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ABSTRACT

Vector Quantization (VQ) underpins modern discrete visual tokenization. However,
training quantization modules for state-of-the-art VQ-based models requires signifi-
cant computational resources which, in practice, all but prevents the development of
novel, cutting-edge VQ techniques under resource constraints. To address this limi-
tation, we propose VQ-Transplant, a simple framework that enables plug-and-play
integration of new VQ modules into frozen, pre-trained tokenizers by replacing
their native VQ modules. Crucially, the proposed transplantation process preserves
all encoder-decoder parameters, obviating the need for costly end-to-end retrain-
ing when modifying the quantization method. To mitigate decoder-quantization
mismatch, we introduce a lightweight decoder adaptation strategy (trained for
only 5 epochs on ImageNet-1k) to align feature priors with the new quantization
space. In our empirical evaluation, we find that VQ-Transplant allows obtaining
near state-of-the-art reconstruction fidelity for industry-level models like VAR
while reducing the training cost by 95%. VQ-Transplant democratizes quantiza-
tion research by enabling resource-efficient integration of novel VQ techniques
while matching industry-level reconstruction performance. Code and models are
available at VQ-Transplant.

1 INTRODUCTION

Vector Quantization (VQ) is a cornerstone of modern discrete visual tokenization frameworks,
enabling efficient learning of discrete representations critical for downstream tasks including visual
generation (van den Oord et al., 2017; Esser et al., 2021; Lee et al., 2022; Sun et al., 2024; Tian et al.,
2024) and vision-language modeling (Ramesh et al., 2021; Bao et al., 2022; Li et al., 2024; Wu et al.,
2024). State-of-the-art visual tokenizers such as VQGAN (Esser et al., 2021; Sun et al., 2024) and
VAR (Sun et al., 2024) leverage adversarial training (Goodfellow et al., 2014) to achieve exceptional
reconstruction fidelity by aligning synthesized outputs with real-data distributions.

However, achieving state-of-the-art fidelity through adversarial training requires substantial com-
putational resources to enable training on large-scale datasets like ImageNet (Deng et al., 2009)
and OpenImages (Kuznetsova et al., 2018), as detailed in Table 1. Moreover, adversarial training
is inherently unstable (Isola et al., 2017; Karras et al., 2019), further complicating the process.
These challenges severely limit the exploration of novel quantization algorithms, particularly in
resource-constrained environments where end-to-end training of full encoder-decoder architectures is
computationally infeasible.

This practical constraint raises a critical yet underexplored question:
Can we decouple the development of VQ methods from the computational

overhead associated with training tokenizers from scratch?

Current approaches (Esser et al., 2021; Sun et al., 2024; Tian et al., 2024; Li et al., 2025; Han
et al., 2025) treat the VQ module and the encoder-decoder framework as a monolithic system,
necessitating joint optimization of all components. Such tight integration not only significantly
increases computational cost but also impedes the integration of novel quantization techniques into
pre-trained models. For instance, replacing a frozen tokenizer’s native VQ module with an improved
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quantization variant may lead to decoder-quantization distributional mismatch since the decoder’s
conditioning depends on the original quantization space.

In this paper, we propose VQ-Transplant, a computationally efficient framework enabling plug-and-
play replacement of arbitrary VQ algorithms within pre-trained visual tokenizers (e.g., VAR (Tian
et al., 2024)), without costly end-to-end retraining from scratch. Our key insight is to preserve the
frozen encoder-decoder parameters of state-of-the-art tokenizers while replacing their native VQ
modules with superior alternatives. To address distributional discrepancies between new quantization
spaces and frozen decoders, we propose a lightweight decoder adaptation strategy—requiring only
five epochs of training on ImageNet-1k—to align the decoder’s learned feature priors with the new
quantizer’s latent space. This decoupling eliminates the need for prohibitive full-model retraining,
allowing cheap and rapid iterations in the development of novel VQ algorithms.

Table 1: Comparison of computational cost between
different tokenizers.

Tokenizers Dataset GPUs Training Hours Speedup

Llama GEN (Sun et al., 2024) ImageNet-1k 2 × A100 200 9.1
ImageFolder (Li et al., 2025) ImageNet-1k 32 × A100 40 29.1
VAR (Tian et al., 2024) OpenImages 16 × A100 60 21.8
UniTok (Ma et al., 2025) OpenImages 256 × A100 50 290.9

VQ-Transplant (Ours) ImageNet-1k 2 × A100 22 -

We demonstrate the effectiveness of the VQ-
Transplant framework by evaluating multiple
VQ approaches for visual tokenization tasks.
Building upon distributional alignment princi-
ples (Fang et al., 2025), we introduce MMD
VQ, which leverages maximum mean discrep-
ancy to align the distributions of feature and
codebook vectors, to improve compatibility with VQ-Transplant. For example, when integrating
MMD VQ into the pre-trained VAR tokenizer (Tian et al., 2024), VQ-Transplant achieves superior
reconstruction fidelity (0.81 rFID) while being 21.8× faster than training vanilla VAR (0.92 rFID), as
shown in Table 1.

Our key contributions are as follows:
1. Our primary contribution is VQ-Transplant, a computationally efficient framework for discrete

visual tokenization designed to enable cheap and repid exploration of novel Vector Quantization
(VQ) techniques. By enabling seamless plug-and-play integration of new quantization algo-
rithms into pre-trained tokenizers, VQ-Transplant obviates resource-intensive retraining, thereby
significantly lowering the barrier to innovation in VQ research.

2. Our secondary contribution is MMD-VQ, a novel VQ method introduced within this framework.
Specifically designed to enable improved compatibility with VQ-Transplant, MMD VQ leverages
maximum mean discrepancy to achieve distributional alignment. This method demonstrates
superior reconstruction fidelity compared to the vanilla VAR approach, further validating the
effectiveness and versatility of the VQ-Transplant framework.

2 RELATED WORK

Visual Tokenizer for Generative Models. The rapid evolution of generative models has catalyzed
substantial interest in visual tokenization, a pivotal component that bridges raw visual signals and
latent representations for synthesis. Contemporary visual generative models predominantly adhere
to two paradigms (Wang et al., 2024): language model-based and diffusion-based approaches. The
former harnesses sequence modeling to frame visual generation as next-token prediction (van den
Oord et al., 2017; Esser et al., 2021; Yu et al., 2023; Sun et al., 2024; Ma et al., 2025), relying on
discrete tokenizers such as VQVAE (van den Oord et al., 2017). In contrast, diffusion models (Ho
et al., 2020; Song et al., 2021a;b) utilize continuous tokenizers (e.g., VAEs (Kingma & Welling,
2014; Rombach et al., 2022; Chen et al., 2025a;b; Xie et al., 2025)) to encode images into latent
distributions.

Adversarial Training in Discrete Visual Tokenizers. Visual tokenizers define the expressivity
boundary of generative systems (Esser et al., 2021; Yan et al., 2021; Hong et al., 2023). While early
VQVAEs (van den Oord et al., 2017) were plagued by over-smoothed reconstructions and suboptimal
perceptual quality, modern discrete tokenizers (Esser et al., 2021; Li et al., 2025; Tian et al., 2024)
leverage adversarial training techniques, such as PatchGAN (Isola et al., 2017) and StyleGAN (Karras
et al., 2019), to enhance reconstruction fidelity by aligning reconstructed outputs with real data
distributions. However, such adversarial training is computationally intensive, often requiring exten-
sive training on large-scale datasets like ImageNet (Deng et al., 2009) or OpenImages (Kuznetsova
et al., 2018), as detailed in Table 1, and is prone to optimization instability. These challenges hinder
researchers exploring novel VQ algorithms, particularly those with limited computational resources.
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To address this training burden, we introduce VQ-Transplant, a computationally efficient framework
that enables plug-and-play integration of arbitrary VQ algorithms into pre-trained visual tokenizers,
circumventing the need for costly end-to-end retraining from scratch.

Vector Quantization in Discrete Visual Tokenizers. As the core component in discrete visual
tokenizer, VQ acts as a compressor that discretizes continuous latent features into discrete visual
tokens by mapping them to the nearest code vectors within a learnable codebook, utilizing the
corresponding code indices as visual tokens. Despite its widespread adoption, vanilla VQ (van den
Oord et al., 2017) suffers from critical limitations, including training instability and codebook
collapse. Recent efforts(Huh et al., 2023; Razavi et al., 2019; Zheng & Vedaldi, 2023) have sought to
mitigate these issues through enhanced codebook update mechanisms. However, their effectiveness
remains heavily dependent on meticulous codebook initialization, thereby limiting their robustness
and generalizability (Fang et al., 2025). To address these challenges, Fang et al. (2025) introduced
Wasserstein VQ, a theoretically principled approach that reformulates codebook learning as the
problem of distribution matching between code and feature vectors. Nevertheless, Wasserstein VQ
critically relies on Gaussian distribution assumptions. When feature vectors in real-world applications
deviate from Gaussianity, Wasserstein VQ reduces to merely aligning first- and second-order statistics
between features and code vectors, failing to achieve effective distribution alignment.

3 PRELIMINARIES: DISCRETE VISUAL TOKENIZERS

A discrete visual tokenizer typically consists of three key components: an encoder Eθ, a VQ module
Qϕ, and a decoder Dφ. Given an input image x ∈ RH×W×3, the encoder Eθ first produces a set of
d-dimensional feature embeddings ze = Eθ(x) ∈ R

H
f ×W

f ×d, with a spatial downsampling factor of
f×f . The VQ module then discretizes these continuous features through nearest-neighbor codebook
lookup, where each spatial feature zij

e ∈ Rd maps to its closest codebook entry ek:

rij = argmink ∥zij
e − ek∥22, (1)

yielding spatial visual token rij ∈ Z+. The quantized latent representation zij
q = Qϕ(z

ij
e ) = erij is

then decoded to reconstruct the image x̂ = Dφ(zq).

While VQVAE (van den Oord et al., 2017) demonstrated the feasibility of discrete visual tokenization,
generated images in early work exhibited oversmoothed reconstructions and suboptimal perceptual
fidelity. Subsequent improvements (Esser et al., 2021; Li et al., 2025; Tian et al., 2024) have
integrated adversarial training (Isola et al., 2017; Karras et al., 2019) and VGG-based perceptual
regularization (Simonyan & Zisserman, 2015). The VQGAN framework (Esser et al., 2021) optimizes
a composite objective:

L(θ, ϕ, φ) = ∥x̂− x∥22 + β∥sg(zq)− ze∥22 + ∥sg(ze)− zq∥22 + λPLPer + λGLGAN, (2)

where sg(·) is the stop-gradient operation, LPer computes feature-space discrepancies using a frozen
VGG network (Zhang et al., 2018), and LGAN uses hinge-based adversarial losses (Lim & Ye, 2017).
Hyperparameters β, λP and λG balance the losses. Recent VQGAN-based methods (Sun et al.,
2024; Tian et al., 2024; Li et al., 2025) achieve state-of-the-art reconstruction fidelity. However, their
reliance on adversarial training incurs substantial computational costs, as shown in the Table 1.

4 THE VQ-TRANSPLANT FRAMEWORK

4.1 TWO-STAGE VQ-TRANSPLANT

To mitigate the computational overhead of end-to-end retraining, we propose VQ-Transplant, a
computationally efficient framework enabling plug-and-play replacement of arbitrary VQ modules
within pre-trained visual tokenizers. Our method has two parts: (1) VQ module substitution and (2)
decoder adaptation, as detailed below.

Stage I: VQ Module Substitution, Given a pretrained discrete visual tokenizer with encoder Eθ∗ ,
decoder Dφ∗ and native VQ module Qpretrain

ϕ∗ , we substitute Qpretrain
ϕ∗ with a new VQ module Qnew

ϕ while
freezing θ∗ and φ∗. Let ze = Eθ∗(x) denote the encoder’s latent embedding, and zq(ϕ) = Qnew

ϕ (ze)
represent the quantized latent from the new VQ module. The training objective for Qnew

ϕ is:

LVQ(ϕ) = ∥sg(ze)− zq(ϕ)∥22 + γLunique(Qnew
ϕ ), (3)
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Figure 1: Illustration of the VQ-Transplant framework. Block 1 represents a pretrained visual
tokenizer with three key components: an encoder, a decoder, and a native VQ module. Block 2 and 3
denote the VQ module substitution and decoder adaptation stages in the VQ-Transplant framework.

where Lunique is a uniqueness-enforcing loss in new VQ modules (e.g., Wasserstein loss for Wasser-
stein VQ (Fang et al., 2025)), and γ balances the terms. This stage ensures minimization of the
quantization error while accounting for its inherent constraints.

Stage II: Decoder Adaptation. While Stage I might effectively reduces quantization error, the frozen
decoder Dφ∗ remains suboptimal for reconstructing inputs from the updated quantized representations
zq(ϕ) due to mismatch between the decoder and the quantized space. To address this incompatibility,
we propose a lightweight decoder adaptation scheme that preserves the frozen encoder Eθ∗ , and
optimized VQ module Qnew

ϕ⋆ while updating only the decoder parameters. Specifically, we compute
quantized features as zq = Qnew

ϕ⋆ (Eθ∗(x)) and reconstruct the image via x̂(φ) = Dφ(zq), where φ is
initialized from φ∗. The decoder is optimized through a composite loss:

LDecoder(φ) = ∥x̂(φ)− x∥22 + λPLPer(φ) + λGLGAN(φ), (4)

where the hyperparameters λP and λG balance the terms. We follow Tian et al. (2024), Chen et al.
(2025a), and Li et al. (2025) and employ an identical frozen DINO-S (Caron et al., 2021; Oquab
et al., 2024) discriminator, which shares a similar architecture to StyleGAN (Karras et al., 2020;
2019). To improve discriminator training, we incorporate DiffAug (Zhao et al., 2020), consistency
regularization (Zhang et al., 2019), and LeCAM regularization (Tseng et al., 2021) as implemented in
Tian et al. (2024). We also discuss another optimization approach in Appendix C, where the encoder,
decoder, and VQ module are jointly optimized, instead of optimizing the decoder alone.

4.2 MMD-VQ: DISTRIBUTION-ALIGNED VECTOR QUANTIZATION

To enhance compatibility with the VQ-Transplant framework, we propose MMD-VQ, a novel vec-
tor quantization method that leverages Maximum Mean Discrepancy (MMD; Gretton et al., 2012;
Sriperumbudur et al., 2009) to align the distributions of underlying features and the codebook. The
motivation for using MMD is grounded in a well-established theoretical principle: a vector quan-
tizer approaches optimality when its codebook distribution closely matches the feature distribution,
minimizing quantization error while maximizing codebook utilization, as rigorously supported by
prior work (Fang et al., 2025; Graf & Luschgy, 2000). MMD achieves this alignment through charac-
teristic kernels that guarantee universal distribution matching. Unlike previous Gaussian-dependent
approaches (Fang et al., 2025), MMD-VQ makes no parametric assumptions and robustly aligns
feature and codebook distributions even for complex, non-Gaussian data. This flexibility makes
MMD-VQ particularly suitable for the VQ-Transplant framework, especially in scenarios where
feature distributions deviate from idealized parametric forms, such as multi-modal, heavy-tailed, or
otherwise non-Gaussian distributions. A more detailed discussion of the motivation and advantages
of MMD-VQ is provided in Appendix B.
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Specifically, we collect feature vectors X = {z1, z2, ..., zN} (spatial features zij
e ) and codebook

vectors Y = {e1, e2, ..., eK}. The squared MMD distance is defined as:

D2
MMD(X,Y ) =

1

N2

N∑
i=1

N∑
j=1

k(zi, zj) +
1

K2

K∑
i=1

K∑
j=1

k(ei, ej)−
2

NK

N∑
i=1

K∑
j=1

k(zi, ej), (5)

where k(·, ·) denotes a characteristic kernel. Crucially, D2
MMD(X,Y ) = 0 iff PX = PY ,

making MMD a useful nonparametric divergence metric. We employ a multi-Gaussian kernel
k(x, y) =

∑
i exp(−∥x− y∥2 /2σ2

i ) and define Lunique = D2
MMD(X,Y ) in Equation (3) to achieve

distribution alignment.

5 EMPIRICAL EVALUATION

We present a comprehensive empirical evaluation of VQ-Transplant from three perspectives. First,
we investigate the integration of multi-scale VQ algorithms within VQ-Transplant in Section 5.1.
Second, we evaluate fixed-scale VQ algorithms under the VQ-Transplant framework in Section 5.2.
Both studies are conducted using the ImageNet-1k dataset (Deng et al., 2009). Finally in Section 5.3,
we examine the generalization capability of VQ-Transplant across diverse datasets to further illustrate
the strengths and potential of the proposed framework.

Experiment Setup. This work investigates the VQ-Transplant framework using a pre-trained VAR
tokenizer (Tian et al., 2024) throughout all experiments. During VQ module substitution, we freeze
the encoder-decoder parameters of the pre-trained model and replace its native multi-scale VQ module
with either new multi-scale VQ modules or fixed-scale VQ modules. For the latter approach, we
implement a parallel quantization system wherein 32-dimensional feature vectors are partitioned into
two 16-dimensional sub-vectors. These sub-vectors undergo independent quantization via separate
VQ modules before concatenation to form the final 32-dimensional vectors for decoder input. During
decoder adaptation, we freeze parameters for both the encoder and transplanted VQ modules. We
implemented the VQ-transplant using five distinct quantization algorithms: Vanilla VQ (van den
Oord et al., 2017), EMA VQ (Razavi et al., 2019), Online VQ (Zheng & Vedaldi, 2023), Wasserstein
VQ (Fang et al., 2025), and our proposed MMD VQ, adapted respectively for both multi-scale and
fixed-scale configurations in the pretrained VAR tokenizer. Additional implementation details are
provided in Appendix A.

Evaluation Metrics. To quantify VQ performance, we report the quantization error (E) and
codebook utilization (U ). For reconstruction quality, we measure: peak signal-to-noise ratio (PSNR),
structural similarity index (SSIM), Fréchet Inception Distance (r-FID; Heusel et al., 2017), perceptual
similarity (LPIPS; Zhang et al., 2018), and reconstruction inception score (r-IS; Salimans et al.,
2016).

Baselines. We compare the proposed MMD VQ within VQ-Transplant framework with a set of
baselines: DQVAE (Huang et al., 2023a), DF-VQGAN (Ni et al., 2022), DiVAE (Shi et al., 2022),
RQVAE (Lee et al., 2022), VQGAN (Esser et al., 2021), VQGAN-FC (Yu et al., 2022), VQGAN-
EMA (Razavi et al., 2019), VQGAN-LC (Zhu et al., 2024), Llama GEN (Sun et al., 2024), and
VAR (Tian et al., 2024), all evaluated on the ImageNet-1k dataset.

Main Results. As demonstrated in Table 2, our VQ-Transplant framework equipped with MMD-VQ
and MMD-VAR outperform competing baselines in critical reconstruction fidelity metrics, including
r-FID and r-IS. This validates the framework’s capacity to deliver industry-level reconstruction fidelity
when integrated with compatible quantization algorithms like MMD VQ and MMD-VAR. Beyond
superior reconstruction fidelity, our VQ-Transplant implementations achieve significant efficiency
gains: As quantified in Table 1, MMD VQ and MMD VAR demonstrate 21.8× faster training than
standard VAR (Tian et al., 2024) while simultaneously exceeding the reconstruction performance of
the original VAR tokenizer. Specifically, MMD VQ achieves 0.86 r-FID and MMD VAR reaches
0.81 r-FID, outperforming the baseline VAR tokenizer’s 0.92 r-FID.

5.1 INTEGRATION OF MULTI-SCALE VECTOR QUANTIZATION ALGORITHMS

We investigate the integration of five multi-scale VQ algorithms within the VQ-Transplant framework:
Vanilla VAR, EMA VAR, Online VAR, Wasserstein VAR, and MMD VAR. As shown in Table 3, when
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Table 2: Reconstruction performance on the ImageNet-1K dataset. “FS VQ” indicates fixed-scale quantization
methods, while “MS VQ” corresponds to multi-scale quantization methods. †: results cited from VQGAN-
LC (Zhu et al., 2024); ⋆: results cited from Llama GEN (Sun et al., 2024).

Method VQ Types Tokens Codebook Size K U (↑) r-FID ↓ r-IS ↑ LPIPS ↓ PSNR ↑ SSIM ↑
DQVAE† FS VQ 256 1024 - 4.08 - - - -
DiVAE† FS VQ 256 16384 - 4.07 - - - -
RQVAE† FS VQ 256 16384 - 3.20 - - - -
RQVAE† FS VQ 512 16384 - 2.69 - - - -
RQVAE† FS VQ 1024 16384 - 1.83 - - - -
DF-VQGAN† FS VQ 256 12288 - 5.16 - - - -
DF-VQGAN† FS VQ 1024 8192 - 1.38 - - - -
Llama GEN⋆ FS VQ 256 16384 97.0% 2.19 - - 20.79 67.5

VQGAN†
FS VQ 256 16384 3.4% 5.96 - 0.17 23.3 52.4
FS VQ 256 50000 1.1% 5.44 - 0.17 22.5 52.5
FS VQ 256 100000 0.5% 5.44 - 0.17 22.3 52.5

VQGAN-FC†
FS VQ 256 16384 11.2% 4.29 - 0.17 22.8 54.5
FS VQ 256 50000 3.6% 4.96 - 0.15 23.1 54.7
FS VQ 256 100000 1.9% 4.65 - 0.15 22.9 55.1

VQGAN-EMA†
FS VQ 256 16384 83.2% 3.41 - 0.14 23.5 56.6
FS VQ 256 50000 40.2% 3.88 - 0.14 23.2 55.9
FS VQ 256 100000 24.2% 3.46 - 0.13 23.4 56.2

VQGAN-LC†

FS VQ 256 16384 99.9% 3.01 - 0.13 23.2 56.4
FS VQ 256 50000 99.9% 2.75 - 0.13 23.8 58.4
FS VQ 256 100000 99.9% 2.62 - 0.12 23.8 58.9

MMD VQ (Ours)
FS VQ 512 16384 99.8% 1.05 191.2 0.115 24.31 63.7
FS VQ 512 32768 99.9% 0.97 194.1 0.110 24.53 64.7
FS VQ 512 65536 99.9% 0.86 197.1 0.106 24.65 65.0

VAR MS VQ 680 4096 100% 0.92 198.6 0.100 24.37 63.9
MMD VAR (Ours) MS VQ 680 4096 100% 0.91 199.2 0.108 24.16 63.2
MMD VAR (Ours) MS VQ 680 8192 100% 0.81 201.0 0.104 24.37 63.8

Table 3: Reconstruction performance of multi-scale VQ algorithms on ImageNet-1K dataset. For each codebook
size and each phase, the best-performing result is highlighted in bold.

Methods Phase Tokens Codebook Size K E(↓) U (↑) PSNR(↑) SSIM(↑) LPIPS (↓) r-FID(↓) r-IS(↑)

VAR Tokenizer w/o VQ - - - 0 - 23.31 67.7 0.140 9.71 134.9
VAR Tokenizer (Tian et al., 2024) - 680 4096 0.283 100% 24.37 63.9 0.100 0.92 198.6

Vanilla VAR Substitution 680 4096 0.305 38.2% 23.53 61.2 0.137 1.84 180.3
EMA VAR Substitution 680 4096 0.321 99.9% 23.34 60.0 0.151 2.28 171.8
Online VAR Substitution 680 4096 0.276 99.0% 24.16 63.2 0.124 1.56 186.9
Wasserstein VAR Substitution 680 4096 0.255 100% 24.49 64.3 0.117 1.57 188.6
MMD VAR Substitution 680 4096 0.255 100% 24.52 64.4 0.116 1.52 189.4
Vanilla VAR Substitution 680 8192 0.309 22.9% 23.29 61.0 0.139 1.93 179.3
EMA VAR Substitution 680 8192 0.312 99.8% 23.45 60.5 0.147 2.18 173.6
Online VAR Substitution 680 8192 0.269 73.9% 24.29 63.8 0.120 1.49 187.7
Wasserstein VAR Substitution 680 8192 0.240 100% 24.69 65.1 0.112 1.55 190.5
MMD VAR Substitution 680 8192 0.234 100% 24.73 65.1 0.111 1.49 190.4

Vanilla VAR Adaptation 680 4096 0.305 38.2% 23.22 60.1 0.126 1.25 185.6
EMA VAR Adaptation 680 4096 0.321 99.9% 22.90 59.1 0.139 1.69 177.4
Online VAR Adaptation 680 4096 0.276 99.0% 23.74 61.8 0.117 1.05 193.0
Wasserstein VAR Adaptation 680 4096 0.255 100% 24.10 62.9 0.109 0.93 196.9
MMD VAR Adaptation 680 4096 0.255 100% 24.16 63.2 0.108 0.91 199.2
Vanilla VAR Adaptation 680 8192 0.309 22.9% 23.02 60.1 0.128 1.30 185.5
EMA VAR Adaptation 680 8192 0.312 99.8% 23.02 59.3 0.137 1.15 191.9
Online VAR Adaptation 680 8192 0.269 73.9% 23.87 62.5 0.113 1.00 193.4
Wasserstein VAR Adaptation 680 8192 0.240 100% 24.40 64.1 0.104 0.83 198.8
MMD VAR Adaptation 680 8192 0.234 100% 24.37 63.8 0.104 0.81 201.0

Figure 2: Comparison of reconstructed ImageNet-1k images based on MMD VAR: (Top) VQ Module
Substitution Stage; (Bottom) Post-Decoder Adaptation Phase.
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Table 4: r-FID progression during decoder adaptation on ImageNet-1K across epochs.
Methods Tokens Codebook Size K Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5

Wasserstein VAR 680 4096 1.006 0.968 0.957 0.953 0.926
MMD VAR 680 4096 1.023 0.987 0.950 0.937 0.911
Wasserstein VAR 680 8192 0.910 0.903 0.860 0.832 0.833
MMD VAR 680 8192 0.909 0.880 0.890 0.847 0.806

Table 5: Reconstruction performance of multi-scale VQ algorithms on ImageNet-1K dataset. The
suffixes “–a”, “–b”, “–c”, and “–d” correspond to decoder adaptation for 5, 10, 15, and 20 epochs,
respectively. For each codebook size, the best-performing result is highlighted in bold.

Methods Phase Tokens Codebook Size K E(↓) U (↑) PSNR(↑) SSIM(↑) LPIPS (↓) r-FID(↓) r-IS(↑)

VAR Tokenizer (Tian et al., 2024) - 680 4096 0.283 100% 24.37 63.9 0.100 0.92 198.6

MMD VAR-a Adaptation 680 4096 0.255 100% 24.16 63.2 0.108 0.91 199.2
MMD VAR-a Adaptation 680 8192 0.234 100% 24.37 63.8 0.104 0.81 201.0
MMD VAR-b Adaptation 680 4096 0.255 100% 24.11 63.1 0.108 0.87 199.9
MMD VAR-b Adaptation 680 8192 0.234 100% 24.35 63.9 0.103 0.78 201.0
MMD VAR-c Adaptation 680 4096 0.255 100% 24.13 63.0 0.108 0.82 198.3
MMD VAR-c Adaptation 680 8192 0.234 100% 24.39 63.8 0.103 0.75 201.0
MMD VAR-d Adaptation 680 4096 0.255 100% 24.24 63.3 0.108 0.79 199.1
MMD VAR-d Adaptation 680 8192 0.234 100% 24.36 63.7 0.103 0.74 201.0

replacing the native VQ modules in a pretrained VAR tokenizer, MMD VAR demonstrates the highest
level of compatibility. Wasserstein VAR follows closely, achieving nearly equivalent compatibility
by achieving both lower quantization error and 100% codebook utilization, outperforming other
methods like Vanilla VAR, EMA VAR, and Online VAR. These results suggest that VQ algorithms
based on distributional alignment minimize information loss during substitution, thereby enabling
superior reconstruction performance compared to conventional approaches.

However, substituting the VQ module introduces misalignment between the features expected by the
decoder and those produced by the new quantized latent space. Two key observations support this:
First, while MMD VAR achieve lower quantization error than the original VAR tokenizer (0.255 and
0.234 vs. 0.283), their reconstruction metrics (r-FID and r-IS in Table 3) remain inferior to those of
the original model (Tian et al., 2024). Second, Figure 2 reveals blurring and loss of high-frequency
detail in reconstructions using the substituted VQ modules. These findings confirm a persistent
mismatch between the decoder’s learned priors and the altered quantized latent space.

To resolve this misalignment, we implemented lightweight decoder adaptation on ImageNet-1k,
fine-tuning the decoder parameters for just 5 epochs. This adaptation aims to align the decoder’s
learned priors with the altered quantized space. After adaptation, both Wasserstein VAR and MMD
VAR surpass the performance of the original VAR tokenizer on both r-FID and r-IS metrics (Table 3).
Additionally, as Figure 2 demonstrates, the resulting reconstructions exhibit dramatically improved
visual fidelity. Further reconstruction samples comparing performance after decoder adaptation are
provided in Figure 8 (Appendix).
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Figure 3: r-FID performance as a func-
tion of adaptation epochs.

Analyses On Adaptation Epochs. Table 4 tracks the
progression of r-FID metrics during decoder adaptation on
ImageNet-1K across training epochs. We observe consis-
tent r-FID improvements for both MMD VAR and Wasser-
stein VAR as the number of adaptation epochs increases.
To examine whether MMD VAR could achieve further
gains beyond 5 epochs, we extended the adaptation to 20
epochs. As reported in Table 5, MMD VAR with codebook
sizes of 4096 and 8192 achieves improved r-FID scores
of 0.79 and 0.74, respectively, representing a further im-
provement over the epoch-5 baselines of 0.91 and 0.81.
Figure 3 shows the r-FID curves over 20 epochs. Despite some fluctuations, there is a clear overall
downward trend, demonstrating that continued adversarial training effectively converts the reduction
in quantization error achieved by MMD VAR in Stage I into improved reconstruction performance.

Comparison Between From-scratch Training and VQ-Transplant. We also compare from-scratch
training with VQ-Transplant. As shown in Table 6, by examining the MMD VAR on ImageNet-1k,
we find that even when from-scratch training is run for longer than VQ-Transplant, it still yields
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Table 6: Reconstruction performance of multi-scale VQ algorithms on ImageNet-1K dataset. The suffixes “–a,”
“–b,” and “–c” correspond to from-scratch training for 5, 6, and 7 epochs, respectively. For each codebook size,
the best-performing result is highlighted in bold.

Methods Training Strategy Training Hours Tokens Codebook Size K E(↓) U (↑) PSNR(↑) SSIM(↑) LPIPS (↓) r-FID(↓) r-IS(↑)

MMD VAR VQ-Transplant 22 680 4096 0.255 100% 24.16 63.2 0.108 0.91 199.2
MMD VAR VQ-Transplant 22 680 8192 0.234 100% 24.37 63.8 0.104 0.81 201.0
MMD VAR-a From-scratch training 25 680 4096 0.769 100% 23.63 60.7 0.120 1.40 189.4
MMD VAR-a From-scratch training 25 680 8192 0.659 100% 23.58 60.6 0.120 1.26 191.0
MMD VAR-b From-scratch training 30 680 4096 0.744 100% 23.74 61.1 0.120 1.36 191.9
MMD VAR-b From-scratch training 30 680 8192 0.665 100% 23.70 60.9 0.119 1.29 190.2
MMD VAR-c From-scratch training 35 680 4096 0.753 100% 23.74 61.1 0.119 1.34 190.4
MMD VAR-c From-scratch training 35 680 8192 0.662 100% 23.75 60.9 0.119 1.26 191.0

relatively poor reconstruction performance. This outcome is expected, as discrete tokenizers typically
require hundreds of epochs to achieve high-quality visual reconstruction when trained from scratch.
In contrast, VQ-Transplant offers a more favorable trade-off between performance and training time,
yielding accurate reconstruction while consuming significantly fewer computational resources.

Joint Optimization of Encoder, Decoder, and VQ in Stage II We also discuss an alternative
optimization approach in Appendix C, where the encoder, decoder, and VQ module are jointly
optimized, instead of optimizing only the decoder. As shown in Table 14, although one might worry
that joint optimization could cause mode collapse, in practice it is stable, just like the decoder-only
approach, and for most VQ methods it further improves reconstruction performance. However, these
performance gains come at the cost of increased training time.

Compatibility of VQ-Transplant with Pretrained LDM Tokenizer. To evaluate the compatibility
of VQ-Transplant with different tokenizers, we applied it to the pretrained LDM-16 continuous
tokenizer (Rombach et al., 2022). As shown in Table 16, VQ-Transplant achieves reasonable
performance on LDM-16. Nevertheless, its adaptability is lower compared to VAR-based models, as
shown in Table 3, particularly with respect to r-FID and r-IS metrics. We provide a detailed discussion
of this performance gap in Appendix D.

5.2 INTEGRATION OF FIXED-SCALE VECTOR QUANTIZATION ALGORITHMS

We further investigate integrating five fixed-scale VQ algorithms within the VQ-Transplant frame-
work: Vanilla VQ, EMA VQ, Online VQ, Wasserstein VQ, and MMD VQ. As shown in Table 7,
nearly identical performance patterns emerge to those observed in Table 3, demonstrating consistent
transferability of conclusions from multi-scale to fixed-scale VQ algorithms. Three key observations
follow: (1) Distribution-alignment VQ algorithms (e.g., Wasserstein VQ and MMD VQ) consistently
achieve the lowest quantization error across all codebook sizes, demonstrating their superiority in
minimizing information loss when replacing VQ modules. (2) Crucially, reduced quantization error
does not translate to improved r-FID or r-IS metrics relative to the original VAR tokenizer (Tian et al.,
2024), indicating a misalignment between the decoder’s learned priors and the modified quantized la-
tent space. (3) After realigning decoder priors with the altered latent space via decoder adaptation, all
models substantially improve reconstruction fidelity, confirming the importance of decode adaptation
in the VQ-Transplant framework. Representative reconstruction samples post-adaptation are shown
in Figure 9 in the Appendix.

5.3 CROSS-DATASET GENERALIZATION OF VQ-TRANSPLANT

Finally, we evaluate the cross-dataset generalization capacity of the VQ-Transplant framework. While
prior experiments demonstrate strong reconstruction fidelity on ImageNet-1k (Deng et al., 2009), its
generalizability across diverse domains remains underexplored. This limitation arises because the
original VAR tokenizer was trained on OpenImages (Kuznetsova et al., 2018)–where ImageNet-1k is a
subset–raising a critical question: Can the framework generalize to datasets structurally distinct from
both ImageNet-1k and OpenImages? To answer this, we empirically validate VQ-Transplant’s cross-
dataset performance on three divergent datasets: CelebA-HQ (Karras et al., 2017), FFHQ (Karras
et al., 2019), and LSUN-Churches (Yu et al., 2015).

As detailed in Tables 8, 9, and 10, Wasserstein VQ and MMD VQ—implemented via the VQ-
Transplant framework with fixed-scale quantization—demonstrate exceptional cross-dataset gener-
alization, achieving state-of-the-art reconstruction performance across all three benchmarks. This
generalization capacity is visually corroborated by high-fidelity samples in Figures 4, 5, and 6. Most
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Table 7: Reconstruction performance of fixed-scale VQ algorithms on ImageNet-1K dataset. For
each codebook size and each phase, the best-performing result is highlighted in bold.

VQs Phase Tokens Codebook Size K E(↓) U (↑) PSNR(↑) SSIM(↑) LPIPS (↓) r-FID(↓) r-IS(↑)

Vanilla VQ Substitution 512 16384 0.423 0.8% 22.03 53.0 0.244 10.61 104.7
EMA VQ Substitution 512 16384 0.240 100% 24.71 64.8 0.134 1.86 181.2
Online VQ Substitution 512 16384 0.286 42.0% 24.32 62.7 0.149 2.20 174.1
Wasserstein VQ Substitution 512 16384 0.231 99.8% 24.84 65.4 0.130 1.69 184.8
MMD VQ Substitution 512 16384 0.234 99.8% 24.89 65.4 0.130 1.84 183.7

Vanilla VQ Substitution 512 32768 0.422 0.5% 22.02 53.1 0.242 10.53 106.2
EMA VQ Substitution 512 32768 0.223 100% 24.89 65.7 0.129 1.81 183.0
Online VQ Substitution 512 32768 0.279 22.7% 24.43 63.1 0.146 2.13 175.6
Wasserstein VQ Substitution 512 32768 0.215 99.7% 25.06 66.3 0.126 1.79 184.8
MMD VQ Substitution 512 32768 0.216 99.9% 25.04 66.2 0.124 1.73 187.0
Vanilla VQ Substitution 512 65536 0.422 0.2% 22.04 53.1 0.243 10.89 103.8
EMA VQ Substitution 512 65536 0.217 65.5% 24.94 65.9 0.127 1.78 185.8
Online VQ Substitution 512 65536 0.280 13.5% 24.42 63.2 0.147 2.28 174.2
Wasserstein VQ Substitution 512 65536 0.201 99.6% 25.22 66.9 0.121 1.76 186.0
MMD VQ Substitution 512 65536 0.201 99.9% 25.24 66.8 0.121 1.69 187.3

Vanilla VQ Adaptation 512 16384 0.423 0.8% 21.36 51.3 0.208 5.02 118.4
EMA VQ Adaptation 512 16384 0.240 100% 24.12 63.2 0.118 1.11 190.0
Online VQ Adaptation 512 16384 0.286 42.0% 23.78 60.9 0.132 1.49 178.9
Wasserstein VQ Adaptation 512 16384 0.231 99.8% 24.36 64.0 0.114 1.04 191.3
MMD VQ Adaptation 512 16384 0.234 99.8% 24.31 63.7 0.115 1.05 191.2

Vanilla VQ Adaptation 512 32768 0.422 0.5% 21.22 51.0 0.209 5.11 117.4
EMA VQ Adaptation 512 32768 0.223 100% 24.24 63.6 0.113 0.99 192.2
Online VQ Adaptation 512 32768 0.279 22.7% 23.86 61.6 0.129 1.40 181.3
Wasserstein VQ Adaptation 512 32768 0.215 99.7% 24.37 64.3 0.111 0.98 193.9
MMD VQ Adaptation 512 32768 0.216 99.9% 24.53 64.7 0.110 0.97 194.1
Vanilla VQ Adaptation 512 65536 0.422 0.2% 21.19 50.7 0.209 5.05 118.9
EMA VQ Adaptation 512 65536 0.217 65.5% 24.36 64.1 0.111 0.99 194.3
Online VQ Adaptation 512 65536 0.280 13.5% 23.84 61.6 0.130 1.38 182.9
Wasserstein VQ Adaptation 512 65536 0.201 99.6% 24.68 65.4 0.106 0.92 195.5
MMD VQ Adaptation 512 65536 0.201 99.9% 24.65 65.0 0.106 0.86 197.1

Table 8: Reconstruction performance on the FFHQ dataset. †: results cited from (Zhu et al., 2024).
VQs Phase Tokens Codebook Size K E(↓) U (↑) PSNR(↑) SSIM(↑) LPIPS (↓) r-FID(↓)

RQVAE† Full Training 256 2048 - - 22.9 67.0 0.13 7.04
VQ-WAE† Full Training 256 1024 - - 22.5 66.5 0.12 4.20
MQVAE† Full Training 256 1024 - 78.2% - - - 4.55
VQGAN† Full Training 256 16384 - 2.3% 24.4 63.3 0.12 5.25
VQGAN-FC† Full Training 256 16384 - 10.9% 24.8 64.6 0.11 4.86
VQGAN-EMA† Full Training 256 16384 - 68.2% 25.4 66.1 0.10 4.79
VQGAN-LC† Full Training 256 100000 - 99.5% 26.1 69.4 0.08 3.81

Wasserstein VQ Substitution 512 16384 0.153 99.7% 27.59 77.2 0.076 2.63
MMD VQ Substitution 512 16384 0.153 99.9% 27.63 77.0 0.075 2.21
Wasserstein VQ Substitution 512 32768 0.142 99.7% 27.83 77.7 0.072 2.27
MMD VQ Substitution 512 32768 0.142 99.9% 27.88 77.7 0.073 2.09

Wasserstein VQ Adaptation 512 16384 0.153 99.7% 27.25 75.4 0.075 1.81
MMD VQ Adaptation 512 16384 0.153 99.9% 27.09 74.7 0.075 1.99

Wasserstein VQ Adaptation 512 32768 0.142 99.7% 27.33 75.7 0.072 1.21
MMD VQ Adaptation 512 32768 0.142 99.9% 27.43 75.5 0.073 1.37

Table 9: Reconstruction performance on the CelebA-HQ dataset. For each codebook size and each
phase, the best-performing result is highlighted in bold.

VQs Phase Tokens Codebook Size K E(↓) U (↑) PSNR(↑) SSIM(↑) LPIPS (↓) r-FID(↓)

Wasserstein VQ Substitution 512 16384 0.129 99.5% 27.92 77.6 0.070 3.30
MMD VQ Substitution 512 16384 0.129 99.6% 28.02 77.5 0.069 2.96
Wasserstein VQ Adaptation 512 16384 0.129 99.5% 27.45 75.2 0.071 3.02
MMD VQ Adaptation 512 16384 0.129 99.6% 27.71 75.7 0.071 2.60

Table 10: Reconstruction performance on the Churches dataset. For each codebook size and each
phase, the best-performing result is highlighted in bold.

VQs Phase Tokens Codebook Size K E(↓) U (↑) PSNR(↑) SSIM(↑) LPIPS (↓) r-FID(↓)
Wasserstein VQ Substitution 512 16384 0.204 99.6% 23.35 64.2 0.144 2.76
MMD VQ Substitution 512 16384 0.204 99.7% 23.34 64.2 0.141 2.72
Wasserstein VQ Adaptation 512 16384 0.204 99.6% 22.63 62.3 0.122 1.79
MMD VQ Adaptation 512 16384 0.204 99.7% 22.51 61.7 0.124 1.87
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Figure 4: Reconstructed FFHQ Samples. (Top) Original inputs; (Middle) Wasserstein VQ reconstruc-
tion; (Bottom) MMD VQ reconstruction. All images are 256× 256 resolution.

Figure 5: Reconstructed CelebA-HQ Samples. (Top) Original inputs; (Middle) Wasserstein VQ
reconstruction; (Bottom) MMD VQ reconstruction. All images are 256× 256 resolution.

Figure 6: Reconstructed LSUN-Churches Samples. (Top) Original inputs; (Middle) Wasserstein VQ recon-
struction; (Bottom) MMD VQ reconstruction. All images are 256× 256 resolution.

notably on FFHQ (Table 8), Wasserstein VQ achieves a record r-FID of 1.21, significantly outperform-
ing all baselines including RQVAE (Lee et al., 2022), VQGAN (Esser et al., 2021), VQGAN-FC (Yu
et al., 2022), VQGAN-EMA (Razavi et al., 2019), VQ-WAE (Vuong et al., 2023), MQVAE (Huang
et al., 2023b), and VQGAN-LC (Zhu et al., 2024).

6 CONCLUSION

In this paper, we proposed VQ-Transplant, a computationally efficient framework that enables rapid
plug-and-play integration of novel VQ algorithms into pre-trained visual tokenizers—eliminating
costly retraining requirements—as well as MMD-VQ, a quantization method that uses maximum
mean discrepancy to force distributional alignment and ensure compatibility with VQ-Transplant.
We hope that this work will help democratize quantization research by enabling resource-efficient
integration of novel VQ techniques while matching industry-level reconstruction performance.
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7 REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our results, the following resources are included in the supplemental
materials: (1) complete training and evaluation source code, (2) execution scripts for all experiments,
(3) comprehensive training logs capturing model dynamics, and (4) final model outputs and evaluation
artifacts. To further support the research community, all resources—including pre-trained model
weights, detailed documentation, and configuration files—will be publicly released on GitHub. This
release will enable independent verification of our findings and facilitate future research.
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APPENDIX

A EXPERIMENTAL DETAILS

Data Augmentation. For all four datasets—ImageNet-1k (Deng et al., 2009), FFHQ (Karras et al.,
2019), CelebA-HQ (Karras et al., 2017), and LSUN-Churches (Yu et al., 2015)—we follow Llama
Gen (Sun et al., 2024) by applying iterative box downsampling to resize all images to a 256×256
resolution.

Encoder-Decoder Architecture. For all experiments within the VQ-Transplant framework, we
maintain the identical encoder-decoder architecture used in the VAR tokenizer (Tian et al., 2024).
The encoder—a U-Net (Ronneberger et al., 2015)—downsamples input images by a factor of 16,
resulting in latent features with 16× 16 spatial resolution.

Training Details. All models were trained on two NVIDIA H100 GPUs using the AdamW opti-
mizer (Loshchilov & Hutter, 2019) with β1 = 0.9 and β1 = 0.95. During VQ module substitution,
we used an initial learning rate of 10−4 with linear decay to 10−5. For decoder adaptation, the learn-
ing rate remained constant at 10−5. The number of training epochs for each experiment configuration
is shown in Table 11. The batch size for all experiments was 32 per GPU.

Table 11: Training epochs across various dataset.
Datasets ImageNet-1k FFHQ CelebA-HQ LSUN-Churches

Substitution Epochs 2 30 30 20
Adaptation Epochs 5 30 30 20

Loss Weight. For all experiments, λP is fixed to 1. In multi-scale quantization experiments, λG =
0.5, while in fixed-scale quantization experiments, λG = 0.4. We set γ = 0.2 for configurations
employing Wasserstein distance (Wasserstein VAR and VQ) and γ = 0.5 for for configurations using
MMD distance (MMD VAR and VQ).

B THE MOTIVATION OF MMD VQ: FROM WASSERSTEIN DISTANCE TO
MMD DISTANCE

The motivation for using Maximum Mean Discrepancy (MMD) arises from a well-established
theoretical understanding of vector quantization (VQ): VQ becomes near-optimal when the codebook
distribution matches the underlying feature distribution, yielding both minimal quantization error and
maximal codebook utilization. This principle is rigorously supported in prior work (Fang et al., 2025;
Graf & Luschgy, 2000). Motivated by this insight, we aim to approximate the optimality condition
during training by explicitly encouraging alignment between the encoder feature distribution and the
learned codebook distribution. MMD provides an effective mechanism for this alignment through its
use of characteristic kernels that guarantee universal distribution matching.

Wasserstein Distance: Definition and Context. To motivate the choice of MMD, we first situate
it in relation to the Wasserstein distance (WD), a metric used in prior VQ research for distribution
alignment (Fang et al., 2025). The Wasserstein distance provides a geometric notion of discrepancy
by measuring the minimal cost required to transport mass from one distribution to another. Formally,
the p-Wasserstein distance is defined as:

Wp(Pr,Pg) = ( inf
γ∈Π(Pr,Pg)

E(x,y)∼γ

[
∥x− y∥p

]
)1/p . (6)

where Π(Pr,Pg) denotes the set of all couplings whose marginals are Pr and Pg. Intuitively,
Wasserstein distance—also known as the earth-mover distance—measures the minimum amount of
“work” needed to transform Pr into Pg. The case p = 2 corresponds to the quadratic Wasserstein
distance.
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Table 12: Quantization error under varying levels of non-Gaussianity..
Methods ζ = 0.0 ζ = 0.5 ζ = 1.0 ζ = 1.5 ζ = 2.0 ζ = 2.5 ζ = 3.0 ζ = 3.5 ζ = 4.0

Wasserstein VQ 0.976 1.099 1.177 1.252 1.318 1.373 1.420 1.462 1.502
MMD VQ 0.968 1.088 1.142 1.155 1.171 1.186 1.198 1.217 1.240

Table 13: Codebook utilization under varying levels of non-Gaussianity.
Methods ζ = 0.0 ζ = 0.5 ζ = 1.0 ζ = 1.5 ζ = 2.0 ζ = 2.5 ζ = 3.0 ζ = 3.5 ζ = 4.0

Wasserstein VQ 99.9% 99.8% 97.0% 78.2% 62.7% 52.1% 44.8% 39.2% 34.8%
MMD VQ 99.9% 99.9% 99.8% 97.0% 92.5% 88.9% 85.7% 81.2% 75.6%
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Figure 7: Comparison between MMD-VQ and Wasserstein-VQ on non-Gaussian data.

Limitation of Wasserstein Distance in VQ. A well-known practical limitation of Wasserstein
distance is that it is computationally intractable when applied directly during neural network training.
To address this, Wasserstein VQ (Fang et al., 2025) assumes that both the feature distribution and the
codebook distribution follow Gaussian forms,

Pg = N (µ1,Σ1),Pr = N (µ2,Σ2), (7)

Under this Gaussianity assumption, the intractable optimization in Equation 6 reduces to a differen-
tiable closed-form expression involving only means and covariances:

W2(N (µ1,Σ1),N (µ2,Σ2))

√
∥µ1 − µ2∥22 + tr

(
Σ1 +Σ2 − 2(Σ

1
2
1 Σ2Σ

1
2
1 )

1
2

)
. (8)

However, this simplification has an important implication: Wasserstein VQ aligns only first- and
second-order moments of the distributions. While sufficient when encoder features are approx-
imately Gaussian, this restriction becomes limiting for the multi-modal, highly non-Gaussian, or
heavy-tailed feature distributions commonly encountered in deep visual representations.

Advantage of MMD-VQ. In contrast, MMD leverages reproducing kernel Hilbert space (RKHS)
embeddings with characteristic kernels (e.g., RBF), which guarantee that minimizing MMD corre-
sponds to matching all moments of the distributions. This yields a substantially more expressive
alignment mechanism and makes MMD-VQ inherently robust in scenarios where Gaussian assump-
tions do not hold.

Observed Similar Empirical Performance In standard benchmarks (ImageNet, FFHQ, CelebA-
HQ, LSUN-Churches), encoder-produced latent features are typically approximately Gaussian, likely
due to the aggregation of many weakly dependent components in deep representations, a phenomenon
broadly consistent with the Central Limit Theorem (CLT). In such cases, aligning first and second
moments is sufficient, and the advantage of MMD-VQ is less pronounced.

Analyses on Non-Gaussian Data. To investigate the practical impact of the moment-matching
limitations of Wasserstein VQ, we conduct controlled experiments on synthetic latent feature dis-
tributions with varying degrees of non-Gaussianity. Specifically, we construct a bimodal mixture
distribution:

Pg = 0.5 · N (ζ1, I) + 0.5 · N (−ζ1, I), (9)
where ζ ∈ {0.0, 0.5, . . . , 4.0} controls the separation between the two modes. When ζ = 0, the
distribution reduces to a standard Gaussian; as ζ increases, it becomes progressively multi-modal and
strongly non-Gaussian.

The codebook distribution Pr is initialized as a standard Gaussian. We set the codebook size to
16,384 with code vectors of dimension 8 and train both Wasserstein-VQ and MMD-VQ for 10,000
steps. At each step, we sample 20,000 feature vectors from Pg , and record the quantization error and
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Table 14: Reconstruction performance of multi-scale VQ algorithms on ImageNet-1K dataset. For each training
strategy and codebook size, the best-performing result is highlighted in bold.

Methods Training Strategy Tokens Codebook Size K E(↓) U (↑) PSNR(↑) SSIM(↑) LPIPS (↓) r-FID(↓) r-IS(↑)

Vanilla VAR Decoder-only 680 4096 0.305 38.2% 23.22 60.1 0.126 1.25 185.6
EMA VAR Decoder-only 680 4096 0.321 99.9% 22.90 59.1 0.139 1.69 177.4
Online VAR Decoder-only 680 4096 0.276 99.0% 23.74 61.8 0.117 1.05 193.0
Wasserstein VAR Decoder-only 680 4096 0.255 100% 24.10 62.9 0.109 0.93 196.9
MMD VAR Decoder-only 680 4096 0.255 100% 24.16 63.2 0.108 0.91 199.2
Vanilla VAR Decoder-only 680 8192 0.309 22.9% 23.02 60.1 0.128 1.30 185.5
EMA VAR Decoder-only 680 8192 0.312 99.8% 23.02 59.3 0.137 1.15 191.9
Online VAR Decoder-only 680 8192 0.269 73.9% 23.87 62.5 0.113 1.00 193.4
Wasserstein VAR Decoder-only 680 8192 0.240 100% 24.40 64.1 0.104 0.83 198.8
MMD VAR Decoder-only 680 8192 0.234 100% 24.37 63.8 0.104 0.81 201.0

Vanilla VAR Joint Optimization 680 4096 0.403 26.4% 23.64 60.5 0.118 1.07 191.7
EMA VAR Joint Optimization 680 4096 1.512 99.9% 22.36 55.5 0.154 1.94 172.5
Online VAR Joint Optimization 680 4096 0.297 100% 23.90 62.3 0.112 0.98 196.1
Wasserstein VAR Joint Optimization 680 4096 0.273 100% 24.25 63.4 0.107 0.87 198.7
MMD VAR Joint Optimization 680 4096 0.264 100% 24.35 63.6 0.106 0.87 199.5
Vanilla VAR Joint Optimization 680 8192 0.416 12.1% 23.59 60.4 0.119 1.09 190.7
EMA VAR Joint Optimization 680 8192 1.384 99.9% 22.31 55.4 0.152 1.95 169.3
Online VAR Joint Optimization 680 8192 0.262 85.4% 24.09 62.7 0.109 0.92 197.3
Wasserstein VAR Joint Optimization 680 8192 0.229 100% 24.48 64.2 0.102 0.81 201.7
MMD VAR Joint Optimization 680 8192 0.227 100% 24.51 64.4 0.102 0.79 201.0

codebook utilization every 100 steps. The evolution of these metrics throughout training is shown in
Figure 7.

We evaluate the performance of both methods across different levels of non-Gaussianity, as summa-
rized in Tables 12 and 13. For small ζ , where the latent distribution remains approximately Gaussian,
Wasserstein-VQ and MMD-VQ perform similarly, consistent with the observation that matching only
the first two moments is sufficient in this regime. As ζ increases and the distribution becomes more
strongly bimodal, the difference between the two methods becomes pronounced. Wasserstein-VQ
experiences significant degradation in both quantization error and codebook utilization, reflecting
its inability to capture higher-order structures beyond the first two moments. In contrast, MMD-
VQ maintains robust performance, leveraging characteristic kernels to align all moments of the
distributions.

These experiments empirically confirm the theoretical expectations discussed earlier: MMD-VQ
provides a clear advantage whenever the latent feature distribution deviates from Gaussianity, while
Wasserstein-VQ remains competitive only when the Gaussian assumption approximately holds.
Therefore, MMD-VQ demonstrates superior generalization capability: in future research scenarios
where the latent feature distribution deviates from Gaussianity, MMD-VQ is expected to provide a
more robust and effective alignment, offering clear advantages over Wasserstein-VQ.

C STAGE II ALTERNATIVE: AN JOINT OPTIMIZATION OF ENCODER,
DECODDR, AND VQ

In the original Stage II in section 4.1, only the decoder Dφ is updated while keeping the pretrained
encoder Eθ∗ and newly trained VQ module Qnew

ϕ⋆ frozen. This approach addresses the mismatch
between the updated quantized latent space and the frozen decoder, but it does not allow the encoder
to adapt to the new quantization or jointly refine the reconstruction capability.

As an alternative, we also introduce a joint optimization scheme in Stage II, where the encoder,
decoder, and VQ module are updated simultaneously. Let ze = Eθ(x) denote the encoder’s latent
embedding, and zq = Qϕ(ze) denote the quantized latent from the VQ module. The decoder
reconstructs the input as x̂ = Dφ(zq). The overall joint optimization objective integrates both the
VQ reconstruction loss and the decoder reconstruction loss:

LJoint(θ, ϕ, φ) = ∥sg(ze)− zq∥22 + β∥ze − sg(zq)∥22 + γLunique(Qnew
ϕ ),

+ ∥x̂− x∥22 + λPLPer + λGLGAN,

where Lunique enforces codebook uniqueness (e.g., Wasserstein loss for Wasserstein VQ (Fang et al.,
2025) or MMD loss for MMD VQ), and LPer and LGAN correspond to perceptual and adversarial
losses that promote high-quality reconstruction. The parameter β is fixed to 0.25, while γ, λP , and
λG are hyperparameters balancing the respective terms, as detailed in Appendix A.
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Table 15: Training time comparison between decoder-only and joint optimization strategies.
Strategies Stage I Epochs Hours Per Epoch Stage II Epochs Hours Per Epoch Total Hours

Decoder-Only 2 2.25 5 3.5 22
Joint Optimization 2 2.25 5 5 29.5

In this setup, all three components—encoder Eθ, decoder Dφ, and VQ module Qϕ, are updated
jointly. To initialize the training, we load all parameters from Stage I, ensuring that the encoder,
decoder, and VQ module start from the previously optimized representations. Joint optimization
enables the encoder to adapt to the updated quantized space, allows the VQ module to refine the
codebook representations, and improves the decoder’s ability to reconstruct images accurately from
the newly quantized latent features. For adversarial training, we follow prior works (Tian et al.,
2024; Chen et al., 2025a; Li et al., 2025) and employ a frozen DINO-S (Caron et al., 2021; Oquab
et al., 2024) discriminator with a StyleGAN-like architecture (Karras et al., 2020; 2019), augmented
with DiffAug (Zhao et al., 2020), consistency regularization (Zhang et al., 2019), and LeCAM
regularization (Tseng et al., 2021).

We conduct experiments on ImageNet-1K to compare the decoder-only and joint optimization
strategies, as summarized in Table 14. Joint optimization maintains full codebook utilization (100%)
for MMD-VAR, and thus does not experience the mode collapse that the reviewer had anticipated,
while providing slight improvements across most metrics, with the exception of EMA-VAR. However,
as shown in Table 15, this approach entails additional training time. Thus, while joint optimization
offers slightly stronger performance, we chose decoder-only adaptation in the main submission to
emphasize efficiency, a core design goal of VQ-Transplant.

D COMPATIBILITY OF VQ-TRANSPLANT WITH PRETRAINED LDM
TOKENIZER

To evaluate the compatibility of VQ-Transplant with different tokenizers, we applied it to the
pretrained LDM-16 continuous tokenizer (Rombach et al., 2022). As shown in Table 16, VQ-
Transplant achieves reasonable performance on LDM-16. Nevertheless, its adaptability is lower
compared to VAR-based models, as compared in Table 3, particularly in terms of r-FID and r-IS
metrics.

We identify two primary factors that likely contribute to this performance gap:

• Model capacity differences: The VAR tokenizer employs a larger encoder–decoder archi-
tecture (104M parameters) compared to LDM-16 (68M), providing stronger reconstruction
capabilities and greater flexibility during adaptation.

• Decoder adaptation behavior: The VAR decoder is pretrained on quantized features zq,
making it inherently robust to the perturbations introduced by new VQ modules. In contrast,
the LDM decoder is trained exclusively on continuous features ze, which limits its ability
to adapt to discrete VQ representations. As a result, VAR-based VQ-Transplant achieves
strong performance with only a few adaptation epochs, whereas LDM-based variants may
require more extensive training.

These observations indicate that while VQ, Transplant is generally compatible with different tokeniz-
ers, the intrinsic properties of the base model—such as encoder–decoder capacity and the nature of
pretrained features, play a critical role in determining adaptation efficiency.
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Table 16: Reconstruction performance of multi-scale VQ algorithms on ImageNet-1K dataset based
on LDM-16 Tokenizer. For each codebook size and each phase, the best-performing result is
highlighted in bold

Methods Phase Tokens Codebook Size K E(↓) U (↑) PSNR(↑) SSIM(↑) LPIPS (↓) r-FID(↓) r-IS(↑)

LDM-16 (Rombach et al., 2022) - 256 - 0.0 - 24.08 68.0 - 0.87 210.3

Vanilla VAR Substitution 680 4096 0.424 97.0% 22.89 55.5 0.165 9.74 120.7
EMA VAR Substitution 680 4096 0.367 100% 23.24 57.0 0.153 7.71 134.4
Online VAR Substitution 680 4096 0.299 100% 23.65 58.7 0.139 5.62 150.3
Wasserstein VAR Substitution 680 4096 0.278 100% 23.68 59.1 0.136 5.17 153.5
MMD VAR Substitution 680 4096 0.278 100% 23.64 59.0 0.136 5.18 153.3

Vanilla VAR Substitution 680 8192 0.418 87.3% 22.86 55.4 0.167 9.83 120.4
EMA VAR Substitution 680 8192 0.333 100% 23.40 57.8 0.146 6.63 142.2
Online VAR Substitution 680 8192 0.283 94.7% 23.76 59.1 0.135 5.14 153.4
Wasserstein VAR Substitution 680 8192 0.252 100% 23.84 59.8 0.131 4.49 159.8
MMD VAR Substitution 680 8192 0.254 100% 23.80 59.7 0.131 4.59 158.6

Vanilla VAR Adaptation 680 4096 0.424 97.0% 22.66 56.0 0.157 4.89 136.7
EMA VAR Adaptation 680 4096 0.367 100% 22.88 57.0 0.147 4.11 144.9
Online VAR Adaptation 680 4096 0.299 100% 23.45 59.1 0.134 3.18 158.8
Wasserstein VAR Adaptation 680 4096 0.278 100% 23.49 59.5 0.130 2.87 161.4
MMD VAR Adaptation 680 4096 0.278 100% 23.51 59.5 0.131 2.93 161.2

Vanilla VAR Adaptation 680 8192 0.418 87.3% 22.58 56.0 0.157 5.14 132.6
EMA VAR Adaptation 680 8192 0.333 100% 23.26 58.4 0.139 3.59 151.6
Online VAR Adaptation 680 8192 0.283 94.7% 23.57 59.6 0.130 2.98 159.9
Wasserstein VAR Adaptation 680 8192 0.252 100% 23.59 60.0 0.125 2.58 166.9
MMD VAR Adaptation 680 8192 0.254 100% 23.68 60.4 0.125 2.68 166.2

Figure 8: Visualization of reconstructed ImageNet-1k images. Top row: original 256 × 256 input images.
Subsequent rows (top to bottom): reconstructions from the VAR tokenizer (Tian et al., 2024) and VQ-Transplant-
trained Vanilla VAR, EMA VAR, Online VAR, Wasserstein VAR, and MMD VAR models.
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Figure 9: Visualization of reconstructed ImageNet-1k images. Top row: original 256 × 256 input images.
Subsequent rows (top to bottom): reconstructions from VQ-Transplant-trained Vanilla VQ, EMA VQ, Online
VQ, Wasserstein VQ, and MMD VQ models.
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