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Merging or Computing Saturated Cost Partitionings?
A Merge Strategy for the Merge-and-Shrink Framework

Primary Keywords: None

Abstract

The merge-and-shrink framework is a powerful tool for com-
puting abstraction heuristics for optimal classical planning.
Merging is one of its name-giving transformations. It entails
computing the product of two factors of a factored transition
system. To decide which two factors to merge, the framework
uses a merge strategy. While there exist many merge strate-
gies, it is generally unclear what constitutes a strong merge
strategy, and a previous analysis shows that there is still lots
of room for improvement with existing merge strategies. In
this paper, we devise a new scoring function for score-based
merge strategies based on answering the question whether
merging two factors has any benefits over computing satu-
rated cost partitioning heuristics over the factors instead. Our
experimental evaluation shows that our new merge strategy
achieves state-of-the-art performance on IPC benchmarks.

Introduction

Classical planning is the problem of finding a sequence of
deterministic actions that lead from a given initial state to a
state satisfying a desired goal condition (e.g., Ghallab, Nau,
and Traverso 2004). The dominant approach of recent years
to optimally solving classical planning problems is heuristic
search, in particular using the A* algorithm in conjunction
with admissible heuristics (Pearl 1984). The state-of-the-
art class of admissible heuristics is based on abstractions,
such as pattern databases (e.g., Rovner, Sievers, and Helmert
2019), domain abstractions (Kreft et al. 2023), Cartesian ab-
stractions (e.g., Seipp and Helmert 2018), and merge-and-
shrink (M &S) abstractions (e.g., Sievers and Helmert 2021),
the latter being the focus of this work.

The M&S framework first computes a factored represen-
tation of the given planning task, called factored transition
system (FTS), which consists of transition systems (called
factors) sharing the same set of labels. This FTS implicitly
represents the state space of the task through its product sys-
tem. The framework then repeatedly applies transformations
to the current FTS. At any point, each factor of the FTS is
an abstraction of the initial FTS (and with this, of the task).

One of the name-giving transformations is merging,
which means to replace two factors by their product in
the FTS. To decide which pair of factors to merge, the
framework uses a merge strategy. Starting with the orig-
inal work adapting merge-and-shrink from model check-

ing (Drager, Finkbeiner, and Podelski 2009) to planning
(Helmert, Haslum, and Hoffmann 2007; Helmert et al.
2014), there has been considerable work exploring merge
strategies (Sievers, Wehrle, and Helmert 2014; Fan, Miiller,
and Holte 2014; Sievers et al. 2015; Sievers, Wehrle, and
Helmert 2016). The current state of the art is constituted
by the two score-based merge strategies DFP and sbMI-
ASM, which choose the best pair of factors by computing
scores for them, and by the SCC merge strategy, which first
computes the strongly connected components (SCC) of the
causal graph (Knoblock 1994) of the task to partition the
state variables and then uses any score-based merge strat-
egy for first computing a (product) transition system for each
block before possibly further merging the resulting products.

In general, merging cannot decrease the heuristic quality
of the abstraction represented by the current FTS. However,
we observe that it may also not improve it compared to the
information available when not merging the factors. In par-
ticular, when computing saturated cost partitionings (SCPs)
(Seipp, Keller, and Helmert 2020) over the two factors in
question leads to an equally-informed heuristic compared to
merging, we can decide to avoid increasing the size of the
FTS by merging them and potentially even stop the M&S
computation early in favor of computing SCPs over the re-
maining factors. We devise a new score-based merge strat-
egy based on this observation and experimentally show that
it establishes a new state of the art on IPC benchmarks.

Background

The M&S framework works on any transition system as long
as it allows for a factored representation. Planning tasks in
the SAS™ formalism (Bickstrom and Nebel 1995), which
are defined over finite-domain state variables V', induce such
transition systems 7 = (S, L, T, so, S« ), where S is the set
of states (defined over V'), L is the set of labels £ with cost
cost(l) € Ra', S x L x S C T is the transition relation, sq
is the initial state, and S, C S is the set of goal states. An
s-plan for 7 is a path 7 = (¢4, ..., £, ) from state s to some
goal state from S.. Its cost is cost(m) = . cost(¢;). It
is optimal if there is no s-plan with lower cost. A plan for
T is an so-plan for 7. Optimal planning is the problem of
finding an optimal plan or showing that no plan exists.

A heuristic ht : S +— R{ for T maps a state s € S to an
estimate of the cost of an s-plan for 7. By h%- we denote the

45

50

55

60

65

70

75

80

85



90

95

100

105

110

115

120

125

Algorithm 1: M&S algorithm extended to compute SCP
heuristics and to stop early according to the merge strategy.

Input: FTS F
Qutput: Heuristic for F’
1: function M&SWITHSCP(F’)
2 Fr+F,H+
3 while not TERMINATE(F") do
4 i,j < MERGESTRATEGY(F”)
5: if not 7, j then break
6: F’ + LABELREDUCTIONSTRATEGY(F")
7.
8
9
0
1

H + H U hSCP

F’ < SHRINKSTRATEGY (F", 1, j)

Fr = (F'\{T:, T;}) U{T: @ T}

F’ + PRUNESTRATEGY(F’,i ® j)
return COMPUTEHEURISTIC(F”, H)

10:
11:

perfect heuristic for T which maps a state s to the cost of an
optimal s-plan for 7. hy is admissible iff hr(s) < hi-(s)
for all s € S. We drop T if it is clear from context.

An abstraction for T is a function « : S — S’. It induces
the abstract transition system T = (S’, L, {{a(s), £, a(¢))
| (s,£,t) € T}, a(s0),{a(s) | s € Si}). The abstraction
heuristic for T induced by « is defined as h§ = h¥-., i.e.,
as the perfect heuristic for the abstract transition system.

Given multiple admissible heuristics H = (hy,..., hy,)
for T, the cost functions C' = {costy, . . ., cost, ) form a cost
partition if 7", cost; < cost. We write h(s, cost’) for the
evaluation of /1 on s using an alternative cost function cost’
instead of cost. The cost-partitioned heuristic hg c(s) =
S hi(s, cost;) is admissible (Katz and Domshlak 2010).
Saturated cost partitioning (SCP) computes cost functions
C as follows, assuming any fixed order w for the heuris-
tics from H. It maintains a remaining cost function rc which
is initialized to rco = cost. In each iteration ¢ over the
heuristics according to w, it computes cost; as the min-
imal cost function satisfying h;(s,rc;—1) = h;(s, cost;)
for all s € S, called saturated cost function, which for
abstraction heuristics is uniquely defined as cost;(¢) =
max<5)g7t>eT(hi(8, FCi_l) — hi(t, rci_l)) for all ¢ € L,
and sets the remaining costs for the next iteration to rc; =
rci_1 — cost;. We write hSCP for the resulting SCP heuristic.

A factored transition system (FTS) F = (T',...,T")
consists of transition systems, called factors, sharing the
same set of labels. Let 7 = (S*, L, T, s§,S!) for 1 <i <
n. F' compactly represents the (synchronized) product de-
finedas @ F = (S®,L,T%, 55, S®), where S¥, s, 5% is
the Cartesian product over the components of all factors 7
and T® = {(s' ..., s™), 0, (t',...;t") | (s',£,t)) € T'}.

Algorithm 1 shows the M&S framework as implemented
in the Fast Downward planning system (Helmert 2006), ex-
tended with the facility to optionally compute SCP heuris-
tics (Sievers et al. 2020). Ignore line 5 for the moment. For
a given F', the algorithm runs its main loop until the main-
tained FTS F” only contains a single factor or function TER-
MINATE stops the loop (line 3). In each iteration, it selects
the pair of factors to merge next (line 4), possibly applies
label reduction (line 6), which means abstracting the set

Algorithm 2: Score-based merge strategy.
Input: FTS F, merge candidates M, scoring functions S
Output: Merge candidate from M

1: function SCOREBASEDMERGESTRATEGY(F', M, S)

2 for SCORINGFUNCTION € S do

3: scores < SCORINGFUNCTION(F, M)
4: M + argmin,, ¢y scores(m)

5 if |[M| = 1 then

6 return single element from M

of labels, possibly shrinks the two factors (line 8), which
means abstracting them, merges the two factors (line 9),
which means replacing the factors by their product in F”,
and prunes the product (line 10), which means removing
dead states and their transitions. All of these transforma-
tions apply abstractions to F”, and at any point, each factor
T of F’ is an abstraction of the original FTS F and as such
induces the factor heuristic for F, written h]. = hi-.! At
the end (line 11), the algorithm either returns the standard
M&S heuristic h?M&S = maxyc g h7., defined as the max-
imum heuristic over the factor heuristics induced by F”’, or
the M&S-SCP heuristic hg/lc‘gf,s = maxyc g h, defined as the
maximum heuristic over all SCP heuristics h5°F € H previ-
ously computed (line 7) using some order w over the factor
heuristics induced by intermediate FTS F”.

A merge strategy needs to decide which pair of factors to
merge given the FTS. We consider score-based merge strate-
gies (Sievers, Wehrle, and Helmert 2016) that use scoring
functions for evaluating merge candidates (i.e., pairs of fac-
tors) of an FTS. As shown in Algorithm 2, given an FTS
F, a set of merge candidates M over F', and some scoring
functions S, the strategy iteratively (line 2) computes scores
for all merge candidates using a scoring function (line 3),
removes all but the best candidates (line 4), and repeats until
only a single candidate is left which it returns (line 6). To en-
sure that a single merge candidate remains, at least one scor-
ing function must define unique scores for distinct merge
candidates. We also use the SCC merge strategy which ini-
tially partitions the variables of the task and during execution
of the M&S algorithm uses score-based merge strategies to
decide which factors within each block to merge next, before
possibly also merging the resulting products afterwards.

Merging or Computing Cost Partitions

Due to the large space of possible merge strategies, it is
hard to find general criteria defining strong merge strategies,
and the analysis by Sievers, Wehrle, and Helmert (2016)
shows that state-of-the-art merge strategies still leave am-
ple room for improvement. When using the M&S frame-
work extended to compute the M&S-SCP heuristic, a natural
question that arises is how merging two factors compares to
leaving them for exploitation in the SCP(s) computed dur-
ing M&S. To address this question, we devise the maximum

"Note that M&S uses special data structures to store the state
mapping from the original FTS to individual factor heuristics
(Helmert, Roger, and Sievers 2015). As the details do not matter,
we omit them in the presentation.
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Algorithm 3: Filter-based merge strategy.

Input: FTS F, merge candidates M, filtering functions S
QOutput: Merge candidate from M or None

1: function FILTERBASEDMERGESTRATEGY(F', M, S)

2 for FILTERINGFUNCTION € S do

3: M < FILTERINGFUNCTION(F, M)
4: if M = () then
5:
6

return none
return single element from M

SCP scoring function (mSCP-sf) that prefers merge candi-
dates whose product heuristic yields the largest improve-
ment compared to the maximum over the two SCP heuristics
over the two factors. Analogously, the maximum factor scor-
ing function (mFactor-sf) prefers candidates whose product
heuristic improves most compared to the maximum over the
two factor heuristics, thus mimicking the computation of
the standard M&S heuristic. To evaluate the improvement
of heuristics, we compare the heuristic values of the initial
state or the average values over the finite heuristic values,
denoted by function AVG.

Formally, let F' = (T,...,7T™) be an FTS with 7% =
(S, L, T s},8%) for 1 < i < n.Leti,j € {1,...,n}
withi # j,1let T® = T° @ T7, and let sp = (s{,...,sq)
be the initial state of F. Recall that h7.", h7.’, and h;@) are
the factor heuristics for F' induced by 77, 77, and 7%. We
have the following variants for evaluating the merge candi-
date (7, 77) and the product 7%:

;"er = hT® (50)
Bt or = max(h (so), hT (s0))
mScp = X(hsgz TZ) (s0), h?7577}>(50))
h, = ava(hT)
he8 = max(avG(h]'), AvG(hL"))
i = mas(aVG0T ) WGl )

Since we want to prefer candidates with the largest im-
provement of initial or average heuristic values of the prod-
uct compared to the factors and since we need to mini-
mize scores, we define mFactor-sf to compute the score as

init init avg avg : : L]
PonFactor — Poproa OF PunFactor — Mg depending on using ini-

tial or average heuristic values. Analogously, mSCP-sf is de-
fined as hyigcp — h;Jnrl;d or Ascp = Mprod-

In general, the difference computed by both scoring
functions cannot be positive because merging, being an
information-preserving transformation, dominates any other
combination of the factor heuristics. However, in our imple-
mentation, we compute the product of the two shrunk fac-
tors to mimic what the M&S algorithm would do (cf. lines 8
and 9). This means that the difference computed by mSCP-
sf can be positive, in which case merging is deemed worse
than computing the SCP heuristics.

To accommodate situations in which for no pair of factors
merging is deemed better than leaving them for exploitation

sf ff
mSCP  mFactor mSCP mFactor

init avg init avg init avg init avg

RM&S 902 875 889 859 793 857 871 836
h3ES 990 909 916 901 953 908 907 917

Table 1: Coverage of the mFactor and mSCP scoring (sf) and
filtering (ff) functions, using the initial (init) or the average
(avg) heuristic value.

in the maximum factor/SCP heuristic, we suggest a filter-
based merge strategy. As shown in Algorithm 3, it iteratively
(line 2) uses a filtering function to make the set of merge can-
didates smaller (line 3), returning none if all candidates have
been filtered (line 5) or the single remaining candidate other-
wise. Analogously to score-based merge strategies, at least
one filtering function must uniquely determine a single can-
didate or discard all of them. We adapt the M&S algorithm
to stop its computation when the merge strategy filtered all
candidates, cf. line 5 of Algorithm 1.

Every score-based merge strategy can also be cast as a
filter-based merge strategy by turning scoring functions into
filtering functions that return the set of candidates with mini-
mal score. Our maximum factor/SCP scoring functions, cast
as filtering functions, additionally discard all merge candi-
dates with a non-negative score. Furthermore, we extend the
SCC merge strategy to allow using filter-based merge strate-
gies instead of score-based ones and to return no merge can-
didate when the filtering functions discarded all candidates.

Finally, we remark that when stopping the M&S compu-
tation early due to mSCP-sf having discarded all candidates,
hY&S is not guaranteed to be at least as good as the heuristic
we would obtain after continuing merging more factors. The
reason is that SCP greedily assigns costs to factors so that
not all pairs of factors can have assigned full costs in the
SCP computed over the final FTS. We therefore also con-
sider adding the SCP heuristics computed over all pairs of

remaining factors to the set H before computing hYss.

Experiments

We implemented all strategies in the existing M&S frame-
work in Fast Downward 23.06 and evaluate them comput-
ing M&S and M&S-SCP heuristics for at most 900s, us-
ing bisimulation-based shrinking with a size limit of 50000
states, exact label reduction and full pruning of dead states.
We evaluate the heuristics in an A* search, using Downward
Lab (Seipp et al. 2017) to limit each planner run to 30 min-
utes and 3.5 GiB on IPC benchmarks from all sequential op-
timal tracks, a set consisting of 66 domains with 1847 tasks
in total. Following Sievers et al. (2020), we compute an SCP
heuristic in each iteration of the M&S algorithm using a ran-
dom order over the factor heuristics.

We begin by evaluating mFactor and mSCP using initial
(init) or average (avg) h-values, used as scoring (sf) or filter-
ing (ff) functions in a score-based or filter-based merge strat-
egy. Table 1 shows coverage, i.e., number of solved tasks,
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mSCP-sf mSCP-ff
none alw none stop alw

hM&S 990 982 953 948 948

Table 2: Coverage of the mSCP scoring (sf) and filtering (ff)
functions using init, without (none) and with the addition of
SCP heuristics computed over all pairs of remaining factors,
either always (alw) or only if stopping M&S early (stop).

SCC mSCP-sf mSCP-ff
DFP sbM DFP sbM SCC SCC

hM&S 882 920 922 914 902 927 793 779
hM&S 915 965 951 957 990 1006 953 943

Table 3: Coverage of state-of-the-art merge strategies and
mSCP-sf/ff using init, including integration with SCC.

of all combinations. We observe that stopping the M&S al-
gorithm when there is no good merge candidate (ff) leads
to worse coverage, presumably because continuing merging
factors can potentially lead to better factor heuristics in later
iterations. We further observe that mSCP mostly dominates
mPFactor, likely because the evaluation of improvement is
more nuanced with mSCP, except when terminating early
and using hM&S, which seems reasonable given that AhM&S
does not compute SCP heuristics. Finally, using the initial
heuristic value to evaluate merge candidates is a better cri-
terion than using the average heuristic value except for two
cases of ff. In the remainder, we only consider the mSCP
scoring and filtering functions using initial heuristic values.

Next, we evaluate the addition of SCP heuristics com-
puted for each pair of remaining factors (one for each order)
to the set H before computing h¥<S. For the filter-based
strategy, we consider the alternatives of always adding these
heuristics (alw) or only if the M&S algorithm stopped due to
the merge strategy having filtered all candidates (stop). Ta-
ble 2 shows coverage for these variants in comparison to not
including these additional SCP heuristics (none). Clearly,
there is no positive effect due to including the additional
SCP heuristics. The likely reason is that SCPs over pairs of
factors generally do not yield strong heuristics compared to
SCPs over full FTS, so that the overhead caused by their
inclusion is not worth it.

Finally, Table 3 shows coverage of the state-of-the art
strategies DFP and sbMIASM (sbM), our best strategies
with the maximum SCP scoring and filtering functions us-
ing initial heuristic values, and their integration with the
SCC strategy. We observe again that the filter-based strat-
egy cannot compete with the other strategies. While mSCP-
sf solves fewer tasks than the state-of-the-art strategies when
computing h"M&S (which seems reasonable given that hM&S
does not compute SCP heuristics), integrated with the SCC
strategy, it outperforms them. For h3K5®, both mSCP-sf and
SCC-mSCP-sf significantly outperform the state of the art.

To verify that the strong coverage results do not stem only
from a few domains, Table 4 compares the number of do-

SCC  mSCP-sf mSCP-ff

DFP sbM DFP sbM SCC SCC

DFP - 6 2 5 2 2 14 18
sbM 19 - 15 39 6 16 18
SCC-DFP 8 10 - 77 216 19
SCC-sbM 20 4 15 - 11 717 21
mSCP-sf 27 16 24 18 - 520 20
+SCC 27 19 21 17 7 - 19 22
mSCP-ff 26 17 22 18 5 7 - 4
+SCC 22 14 19 15 8 5 3 -

Table 4: Per-domain coverage of the same strategies as in
Table 3, for hYI&S only. An entry in row z and column y
denotes the number of domains in which x solves more tasks
than y. It is bold if (z,y) > (y,x).
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Figure 1: Expansions of sbM vs. SCC-mSCP-sf.

mains in which each planner in a row solves more tasks than
the planners in the columns. We observe that both mSCP-
sf and its integration with SCC strictly dominate all other
strategies also under this measure. Finally, to assess where
the strength of the new strategies stem from, Figure 1 com-
pares the number of expansions of the A* search (excluding
the last f-layer) using the previous best M&S-SCP heuris-
tic computed with the sbM strategy to using our new best
strategy. We note that while the heuristics display orthogo-
nal strengths, there is a larger number of cases where our
strategy results in a stronger heuristic than vice versa.

Conclusions

We presented a scoring function for the M&S framework
that prefers merge candidates whose product results in the
largest heuristic improvement compared to using the fac-
tors in SCP heuristics instead. We also investigated filtering
functions that stop the M&S algorithm if no merge candidate
is deemed useful for merging. The new score-based merge
strategy as well as its integration with the SCC merge strat-
egy significantly outperform previous merge strategies. In
future work, we want to investigate merge strategies which
consider merging factors beyond a single iteration.
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