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Abstract
Transformers are central to recent successes in
natural language processing and computer vision.
Transformers have a mostly uniform backbone
where layers alternate between feed-forward and
self-attention in order to build a deep network.
Here we investigate this design choice and find
that more complex blocks that have different per-
mutations of layer primitives can be more efficient.
Using this insight, we develop a complex block,
named Brainformer, that consists of a diverse sets
of layers such as sparsely gated feed-forward lay-
ers, dense feed-forward layers, attention layers,
and various forms of layer normalization and acti-
vation functions. Brainformer consistently outper-
forms the state-of-the-art dense and sparse Trans-
formers, in terms of both quality and efficiency. A
Brainformer model with 8 billion activated param-
eters per token demonstrates 2× faster training
convergence and 5× faster step time compared to
its GLaM counterpart. In downstream task evalu-
ation, Brainformer also demonstrates a 3% higher
SuperGLUE score with fine-tuning compared to
GLaM with a similar number of activated param-
eters. Finally, Brainformer largely outperforms a
Primer dense model derived with NAS with simi-
lar computation per token on fewshot evaluations.

1. Introduction
In recent years, large neural networks derived from from
the Transformer architecture (Vaswani et al., 2017) have
demonstrated superior results on language understanding
and generative tasks. Many improvements on Transformer
variants have come from scaling the size of models (Raf-
fel et al., 2020; Brown et al., 2020a; Shoeybi et al., 2019;
Chowdhery et al., 2022), scaling the training tokens (Hoff-
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Figure 1: Brainformer Vs. GLaM in Scaling. Brainformer
improves model quality at much faster training step time.

mann et al., 2022; Shoeybi et al., 2019), better training data
quality (Du et al., 2022), and sparsely activated model archi-
tectures (Du et al., 2022; Lepikhin et al., 2021; Roller et al.,
2021; Lewis et al., 2021).

Among the efficient transformer language models (Wang
et al., 2020; Choromanski et al., 2020; Tay et al., 2021; Hua
et al., 2022), there is a focus on improving attention-layer
efficiency using low-rank approaches or approximations.
However, recent work has also identified that dense feed-
forward layers constitute most of the computational cost
for common sequence lengths (≤2048), particularly when
the model is large (Du et al., 2022; Zhou et al., 2022). To
further improve compute efficiency such as total FLOPs
used during training to reach convergence, sparsely gated
Mixture-of-Experts (Lepikhin et al., 2021; Fedus et al.,
2021; Du et al., 2022; Zhou et al., 2022; Roller et al., 2021;
Lewis et al., 2021; Jaszczur et al., 2021) have become preva-
lent, giving the model a larger overall capacity to improve
quality while holding computational cost fixed. Sparsely
activated models not only reduce the computational cost, but
also have better specialization by training different experts
on different data distributions through the use of a routing
function without reducing the effective training time for
each expert. The MoE architectures in this line of work are
based on uniform transformer blocks or interleaving dense
and sparse layers (Du et al., 2022) and a fixed top-k routing.
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Figure 2: High-level Comparison with Related Work. ’a’: at-
tention, ’f’: feed-forward, ’g’: sparsely gated feed-forward.
GLaM interleaves dense transformer blocks with sparse
transformer blocks. Brainformer reduces the frequency of
attention and changes layer widths together with layer types.

Resonating with the layer-wise architecture stacking in Ef-
ficientNet (Tan & Le, 2019) and layer reordering in the
sandwich transformer (Press et al., 2019), we propose a non-
uniform architecture with sparsity where there is no strict
layer interleaving as in the vanilla transformer in fig. 2. We
trade off architecture regularity by allowing the search space
to compose different sub-layers in different orders. For bet-
ter scaling, we introduce sparsity in the search space with a
sparsely gated feed-forward layer (MoE layer) coupled with
different gating mechanisms.

We find that optimizing the architecture, sparsity, and rout-
ing mechanism in sparse layers is critical to achieve near-
perfect log-scale scaling in quality. Figure 1 shows that
Brainformer scales much better than GLaM (manually
crafted sparse transformer). Brainformer consistently im-
proves training perplexity while keeps example rate almost
constant when increasing model capacity, however, GLaM
has a much worse example rate when scaled up.

We only treat the MoE layer as a general method to sparsify
the model. In practice, any conditional computation method
can be blended in. We apply a simple evolutionary search to
discover many attributes, such as the best way to interleave
layers and layer capacities, when to fuse layers, and when to
specialize layers with MoE modules. For ease of scaling, we
propose a block-wise sub-layer grouping, such that stacking
a variable number of blocks produces models of different
scales, as illustrated in Stackable Brainformer in fig. 2. As
our results in Section 5 show, this approach has proven
effective in our evaluation at multiple model scales.

2. Related Work
Large Language Models: Language models have demon-
strated strong performance for many natural language pro-

cessing tasks (Mikolov et al., 2010; Sutskever et al., 2011;
Dai & Le, 2015). Scaling up model capacity and number
of training tokens has shown huge success in enhancing
the performance of computer vision architectures (He et al.,
2016a;b; Ghiasi et al., 2019; Dai et al., 2021) as well as
neural language models (Radford et al., 2018; Brown et al.,
2020b; Kaplan et al., 2020; Raffel et al., 2020; Shoeybi
et al., 2019; Hoffmann et al., 2022).

Sparsely Activated Models: Conditional computation ef-
fectively increases the capacity of a deep neural network
without increasing the total amount of computation, by ac-
tivating certain parameters and computation on demand,
based off the input token or sequence (Cho & Bengio, 2014;
Puigcerver et al., 2020; Lin et al., 2019). The gating deci-
sions may be binary or sparse and continuous, stochastic
or deterministic. In a multi-device setting, sparsely-gated
MoE (Shazeer et al., 2017) demonstrates massive improve-
ments in model capacity, training time, or model quality
with gating. Various MoE architectures including Switch
Transformer (Fedus et al., 2021) and GLaM (Du et al., 2022)
have been proposed. They adopt a token-based gating where
an auxiliary loss is imposed to counter load imbalance issues.
Recently, more advanced gating functions are devised to
ameliorate load imbalance, improve speed, and downstream
generalization (Roller et al., 2021; Dua et al., 2021; Zuo
et al., 2021; Gross et al., 2017; Zhou et al., 2022; Jaszczur
et al., 2021).

Non-uniform Architectures: EfficientNet represents one
of the very early non-uniform architectures that leverages
layer heterogeneity to achieve SoTA. Instead of searching
for a new operator or a new block of operators, EfficientNet
focuses on optimizing the layer compound coefficients to
scale the model effectively. This heterogeneity leads to a
model more than 8× smaller and more than 6× faster on in-
ference (Tan & Le, 2019). Sandwich Transformer promotes
a non-interleaved, non-uniform architecture for language
modeling tasks. However, the sandwich reordering pattern
does not guarantee performance gains across every task.
Residual MoE (Wu et al., 2022) factorized the weights into
an input-independent core and an input-dependent residual,
thus achieves comparable results with the upper-bound MoE
training while only introducing minor additional training
cost than the lower-bound non-MoE training. In this work,
we take inspiration from the earlier work but further improve
scaling and generalization via automatic model discoveries.

3. Method
3.1. Deriving Our Model Components

There are various forms of computation factorization that
can lead to lower computation cost or faster computation
without penalizing model quality. As indicated in fig. 3,
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low-rank and multi-expert layers are two major methods
for factorizing a matrix multiplication, both of which re-
duces FLOPs by half while not sacrificing model capacity.
When devising an efficient neural network, as indicated
in fig. 4, low-rank and multi-expert can be combined and
stacked to achieve more interesting model architectures that
are computationally efficient. Finally, by also coupling a
temporal mixture layer (e.g. attention (Vaswani et al., 2017),
gMLP (Liu et al., 2021) or MLP mixer (Tolstikhin et al.,
2021)) which captures the causal relations between tokens,
the network becomes a multi-expert transformer variant.

Dense

  

Half FLOPS

y = M * x y = V * (U * x)

  

  Dense     

Half FLOPS

y = M * x x1, x2 = split(x)
y = concat(M1 * x1, M2 * x2)

low-rank / bottleneck

multi-branch / multi-expert

Figure 3: Two methods of matrix factorization: Low-rank
and Multi-branch.

However, constructing an efficient network does not require
conforming to the uniformity of the model architecture as
illustrated in the last figure of fig. 4. By carefully selecting
layer types and layer interleaving, as well as other hyper-
parameters layers, we could achieve higher quality, train-
ing efficiency, as well as better scaling. This leads our
exploration towards a more training-efficient architecture by
adopting low-rank and multi-expert compression methods
with coarse-grain sparsity.

3.2. Block-wise Architecture

We largely take inspiration from the layer-wise compound
scaling in EfficientNet (Tan & Le, 2019). For the easi-
ness of scaling, We construct a block-wise search space
where the restriction of uniformly stacking layers is re-
moved. Instead, we create a generic layer as a function
Yi = Fi(Xi),Fi ∈ {Fattn,Fmoe,Fffn} where Fi is an
operator selected from the operation set consisting of self at-
tention, sparsely gated feed-forward (MoE), and dense feed-
forward sub-layers as depicted in eq. (3). Input Xi has a
tensor shape of {B,L,H} andH ∈ { 3
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3
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Figure 4: Evolving matrix factorization into transformer-
styled model architecture.

where B is the batch size, L is the sequence length, and H
is a tunable model dimension. The intuition behind tun-
ing model dimension is to enable more flexible network
topologies with various factorization methods as described
in section 3.1. For example, we could instantiate a model
with wider hidden dimensions or a model with experts but
each expert being narrow.

Unlike a traditional simple, uniform transformer block, a
Brainformer block is a complex block N that can be repre-
sented by a list of composed layers in eq. (1):

N = Fk � ...�F2 �F1(X1) =
⊙

j=1...k

Fj(X1) (1)

We can stack an arbitrary number of Brainformer blocks
to create a target model. The search objective is to find
an optimal layer architecture Fi, and model scaling multi-
pliers for multiple model inner dimensions that minimizes
the perplexity. Table 1 summarizes the search space in a
Brainformer architecture.

Figure 5 and Algorithm 1 illustrate the two phases that we
use to discover compute-efficient Brainformer models. Dur-
ing the search, a regularized evolutionary search algorithm
samples block architectures from the search space and trains
the sampled architectures using a proxy training. In a proxy
training task, a small 100M32E architecture is instantiated
by stacking the sampled block three times. This matches
the number of layers in a baseline GLaM architecture. We
apply early stopping during the proxy training, where un-
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Figure 5: Block-wise architecture search and stacking.

Table 1: Search Space Table: Fattn is a self-attention layer,
Fmoe is a sparsely gated FFN layer, and Fffn is a regular
dense FFN layer. The baseline is a 100M 12-layer dense
transformer model with Hmodel_dim = 768.

Search Item Search Space

Layer Type (Fi) Fattn,Fmoe,Fffn

Model Dim. (d) 512, 768, 1024
MoE Hidden Dim. (dmoe) 1536, 2048, 3072, 4096
FFN Hidden Dim. (dffn) 1536, 2048, 3072, 4096
Attention Heads. (h) 12, 16, 20
Gating Func. (g) Top-2, Expert Choice
Capacity Factor (c) 1, 2, 3, 4
Activation Func. (a) Gated Re/GeLU, ReLU, GeLU

promising models are pruned early due to the violation of
inference time constraint or perplexity constraint at 25%
of the maximum training steps, compared to the baseline
GLaM architecture.

At the end of evolution, top-k block architectures with the
highest rewards are evaluated at multiple target scales. In
our evaluation, we first scale the model dimension and hid-
den dimension 2x and 4x, following the scaling factors
presented in GLaM, to create block S1 and S2 targeting
1B and 8B model scale. Then we stack block S1 and S2
respectively to create 1B64E and 8B64E model variants. N
in Algorithm 1 can be determined mathematically according
to the target total activated parameters. Our final evalua-
tions are based on comparisons with baseline architectures
at multiple scales.

Algorithm 1 Brainformer Block Search

Require: A Block-wise architecture search space B. An
evolutionary search algorithm with population size p.

1: for t = 1 to T0 do
2: for B(i) in SamplePopulation(B, p) do
3: G(i) ← StackThreeTimes(B(i))
4: if EarlyStopping(G(i)) then
5: R(i) = −1
6: else
7: Ai, T i ← Train(G(i), Tmax)
8: R(i) ← f(Ai, T i)
9: end if

10: end for
11: end for
12: Gtopk ← TopK({G(i),R(i)})
13: for G(i) in Gtopk do
14: G(i) ← ScaleModelDim(G(i))
15: G(i) ← StackNTimes(G(i))
16: Ai, T i ← Train(G(i))
17: end for

3.3. Fair Comparisons Across Model Architectures

Prior NLP model scaling studies (Raffel et al., 2020; Rad-
ford et al., 2018; Brown et al., 2020b; Rae et al., 2021)
typically explore quality scaling with fixed model capacity
and training steps/tokens. For example, a scaling plot typ-
ically fixes training steps/tokens while varying the model
parameters. However, when training a model, users typi-
cally have a fixed budget and can trade-off training time,
compute resources, and quality to stay within that budget.
If what we care about is computational cost and training
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Figure 6: Token-based routing vs. Expert-based routing.

convergence time, then comparing model qualities while
fixing total parameters is not fair, particularly when com-
paring across model architectures and model families. For
example, it may discriminate against models with more to-
tal parameters that consume fewer computational FLOPs,
such as sparsely activated models. The GLaM paper (Du
et al., 2022) addresses this by conducting a scaling study on
activated memory (which approximates the computational
cost), rather than the total parameter size, on a fixed number
of training tokens. However, comparing models with a fixed
amount of training tokens may still also not be fair as some
smaller models can benefit more from additional training
data and outperform a bigger model with the same total
training cost (e.g. GPU hours, TPU hours, etc.). The Chin-
chilla paper (Hoffmann et al., 2022) is the first to suggest
compute-efficient scaling, which varies both model capacity
and training tokens at a fixed computational cost. Resonat-
ing with compute-efficient model scaling, we further take
model architectural change into consideration during the
search for efficient model architectures with better training
convergence and inference time. More particularly, we com-
pare across models with a fixed training cost and model
inference time, which allows the search algorithm to trade
off between model capacity and training tokens.

3.4. Training Time Constrained Search

We fix the wall clock time for each search trial which en-
courages models with faster training convergence being
discovered. The objective is to find model architectures that
yield higher accuracy with a fixed training budget (number
of chips times training hours). In an evolution search, a con-
troller minimizes the pre-training validation cross-entropy
loss in eq. (2) while meeting an inference time constraint
in eq. (5). The block architecture is defined around a 100M
vanilla transformer architecture, as illustrated in Table 2.
Each trial is trained with a fixed wall clock time so that
faster models can be compensated with more training steps.
We empirically find that fixing training wall clock time
while meeting a inference time constraint yields models
with faster training convergence and higher quality.

min
F1:k,d,dmoe,dffn,h,g,c,a

L(N (F1:k, d, dmoe, dffn, h, g, c, a))

(2)

Fi =


Fd,h,a

i , if Fi = Fattn

Fd,dffn,a
i , else if Fi = Fffn

Fd,dmoe,g,c,a
i , otherwise Fi = Fmoe

(3)

s.t. N (F1:k, d, dmoe, dff , h, g, c, a) =
⊙

i=1...k

Fi(X1)

(4)

Step_Time(N ) ≤ baseline_step_time (5)

4. Token-based Routing Versus Expert-based
Routing

While there are various routing methods in existing MoE
literature, we primarily focus on two classes of routing:
token-based routing and expert-based routing, to illustrate
the idea that routing strategy can change the optimal model
architecture when sparsely activated layers are introduced.

As an example, in Figure 6, the rows and columns contain
un-normalized scores computed for four tokens and four
experts. Each value is produced by the dot product of the
token embedding and the expert embedding. Once the token-
to-expert affinity scores are generated, there are a few ways
to decide which experts each token should be routed to. In
token-based routing, the model routes to the top-k experts
for each token, while in an expert-based routing, the experts
choose top-k tokens. More particularly, we follow the top-2
gating approach used in GShard (Lepikhin et al., 2021) and
GLaM (Du et al., 2022) as top-2 has demonstrated stronger
empirical performance than top-1 gating. For the expert-
based gating, we follow the Expert Choice gating (Zhou
et al., 2022) where perfect load balance is achieved with
heterogeneous parameter allocation.

There are various ways of generating the token-to-expert
affinity scores. One possible way is to create a trainable
gating matrix Wg that projects the input feature space to
a token-to-expert score. The score should be normalized
either along the token dimension or the expert dimension.
To avoid causal leakage in decoding mode, we suggest nor-
malizing along the expert dimension for both token-based
routing and expert-based routing.

5. Evaluation
Setup: Table 2 summarizes the hyperparameter settings
of different baseline MoE models. In the baseline MoE
GLaM (Du et al., 2022) model, we interleave transformer
blocks with regular dense FFNs and transformer blocks with
sparsely gated FFNs (MoE layer). As a reference point, we
also include the respective dense model configurations with
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Table 2: Sizes and architectures of baseline dense models and MoE (GLaM) models. Models are grouped by the number of
activated parameters per token.

Model Type nparams nact-params L M H nheads dhead E

0.1B Dense 130M 130M 12 768 3,072 12 64 –
0.1B/32E MoE 1.9B 145M 32

1.7B Dense 1.7B 1.700B 24 2,048 8,192 16 128 –
1.7B/64E MoE 27B 1.879B 64

8B Dense 8.7B 8.7B 32 4,096 16,384 32 128 -
8B/64E MoE 143B 9.8B 64
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Figure 7: (a) Pre-training perplexity comparison for 100M32E (100M parameters per expert, 32 experts). Search-w-top2
is the model found by using neural architecture search but with fixed top-2 token-based gating. (b) Training perplexity
comparison for 8B64E (8B parameters per experts, 64 experts). Expert Choice is the GLaM architecture with expert-based
gating function.

comparable numbers of activated parameters per-token dur-
ing inference in the table. With a similar number of activated
parameters as a 0.1B dense model, 0.1B/32E represents the
sparse model with every other transformer layer replaced by
a 32-expert MoE layer. While nparams is the total number
of trainable parameters, nact−params represents the number
of activated parameters per token. nact−params roughly ap-
proximates the computational expensive of a model. L is the
total number of Transformer layers, M is the model dimen-
sion, H is the hidden dimension after the projection in each
transformer layer, nheads is the number of attention heads,
and dhead is the hidden dimension of each attention head.
We train and evaluate our Brainformer models and baseline
models on 64 Cloud TPU-V4 chips, except for models at
the 8B-scale which take 512 Cloud TPU-V4 chips to train.

Dataset: We use the high-quality dataset from GLaM of
1.6 trillion tokens that are representative of a wide range of
natural language use cases. This dataset consists of a high-

quality filtered subset of webpages that are combined with
smaller corpora of books, Wikipedia pages, conversations,
forums, and news to create the final dataset. A more detailed
description of the dataset including the data and mixture
weights can be found in the GLaM paper (Du et al., 2022).

Model Training: We train a few decoder-only models using
the searched best Brainformer blocks and related baselines.
Brainformer-1 and Brainformer-2 are two selected best mod-
els. With limited computational resources, we only scale
Brainformer-1 to 1B and 8B scales. Our model training
follows the setup of GLaM where a maximum sequence
length of 1024 tokens is used. We use an Adafactor op-
timizer (Shazeer & Stern, 2018) with first-moment decay
β1 = 0 and second-moment decay β2 = 0.99. The learning
rate is kept constant for the first 10K training steps, then
is decayed with an inverse square root schedule. We use
the SentencePiece subword tokenizer with a vocabulary of
size of 256K. The 100M-scale models and 1B-scale models
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Table 3: Training efficiency comparison. Brainformer models have better training convergence and faster step times,
compared to GLaM, fixed gating search, and expert-based gating but with fixed architecture. Brainformer-1 and Brainformer-
2 are two selected best models. With limited computational resources, we only scale Brainformer-1 to 1B and 8B scales.

Model Total Params Activated Params Train Steps Steps/Sec PPLX
100M32E

GLaM 1B 145M 0.5M 1.92 2.73 +/- 0.002
Search-w-Top2 1.87B 210M 0.5M 2.03 2.67 +/- 0.005
Brainformer-1 3.19B 156M 0.5M 2.03 2.57 +/- 0.003
Brainformer-2 3.33B 266M 0.5M 2.16 2.59 +/- 0.005

1B64E
GLaM 27B 1.88B 1.0M 1.23 2.25 +/- 0.004

Search-w-Top2 27B 3.05B 1.0M 1.27 2.21 +/- 0.003
Brainformer-1 30B 1.38B 1.0M 2.00 2.25 +/- 0.002
Brainformer-2 52B 1.31B 1.0M 1.76 2.23 +/- 0.001

8B64E
GLaM 143B 9.8B 1.5M 0.39 2.12 +/- 0.002

Expert-based Gating 143B 9.8B 1.5M 0.50 2.03 +/- 0.005
Brainformer-1 158B 7.4B 1.5M 1.96 1.99 +/- 0.002

are trained with 64 TPU V4 chips, while the largest model
(8B/64E) evaluated is trained on 512 TPU V4 chips. We
don’t use any dropout during training because the training
corpus is large enough that each sample is only encountered
once.

Model Evaluation: We mainly focus on two types of down-
stream evaluation: 1) Fine-tuning performance on 11 se-
lected classification tasks from the GLUE and SuperGLUE
benchmarks (Wang et al., 2018; 2019). 2) We evaluate
oneshot performance with five language generation tasks
focused on question answering.

5.1. Training Convergence
In this section, we evaluate Brainformer top models with
related baselines including 1) Top-2 gating based model ar-
chitecture search (Search-w-Top2) and 2) GLaM (Du et al.,
2022), a manually crafted architecture with fixed top-2 gat-
ing. Providing the flexibility of tuning the gating function
and network architecture significantly improves pre-training
efficiency. As shown in table 3, our searched best Brain-
former models outperform the baselines in terms of com-
putational cost (activated parameters), training step time
(steps/sec), and training perplexity (PPLX) for fixed train-
ing steps. When scaled to 8B64E, Brainformer converges
to lower perplexity and is more than 5x faster in step time
and 2x faster in training convergence using the same hard-
ware configuration (512 Cloud TPU-V4 chips). With a fixed
600B training tokens, Brainformer is much more accurate
than the baselines at 8B scale.

5.2. Finetuning Results

We pretrain the models for a total fixed wall clock time as
the baseline GLaM model. We then finetune the models with
eleven selected GLUE and SuperGLUE classification tasks.
At two different scales, 100M64E and 1B64E, Brainform-
ers outperform the baseline GLaM model by a significant
margin of 2-4% average score. The fine-tuning results in
table 4 indicates that Brainformer not only excels at training
convergence but also generalizes well to downstream tasks.

5.3. Fewshot Results

Aligned with prior work in fewshot in-context learning, we
compare Brainformer oneshot performance on five selected
generative tasks in table 5: Natural Questions (Kwiatkowski
et al., 2019), TriviaQA (Joshi et al., 2017), Web Ques-
tions (Berant et al., 2013), Squadv2 (Rajpurkar et al., 2018),
and Lambada (Paperno et al., 2016), with a sparse model
GLaM and a dense model Primer (So et al., 2021) of similar
activated memory size. Brainformer outperforms Primer
and GLaM by a large margin on all the tasks except Nqs
being slightly worse than GLaM. GLaM yields competitive
scores while being 2x slower than Brainformer.

6. Discussion
6.1. Visualizing a Brainformer Block

In this section, fig. 9 provides a visualization of a Brain-
former architecture block. Unlike a conventional trans-
former block, where there is only an attention layer and
a dense feed-forward layer, a Brainformer block contains
8 sub-layers. The Brianformer block is repeated 3 times, 6

7
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Table 4: Finetuning Results on GLUE/superGLUE: Brainformers at 100M and 1B significantly outperform GLaM counter-
parts, yielding over 3% gains in overall scores.

Size Model BoolQ CB CoLA MNLI MRPC QNLI

100M64E GLaM 0.791 0.859 0.818 0.849 0.833 0.901
Brainformer-1 0.812 0.922 0.828 0.855 0.870 0.907

1B64E GLaM 0.829 0.938 0.831 0.860 0.857 0.919
Brainformer-1 0.859 0.938 0.863 0.896 0.875 0.938

Size Model QQP RTE SST2 WiC WNLI AVG

100M64E GLaM 0.907 0.808 0.952 0.687 0.609 0.819
Brainformer-1 0.812 0.840 0.952 0.702 0.635 0.840

1B64E GLaM 0.911 0.816 0.945 0.711 0.547 0.833
Brainformer-1 0.917 0.899 0.972 0.720 0.719 0.873

Table 5: Oneshot evaluation on five important generative tasks. All models are trained with 200B training tokens.

Model Nqs Triviaqa Webqa Squadv2 Lambada Steps/Sec
GLaM 1B64E 9.14 41.8 10.8 46.2 25.2 0.55

Primer 1B (So et al., 2021) 4.82 24.7 6.50 49.2 22.6 1.50
Brainformer 1B64E 8.23 43.4 12.0 49.5 25.7 1.37

times, and 8 times respectively in the 100M, 1B, and 8B
scale. In a vanilla transformer model, a dense FFN layer has
an optimized expansion ratio of 4, which results in a hidden
dimension 4x wider than the model dimension. In the opti-
mized Brainformer block 1 and 2, the search algorithm picks
a slightly larger model dimension of 1024 (as compared to
768) and a smaller expansion factor in the dense FFNs and
MoE layers (as compared to 3072). This is a reasonable
optimization, as MoE layers effectively widen the network
with more experts. In the MoE layers, the search algorithm
picks the expert choice gating function (Zhou et al., 2022)
with a capacity factor of one in Brainformer block 1, result-
ing in a very sparse network in which each token can be
routed to a single expert on average. Being much faster in
step time, block 1 takes more training steps, thus training
data to achieve good quality. Therefore, we also picked
another strong candidate, Brainformer block 2, in which a
larger capacity factor in the MoE layers is selected. Block 2
is lightly slower in step time, but takes fewer training steps
to get good accuracy, thus is more data efficient.

6.2. Can We Simplify?

We did an ablation study on block simplification. A very
natural question to ask is whether we can simplify the ar-
chitecture block. In exploring the answer to this question
we were able to extrapolate some patterns. We find that
the ratio of different layer types is critical to model quality:
replacing a layer with a different layer results in degraded
quality. However, the network is relatively insensitive to

layer order, such that swapping any two layers would not af-
fect performance much. For example, to create a simplified
pattern, we can interleave the dense FFNs and MoE layers
or simply creating contiguous layers of the same type.

Model Dimension : 1024

Dense FFN Dimension : 1536

MoE FFN Dimension : 2048
Gating Func : Expert Choice
Gating Capacity Factor : 1

Attention Heads : 20

Brainformer Block # 1

  ATTN

       FFN

       FFN

       FFN

       FFN

MOE
MOE
MOE

Figure 8: Brainformer Block # 1

Model Dimension : 1024

Dense FFN Dimension : 2048

MoE FFN Dimension : 2048
Gating Func : Expert Choice
Gating Capacity Factor : 2

Attention Heads : 16

Brainformer Block # 2

  ATTN

       FFN

       FFN

       FFN

MOE

MOE

  ATTN

  ATTN

Figure 9: Brainformer Block # 2
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7. Conclusion
Using an evolutionary search algorithm, we have devel-
oped and evaluated a complex architecture block, named
Brainformer, that consists of a diverse sequence of layers, in-
cluding a sparsely gated feed-forward layer. Along with the
new block, we also propose evaluating using a fixed training
time search, which enables fair comparisons across model
families. Brainformer demonstrates up to 2× faster training
convergence and 5× faster step time compared to its GLaM
counterpart. In downstream task evaluation, Brainformer
also demonstrates a 3% higher SuperGLUE score with fine-
tuning compared to GLaM, and greatly outperforms Primer
on oneshot evaluation for five generative tasks.

8. Limitations
In terms of research scope, our empirical results are primar-
ily on NLP domain, thoroughly on a wide range of NLU and
NLG tasks. However, we leave it to future work to apply
Brainformer to computer vision.

When adopting Brainformer targeting different hardware
platforms, there can be potential intricacies. For example,
edge devices can impose strict hardware constraints that
restricts the expression of Brainformer models. A practical
way is to run model training and quality evaluation on faster
accelerators such as GPUs or TPUs while simulating the step
time for the target hardware or using a learnt performance
model to predict the inference speed on the target hardware.
Another issue is some fundamental operators might not be
supported on a device lacking sufficient on-chip memories.
For example, global pooling is not supported on edge TPU.
But that can be out of scope for this paper, as Brainformer
aims to construct a compute-efficient model architecture out
of feasible operators.

Another limitation can be large resource consumption. In
the Brainformer search, we used 512 TPU v4 for a week
to arrive at the best solutions. However, worth mentioning
that we are working at a much large model scale and this
will be mitigated when we use a smaller model size and
smaller number of experts in the MoE layers. Also, the
search identified better model architecture within as early
as 500 trials. Practically, the resource consumption can
be small if we only need to identify better but suboptimal
models.
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A. You can have an appendix here.
You can have as much text here as you want. The main body must be at most 8 pages long. For the final version, one more
page can be added. If you want, you can use an appendix like this one, even using the one-column format.
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