gradient norms
in the later stages, the associated loss remained higher throughout the entire training for these rates.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

This is consistent with the use of lower learning rates, which typically result in higher training loss
but better generalization. Figure 2 shows the gradient norms and loss values for different learning
rates, along with the final performance on MTBench. The lowest learning rates delivered superior
results. Smaller learning rates may enable the model to stabilize the learning process initially and
then gradually explore more challenging regions of the loss landscape as training progresses, lead-
ing to better generalization and final performance. We hypothesize that lower gradient norm values
at the start of training contribute to a smoother and more stable optimization process, preventing
the model from overfitting too quickly. This allows for gradual learning, which we hypothesize fa-
cilitates better exploration of the loss landscape as training progresses. The subsequent increase in
gradient norm during later training stages may indicate that the model is delving into more complex
regions of the parameter space, enhancing its ability to generalize. MMLU results are provided in
Appendix A.5.9.

The correlation between early training dynamics and final performance holds across different batch
sizes, warmup steps, and learning rate schedules (see Appendix A.5.9 for additional results).

4 DISCUSSION, GUIDELINES FOR PRACTITIONERS, AND LIMITATIONS

Balancing Performance and Efficiency. Our results show a trade-off between performance and
computational cost. Configurations such as higher batch sizes or lower learning rates achieve better
final performance but take longer to converge. In contrast, hyperparameters yielding lower final
performance often dominate early on before plateauing. For those with limited resources, smaller
batch sizes or higher learning rates may be more efficient. For example, in stacked training, a 4k
batch size outperforms 8k initially, and higher learning rates offer faster learning in early stages.
Moreover, we encourage practitioners to monitor early training dynamics, such as gradient norms
and loss values, as they correlate strongly with final model performance. Observing lower gradient
norms and higher loss values during the initial phases of training can serve as reliable indicators of
better generalization capabilities. This allows for early termination of suboptimal runs, conserving
computational resources.

Training Strategy Recommendations. Based on our empirical evidence, we advocate for stacked
over sequential phased training. This recommendation is supported by consistent performance gains
and improved sample efficiency observed in both the Granite 7B and Granite 3B models. Stacked
training simplifies the fine-tuning process and eliminates the need for phase-wise data management.

Hyperparameter Selection. We offer guidance on selecting batch sizes, learning rates, warmup
steps, and learning rate schedules. Larger batch sizes (e.g., 4k and 8k) are recommended, as they
have demonstrated superior performance across model sizes compared to smaller batch sizes like
128. Low learning rates are crucial for optimal performance. We found that 2 × 10−5 works well
for Granite models, while 1 × 10−6 is optimal for Mistral. Lower learning rates allow for more
precise adjustments to the model weights, preventing overshooting in the optimization landscape.
Practitioners should start with these values and, if necessary, perform a localized search by testing
slightly higher or lower learning rates to find the optimal setting for their specific model. This ap-
proach significantly reduces the search space. Our experiments indicate that omitting warmup steps
and using a constant learning rate instead of cosine decay does not negatively impact performance,
simplifying the training process without sacrificing model quality.

Limitations. Our experiments focused on small (3B to 7B parameters) LLMs and were conducted
on two model architectures: Granite (based on the Llama architecture) and Mistral. While our
findings are promising, they may not directly generalize to larger models or other architectures.
Future work should explore larger models and a broader range of architectures, such as Gemma and
others. Also, we did not explore parameter-efficient fine-tuning techniques like LoRA, alternative
pre-training objectives, or different tokenizer configurations, which might affect the applicability of
our fine-tuning strategies. Furthermore, our evaluation was centered on synthetic datasets generated
based on a comprehensive taxonomy encompassing various knowledge and skills, using benchmarks
like MMLU and MTBench that align with this dataset. It would be valuable to assess whether
our findings apply to other benchmarks like GSM8K, BBH, IFEval, and ARC. Confirming this
across diverse evaluation metrics would strengthen the generalizability of our conclusions. Finally,
we acknowledge that our experiments were conducted using a single seed due to computational
constraints, which may introduce some noise into the observations.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
extraction. arXiv preprint arXiv:2309.14316, 2023.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Daixuan Cheng, Shaohan Huang, and Furu Wei. Adapting large language models via reading com-
prehension. In The Twelfth International Conference on Learning Representations, 2023.

Daixuan Cheng, Yuxian Gu, Shaohan Huang, Junyu Bi, Minlie Huang, and Furu Wei. In-
struction pre-training: Language models are supervised multitask learners. arXiv preprint
arXiv:2406.14491, 2024.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
guage models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. In Conference on Empirical Methods in Natural Language Processing, 2023.
URL https://api.semanticscholar.org/CorpusID:258840897.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

GDPR. General data protection regulation (GDPR). https://gdpr-info.eu, 2016.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal, 45(9):
1563–1581, 1966. doi: 10.1002/j.1538-7305.1966.tb01709.x.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are
all you need. arXiv preprint arXiv:2306.11644, 2023.

Tom Gunter, Zirui Wang, Chong Wang, Ruoming Pang, Andy Narayanan, Aonan Zhang, Bowen
Zhang, Chen Chen, Chung-Cheng Chiu, David Qiu, et al. Apple intelligence foundation language
models. arXiv preprint arXiv:2407.21075, 2024.

Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin
Jaggi. Scaling laws and compute-optimal training beyond fixed training durations. arXiv preprint
arXiv:2405.18392, 2024.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Kamar.
Toxigen: A large-scale machine-generated dataset for adversarial and implicit hate speech detec-
tion. arXiv preprint arXiv:2203.09509, 2022.

11

https://api.semanticscholar.org/CorpusID:258840897
https://gdpr-info.eu


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. In Proceedings of the 36th International Conference
on Neural Information Processing Systems, pp. 30016–30030, 2022.

Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. Unnatural instructions: Tuning
language models with (almost) no human labor. In The 61st Annual Meeting Of The Association
For Computational Linguistics, 2023.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, Xinrong Zhang, Zhen Leng Thai, Kaihuo Zhang, Chongyi Wang,
Yuan Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chaochao Jia, Guoyang
Zeng, Dahai Li, Zhiyuan Liu, and Maosong Sun. Minicpm: Unveiling the potential of small
language models with scalable training strategies. ArXiv, abs/2404.06395, 2024. URL https:
//api.semanticscholar.org/CorpusID:269009975.

Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats L Richter, Quentin Anthony, Timothée
Lesort, Eugene Belilovsky, and Irina Rish. Simple and scalable strategies to continually pre-train
large language models. arXiv preprint arXiv:2403.08763, 2024.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Berivan Isik, Natalia Ponomareva, Hussein Hazimeh, Dimitris Paparas, Sergei Vassilvitskii, and
Sanmi Koyejo. Scaling laws for downstream task performance of large language models. In ICLR
2024 Workshop on Navigating and Addressing Data Problems for Foundation Models, 2024. URL
https://openreview.net/forum?id=PXwdsgZjnX.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep
Dasigi, Joel Jang, David Wadden, Noah A Smith, Iz Beltagy, et al. Camels in a changing cli-
mate: Enhancing lm adaptation with tulu 2. arXiv preprint arXiv:2311.10702, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them. arXiv preprint arXiv:1912.02178, 2019.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeff Wu, and Dario Amodei. Scaling laws for neural language
models. ArXiv, abs/2001.08361, 2020. URL https://api.semanticscholar.org/
CorpusID:210861095.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Lisa Lee. Tiny titans: How small language models outperform llms for less, 2024. URL https:
//www.salesforce.com/blog/small-language-models/.

Timothée Lesort, Massimo Caccia, and Irina Rish. Understanding continual learning settings
with data distribution drift analysis. ArXiv, abs/2104.01678, 2021. URL https://api.
semanticscholar.org/CorpusID:233024916.

12

https://api.semanticscholar.org/CorpusID:269009975
https://api.semanticscholar.org/CorpusID:269009975
https://openreview.net/forum?id=PXwdsgZjnX
https://api.semanticscholar.org/CorpusID:210861095
https://api.semanticscholar.org/CorpusID:210861095
https://www.salesforce.com/blog/small-language-models/
https://www.salesforce.com/blog/small-language-models/
https://api.semanticscholar.org/CorpusID:233024916
https://api.semanticscholar.org/CorpusID:233024916


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Haoran Li, Qingxiu Dong, Zhengyang Tang, Chaojun Wang, Xingxing Zhang, Haoyang Huang,
Shaohan Huang, Xiaolong Huang, Zeqiang Huang, Dongdong Zhang, et al. Synthetic data
(almost) from scratch: Generalized instruction tuning for language models. arXiv preprint
arXiv:2402.13064, 2024.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang,
Tianyi Zhou, and Jing Xiao. From quantity to quality: Boosting llm performance with self-
guided data selection for instruction tuning. ArXiv, abs/2308.12032, 2023. URL https:
//api.semanticscholar.org/CorpusID:261076515.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data
for alignment? a comprehensive study of automatic data selection in instruction tun-
ing. ArXiv, abs/2312.15685, 2023. URL https://api.semanticscholar.org/
CorpusID:266551413.

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad, Adriana Meza So-
ria, Michele Merler, Parameswaran Selvam, Saptha Surendran, Shivdeep Singh, et al. Gran-
ite code models: A family of open foundation models for code intelligence. arXiv preprint
arXiv:2405.04324, 2024.

Arindam Mitra, Luciano Del Corro, Shweti Mahajan, Andres Codas, Clarisse Simoes, Sahaj Agar-
wal, Xuxi Chen, Anastasia Razdaibiedina, Erik Jones, Kriti Aggarwal, Hamid Palangi, Guoqing
Zheng, Corby Rosset, Hamed Khanpour, and Ahmed Awadallah. Orca 2: Teaching small lan-
guage models how to reason, 2023. URL https://arxiv.org/abs/2311.11045.

Arindam Mitra, Luciano Del Corro, Guoqing Zheng, Shweti Mahajan, Dany Rouhana, Andres Co-
das, Yadong Lu, Wei-ge Chen, Olga Vrousgos, Corby Rosset, et al. Agentinstruct: Toward gen-
erative teaching with agentic flows. arXiv preprint arXiv:2407.03502, 2024.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Hassan Awadallah. Orca: Progressive learning from complex explanation traces of
gpt-4. ArXiv, abs/2306.02707, 2023. URL https://api.semanticscholar.org/
CorpusID:259075316.

MultipackSampler. Multipack sampler: Multipack distributed sampler for fast padding-free training
of llms, 2024. URL https://github.com/imoneoi/multipack_sampler.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vi-
jay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar
Phanishayee, and Matei Zaharia. Efficient large-scale language model training on gpu clus-
ters using megatron-lm. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’21, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450384421. doi: 10.1145/3458817.3476209. URL
https://doi.org/10.1145/3458817.3476209.

OpenAI. Chatgpt: Optimizing language models for dialogue. OpenAI Blog, 2022. URL https:
//openai.com/blog/chatgpt/.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano,
Jan Leike, and Ryan J. Lowe. Training language models to follow instructions with human
feedback. ArXiv, abs/2203.02155, 2022. URL https://api.semanticscholar.org/
CorpusID:246426909.

Wei Pang, Chuan Zhou, Xiao-Hua Zhou, and Xiaojie Wang. Phased instruction fine-tuning for
large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of
the Association for Computational Linguistics ACL 2024, pp. 5735–5748, Bangkok, Thailand and

13

https://api.semanticscholar.org/CorpusID:261076515
https://api.semanticscholar.org/CorpusID:261076515
https://api.semanticscholar.org/CorpusID:266551413
https://api.semanticscholar.org/CorpusID:266551413
https://arxiv.org/abs/2311.11045
https://api.semanticscholar.org/CorpusID:259075316
https://api.semanticscholar.org/CorpusID:259075316
https://github.com/imoneoi/multipack_sampler
https://doi.org/10.1145/3458817.3476209
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:246426909


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

virtual meeting, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-acl.341. URL https://aclanthology.org/2024.findings-acl.341.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. ArXiv, abs/2304.03277, 2023. URL https://api.semanticscholar.org/
CorpusID:257985497.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
2020. URL https://api.semanticscholar.org/CorpusID:221191193.

RedHat. Llms vs slms, 2024. URL https://www.redhat.com/en/topics/ai/
llm-vs-slm.

Jonathan S. Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive prediction
of the generalization error across scales. ArXiv, abs/1909.12673, 2019. URL https://api.
semanticscholar.org/CorpusID:203592013.

Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal: Ac-
counting for inference in language model scaling laws. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=0bmXrtTDUu.

Thomas Scialom, Tuhin Chakrabarty, and Smaranda Muresan. Fine-tuned language models are
continual learners. In Conference on Empirical Methods in Natural Language Processing, 2022.
URL https://api.semanticscholar.org/CorpusID:252815378.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Shivchander Sudalairaj, Abhishek Bhandwaldar, Aldo Pareja, Kai Xu, David D Cox, and Akash
Srivastava. Lab: Large-scale alignment for chatbots. arXiv preprint arXiv:2403.01081, 2024.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, 2017.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David
Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels go? exploring
the state of instruction tuning on open resources. Advances in Neural Information Processing
Systems, 36:74764–74786, 2023a.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 13484–13508, 2023b.

Yong Xie, Karan Aggarwal, and Aitzaz Ahmad. Efficient continual pre-training for building domain
specific large language models. In Annual Meeting of the Association for Computational Linguis-
tics, 2023. URL https://api.semanticscholar.org/CorpusID:265213147.

14

https://aclanthology.org/2024.findings-acl.341
https://api.semanticscholar.org/CorpusID:257985497
https://api.semanticscholar.org/CorpusID:257985497
https://api.semanticscholar.org/CorpusID:221191193
https://www.redhat.com/en/topics/ai/llm-vs-slm
https://www.redhat.com/en/topics/ai/llm-vs-slm
https://api.semanticscholar.org/CorpusID:203592013
https://api.semanticscholar.org/CorpusID:203592013
https://openreview.net/forum?id=0bmXrtTDUu
https://api.semanticscholar.org/CorpusID:252815378
https://api.semanticscholar.org/CorpusID:265213147


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv preprint arXiv:2304.12244, 2023.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-
der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural
networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.

Zitong Yang, Neil Band, Shuangping Li, Emmanuel Candès, and Tatsunori Hashimoto. Synthetic
continued pretraining. arXiv preprint arXiv:2409.07431, 2024.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In International Conference on Learning Rep-
resentations, 2017. URL https://openreview.net/forum?id=Sy8gdB9xx.

Vivienne Zhang, Shashank Verma, Neal Vaidya, Abhishek Sawarkar, and Amanda Saunders. Nvidia
ai foundation models: Build custom enterprise chatbots and co-pilots with production-ready llms,
2023.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: Experiences on scaling fully
sharded data parallel. Proceedings of the VLDB Endowment, 16(12):3848–3860, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 2023.

A APPENDIX

A.1 MODEL DETAILS

Granite 3B is composed of transformer layers (encoder blocks) that include multi-head self-
attention mechanisms and feed-forward networks. It has a smaller hidden size and fewer attention
heads, making it less computationally intensive and faster for both training and inference.

Granite 7B has more transformer layers and increased hidden dimensions, offers greater rep-
resentational capacity. It also includes more attention heads, enabling it to capture more complex
language patterns and long-range dependencies.

Llama 3.2 3B employs a scaled-down transformer architecture with fewer layers and a reduced
hidden size compared to larger models in the Llama family. It maintains the core design principles of
its larger counterparts, including rotary positional embeddings and optimized attention mechanisms,
while balancing performance and efficiency for resource-constrained environments.

Mistral 7B incorporates advanced attention mechanisms, including multi-query attention, to re-
duce memory usage and increase computational efficiency during inference. Additionally, it lever-
ages training optimizations like mixed-precision training and gradient checkpointing to accelerate
training and lower resource demands.

A.2 DATASETS DETAILS

The datasets were curated using a taxonomy-driven approach to ensure comprehensive coverage of
instruction-following, foundational knowledge, and compositional skills. The taxonomy hierarchi-
cally organizes tasks into three main branches—knowledge, foundational skills, and compositional
skills—each further divided into granular subcategories. For each subcategory, manually written
instruction-response pairs served as seed examples. These examples guided synthetic data genera-
tion using teacher models (e.g., Mixtral-7x8B) to expand the dataset while maintaining high quality
and diversity. For knowledge data, reliable sources such as textbooks and technical manuals pro-
vided a grounding for synthetic questions and responses. Foundational skills data were drawn from
public datasets covering essential areas like mathematics, coding, and reasoning. Compositional
skills were synthesized using a taxonomy-guided approach to combine knowledge and foundational

15

https://openreview.net/forum?id=Sy8gdB9xx


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

skills for complex tasks, such as writing detailed emails or generating logical arguments. We provide
details about the datasets we used in Table 7.

Table 7: Summary of datasets used in different phases.

Phase Description # Samples
Phase 00 Instruction following warmup: simple, template-based

instruction-response pairs to transition the base models
to instruction-following behavior.

308343

Phase 05 Foundational knowledge acquisition: synthetically gen-
erated question-answer pairs from textbooks covering a
wide range of disciplines up to graduate-level courses.

231178

Phase 10 Complex skills development: synthetic data generated
using a taxonomy of skills, including tasks like poetry,
email writing, logical reasoning, coding, and more.

285966

All-Phases Combination of phases 00, 05, and 10, exposing models
to all data types simultaneously.

825487

A.3 TRAINING INFRASTRUCTURE AND OPTIMIZATION

To handle large batch sizes and optimize computational efficiency, we use an optimized training
infrastructure.

Optimizer. Across all experiments, we use the Adam optimizer with β1 = 0.9 and β2 = 0.95. By
adjusting β2 = 0.95, we reduce the emphasis on the variance of past gradients, which is beneficial
when training with large batch sizes that provide more stable gradient estimates.

Batching and Gradient Accumulation. To achieve the large effective batch sizes required for
our experiments, we employed gradient accumulation techniques. Gradient Accumulation involves
accumulating gradients over multiple forward and backward passes before performing an optimizer
step (i.e., updating model weights). This effectively increases the batch size without necessitating
additional memory to store larger batches in a single pass. For instance, in a single-node setup with 8
GPUs, we set a micro-batch size per GPU and used gradient accumulation steps to reach an effective
batch size of 3,840 samples. Specifically, if each GPU processes a micro-batch of b samples and we
accumulate gradients over k steps, the effective batch size B is B = b × k × N , where N is the
number of GPUs. In multi-node setups with 64 GPUs, we could process the entire batch in a single
step without accumulation due to the distributed computational resources. This approach allowed us
to simulate very large batch sizes, to investigate their impact on model performance.

Efficient Distributed Sampling. We implement a variant of Multipack distributed sampler (Mul-
tipackSampler, 2024), which offers significant advantages over naive sampling approaches in dis-
tributed training of LLMs. Drawing on concepts from the identical machine scheduling problem
(Graham, 1966), our implementation uses an approximate solution at the sample level, achieving
near-optimal GPU utilization. Our variant extends the original design by accounting for padding,
crucial for non-linear attention mechanisms like scaled dot-product attention (Vaswani et al., 2017),
and clustering together samples of similar length. It ensures that even with padding, no GPU ex-
ceeds a pre-determined token capacity, which we calculate to maintain an expected micro-batch size
that satisfies:

E[Effective Batch Size] = E[Micro Batch Size × Gradient Accumulation Steps]

This approach balances computational load across GPUs, resulting in improved training throughput
and stability. Additionally, our sampler supports both linear attention mechanisms, such as FlashAt-
tention (Dao et al., 2022), and traditional non-linear attention, making it versatile for various model
architectures.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.4 EXPERIMENTAL DESIGN

We investigate how training strategies, batch sizes, learning rates, and warmup steps influence LLM
fine-tuning. We systematically vary these factors while holding other parameters constant to isolate
their individual effects.

Impact of Batch Size and Training Strategies. We examine how different batch sizes influence
model performance and training dynamics in both stacked and phased training settings. Our hy-
pothesis is that larger batch sizes will improve model performance in stacked training by ensuring
sufficient data diversity within each batch, allowing for more robust gradient updates. In contrast,
their impact on phased training may be less pronounced. On the other hand, this improvement may
come at the cost of reduced sample efficiency. While larger batch sizes may achieve better final
performance, they typically require more training samples and computational resources due to the
higher number of samples used per gradient step. Conversely, smaller batch sizes could achieve
comparable performance with fewer samples, especially in phased training, where each batch is
inherently constrained to a specific data type, limiting intra-batch diversity. We formalize these hy-
potheses below and explore the trade-offs between performance gains and computational efficiency
in our experiments.

• Hypothesis 1. Stacked training underperforms at smaller batch sizes due to insufficient diversity
within each batch. A smaller batch may not capture the wide range of data types present in the
combined dataset, leading to less effective learning. In contrast, larger batch sizes in stacked
training could match or surpass phased training by capturing a wider range of signals in each
gradient update.

• Hypothesis 2. While the stacked approach simplifies the training pipeline by eliminating the need
for phase selection of data, it can be less sample efficient. Learning all types of data simultane-
ously could require more steps for the model to adequately learn the complex and diverse patterns
in the combined dataset. This translates to worse sample efficiency, as the model may need more
gradient updates to converge.

Learning Rate Exploration. We conduct a learning rate sweep to examine its influence on train-
ing dynamics and final model performance. We explore whether larger batch sizes require higher
learning rates, hypothesizing that increased gradient stability at higher batch sizes may allow for
more aggressive learning rate schedules without causing instability. Additionally, we hypothesize
that lower learning rates (e.g., 2e−5) might lead to better generalization, as smaller updates allow
the model to converge more gradually. Additionally, we evaluate the effects of different learning rate
schedules (constant vs. cosine decay) on model performance, as cosine decay is widely recognized
for its smooth convergence properties. Our goal is to empirically determine whether this schedule
offers tangible benefits in our specific setting.

Warmup Steps Analysis. Warmup steps are commonly used in fine-tuning LLMs to stabilize train-
ing. We investigate whether reducing or removing warmup steps can accelerate convergence without
sacrificing final model performance.

Training Dynamics and Early Performance Indicators. We monitor key training dynamics, such
as gradient norms and loss values, to explore their correlation with the model’s final performance
metrics on benchmarks (MMLU and MTBench). Monitoring gradient norm and loss during training
provides insights into the smoothness of the optimization trajectory, with lower gradient norms sug-
gesting traversal through flatter regions of the loss landscape, which, as discussed later, can influence
final model performance. The goal was to investigate whether early-stage indicators, such as a lower
gradient norm and higher loss values during the initial phase of training or consequently throughout
the entire training, can serve as reliable predictors of better performance on benchmarks. This ap-
proach could allow for the early termination of suboptimal runs, optimizing computational resources
by focusing only on models that demonstrate promising training dynamics. By closely examining
these metrics across multiple learning rate configurations, batch sizes, and training strategies, we
aimed to understand how these dynamics reflect the underlying optimization process and its rela-
tionship to final task performance, without the need for full training to completion. Identifying
these early indicators is critical for advancing sample-efficient training methodologies, especially in
large-scale experiments.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Adaptations for Different Model Architectures. To evaluate the generalizability of our findings
across different model architectures, we extended our experiments to include the Mistral 7B model.
Mistral models have architectural optimizations and differ from the Granite models in certain as-
pects, such as tokenization and layer configurations. Given these differences, we made specific
adaptations to the training hyperparameters (learning rate, warmup steps) to verify the robustness
of our methodology and check if our experiments are applicable to a range of small sized LLM
architectures.

A.5 ADDITIONAL RESULTS

A.5.1 STACKED TRAINING VS. SEQUENTIAL PHASED TRAINING

Contrary to one of our initial hypotheses that stacked training might underperform at smaller batch
sizes due to insufficient data diversity within each batch, our results indicate that stacked training
consistently achieves better or comparable performance to phased training at batch sizes of 128, and
4,000 samples.

Figure 3 illustrates the performance of stacked and phased training strategies on MTBench and
MMLU benchmarks across different batch sizes. Notably, stacked training slightly outperforms
phased training at each batch size, suggesting that batch size does not significantly impact the dif-
ference between the two training strategies. A possible explanation is that, even with smaller batch
sizes, the stacked approach provides enough data diversity for effective learning, allowing the model
to generalize well across different types of data.

128 4K 8K
Batch Size

0.0

0.1

0.2

0.3

0.4

0.5

M
M

LU
 S

co
re

Stacked Training
Phased Training
Difference (Stacked - Phased)

0.002

0.003

0.004

0.005

Di
ffe

re
nc

e 
in

 M
M

LU
 S

co
re

(a) MMLU Performance

128 4K 8K
Batch Size

0

2

4

6

M
TB

en
ch

 S
co

re

Stacked Training
Phased Training
Difference (Stacked - Phased)

0.02

0.04

0.06

0.08

Di
ffe

re
nc

e 
in

 M
TB

en
ch

 S
co

re

(b) MTBench Performance

Figure 3: Comparison of stacked and phased training across different batch sizes on MMLU and
MTBench benchmarks.

In Figure 4, we compare the performance of both training strategies using the LAB hyperparam-
eter configuration. Figure 4a shows the final MTBench performance, where stacked training out-
performed phased training by 0.01 points. Figure 4b illustrates that stacked training is also more
sample-efficient, with the best performance points annotated by the number of samples required to
reach them. Note that the line for phased training begins partway through, as samples from Phases
00 and 05 were already included. This applies consistently to all similar figures presented in this
paper.

In addition to the MTBench results, we include the MMLU performance comparisons here. Figure 5
shows the final MMLU performance using LAB hyperparameters for both stacked and phased train-
ing strategies. Stacked training outperformed phased training on the MMLU benchmark by 0.01
points, consistent with the observations from MTBench.

Figure 6 illustrates the sample efficiency comparison for MMLU. Similar to the MTBench results,
stacked training achieves higher MMLU performance more quickly than phased training. These
results reinforce our findings that stacked training not only improves performance but also enhances
sample efficiency on both MMLU and MTBench benchmarks.

To investigate whether phased training might be effective when phases are split based on difficulty,
we conducted an additional experiment. In this setup, we partitioned the dataset into two phases
based on difficulty, using the length of free-form answers as a proxy for difficulty.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 2 4 6 8
Number of Samples 1e6

5.0

5.5

6.0

6.5
M

TB
en

ch
 S

co
re

6.766.77

Phased (LAB Hyperparameters)
Stacked (LAB Hyperparameters)

(a) Final Performance on MTBench

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Number of Samples 1e7

5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

M
TB

en
ch

 S
co

re

1799424
2215457

4392960 8586240
8057918

Stacked (128 Batch Size)
Phased (128 Batch Size)
Stacked (4K Batch Size)
Stacked (8K Batch Size)
Phased (4K Batch Size)

(b) Sample Efficiency on MTBench

Figure 4: Comparison of stacked and phased training strategies on MTBench using LAB hyperpa-
rameters.

0 2 4 6 8
Number of Samples 1e6

0.48

0.49

0.50

0.51

0.52

M
M

LU
 S

co
re

0.520.53

Phased (LAB Hyperparameters)
Stacked (LAB Hyperparameters)

Figure 5: Final MMLU Performance comparison using LAB hyperparameters: stacked vs. phased
training.

• Phase I: The bottom 50% of the data containing short sentences.

• Phase II: The top 50% of the data containing long sentences, plus a 1% subset of the short
sentences as a replay buffer when transitioning to long sentences.

We fine-tuned the Granite 7B base model using the same hyperparameters—a batch size of 4,000
and a learning rate of 2× 10−5—under both the phased and stacked training strategies. Our results
(Figure 7) showed no significant difference between phased and stacked training in this setting. Both
performed similarly, with stacked training slightly outperforming phased training across all bench-
marks. This suggests that even when the data is carefully partitioned based on difficulty, phased
training does not improve model performance over stacked training. Moreover, phased training re-
mains less sample-efficient due to the additional time and samples required to determine the optimal
checkpoint for phase transitions.

A.5.2 IMPACT OF BATCH SIZE

Figure 9 illustrates the performance of different batch sizes in both stacked and phased training on
the MTBench benchmark. In addition to the MTBench results, we include the MMLU performance
comparisons here. Figure 8 illustrates the impact of batch size on model performance in both stacked
and phased training on the MMLU benchmark. The observations are consistent with those from
MTBench: larger batch sizes lead to better final performance. The trends observed in the MMLU
results reinforce our findings that larger batch sizes improve final performance, although they may
require more training samples and computational resources. As with MTBench, smaller batch sizes
initially reach higher performance levels more quickly but plateau earlier, while larger batch sizes
surpass them with extended training.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Number of Samples 1e7

0.49

0.50

0.51

0.52

0.53

M
M

LU
 S

co
re 2099328

2315425

3694080
8885760

7859902

Stacked (128 Batch Size)
Phased (128 Batch Size)
Stacked (4K Batch Size)
Stacked (8K Batch Size)
Phased (4K Batch Size)

Figure 6: MMLU Sample efficiency comparison between stacked and phased training.

0.0 0.2 0.4 0.6 0.8 1.0
Number of Samples 1e7

0.48

0.49

0.50

0.51

0.52

0.53

M
M

LU
 S

co
re

0.52
0.53

MMLU

Phased (based on Length)
Stacked

0.0 0.2 0.4 0.6 0.8 1.0
Number of Samples 1e7

5.8

6.0

6.2

6.4

6.6

M
TB

en
ch

 S
co

re
6.61

6.67
MTBench

Phased (based on Length)
Stacked

0.0 0.2 0.4 0.6 0.8 1.0
Number of Samples 1e7

8

9

10

11

12

13

Av
er

ag
e 

No
rm

al
ize

d 
Sc

or
e

12.34
12.86

Open LLM Leaderboard v2

Phased (based on Length)
Stacked

Figure 7: Performance comparison of stacked vs. phased training on difficulty-partitioned data (by
answer length) across comprehensive benchmarks.

A.5.3 EFFECT OF LEARNING RATE

As shown in Figure 10, the lowest learning rate of 2 × 10−5 yielded the best performance on the
MTBench Benchmark.

We investigated whether larger batch sizes necessitate higher learning rates, based on the premise
that with a larger batch size, the model processes more samples before each gradient step, potentially
benefiting from a higher learning rate to make more significant updates and to maintain the variance
of the gradient when compared to smaller batch sizes. Additionally, since larger batches result in
fewer gradient steps over the same number of epochs, increasing the learning rate might improve
training efficiency.

Our experiments compared models trained with different learning rates across batch sizes of 128,
3,840, and 7,680 samples. The runs included TULU hyperparameters at learning rates of 2× 10−5

and 3×10−5, and LAB hyperparameters with learning rates ranging from 2×10−5 to 1×10−4. As
shown in Figure 11, regardless of batch size, the lower learning rate of 2×10−5 consistently resulted
in better or comparable performance on both MMLU and MTBench benchmarks. For instance, with
a batch size of 128, performances were similar for both the learning rates. For larger batch sizes of
3,840 and 7,680, the 2× 10−5 learning rate performed on par or better than higher learning rates.

An explanation for what we observe is that large batches provide more accurate gradient estimates
due to averaging over more samples. Consequently, a lower learning rate suffices to make effective
progress without introducing instability. Using a higher learning rate with large batches may lead to
larger updates that overshoot minima.

A.5.4 TULU VS. LAB

Memorization and Generalization. We focused on Phase 05 in the sequential phased training
strategy, which is designed to augment the model’s foundational knowledge and memorization of
facts. We evaluated the models using specific MMLU subjects related to memorization, including
history, law, and science domains. We compared the performance of models starting from both the
base Granite model and the best checkpoint obtained from Phase 00 training. Table 8 shows that

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Number of Samples (Stacked) 1e7

0.49

0.50

0.51

0.52

0.53

M
M

LU
 S

co
re

0.5290
0.5261

0.5169

8K Batch Size
4K Batch Size
128 Batch Size

(a) Impact of Batch Size on MMLU - Stacked

0.0 0.5 1.0 1.5 2.0 2.5
Number of Samples (Phased) 1e6

0.500

0.505

0.510

0.515

0.520

0.525

M
M

LU
 S

co
re

0.524

0.513

4K Batch Size
128 Batch Size

(b) Impact of Batch Size on MMLU - Phased

Figure 8: Impact of batch size on model performance in stacked and phased training on MMLU
benchmark.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Number of Samples (Stacked) 1e7

5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

M
TB

en
ch

 S
co

re

6.83126.7687

6.4062

8K Batch Size
4K Batch Size
128 Batch Size

(a) Impact of Batch Size on MTBench - Stacked

0.0 0.5 1.0 1.5 2.0 2.5
Number of Samples (Phased) 1e6

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

M
TB

en
ch

 S
co

re

6.7562

6.3250

4K Batch Size
128 Batch Size

(b) Impact of Batch Size on MTBench - Phased

Figure 9: Impact of batch size on model performance in stacked and phased training on MTBench
benchmark. MMLU results are in Appendix A.5.2.

models trained with LAB hyperparameters outperform those trained with TULU hyperparameters
on the memorization-focused MMLU tasks. We evaluated the models’ generalization abilities after
Phase 10 in the sequential phased training strategy, which focuses on complex skills and composi-
tional tasks. The MTBench benchmark was used to assess performance on tasks requiring reasoning,
problem-solving, and adaptation to unseen scenarios. As shown in Table 8, the model trained with
LAB hyperparameters significantly outperforms the one trained with TULU hyperparameters on
MTBench.

Table 8: Comparison of TULU vs. LAB on MMLU Memorization and MTBench Generalization
Scores. Cells highlighted in green indicate better scores, and blue indicates higher sample efficiency
(fewer samples used).

Benchmark Model Score Samples

MMLU (Memorization)

Granite Base 0.48 -

TULU (Base) 0.59 199,936

LAB (Base) 0.61 1,597,440

TULU (Phase 00) 0.60 599,808

LAB (Phase 00) 0.62 1,098,240

MTBench (Generalization)
TULU 6.33 599,808

LAB 6.76 2,673,216

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5
Number of Samples 1e6

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

M
TB

en
ch

 S
co

re

6.76
6.64

6.53 6.47

LAB Phase 10 (LR: 2e-5)
LAB Phase 10 (LR: 4e-5)
LAB Phase 10 (LR: 8e-5)
LAB Phase 10 (LR: 1e-4)

Figure 10: MTBench performance after Phase 10 training with different learning rates.

(a) MMLU Performance Across Learning Rates

(b) MTBench Performance Across Learning Rates

Figure 11: Performance comparison across different learning rates and batch sizes on MMLU and
MTBench benchmarks.

To ensure a fair comparison, we ran each experiment for the same number of gradient steps, resulting
in different number of samples due to different batch sizes, as seen in Figure 12. Figure 12a shows
that models trained with LAB hyperparameters outperform those trained with TULU hyperparam-
eters on the memorization-focused MMLU tasks. Additionally, as shown in Figure 12b, the model
trained with LAB hyperparameters significantly outperforms the one trained with TULU hyperpa-
rameters on MTBench. Table 9 shows that LAB performs better than TULU across all benchmarks.

A.5.5 EFFECT OF LEARNING RATE SCHEDULES ON LARGE BATCH SIZES

As shown in Figure 13, the models trained with a constant learning rate (no decay) performed on par
with those trained with a cosine decay schedule on both MMLU and MTBench, and in some cases
even outperformed them, particularly on MTBench.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Number of Samples 1e6

0.56

0.57

0.58

0.59

0.60

0.61
M

em
or

iza
tio

n 
Sc

or
e

0.60

0.62

0.59

0.61

Tulu Phase 05 (Phase 00 Model)
LAB Phase 05 (Phase 00 Model)
Tulu Phase 05 (Base Model)
LAB Phase 05 (Base Model)

(a) Phase 05 Memorization Performance

0.0 0.5 1.0 1.5 2.0 2.5
Number of Samples 1e6

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

M
TB

en
ch

 S
co

re

6.76

6.33

LAB Phase 10
Tulu Phase 10

(b) Phase 10 Generalization Performance

Figure 12: Comparison of TULU vs. LAB on memorization and generalization.

Table 9: Comparison of LAB vs. TULU Hyperparameter Configurations on Various Benchmarks.
Cells highlighted in green indicate better scores, and blue indicates higher sample efficiency (fewer
samples used).

Benchmark Score Samples

Granite Base LAB TULU LAB TULU

Leaderboard (BBH) 0.09 0.10 0.08 8,057,918 599,808
Leaderboard (MuSR) 0.01 0.07 0.03 8,057,918 599,808
ARC 0.78 0.75 0.74 8,057,918 599,808
GSM8K 0.11 0.37 0.36 8,057,918 599,808

A.5.6 EFFECT OF WARMUP STEPS

Figures 14 and 15 show the performance comparison with different warmup steps: 0, 25, and 100
warmup steps, on the MMLU and MTBench benchmarks, respectively. The model trained with-
out warmup steps achieved better performance on MMLU and similar performance on MTBench,
indicating that warmup steps is not necessary for stable and effective training.

A.5.7 ADAPTATION TO A DOMAIN-SPECIFIC DATASET

To evaluate the generalizability of our findings to domain-specific datasets, we conducted experi-
ments using a Math, Reasoning, and Code (MRC) dataset. This dataset specializes in mathematical
problem-solving, logical reasoning, and programming tasks, representing a focused domain com-
pared to our original diverse dataset.

We evaluated the models on several benchmarks, including GSM8K (Cobbe et al., 2021), ARC
(Clark et al., 2018), and the Open LLM Leaderboard v2 benchmarks including MATH and MuSR.
We compare the LAB and TULU hyperparameter configurations on the MRC dataset. Using the
LLaMA 3B model, we fine-tuned with both configurations: LAB used a batch size of 4,000 and
a constant learning rate, while TULU used a batch size of 128 with warmup and linear decay.
As shown in Table 10, the LAB configuration outperforms TULU across all evaluation metrics,
reaffirming that larger batch sizes and simplified learning rate schedules are beneficial even when
fine-tuning on domain-specific data.

Additionally, we fine-tuned the LLaMA 3B model using both the stacked and sequential phased
training strategies with LAB hyperparameters. For phased training, as described in Appendix A.5.1,
the dataset was partitioned into two phases based on response length: Phase I with shorter responses
(bottom 50%) and Phase II with longer responses (top 50%). As shown in Table 11, stacked training
demonstrates slightly higher performance and greater sample efficiency compared to phased training
across all benchmarks.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5
Number of Samples 1e6

0.505

0.510

0.515

0.520

0.525

M
M

LU
 S

co
re

0.52420.5251

No Decay (2e-5 lr)
Cosine Decay (2e-5 lr)

(a) Impact of Cosine Decay on MMLU

0.0 0.5 1.0 1.5 2.0 2.5
Number of Samples 1e6

5.4

5.6

5.8

6.0

6.2

6.4

6.6

6.8

M
TB

en
ch

 S
co

re

6.7562
6.6813

No Decay (2e-5 lr)
Cosine Decay (2e-5 lr)

(b) Impact of Cosine Decay on MTBench

Figure 13: Comparison of learning rate schedules with a batch size of 3,840 samples on MMLU and
MTBench benchmarks.

Figure 14: MMLU Performance with different warmup steps: 0, 25, and 100 warmup steps.

Table 10: Comparison of LAB vs. TULU Hyperparameter Configurations on the MRC Dataset
Using the LLaMA 3B Model. Cells highlighted in green indicate better scores, and blue indicates
higher sample efficiency (fewer samples used).

Benchmark Score Samples

LLaMA Base LAB TULU LAB TULU

Leaderboard (MATH Lvl 5) 0.02 0.04 0.04 9,980,259 3,468,664
Leaderboard (MuSR) 0.05 0.08 0.04 16,966,128 2,973,753
ARC 0.78 0.75 0.68 2,745,290 247,372
GSM8K 0.27 0.69 0.66 12,225,143 5,450,009

Table 11: Comparison of Stacked vs. Phased Training Strategies on the MRC Dataset Using the
LLaMA 3B Model. Cells highlighted in green indicate better scores, and blue indicates higher
sample efficiency (fewer samples used).

Benchmark Score Samples

LLaMA Base Stacked Phased Stacked Phased

Leaderboard (MATH Lvl 5) 0.02 0.04 0.03 9,980,259 18,455,850
Leaderboard (MuSR) 0.05 0.08 0.08 16,966,128 18,206,922
ARC 0.78 0.75 0.71 2,745,290 14,964,367
GSM8K 0.27 0.69 0.67 12,225,143 14,964,367

These findings demonstrate that our recommendations regarding training strategies and hyperparam-
eters generalize to domain-specific datasets, supporting their applicability in specialized fine-tuning
scenarios.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 15: MTBench Performance with different warmup steps: 0, 25, and 100 warmup steps.

A.5.8 ADAPTATIONS TO DIFFERENT MODEL SIZES AND ARCHITECTURES

To assess the scalability and generality of our findings, we extended our experiments to different
model families, architectures, and sizes, specifically testing the Mistral 7B model, the Granite 3B
model, and the LLaMA 3B model.

Adaptation to a New Architecture. We conducted a learning rate sweep for the Mistral 7B model
to determine which learning rate yields the best final performance. Our objective was to apply
the methodology used for finding the optimal learning rate with the Granite models to the Mistral
architecture.

This methodology involves starting with a low learning rate because lower learning rates have been
found to stabilize training when fine-tuning language models. A low learning rate helps prevent
large, destabilizing weight updates, allowing the model to fine-tune its parameters gradually and
avoid overfitting. Additionally, lower learning rates facilitate more precise adjustments to the model
weights, which is particularly important when adapting pre-trained models to new tasks or domains
without forgetting previously learned information.

Then, once we begin with a low learning rate, the methodology/prescription we offer for finding the
optimal hyperparameter—which in this case is the learning rate—is to test slightly higher and lower
values to see if performance improves, and then keep following that path of lower or higher values
until you don’t get anything better. That’s our prescription or methodology. We began the search
around 2× 10−5, which worked best for Granite, and then tested slightly higher and lower values to
see if performance improved. This approach allows us to prescribe a suitable range for the learning
rate or any other hyperparameter and refine it based on empirical results. Through this sweep, we
identified 1× 10−6 as the best learning rate for Mistral.

Our results are presented in Figures 16a and 16b. As a baseline, the Mistral 7B pretrained model
achieved a score of 0.60 on the MMLU benchmark in a 5-shot scenario, and the Mistral 7B Instruct
model scored 6.84 on MTBench. We check if what we have observed before for Granite—that is, the
general trend where lower gradient norms and higher loss are associated with better generalization
and final performance—also applies to Mistral. Specifically, the lowest learning rate, 1 × 10−6,
produced the best overall performance on the MMLU benchmark. An interesting pattern emerged,
similar to that observed with the Granite model: for the most effective learning rates, the gradient
norm started at its lowest value and increased towards the end of training. Despite the higher gradient
norm in the later stages, the associated loss remained higher throughout training (which is expected
because lower learning rates typically result in higher loss values during training). This suggests
that maintaining higher loss values may be necessary for the model’s optimization process to reach
better generalization.

These observations confirm that our methodology for selecting learning rates and our observation
on the correlation between early training dynamics and final performance are applicable to different
model architectures.

Adaptation to Different Model Sizes. We also examined whether our findings hold for smaller
models by conducting experiments with the Granite 3B model. Specifically, we compared an 8k

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

(a) Training Dynamics and MMLU Performance

(b) Training Dynamics and MTBench Performance

Figure 16: Training dynamics for Mistral 7B with different learning rates, and their final perfor-
mance on MMLU and MTBench benchmarks.

batch size with stacked training versus a 4k batch size with phased training. Our goal was to deter-
mine if the observations regarding batch size and training strategies for the Granite 7B model extend
to the 3B model. In the 8k stacked setting for the Granite 3B model, we observed a lower gradient
norm, higher loss, and improved MMLU performance compared to the 4k phased configuration.
This trend is illustrated in Figures 17a and 17b.

The larger batch size likely benefits from increased data diversity within each batch, encompassing a
wide variety of tasks, skills, and knowledge from the stacked phases. This diversity allows the model
to learn more generalizable features, which likely contributes to the performance improvement. The
lower gradient norm in the 8k stacked setting suggests more stable learning, while the higher loss
indicates that the model is exploring a wider region of the loss landscape, potentially helping it
avoid overfitting and converge to better generalization. This balance of stability (lower gradient
norm) and exploration (higher loss) may explain why the 8k stacked configuration yields superior
performance on the MMLU benchmark. These results suggest that the correlation between early
training dynamics and final performance holds across different model sizes, indicating that early
training dynamics are reliable predictors of final model performance regardless of model size.

These findings confirm that our earlier observations about training dynamics and performance cor-
relations hold across different model sizes and architectures, reinforcing the importance of early
training dynamics as indicators of final performance and the effectiveness of our methodology in
selecting hyperparameters for fine-tuning language models.

Generalization to a Different Model Family and Size. To assess whether our findings extend to a
different model architecture and size at the same time, we conducted experiments using the LLaMA
3B model (Touvron et al., 2023). We note that the Granite model shares the same architecture as the
LLaMA model. Hence we believe that the findings in this paper can generalize across the LLaMA
model family. We fine-tuned the model using both stacked and phased training strategies, as well as
comparing the LAB and TULU hyperparameter configurations.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(a) Training Dynamics and MMLU Performance

(b) Training Dynamics and MTBench Performance

Figure 17: Training dynamics for Granite 3B with different batch sizes and training strategies, and
their final performance on MMLU and MTBench benchmarks.

Table 12: Comparison of Stacked vs. Phased Training Strategies Using the LLaMA 3B Model.
Cells highlighted in green indicate better scores, and blue indicates higher sample efficiency (fewer
samples used).

Benchmark Score Samples

LLaMA Base Stacked Phased Stacked Phased

Leaderboard (BBH) 0.14 0.19 0.18 7,734,723 6,734,847
Leaderboard (MATH Lvl 5) 0.01 0.02 0.01 250,089 4,490,320
Leaderboard (MuSR) 0.05 0.22 0.11 10,979,309 4,988,983
MMLU 0.56 0.57 0.53 6,986,437 5,737,613
ARC 0.78 0.78 0.75 2,744,559 7,483,283
GSM8K 0.27 0.51 0.45 3,742,399 6,734,847
MTBench - 5.00 4.30 9,232,227 6,734,847

For phased training, as described in Appendix A.5.1, the dataset was partitioned into two phases
based on response length: Phase I with shorter responses (bottom 50%) and Phase II with longer
responses (top 50%). We compared the LAB configuration (batch size of 4,000 with constant learn-
ing rate) to the TULU configuration (batch size of 128 with warmup and linear decay). The models
were evaluated on benchmarks including MMLU, MTBench, GSM8K, ARC, and the Open LLM
Leaderboard v2 benchmarks including BBH, MATH, and MuSR.

The results, depicted in Table 12, indicate that the stacked training strategy achieves better perfor-
mance than phased training across all benchmarks. Results in Table 13 indicate that the LAB hy-
perparameter configuration consistently outperforms TULU, reinforcing our earlier conclusion that
larger batch sizes and a constant learning rate schedule are advantageous. These findings suggest
that our recommended training strategies and hyperparameters are effective across different model

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 13: Comparison of LAB vs. TULU Hyperparameter Configurations on the LLaMA 3B Model.
Cells highlighted in green indicate better scores, and blue indicates higher sample efficiency (fewer
samples used).

Benchmark Score Samples

LLaMA Base LAB TULU LAB TULU

Leaderboard (BBH) 0.14 0.19 0.17 7,734,723 2,473,477
Leaderboard (MATH Lvl 5) 0.01 0.02 0.01 250,089 741,924
Leaderboard (MuSR) 0.05 0.22 0.15 10,979,309 1,731,217
MMLU 0.56 0.57 0.55 6,986,437 2,473,477
ARC 0.78 0.78 0.74 2,744,559 2,473,477
GSM8K 0.27 0.51 0.49 3,742,399 2,473,477
MTBench - 5.00 4.97 9,232,227 2,473,477

architectures and sizes simultaneously, including the LLaMA family. Practitioners may consider
applying these insights to fine-tune various small-sized LLMs, potentially achieving improvements
in performance.

A.5.9 EARLY TRAINING DYNAMICS AS PREDICTORS OF FINAL PERFORMANCE

In addition to the MTBench results presented in the main paper, we include the MMLU performance
comparison here.

Figure 18: LAB Learning Rate Sweep: Training Dynamics and MMLU Performance.

Models trained with a learning rate of 2× 10−5 demonstrated lower gradient norms initially, which
increased toward the end of training, and higher loss throughout, ultimately resulting in superior
final performance on MMLU compared to models trained with higher learning rates. This pattern
mirrors the observations made for MTBench in the main paper, reinforcing the correlation between
early training dynamics and final performance across different benchmarks.

Figures 19, 14, 15, and 20 illustrate the correlation between early training dynamics—gradient
norms and loss values—and final benchmark performances across other experiments:

• Batch Size Comparison in Stacked Training. We further examined the impact of batch size
on early training dynamics and final performance in stacked training by comparing batch sizes
of 3,840 and 7,680 samples (denoted as 4k and 8k). Figures 19a and 19b present the gradient
norms and loss values over training, along with the corresponding performances on MMLU and
MTBench. We observed that the 8k batch size consistently exhibited lower gradient norms and
higher loss throughout training compared to the 4k batch size. Ultimately, the 8k batch size
achieved better final performance on both MMLU and MTBench benchmarks.
The larger batch size likely benefits from increased data diversity within each batch, encompass-
ing a wide variety of tasks, skills, and knowledge from the stacked phases. This diversity allows
the model to learn more holistically and make more informed optimization steps, enhancing its

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

(a) Training Dynamics and MMLU Performance

(b) Training Dynamics and MTBench Performance

Figure 19: Training dynamics for batch sizes 4k and 8k in stacked training, and their final perfor-
mance on MMLU and MTBench benchmarks.

ability to generalize across different domains. However, we also noted that for smaller numbers
of training samples, the 4k batch size achieved higher MMLU and MTBench scores, suggesting
a trade-off. If computational resources or training time are limited, the 4k batch size may offer
better performance in the early stages of training—up to approximately 3.75 million samples for
MMLU and 8.5 million samples for MTBench. Beyond these points, the 8k batch size surpasses
the 4k batch size in performance as observed in Figures 19a and 19b.

• Warmup Steps Comparison. We examined the impact of different warmup configurations (0,
25, and 100 steps) on early training dynamics and final performance. All models demonstrated
very similar performance, loss curves, and gradient norms throughout training. The model trained
without warmup steps (0 warmup) achieved slightly better performance on the MMLU benchmark
and comparable performance on MTBench compared to models trained with 25 or 100 warmup
steps.
Gradient norm and loss curves serve as a proxy for the smoothness of the optimization process.
Large fluctuations in early gradnorm values may indicate instability, which could negatively affect
convergence, while more stable or lower gradnorm magnitudes suggest a smoother path toward
optimal performance. Given that all warmup configurations resulted in similar final performance
across both benchmarks and exhibited nearly identical loss and gradnorm curves, it indicates a
strong correlation between training dynamics and final performance which can be seen in Fig-
ures 14 and 15.

• Learning Rate Schedule Comparison. We also analyzed the effect of using a constant learning
rate versus a cosine decay schedule with learning rates of 2×10−5 and 4×10−5 on early training
dynamics and final performance. Figures 20a and 20b present the gradient norms and loss values
over training, along with the corresponding performances on MMLU and MTBench. Up until
approximately 1 million samples, the gradient norms, loss values, and MMLU scores remain
nearly identical for both the constant learning rate and cosine decay configurations, as the learning
rate decay has not yet kicked in. However, after 1 million samples, the models with cosine decay

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

exhibit marginally better or on par MMLU/MTBench performance compared to those with a
constant learning rate. We also observe that, beyond the 1 million sample mark, cosine decay
results in lower gradient norms and higher loss values.
The lower gradient norms suggest more stable learning, while the higher loss may indicate that the
model is exploring a broader region of the loss landscape, potentially enhancing generalization.
This combination might explain the slight improvement in performance with cosine decay, as the
balance between stability (lower grad norm) and exploration (higher loss) can help the model
converge to a more optimal solution.

(a) Training Dynamics and MMLU Performance

(b) Training Dynamics and MTBench Performance

Figure 20: Training dynamics for constant learning rate vs. cosine decay, and their final performance
on MMLU and MTBench benchmarks.

A.5.10 GRADIENT ACCUMULATION EQUIVALENCE TO FULL BATCH TRAINING

We investigated whether using gradient accumulation on a single node with a large batch size is
equivalent to distributed training across multiple nodes with the same effective batch size. Theoreti-
cally, both methods should yield identical training dynamics and result in the same fine-tuned model
if implemented correctly.

In our experiments, we compared two setups:

• Single Node with Gradient Accumulation. We utilized a single node with gradient accumula-
tion to achieve an effective batch size corresponding to 60,000 tokens.

• Multi-Node Distributed Training. We employed distributed training across four nodes, main-
taining the same effective batch size of 60,000 tokens without gradient accumulation.

We evaluated both setups by comparing their training loss curves, as well as performance on the
MMLU and MTBench benchmarks. The results showed that the loss trajectories were virtually
identical between the two methods. Additionally, the final performances on MMLU and MTBench
were the same within experimental variance. These findings confirm that gradient accumulation on a

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

single node can replicate the training dynamics and outcomes of full-batch distributed training across
multiple nodes. This equivalence provides flexibility for practitioners with limited computational
resources, allowing them to achieve the same model quality using gradient accumulation on fewer
GPUs.

31


	Introduction
	Experimental Setup
	Base Models and Datasets
	Training Strategies
	Hyperparameters
	Evaluation Metrics

	Main Results
	Stacked Training vs. Sequential Phased Training
	Impact of Batch Size
	Effect of Learning Rate Schedules on Large Batch Sizes
	TULU vs. LAB
	Effect of Learning Rate
	Effect of Warmup Steps
	Early Training Dynamics as Predictors of Final Performance

	Discussion, Guidelines for Practitioners, and Limitations
	Appendix
	Model Details
	Datasets Details
	Training Infrastructure and Optimization
	Experimental Design
	Additional Results
	Stacked Training vs. Sequential Phased Training
	Impact of Batch Size
	Effect of Learning Rate
	TULU vs. LAB
	Effect of Learning Rate Schedules on Large Batch Sizes
	Effect of Warmup Steps
	Adaptation to a Domain-Specific Dataset
	Adaptations to Different Model Sizes and Architectures
	Early Training Dynamics as Predictors of Final Performance
	Gradient Accumulation Equivalence to Full Batch Training



