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ABSTRACT

Federated Graph Learning (FGL) has emerged as a principled framework for
decentralized training of Graph Neural Networks (GNNs) while preserving data
privacy. In subgraph-FL scenarios, however, structural noise arising from data
collection and storage can damage the GNN message-passing scheme of clients,
leading to conflicts in collaboration. Existing approaches exhibit two critical
limitations: 1) Globally, they fail to identify corrupted clients, causing destructive
message-passing conflicts. 2) Locally, the global GNN performs poorly on these
clients due to structural noise, limiting their ability to benefit from federated
collaboration. To address these challenges, we propose FedSDR, a robust FGL
framework against high-structural-noise scenarios. Specifically, SNAA introduces
a noise evaluation metric to detect corrupted clients and reduce their contributions,
thereby mitigating the impact of noise on the global GNN. Furthermore, RLSR
leverages the knowledge from the healthy global model to repair locally corrupted
graph structures. Extensive experiments demonstrate that FedSDR outperforms
state-of-the-art methods across various scenarios under structural noise.

1 INTRODUCTION

Graph Neural Networks (GNNs) Scarselli et al. (2008); Shchur et al. (2018b); Luan et al. (2022);
Zhu et al. (2021) have emerged as a powerful framework for learning from graph-structured data,
leveraging message-passing mechanisms to capture complex relational patterns. However, traditional
GNNs training paradigms rely on centralized access to the entire graph Wu et al. (2022; 2021),
which becomes impractical in the real world due to privacy considerations Zhang et al. (2024). This
limitation is particularly acute in domains such as healthcare Li et al. (2023), finance Schreyer et al.
(2022), and social networks Zhang et al. (2024). To address these challenges, recent advances have
integrated Federated Learning (FL) McMahan et al. (2017b); Li et al. (2020a); Huang et al. (2022)
with GNNs, giving rise to Federated Graph Learning (FGL) Tan et al. (2024); Wan et al. (2024);
Zhang et al. (2021b). FGL extends FL principles to decentralized graph data, enabling clients to
collaboratively train GNNs while preserving their privacy.

Although existing FGL frameworks make preliminary attempts to address structural heterogeneity
and domain shift, they exhibit significant limitations when confronted with substantial structural
noise—corruptions in the graph topology, such as missing edges and spurious edges. Such noise
is prevalent in real-world graph applications. For instance, in credit card fraud detection GNNs,
fraudsters may create transactions with a few high-credit users to disguise themselves, thus evading
detection Jin et al. (2020). Similarly, social networks like Facebook or LinkedIn frequently exhibit
noise from inauthentic follower relationships Dai et al. (2018). These malicious transactions and
disguised relationships represent forms of edge corruption. Furthermore, results in Fig. 1 demon-
strate that structurally corrupted graphs severely degrade model performance. Consequently, these
limitations reveal two critical deficiencies in practical deployment scenarios as outlined below.

For global collaboration, structural noise can damage the GNN message-passing scheme of clients.
Therefore, structurally corrupted clients often impose harmful knowledge on the global GNN,
introducing destructive global knowledge inconsistencies. Existing methods rarely address the
challenge arising from structural noise. Specifically, Li et al. (2024b) only attempts to mitigate
label noise by filtering noisy nodes. Similarly, another method Fu et al. (2024) indirectly measures
neighbor information deviation through statistical indicators. Neither method effectively identifies
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Datasets PubMed Coauthor-Phy Roman-empire ogbn-mag ogbn-products

Uncorrupted 82.14 ± 0.12 89.21 ± 0.22 45.27 ± 0.18 49.72 ± 0.69 75.79 ± 0.71

Corrupted 78.41 ± 0.36 86.37 ± 0.27 41.72 ± 0.39 42.74 ± 0.22 72.66 ± 1.53

Figure 1: Problem illustration. We illustrate the challenges under high-structural-noise scenarios. (a) Globally,
structural corruption introduces harmful knowledge, causing knowledge inconsistencies that undermine
collaborative learning. (b) Locally, mitigating contributions of corrupted clients biases their message-passing
schemes, creating feature mismatches that degrade global model performance on them. (c) Spectral metric is
significantly lower for corrupted clients (C) than for clean ones (N), which enables reliable noise detection. The
table below compares the average test accuracy of models trained with corrupted and uncorrupted graphs under
FedAvg, with a corruption ratio of 1 and a noise extent of 0.5. Implementation details are provided in Sec. 5.1.

structural noise, leading to performance degradation in structural noise scenarios. The key to
addressing structural noise is identifying structurally corrupted clients and reducing their impact.
This observation raises a key research question: 1) How can we detect and mitigate the adverse
impact of corrupted clients under high-structural-noise scenarios?

For local deployment, however, simply mitigating the impact of corrupted clients is not a viable
solution, introducing two critical limitations. First, it discards potentially valuable knowledge from
these clients, as even corrupted data may contain partial valid patterns that could benefit the global
model. More importantly, such a mitigation creates a fundamental mismatch during local deployment.
The global model, trained on clean client data in large part, suffers severe performance degradation
on corrupted clients. Therefore, it denies them any benefits of collaborative learning. A more
fundamental solution is to directly repair the corrupted graph structure locally. This approach
maintains the participation of all clients while avoiding the above two flaws. This analysis triggers
the following question: 2) How to design an effective method to repair corrupted graph structure
without compromising valuable knowledge during aggregation?

To address the first challenge, motivated by the relationship between graph structure and spectral prop-
erties Tan et al. (2024); Kreuzer et al. (2021); Bo et al. (2023a), we hypothesize that structural noise
will manifest as detectable anomalies in the spectral domain. Moreover, we develop an innovative
spectral fidelity evaluation metric accordingly. To validate this, we first conduct experiments revealing
that structurally corrupted clients exhibit a significantly lower evaluation metric than clean ones
(Fig. 1). Building on this insight, we introduce spectra-guided Structural Noise-Aware Aggregation
(SNAA). This principled method detects structurally corrupted clients and reduces their contributions
through a weighting mechanism based on their extent of corruption. By dynamically redistributing
client contributions, SNAA effectively mitigates the adverse impact of corrupted clients, fostering
resilient and adaptive collaborative learning in the presence of structural noise.

To tackle the second issue, we develop a graph repair strategy leveraging global knowledge derived
from robust SNAA aggregation. Since SNAA inherently establishes a reliable global message-passing
scheme, it synthesizes healthy global knowledge that suggests consensus among uncorrupted clients.
This consensus is strongly reflected in the feature similarity, which reflects semantic validity Jin et al.
(2021). Therefore, corrupted connections exhibit significant deviations in feature similarity against
this knowledge. Motivated by this, we propose Robust Local Structure Reconstruction (RLSR),
which leverages the knowledge of the healthy global model to guide local graph repair. In contrast
to removing the corrupted structure, our approach selectively reconnects edges based on feature
similarity alignment with the global model, while maintaining valid local structure patterns. Moreover,
it corrects the intrinsic spectral properties of the graph (Fig. 2), which are critical for effective GNN
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message-passing schemes Stachenfeld et al. (2020); Geisler et al. (2024); Balcilar et al. (2021a).
Therefore, the repaired structure remains consistent with collaboratively learned knowledge and
enhances robust GNN training. Combining both strategies for noise-aware aggregation and structure
reconstruction, we propose FedSDR, a novel framework Federated Graph Learning with Structural
noise Detection and Reconstruction. Our principal contributions are summarized as follows.

• We are the first to reveal that structurally corrupted clients manifest as spectral outliers,
and that corrupted connections introduce observable discrepancies in feature similarities
between the local and global models.

• We propose FedSDR, an innovative framework that detects structurally corrupted clients
from a spectral perspective and mitigates their adverse impact through reweighting and
structure reconstruction.

• We conducted extensive experiments in high-structural-noise settings to demonstrate that
FedSDR outperforms state-of-the-art methods, achieving superior robustness and accuracy.

2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) Wu et al. (2020); Zhou et al. (2020); Zhang et al. (2019) have
emerged as a powerful framework for learning representations of graph-structured data, broadly
categorized into spectral and spatial approaches. Spectral GNNs Bo et al. (2023b); Balcilar et al.
(2021b) design filters in the spectral domain, with early methods such as ChebNet Defferrard et al.
(2016) employing fixed polynomial approximations and more recent advances, for instance, BernNet
He et al. (2021) and JacobiConv Wang & Zhang (2022), introducing scalable spectral filters for
enhanced flexibility. In contrast, spatial GNNs You et al. (2020); Bui et al. (2022) operate via direct
neighborhood aggregation, with influential examples including GIN Xu et al. (2019), GAT Veličković
et al. (2017), and GraphSAGE Hamilton et al. (2017). While spatial methods excel in scalability
and inductive learning, they can face challenges in handling structural perturbation and long-range
dependencies, issues that spectral methods may mitigate through global frequency-aware filtering.
This motivates our work to integrate spectral robustness into federated GNNs, bridging a gap in the
existing literature where spectral approaches remain underexplored within decentralized settings.

2.2 ROBUST FEDERATED LEARNING

Robust Federated Learning seeks to address the challenges posed by data heterogeneity, adversarial
attacks, and model inconsistency in distributed collaborative training. Traditional approaches like
FedAvg McMahan et al. (2017a) often fail to handle non-IID data or malicious clients, prompting
advancements in both Byzantine robustness and adversarial resilience. For instance, Zhu et al. (2023)
introduces a high-dimensional robust aggregation protocol with near-optimal statistical rates, while
Zhang et al. (2023) proposes DBFAT to balance clean and robust accuracy through decision-boundary
optimization under non-IID settings. For heterogeneous scenarios, Huang et al. (2024a) utilizes
public data entropy to filter malicious updates, whereas Fang & Ye (2022b) handles the label noise
via a robust noise-tolerant loss function. Nevertheless, these methods lack specialized mechanisms to
handle structural corruption in decentralized graph data, limiting their effectiveness in real-world
scenarios where such challenges are prevalent.

2.3 FEDERATED GRAPH LEARNING

Federated Graph Learning (FGL) enables collaborative training of GNNs across decentralized clients
while preserving graph data privacy Wan et al. (2024); Liu & Yu (2022); Huang et al. (2024c);
Chen et al. (2024). Current research in FGL primarily explores two paradigms: inter-graph and
intra-graph learning. In inter-graph FGL, clients train GNNs on distinct local graphs to achieve
globally generalizable models or enhance local performance through federated collaboration Huang
et al. (2024b); Tan et al. (2023). Intra-graph FGL focuses on tasks like node classification Huang
et al. (2023); Li et al. (2024d), link prediction Li et al. (2024a), and community detection within
shared or partitioned graphs Leeney & McConville (2023); Baek et al. (2023). However, existing
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methods fail to account for client-specific structural noise. This paper primarily focuses on intra-graph
FGL scenarios under high-structural-noise scenarios, innovatively revealing the unexplored impacts
of structural corruption. We effectively address the issue from two aspects: detecting structurally
corrupted clients through spectral analysis and repairing local graph structures by aligning them with
global feature similarities, thereby enhancing both global aggregation and local model performance.

3 PRELIMINARY

3.1 STRUCTURAL FIDELITY EVALUATION METRIC

Consider the undirected graph represented as G = (V, E), where V represents the collection of
nodes with a total of |V| = N vertices, and E ⊆ V × V defines the set of edges that connect
pairs of nodes. The graph corresponds to an adjacency matrix A ∈ {0, 1}N×N , where Auv = 1
represents the existing edge euv ∈ E and Auv = 0 otherwise. The degree matrix is constructed
as D = diag(d1, ..., dN ), where each di =

∑N
j=1 Aij represents the degree of node i ∈ V , with

the assertion di > 0. Then the Laplacian matrix is defined as L = D−A. Our structural fidelity
evaluation metric Side derives from spectral graph theory, as the eigenvalues of the Laplacian encode
graph topology Fiedler (1973); Von Luxburg (2007). It is defined as:

Side =
DTLD

DTD
, (1)

where the Laplacian quadratic form DTLD quantifies the degree-weighted connectivity disruptions,
while the denominator DTD provides normalization. Structural noise increases connectivity disrup-
tions, which in turn decreases the numerator. This causal relationship ensures that corrupted clients
yield a significantly lower Side value, enabling reliable noise detection and client reweighting.

3.2 FEDERATED LEARNING

Federated learning establishes a decentralized optimization paradigm where K distributed clients col-
laboratively train machine learning models while maintaining data locality. In federated optimization,
we consider a global model with parameters θ ∈ Rd, where d denotes the parameter dimension. The
collaborative objective minimizes:

min
θ
F(θ) = min

θ

K∑
k=1

wkLk(θ), (2)

where F(θ) represents the global optimization objective, measuring the average loss across all clients.
Lk(θ) = E(Z,y)∼Pk

[ℓ(Z, y)] denotes the local expected risk for client k with data distribution Pk.
ℓ(·) is the loss function evaluating the discrepancy between the model prediction and the true label
(Z, y), and the participation weight wk ≥ 0 satisfies

∑
k wk = 1. The training process alternates

between local computation and global synchronization. During each communication round t, clients
receive the global model θt and perform local updates:

θt+1
k ← θtk − η∇θLk(θ

t
k), (3)

where η is the learning rate and∇θLk denotes the local gradient. The server then aggregates these
updates through weighted averaging θt+1 =

∑K
k=1 wkθ

t+1
k .

4 METHODOLOGY

4.1 STRUCTURAL NOISE-AWARE AGGREGATION (SNAA)

Motivation. The effectiveness of FGL hinges on the ability to collaboratively train models across
clients with diverse graph structures. However, structural noise in local graphs can significantly
disrupt this process, introducing harmful inconsistencies in the learned representations. To address
this challenge, we propose Structural Noise-Aware Aggregation (SNAA). Our method enables us
to detect structurally corrupted clients and dynamically adjust their contributions to mitigate their
adverse impact. Our approach is grounded in spectral graph theory, leveraging the observation in
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Figure 2: Architecture illustration of FedSDR. We used blue and green arrows to represent the two components
of our method, SNAA and RLSR, respectively. In SNAA, each client computes the structural noise metric Sk

ide
locally, and the global model dynamically reweights their contributions based on this metric, thereby mitigating
the influence of corrupted clients. In RLSR, we prune potentially corrupted edges with low feature similarity
and reconnect an equivalent number of high-similarity edges to align the local graph structure with the global
consensus. The right scatter plot displays fidelity metric distribution, showing that RLSR effectively restores
spectral properties, which are critical for effective message-passing schemes.

Fig. 1 that structural noise manifests as deviations in the spectral properties of graphs. Details of
SNAA are presented in Fig. 2.

Structural Noise Detection. The structural noise detection framework in SNAA stems from spectral
graph analysis, where the Laplacian quadratic form DTLD encodes critical structural properties of a
graph, and its spectrum reflects the connectivity patterns and noise levels. Building on the spectral
graph formula established in Eq. (1), we develop a rigorous structural noise evaluation metric. For
client k with Laplacian Lk = Dk − Ak, the structural fidelity score Sk

ide is computed locally to
capture the extent of structural noise while preserving privacy:

Sk
ide =

⟨DkT

LkDk,1⟩F
⟨DkTDk,1⟩F

=

∑Nk

i=1

∑Nk

j=1[D
kT

LkDk]ij∑Nk

i=1

∑Nk

j=1[D
kTDk]ij

, (4)

where ⟨·, ·⟩F denotes the Frobenius inner product and 1 is the all-ones matrix.

Contribution Redistribution. Building upon these noise assessments, we develop a principled
contribution redistribution scheme for robust federated aggregation. The trustworthiness of each
client k is quantified through its structural fidelity metric Sk

ide, with lower values indicating worse
preservation of authentic structural relationships. To mitigate noise-induced biases during model
aggregation, we first compute the structural noise bias δk for each client, measuring its deviation
from the global mean noise level while accounting for local node counts Nk:

δk = Sk
ide −

∑K
i=1 NiS

i
ide∑K

j=1 Nj

. (5)

This weighted formulation ensures fair comparison across clients with varying dataset sizes. A lower
δk value indicates higher structural noise and thus lower reliability. The resulting bias terms are then
normalized through min-max scaling to maintain consistent value ranges:

γ(δk, δ) = −
δk ·min(δ)

max(δ) ·min(δ)
, (6)

where δ represents the complete set of client noise biases. The aggregation weight wk for client k is
obtained by applying the negative exponential function to the normalized bias, emphasizing clients
with higher Sk

ide:

wk =
exp(−γ(δk, δ))∑K
i=1 exp(−γ(δi, δ))

. (7)

Through the exponential transformation, we assign higher weights to clients with cleaner structural
patterns and smoothly alleviate the impact of noisier clients. Therefore, this weighting scheme ensures
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that the global model prioritizes reliable knowledge from uncorrupted graphs, which is essential for
maintaining consistent message-passing dynamics across clients.

Reliability-Aware Weighting Aggregation. We design a localized training mechanism to integrate
local insights and global knowledge harmoniously. Each client iteratively refines its model using
private data, preserving domain-specific expertise while mitigating catastrophic forgetting. The local
training procedure generating θt+1

k ensures compatibility with our noise-aware aggregation. Given
node features Xk ∈ RNk×f with Nk nodes and f -dimensional features, Ek the set of edges in the
graph of the client k, the forward pass yields node embeddings and logits:

Zk = fθk(X
k, Ek), (8)

where Zk ∈ RNk×C denotes the class logits for C classes. Here, fθk(·) represents the local model
inference. Let θt be the global model parameters at round t, and θtk denote the local parameters for
client k. For each node v in the training set, Zk

v ∈ RC represents the logits and ykv ∈ {1, ..., C} is the
true label. The training loss combines cross-entropy, label smoothing and model regularization:

L(θtk) = Lce + Lls + λLreg =
1

|Mtrain|
∑

v∈Mtrain

C∑
yk
v=1

ℓ(Zk
v , y

k
v ) +

ϵ

2
∥Z∥22 + λ∥θtk − θt∥22, (9)

whereMtrain is the training node mask, and λ controls the regularization strength. The cross-entropy
term ℓ(·) follows the precise implementation:

ℓ(Z, y) = − log

(
exp(Z[y])∑C
c=1 exp(Z[c])

)
, (10)

where ϵ controls label smoothing intensity. Z[y] and Z[c] index are the y-th and c-th elements of Z,
respectively. To guarantee differential privacy, we employ a Gaussian mechanism. The update rule
for client k is given by:

θt+1
k ← θtk − η∇θt

k
L(θtk) +N

(
0,

(
Cσ

|Mtrain|

)2

I

)
. (11)

Here, η is the learning rate, C is the gradient clipping threshold, σ is the noise multiplier. At the
round t+ 1, utilizing the aggregation weight wk defined in Eq. (7) for each client, the global model
aggregates updates with reliability-aware weighting:

θt+1 =

K∑
k=1

wkθ
t+1
k . (12)

By dynamically adjusting contributions based on spectral structural noise evaluation metrics, we align
the global model with uncorrupted graph characteristics. Subsequently, we achieve robust training
while maintaining model quality, efficiency, and privacy guarantees critical for practical deployment.

4.2 ROBUST LOCAL STRUCTURE RECONSTRUCTION (RLSR)

Motivation. While SNAA mitigates the global impact of structural noise, global model performance
on corrupted clients remains compromised. Since directly reducing corrupted client contributions
sacrifices their potentially valuable knowledge, it induces a fundamental mismatch in message-passing
dynamics, thereby undermining global model performance on them. Our solution leverages global
robust feature representations to guide local graph repair, simultaneously preserving authentic local
patterns and correcting structural noise. Details of RLSR are presented in Fig. 2.

Since SNAA ensures the global model predominantly reflects uncorrupted structural patterns, its
node embeddings encode discriminative feature relationships that are resilient to local noise. The
core insight of RLSR lies in that structurally corrupted edges manifest as deviations in feature
similarity space when evaluated against the global model. The normalized feature similarity matrix
Ck ∈ RNk×Nk captures pairwise relationships:

Ck = diag(HkHkT

)−
1
2 (HkHkT

)diag(HkHkT

)−
1
2 , (13)

where Hk = fθ(X
k, Ek) ∈ RNk×d be node embeddings from the global model fθ. Each element in

Eq. (13) measures the feature similarity between nodes u and v under the global inductive inference:

Ck
uv =

⟨hk
u,h

k
v⟩

∥hk
u∥ · ∥hk

v∥
, (14)
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where hk
u denotes the embedding of node u in client k. Authentic edges in uncorrupted graphs

align with high feature similarities, whereas structural noise introduces edges with discordantly low
similarities. RLSR exploits this discrepancy through two edge refinement processes.

First, to fundamentally eliminate structural noise, we prune corrupted edges. For each client k, we
compute a dynamic pruning threshold τkp as the α-quantile of existing edge similarities, defined
formally through the quantile function Q(·, α):

τkp = Q
(
{Ck

uv | Ak
uv = 1}, α

)
, (15)

where Q(S, α) denotes that there are α proportion of elements in S whose values are less than or equal
to it, i.e., α proportion of connected edges have similarities below τkp . Edges satisfying Ck

uv < τkp
are identified as corrupted connections and removed. This operation eliminates connections that
contradict the healthy knowledge of the global model, preserving only those consistent with the
consensus of global features.

Second, we conduct feature-aware edge reconnection. Merely removing noisy edges risks over-
sparsification, which disrupts message-passing dynamics. Subsequent reconnection compensates for
pruned edges by establishing high-similarity connections absent in the original structure. Candidate
edges are sampled from non-adjacent node pairs with similarities exceeding a reconnection threshold
τkr , defined as:

τkr = Q

(
{Ck

uv | Ak
uv = 0, u ̸= v}, 1− 2α|Ek|

Nk (Nk − 1)− 2|Ek|

)
, (16)

where τkr identifies the top α|Ek| highest-similarity non-edge, matching the count of pruned edges.
New edges are established for pairs (u, v) satisfying Ck

uv ≥ τkr , while excluding self-loop reconnec-
tion to improve the message-passing scheme. Therefore, reconnected edges exhibit strong feature
alignment with the global consensus. The joint pruning-reconnection operation in Eq. (15) and
Eq. (16) yields a repaired adjacency matrix Ãk:

Ãk
uv =


0 if Ak

uv = 1 and Ck
uv < τkp ,

1 if Ak
uv = 0 and u ̸= v and Ck

uv ≥ τkr ,

Ak
uv otherwise.

(17)

By replacing corrupted edges with feature-consistent connections, we succeed in both mitigating
structural noise and preserving client-specific patterns unaffected by corruption. In this way, RLSR
fundamentally addresses issues of structural noise, establishing a robust foundation for decentralized
GNN training in high-structural-noise environments.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We conducted experiments under various structural noise scenarios to validate the superior-
ity of our proposed FedSDR. The datasets with different scales include homophilic datasets PubMed
Sen et al. (2008), Coauthor-CS, Coauthor-Physics Shchur et al. (2018a), ogbn-products Hu et al.
(2020) and heterophilic datasets Actor Pei et al. (2020), Roman-empire Baranovskiy et al. (2023),
ogbn-mag Hu et al. (2020). Detailed descriptions of these datasets can be found in Appendix B.

Baselines. We compare FedSDR with several state-of-the-art federated approaches. (1) FedAvg
McMahan et al. (2017a); (2) FedGTA Li et al. (2024d); (3) FedProto Tan et al. (2022); (4) FedProx
Li et al. (2020b); (5) FedTAD Zhu et al. (2024) applying topology-aware knowledge distillation
technology; (6) FGSSL Huang et al. (2023) which reveals distortion brought by node-level semantics
and graph-level structure, (7) MOON Li et al. (2021a), (8) Scaffold Karimireddy et al. (2020), (9)
Ditto Li et al. (2021b) and (10) RHFL Fang & Ye (2022a), two state-of-the-art robust FL methods;
(11) FedSage+ Zhang et al. (2021a) and (12) FED-PUB Baek et al. (2023), two state-of-the-art
subgraph FL baselines; (13) AdaFGL Li et al. (2024c) tackling topology heterogeneity, (14) FedSSP
Tan et al. (2024) accommodating personalized preference.

Implementation Details. We use the Louvain algorithm Blondel et al. (2008) to partition the graph,
which is an effective strategy to obtain non-IID data in FGL Huang et al. (2023); Zhang et al. (2021b).
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For homophilic datasets, we adopt a 20%/40%/40% split for training, validation, and testing, whereas
for heterophilic datasets, the split is 50%/25%/25%. The local GNN models are trained using the
Adam optimizer Kinga et al. (2015). The specific learning rate, the number of communication rounds
and clients are detailed in Appendix B. To simulate high-structural-noise scenarios, the corruption
ratio (proportion of corrupted clients), the noise extent (proportion of edges randomly added and then
deleted in corrupted clients), and the pruning proportion α are set to 1, 0.5, and 0.3, respectively. The
results represent the average of 5 runs with different random seeds.

5.2 EXPERIMENTAL RESULTS

Performance Comparison We present federated graph classification results across seven datasets,
with the final average test accuracy shown in Tab. 1. The results demonstrate that FedSDR markedly
outperforms all baseline methods. Structure-aware approaches like FGSSL and FedGTA exhibit
more stable performance across datasets. While MOON achieves competitive results on some
datasets by aligning local representations with the global consensus, it suffers significant performance
degradation on others due to its inability to repair corrupted graph structure. Notably, traditional FL
algorithms such as FedAvg and FedProx surpass several more complex methods, highlighting how
severe structural noise substantially impacts most existing approaches.

Methods PubMed Coauthor-CS Coauthor-Phy Actor Roman-empire ogbn-mag ogbn-products

FedAvg [ASTAT17] 78.41 ± 0.36 82.01 ± 0.49 86.37 ± 0.27 31.28 ± 0.77 41.72 ± 0.39 42.74 ± 0.22 72.66 ± 1.53

FedProx [arxiv18] 77.82 ± 0.97 74.94 ± 0.36 86.19 ± 0.20 31.27 ± 0.50 41.76 ± 0.71 39.93 ± 0.49 70.51 ± 0.92

Scaffold [ICML20] 41.76 ± 0.83 43.00 ± 3.23 77.41 ± 1.75 23.52 ± 1.35 18.08 ± 0.33 15.09 ± 3.40 59.07 ± 2.21

MOON [CVPR21] 68.55 ± 2.27 75.91 ± 0.29 88.14 ± 0.16 31.14 ± 0.55 42.51 ± 0.30 42.96 ± 0.84 67.94 ± 0.45

Ditto [ICML21] 76.84 ± 1.02 80.33 ± 0.77 85.49 ± 0.55 30.62 ± 0.29 41.30 ± 0.67 41.23 ± 1.20 71.89 ± 0.95

FedSage+ [NIPS21] 78.29 ± 0.93 80.72 ± 0.51 85.83 ± 1.28 30.42 ± 0.74 41.64 ± 0.57 42.92 ± 0.47 71.98 ± 0.40

FedProto [AAAI22] 75.24 ± 0.17 67.26 ± 0.40 84.42 ± 0.23 22.38 ± 0.33 19.42 ± 0.18 37.16 ± 0.29 66.79 ± 1.59

RHFL [CVPR22] 78.07 ± 0.77 79.76 ± 0.87 86.11 ± 1.05 31.27 ± 0.66 42.33 ± 0.45 42.80 ± 0.41 71.04 ± 0.58

FGSSL [IJCAI23] 77.65 ± 0.41 81.05 ± 0.63 84.78 ± 1.61 31.20 ± 0.64 37.41 ± 0.51 41.23 ± 0.75 69.63 ± 1.13

FED-PUB [ICML23] 75.28 ± 0.64 79.34 ± 0.45 85.55 ± 0.87 30.59 ± 0.28 42.12 ± 0.65 40.15 ± 0.56 70.06 ± 0.99

FedTAD [IJCAI24] 77.92 ± 1.02 68.90 ± 0.93 OOM 31.13 ± 0.74 41.29 ± 0.40 OOM OOM

AdaFGL [ICDE24] 76.63 ± 0.88 79.50 ± 0.56 87.19 ± 0.44 30.90 ± 0.62 41.82 ± 0.57 43.22 ± 0.34 69.68 ± 1.05

FedGTA [VLDB24] 78.04 ± 0.58 81.24 ± 0.61 85.77 ± 0.16 31.03 ± 0.93 40.65 ± 0.21 42.52 ± 0.33 71.52 ± 0.78

FedSSP [NIPS24] 77.46 ± 0.43 79.67 ± 0.23 86.12 ± 0.74 30.52 ± 0.70 39.45 ± 0.62 40.48 ± 0.63 69.36 ± 0.85

FedSDR (ours) 82.57 ± 0.64 82.29 ± 0.32 89.37 ± 0.24 32.36 ± 0.59 48.33 ± 0.28 47.41 ± 0.42 78.57 ± 0.28

Table 1: Comparison with the state-of-the-art methods on non-IID data. The best and second results
are highlighted with bold and underline, respectively. Please see additional results in Appendix A.

Convergence Analysis Fig. 3 illustrates the training curves of the average test accuracy with standard
deviation across five random runs of three datasets (Actor, PubMed, Roman-empire), comparing
FedSDR with various baseline methods. The results demonstrate that existing approaches exhibit
significant performance degradation in high-structural-noise scenarios. In contrast, our proposed
FedSDR maintains both stable convergence and superior performance, showcasing its robustness to
structural noise.

(a) Actor (b) PubMed (c) Roman-empire

Figure 3: Test accuracy curves of FedSDR and five other methods on three datasets (Actor, PubMed, Roman-
empire), with accuracy (%) on the y-axis and communication rounds on the x-axis.
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Figure 4: Varying Corruption.

Datasets
SNAA RLSR

PubMed Actor Physics

✗ ✗ 78.41 31.28 86.37

✓ ✗ 81.82 31.56 88.92

✗ ✓ 82.26 32.07 89.21

✓ ✓ 82.57 32.36 89.37

Table 2: Ablation study of FedSDR. Figure 5: Parameter α.

5.3 VARYING CORRUPTION RATIOS AND NOISE EXTENTS

We evaluate the robustness of FedSDR under varying degrees of structural corruption on PubMed.
As demonstrated in Fig. 4, FedSDR achieves consistent performance improvements over FedAvg
across five representative structural corruption ratios and noise extents, accounting for all potential
cases. Our analysis reveals two critical findings: (1) While FedAvg exhibits progressively severe
performance degradation with increasing noise extent, FedSDR maintains stable accuracy; (2) Even
under high corruption ratios, our adaptive aggregation and local graph reconstruction enable robust
collaboration, consistently outperforming the baseline. These results validate the effectiveness of
FedSDR in handling diverse structural corruption scenarios.

5.4 ABLATION STUDY

To comprehensively evaluate the contribution of each component in FedSDR, we conducted an
ablation study across three datasets. Tab. 2 reveals that SNAA alone improves accuracy over FedAvg
through effectively identifying and mitigating structural noise during global aggregation. Furthermore,
RLSR achieves noticeable success in reconstructing local corrupted graph structures and restoring
message-passing dynamics. The complete FedSDR framework, combining both components, delivers
optimal performance by addressing structural noise at both global and local levels. This analysis
confirms that both global noise-aware aggregation and local structural reconstruction are indispensable
for effective FGL training under structural corruption.

5.5 HYPER-PARAMETER STUDY

We conduct a thorough investigation of the pruning proportion parameter α to understand its impact
on model performance and robustness. As shown in Fig. 5, FedSDR outperforms FedAvg across
all tested α values (ranging from 0.2 to 1.0) on five datasets. Moreover, continuous performance
improvement with increasing values of α indicates that our reconstruction successfully distinguishes
between corrupted and meaningful edges, enabling effective noise removal while preserving valuable
structural relationships. This performance advantage across parameter configurations demonstrates
the robustness of our approach.

6 CONCLUSION

This paper first presents a comprehensive study addressing structural noise. We propose FedSDR, a
novel framework that combines spectral-guided noise detection and adaptive structural repair. For
global collaboration, SNAA evaluates and mitigates structural corruption by dynamically reweighting
client contributions during global collaboration. For local deployment, RLSR reconstructs corrupted
graphs by aligning them with the global consensus while preserving valid local connectivity. Extensive
experiments across multiple datasets and noise scenarios demonstrate that FedSDR consistently
outperforms state-of-the-art methods, establishing a trustworthy paradigm for FGL in high-structural-
noise environments.
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A ADDITIONAL EXPERIMENTS

We comprehensively compare FedSDR with state-of-the-art methods under varying corruption
ratios (the proportion of structurally corrupted clients) and noise extents (the degree of structural
corruption per corrupted client). Our experimental setup evaluates three corruption ratios of 0.3, 0.5,
and 1 (the extreme case detailed in Tab. 1), with the noise extent and pruning proportion α fixed at 0.5
and 0.3. In addition, we validate the robustness of FedSDR across three noise extents (0.3, 0.5 shown
in Tab. 4, and 1), while keeping the corruption ratio (0.5) and pruning proportion α (0.3) constant.
Notably, as the corruption severity increases, competing methods exhibit significant performance
degradation, whereas FedSDR maintains stable performance, demonstrating a substantial advantage.
The best and second results are highlighted with bold and underline, respectively.

Methods PubMed Coauthor-CS Coauthor-Phy Actor Roman-empire ogbn-mag ogbn-products

FedAvg [ASTAT17] 81.83 ± 0.69 81.69 ± 0.47 89.08 ± 0.27 31.37 ± 0.58 39.23 ± 0.50 40.34 ± 0.57 73.34 ± 0.49

FedProx [arxiv18] 82.23 ± 0.68 82.05 ± 0.22 89.50 ± 0.29 31.57 ± 0.65 39.74 ± 0.54 39.92 ± 0.46 73.06 ± 0.47

Scaffold [ICML20] 40.45 ± 1.81 48.57 ± 2.43 79.88 ± 0.44 23.69 ± 0.46 17.90 ± 0.32 16.77 ± 0.42 66.28 ± 0.41

MOON [CVPR21] 76.65 ± 2.76 83.36 ± 0.18 91.06 ± 0.16 31.36 ± 0.69 39.97 ± 0.17 40.33 ± 0.37 73.47 ± 0.36

Ditto [ICML21] 78.92 ± 0.89 81.28 ± 0.75 88.61 ± 0.49 30.71 ± 0.27 38.26 ± 0.33 41.08 ± 0.79 71.95 ± 0.82

FedSage+ [NIPS21] 81.73 ± 0.68 81.73 ± 0.23 89.11 ± 1.02 30.95 ± 0.52 39.61 ± 0.69 42.60 ± 0.41 72.85 ± 0.40

FedProto [AAAI22] 82.01 ± 0.40 74.14 ± 0.29 86.70 ± 0.23 23.45 ± 0.29 13.93 ± 0.48 38.03 ± 0.56 69.20 ± 0.39

RHFL [CVPR22] 82.03 ± 0.53 81.45 ± 0.66 89.08 ± 0.41 31.06 ± 0.26 39.88 ± 0.45 42.04 ± 0.62 74.58 ± 0.57

FGSSL [IJCAI23] 82.09 ± 0.41 80.97 ± 0.57 89.94 ± 0.33 30.97 ± 0.52 33.16 ± 0.32 41.26 ± 0.63 72.32 ± 0.24

FED-PUB [ICML23] 80.27 ± 0.54 80.84 ± 0.56 87.90 ± 0.34 30.87 ± 0.73 38.39 ± 0.47 40.45 ± 0.29 71.53 ± 0.27

FedTAD [IJCAI24] 82.62 ± 0.43 73.16 ± 1.55 OOM 30.79 ± 0.45 39.83 ± 0.80 OOM OOM

AdaFGL [ICDE24] 81.32 ± 0.71 80.47 ± 0.37 88.75 ± 0.48 31.21 ± 0.59 39.28 ± 0.50 42.36 ± 0.78 72.94 ± 0.66

FedGTA [VLDB24] 82.20 ± 0.75 81.03 ± 0.60 85.77 ± 0.16 31.30 ± 0.50 38.80 ± 1.12 42.33 ± 0.69 73.78 ± 0.53

FedSSP [NIPS24] 79.90 ± 0.32 79.22 ± 0.39 88.04 ± 0.50 30.74 ± 0.81 37.52 ± 0.65 40.28 ± 0.47 72.02 ± 0.35

FedSDR (ours) 84.07 ± 0.48 83.43 ± 0.39 90.72 ± 0.43 33.30 ± 0.42 41.58 ± 0.38 46.88 ± 0.21 80.57 ± 0.42

Table 3: Corruption Ratio = 0.3, Noise Extent = 0.5, α = 0.3

Methods PubMed Coauthor-CS Coauthor-Phy Actor Roman-empire ogbn-mag ogbn-products

FedAvg [ASTAT17] 81.28 ± 2.02 81.26 ± 0.26 88.20 ± 0.22 31.29 ± 0.53 39.14 ± 0.60 43.56 ± 0.81 72.31 ± 0.24

FedProx [arxiv18] 80.82 ± 0.96 82.48 ± 0.51 88.68 ± 0.13 31.56 ± 0.59 39.26 ± 0.50 42.48 ± 0.27 71.83 ± 0.87

Scaffold [ICML20] 40.71 ± 0.90 44.72 ± 4.54 80.21 ± 1.61 23.06 ± 1.37 16.76 ± 1.86 17.29 ± 2.02 59.90 ± 2.03

MOON [CVPR21] 77.09 ± 2.59 80.92 ± 0.54 90.08 ± 0.17 31.04 ± 0.64 40.41 ± 0.22 44.99 ± 0.52 72.07 ± 0.22

Ditto [ICML21] 77.95 ± 0.85 80.31 ± 0.82 86.91 ± 0.32 30.03 ± 0.28 38.32 ± 0.24 42.85 ± 1.01 71.27 ± 0.25

FedSage+ [NIPS21] 79.91 ± 0.82 81.38 ± 0.57 88.90 ± 0.81 31.42 ± 0.43 41.64 ± 0.57 42.92 ± 0.47 72.86 ± 0.38

FedProto [AAAI22] 79.95 ± 0.58 72.46 ± 0.43 85.55 ± 0.21 23.50 ± 0.28 15.94 ± 0.13 37.27 ± 0.89 70.13 ± 0.44

RHFL [CVPR22] 78.86 ± 0.67 82.07 ± 0.49 87.34 ± 0.35 31.40 ± 0.48 42.33 ± 0.45 42.31 ± 0.92 73.25 ± 0.29

FGSSL [IJCAI23] 77.65 ± 0.41 81.05 ± 0.63 88.60 ± 0.76 31.31 ± 0.30 34.58 ± 0.56 40.38 ± 0.30 72.10 ± 0.34

FED-PUB [ICML23] 75.82 ± 0.59 79.79 ± 0.37 85.28 ± 0.31 30.77 ± 0.35 42.12 ± 0.65 40.15 ± 0.56 71.32 ± 0.46

FedTAD [IJCAI24] 80.93 ± 0.58 74.81 ± 1.38 OOM 31.25 ± 0.57 40.53 ± 0.46 OOM OOM

AdaFGL [ICDE24] 78.74 ± 0.60 80.06 ± 0.74 87.90 ± 0.65 31.06 ± 0.32 40.36 ± 0.63 44.67 ± 0.30 71.24 ± 0.65

FedGTA [VLDB24] 81.30 ± 0.77 81.22 ± 0.49 88.28 ± 0.18 31.25 ± 0.22 39.64 ± 0.76 42.12 ± 0.35 72.01 ± 0.63

FedSSP [NIPS24] 78.24 ± 0.45 78.88 ± 0.71 87.78 ± 0.92 30.58 ± 0.73 41.45 ± 0.62 40.97 ± 0.58 71.81 ± 0.32

FedSDR (ours) 84.06 ± 0.44 83.10 ± 0.32 90.50 ± 0.23 33.10 ± 0.50 45.12 ± 0.36 48.06 ± 0.20 80.23 ± 1.20

Table 4: Corruption Ratio = 0.5, Noise Extent = 0.3, α = 0.3
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B DATASETS

The statistics and configuration of the datasets used in our experiments are provided in Tab. 5.

• PubMed: PubMed Sen et al. (2008) is a widely adopted citation network dataset in which nodes
represent academic papers and edges correspond to citation relationships between them. Each node
is associated with a word vector feature encoding the presence or absence of specific keywords in
the corresponding paper. As a standard benchmark in graph-based machine learning, this dataset is
commonly employed for node classification tasks, particularly in FL scenarios where data privacy
must be preserved.

• Coauthor-CS, Coauthor-Physics: Derived from the Microsoft Academic Graph, the Coauthor-CS
and Coauthor-Physics datasets Shchur et al. (2018a) originate from the KDD Cup 2016 challenge.
These benchmark datasets represent academic collaboration networks, with nodes corresponding
to authors and edges indicating co-authorship. Coauthor-CS comprises 18,333 nodes and 81,894
edges, featuring node attributes based on paper keywords and 15 distinct research fields as class
labels. The larger Coauthor-Physics dataset contains 34,493 nodes and 247,962 edges, with similar
node features and labels representing classification into 5 main research areas. Both datasets serve
as established benchmarks for evaluating graph neural networks, particularly for node classification
tasks, due to their realistic academic network structures and comprehensive feature representations.

• Actor: The Actor dataset Pei et al. (2020) is an actor co-occurrence network constructed from
Wikipedia, where nodes represent actors and edges indicate co-appearance in Wikipedia pages.
Each node is characterized by a bag-of-words feature vector derived from the corresponding
Wikipedia page content. The dataset includes five actor categories, determined through semantic
analysis of their associated Wikipedia entries. As a standard benchmark in graph machine learning,
it is widely used to evaluate node classification tasks and related graph-based learning problems.

• Roman-empire: The Roman-empire dataset Baranovskiy et al. (2023) is derived from the English
Wikipedia article about the Roman Empire. Nodes represent word occurrences (including non-
unique words), with the graph size reflecting the article length. Edges are established based on two
linguistic relationships: (1) sequential co-occurrence when words appear consecutively in the text,
and (2) syntactic dependencies from the sentence parse trees. This construction yields a chain-like
graph augmented with linguistic connections, capturing both sequential and syntactic relationships
between words.

• ogbn-mag The ogbn-mag dataset from the Open Graph Benchmark (OGB) facilitates node property
prediction within a heterogeneous academic network derived from the Microsoft Academic Graph
(MAG). This graph comprises four entity types—papers (736,389 nodes), authors (1.13 million
nodes), institutions (8,740 nodes), and fields of study (59,965 nodes)—interconnected by directed
relations such as authorship, citation, and affiliation. Each paper node possesses a 128-dimensional
word2vec feature vector, while other entities lack initial features. The objective is a 349-class
classification to predict the publishing venue of each paper. A temporally realistic split is employed,
where papers published before 2018 are used for training, those from 2018 for validation, and
papers since 2019 for testing, ensuring a predictive task that forecasts future trends based on
historical data Hu et al. (2020).

• ogbn-products The ogbn-products dataset from the Open Graph Benchmark (OGB) supports
node property prediction tasks within an Amazon product co-purchasing network. This undirected
unweighted graph includes approximately 2.4 million nodes, each representing a product, and 61.9
million edges indicating frequent co-purchase relationships. Each node has a 100-dimensional
feature vector derived from product descriptions via bag-of-words and PCA. The task is to predict
the product category among 47 top-level classes in a multi-class classification setup. The dataset is
split by sales rank, with the top 8% of products for training, the next 2% for validation, and the
remaining 90% for testing, simulating a realistic scenario where popular products have labeled
data while predictions are required for less popular items Hu et al. (2020).

C ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experimen-
tation was involved. All datasets used were sourced in compliance with relevant usage guidelines,
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Dataset Nodes Edges Classes Features Learning Rate Rounds Clients
PubMed 19,717 44,338 3 500 0.01 1,000 10

Coauthor-CS 18,333 81,894 15 6,805 0.005 1,000 50
Coauthor-Phy 34,493 247,962 5 8,415 0.01 1,000 100

Actor 7,600 29,926 5 931 0.002 1,000 20
Roman-empire 22,662 32,927 18 300 0.02 5,000 50

ogbn-mag 1,939,743 349 128 0.01 1,000 100
ogbn-products 2,449,029 61,859,140 47 100 0.01 1,000 100

Table 5: Statistics of datasets used in experiments.

ensuring no violation of privacy. We have taken care to avoid any biases or discriminatory out-
comes in our research process. No personally identifiable information was used, and no experiments
were conducted that could raise privacy or security concerns. We are committed to maintaining
transparency and integrity throughout the research process.

D REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All code
and datasets have been made publicly available in an anonymous repository to facilitate replication
and verification. The experimental setup, including training steps, model configurations, and hardware
details, is described in detail in the paper. We have also provided a full description of FedSDR, to
assist others in reproducing our experiments.

Additionally, all datasets are publicly available, ensuring consistent and reproducible evaluation
results.

We believe these measures will enable other researchers to reproduce our work and further advance
the field.

E LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality of
the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated or
polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and
does not contribute to plagiarism or scientific misconduct.
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