
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Dynamic Multi-Network Mining of Tensor Time Series
Anonymous Author(s)

ABSTRACT

The time series data pattern changes dynamically in the same way
as a cluster, and so given a large collection of tensor time series
consisting of multiple modes, including timestamps, how can we
achieve subsequence clustering for tensor time series? In general,
we do not have prior knowledge of data; hence, how can we charac-
terize each cluster to provide interpretable insights? In this paper,
we propose a new method, Dynamic Multi-network Mining (DMM),
that converts a tensor time series into a set of segment groups
of various lengths (i.e., clusters) characterized by a dependency
network constrained with ℓ1-norm. Our method has the following
properties. (a) Interpretable: it characterizes the cluster with mul-
tiple networks, each of which is a sparse dependency network of a
corresponding non-temporal mode, and thus provides visible and
interpretable insights into the key relationships. (b) Accurate: it
discovers the clusters with distinct networks from tensor time series
according to the minimum description length (MDL). (c) Scalable:
it scales linearly in terms of the input data size when solving a
non-convex problem to optimize the numbers of segments and clus-
ters, and thus it is applicable to long-range and high-dimensional
tensors. Extensive experiments with synthetic datasets confirm that
our method outperforms the state-of-the-art methods in terms of
clustering accuracy. We then use real datasets to demonstrate that
DMM is useful for providing interpretable insights from tensor time
series.

CCS CONCEPTS

• Information systems→ Data mining; Clustering.

KEYWORDS

Tensor time series, Clustering, Network inference, Graphical lasso
ACM Reference Format:

Anonymous Author(s). 2018. Dynamic Multi-Network Mining of Tensor
Time Series . In Proceedings of Make sure to enter the correct conference title
from your rights confirmation emai (Conference acronym ’XX). ACM, New
York, NY, USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

The development of IoT has facilitated the collection of time series
data, including data related to automobiles [27], medicine [16, 29],
and finance [31, 38], from multiple modes such as sensor type,
locations and users, which we call tensor time series (TTS). An
instance of such data is online activity data, which records search

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

volumes in three modes {Query, Location, Timestamp}. These TTS
can often be divided and grouped into subsequences that have
similar traits (i.e., clusters). Time series subsequence clustering [1,
51] is a useful unsupervised exploratory approach for recognizing
dynamic changes and uncovering interesting patterns in time series.
As well as clustering data, the interpretability of the results is also
important since we rarely know what each cluster refers to [33, 36].
Modeling a cluster as a dependency network [14, 40, 43], where
nodes are variables and an edge expresses a relationship between
variables, gives a clear explanation of what the cluster refers to.
Considering that a TTS consists of multiple modes [4, 10, 23], a
cluster should be modeled as multiple networks, where each is a
dependency network of a corresponding non-temporal mode, to
provide a good explanation. In the above example, a cluster can
be modeled as query and location networks, where each explains
the relationships among queries/locations. With these networks,
we can understand why a particular cluster distinguishes itself
from another and speculate about what happened during a period
belonging to the cluster. Given such a TTS, how can we find clusters
with interpretability contributing to a better understanding of the
data?

Research on time series subsequence clustering has mainly fo-
cused on univariate or multivariate time series (UTS and MTS).
Generally, UTS clustering methods use distance-based metrics such
as dynamic timewarping [5]. Thesemethods focus onmatching raw
values and do not consider relationships among variables, which is
essential if we are to interpret the MTS and TTS clustering. MTS
clustering methods usually employ model-based clustering, which
assumes, for example, a Gaussian [24] or an ARMA [47] model
and attempts to find clusters that recover the data from the model.
The interpretability of the clustering results depends on the model
they assume. As a technique for interpretable clustering, TICC [14]
models an MTS with a dependency network and discovers inter-
pretable clusters that previously developed methods cannot find.
Nevertheless, TTS clustering is a more challenging problem and
cannot simply employ MTS methods due to the complexity of TTS,
stemming from multiple modes, which introduces intricate depen-
dencies and a massive data size. To employ an MTS clustering
method (e.g., TICC) for TTS, the TTS must be flattened to form a
higher-order MTS. As a result, the method processes the higher-
order MTS and mixes up all the relationships between variables,
which may capture spurious relationships and unnecessarily exacer-
bate the interpretability. Moreover, its computational time increases
greatly as the number of variables in a mode increases.

In this paper, we propose a new method for TTS subsequence
clustering, which we call Dynamic Multi-network Mining (DMM). 1
In our method, we define each cluster as multiple networks, each
of which is a sparse dependency network of a corresponding non-
temporal mode and thus can be seen as visual images that can help
users quickly understand the data structure. Our algorithm scales

1Our source code and datasets are publicly available:
https://anonymous.4open.science/r/DMM-4F24.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://anonymous.4open.science/r/DMM-4F24

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

linearly with the input data size while employing the divide-and-
conquer method and is thus applicable to long-range and high-
dimensional tensors. Furthermore, the clustering results and every
user-defined parameter of our method can be determined by a
single criterion based on the Minimum Description Length (MDL)
principle [12]. DMM is a useful tool for TTS subsequence clustering
that enables multifaceted analysis and understanding of TTS.

1.1 Preview of our results

Fig. 1 shows the DMM results for clustering over Google Trends
data, which consists of 10 years of daily web search counts for six
queries related to COVID-19 across 10 countries, forming a 3𝑟𝑑 -
order tensor. Fig. 1 (a) shows the cluster assignments of the TTS,
where each color represents a cluster. DMM splits the tensor into
four segments and groups them into four clusters, each of which
can be interpreted as a distinct phase corresponding to the evolving
social response to COVID-19; thus, we name these phases “Before
Covid,” “Outbreak,” “Vaccine,” and “Adaptation.” It is worth noting
that this result is obtained with no prior knowledge.

Fig. 1 (b) presents the networks of each cluster, i.e., a country
network, which has nodes plotted on the world map, reflects depen-
dencies between different countries, and a query network for query
dependencies. These networks, also known as a Markov Random
Field (MRF) [37], illustrate how the node affects the other nodes.
The thickness and color of the edges in the network indicate the
strength of the partial correlation between the nodes, which de-
notes a stronger relationship compared with a simple correlation.
We learn the networks by estimating a Gaussian inverse covariance
matrix. Then, by definition, if there is an edge between two nodes,
the nodes are directly dependent on each other. Otherwise, they are
conditionally independent, given the rest of the nodes. Moreover,
we impose an ℓ1-norm penalty on the networks to promote sparsity,
making it possible to obtain true networks and interpretability, as
well as making the method noise-robust [46, 49]. These networks
provide visible and interpretable insights into the key relationships
that characterize clusters.

We see that each of the four clusters exhibits unique networks
that evolve with the different phases. In the “Before Covid” phase,
the country network displays edges between English-speaking
countries, indicating their interconnectedness. In the query net-
work, the query “vaccine” correlates with “influenza.” However,
during the “Outbreak” starting in 2020, many countries respond to
the COVID-19 pandemic, leading to various edges in the country
network. In the query network of this phase, new edges related
to “coronavirus” appear, and “coronavirus” and “virus” have a
particularly strong connection. In the “Vaccine” phase, as people be-
come more concerned about protection from COVID-19, the query
“vaccine” forms an edge with “covid.” Moreover, since flu infects
fewer people than in the past, “influenza” loses its edges. Lastly,
during the “Adaptation” phase, as the world becomes accustomed
to the situation, the country network reduces the number of edges,
and the edges related to “influenza” reappear, reflecting a return
to the networks observed in the “Before Covid” phase.

(a) Cluster assignments on the original tensor time series

(b) Country and query networks change dynamically

Figure 1: Effectiveness of DMM on Google Trends (#4

Covid) dataset: (a) DMM can split the tensor time series

into meaningful subsequence clusters shown by colors (i.e.,

#green→ “Before Covid”, #pink→ “Outbreak”, #gray→ “Vac-
cine”, #blue→ “Adaptation”), and (b) their important rela-

tionships between variables are summarized with country

and query networks, where the nodes show individual vari-

ables, and the thickness and color of the edges are partial

correlations showing the importance of its interaction.

1.2 Contributions

In summary, we propose DMM as a subsequence clustering method
for TTS based on the MDL principle that enables each cluster to
be characterized by multiple networks. The contributions of this
paper can be summarized as follows.

• Interpretable: DMM realizes the meaningful subsequence
clustering of TTS, where each cluster is characterized by
sparse dependency networks for each non-temporal mode,
which facilitates the interpretation of the cluster from im-
portant relationships between variables.

• Accurate: We define a criterion based on MDL to discover
clusters with distinct networks. Thanks to the proposed
criterion, any user-defined parameters can be determined,
and DMM outperforms its state-of-the-art competitors in
terms of clustering accuracy on synthetic data.

• Scalable: The proposed clustering algorithm inDMM scales
linearly as regards the input data size and is thus applicable
to long-range and high-dimensional tensors.

Outline. The rest of the paper is organized as follows. After intro-
ducing related work in Section 2, we present our problem and basic
background in Section 3. We then propose our model and algorithm
in Sections 4 and 5, respectively. We report our experimental results
in Sections 6 and 7.

2 RELATEDWORK

We review previous studies that are closely related to our work.
Time series subsequence clustering. Subsequence clustering is
an important task in time series data mining whose benefits are

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Dynamic Multi-Network Mining of Tensor Time Series Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

the extraction of interesting patterns and the provision of valuable
information, and that can also be used as a subroutine of other tasks
such as forecasting [32, 39]. Time series subsequence clustering
methods can be roughly separated into a distance-based method
and a model-based method. The distance-based method uses met-
rics such as dynamic time warping [2, 5, 19] and longest common
subsequence [44] and finds clusters by focusing on matching raw
values rather than structure in the data. The model-based method
assumes a model for each cluster, and finds the best fit of data to
the model. It covers a wide variety of models such as ARMA [47],
Markov chain [34], and Gaussian [24]. However, most previous
work has focused on MTS and are not suitable for TTS. Few studies
have focused on TTS clustering, for example, CubeScope [30] uses
Dirichlet prior as a model to achieve online TTS clustering, but it
only supports sparse categorical data. In summary, existingmethods
are not particularly well-suited to handling TTS and discovering
interpretable clusters.
Tensor time series. TTS are ubiquitous and appear in a vari-
ety of applications, such as recommendation and demand predic-
tion [3, 25, 45]. To model a tensor, tensor/matrix decomposition,
such as Tucker/CP decomposition [21] and SVD, is a commonly
used technique. Although it obtains a lower-dimensional repre-
sentation that summarizes important patterns from a tensor, it
struggles to capture temporal information [22]. Therefore, it is
often combined with dynamical systems to handle temporal in-
formation [8, 17, 35]. For example, SSMF [18], which is an online
forecasting method that uses clustering as a subroutine, combines
a dynamical system with non-negative matrix factorization (NMF)
to capture seasonal patterns from a TTS. Each cluster in SSMF
is characterized by a lower-dimensional representation of a TTS,
however, understanding the representation is demanding. Thus,
tensor/matrix decomposition is not suitable for an interpretable
model.
Sparse network inference. Inferring a sparse inverse covariance
matrix (i.e., network) from data helps us to understand the depen-
dency of variables in a statistical way. Graphical lasso [9], which
maximizes the Gaussian log-likelihood imposing a ℓ1-norm penalty,
is one of the most commonly used techniques for estimating the
sparse network from static data. However, time series data are nor-
mally non-stationary, and the network varies over time; thus, to
infer time-varying networks, time similarity with the neighbor-
ing network is usually considered [13]. The monitoring of such
time-varying networks has been studied with the aim of analyz-
ing economic data [31] and biological signal data [29] because of
the high interpretability of the network [41]. Although the infer-
ence of time-varying networks is able to find change points by
comparing the networks before and after a change, it cannot find
clusters [15, 42, 48]. TICC [14] and TAGM [43] use graphical lasso
and find clusters from time series based on the network of each
subsequence, providing the clusters with interpretability and allow-
ing us to discover clusters that other traditional clustering methods
cannot find. However, they cannot provide an interpretable insight
when dealing with TTS. Consequently, past studies have yet to find
networks for TTS and to cluster TTS based on the networks. Our
method uses a graphical lasso-based model modified to provide
interpretable clustering results from TTS.

3 PROBLEM FORMULATION

Table 1: Symbols and definitions.

Symbol Definition

𝐷𝑛 Number of variables at mode-n
𝑁 Number of modes excluding temporal mode
𝑇 Number of timestamp
X (N+1)𝑡ℎ-order TTS, i.e., X = {X1, X2, . . . , X𝑇 } ∈

R𝐷1×···×𝐷𝑁 ×𝑇

X𝑡 𝑁 𝑡ℎ-order tensor at 𝑡𝑡ℎ time step, i.e., X𝑡 ∈
R𝐷1×···×𝐷𝑁

𝐷 Total product of variables excluding 𝑇 , i.e., 𝐷 =∏𝑁
𝑛=1 𝐷𝑛

𝐷 (\𝑛) Total product of variables excluding 𝐷𝑛 and 𝑇 , i.e.,
𝐷 (\𝑛) =

∏𝑁
𝑚=1(𝑚≠𝑛) 𝐷𝑚

𝐾 Number of clusters
𝑚 Number of segments
𝑐𝑝 Cut points, i.e., 𝑐𝑝 = {𝑐𝑝1, 𝑐𝑝2, . . . , 𝑐𝑝𝑚 }
𝑐𝑝𝑖 Starting point of segment 𝑖 , i.e., 𝑐𝑝1 = 1, 𝑐𝑝𝑚+1 = 𝑇 +1
Θ Model parameter set, i.e., Θ = {\1, \2, . . . , \𝐾 }
\ Hierarchical Teoplitz matrix of shape \ ∈ R𝐷×𝐷 con-

sists of {𝐴(1) , · · · , 𝐴(𝑁) }
𝐴(𝑛) Precision matrix of mode-n, i.e., 𝐴(𝑛) ∈ R𝐷𝑛×𝐷𝑛
F Cluster assignment set, i.e., F = { 𝑓1, 𝑓2, . . . , 𝑓𝐾 }
M Cluster parameter set, i.e., M = {F,Θ}

𝐶𝑜𝑠𝑡𝐴 (F) Coding length cost: description complexity of F
𝐶𝑜𝑠𝑡𝑀 (Θ) Model coding cost: description complexity of Θ
𝐶𝑜𝑠𝑡𝐶 (X |M) Data coding cost: negative log-likelihood of X given

M
𝐶𝑜𝑠𝑡ℓ1 (Θ) ℓ1-norm cost: penalty for Θ
𝐶𝑜𝑠𝑡𝑇 (X;M) Total description cost: total cost of X given M

In this section, we describe the TTS we want to analyze, intro-
duce some necessary background material, and define the formal
problem of TTS clustering.

Table 1 lists the main symbols we use throughout this paper.
Consider an (N+1)𝑡ℎ-order TTS X ∈ R𝐷1×···×𝐷𝑁 ×𝑇 , where the
mode-(𝑁 +1) is the time and its dimension is𝑇 . We can also rewrite
the TTS as a sequence of 𝑁 𝑡ℎ-order tensors X = {X1,X2, . . . ,X𝑇 },
where each X𝑡 ∈ R𝐷1×···×𝐷𝑁 (1 ≤ 𝑡 ≤ 𝑇) denotes the observed
data at the 𝑡𝑡ℎ time step.

3.1 Tensor algebra

We briefly introduce some definitions in tensor algebra from tensor
related literature [8, 21].

Definition 1 (Reorder). Let the ordered sets 𝑃 (1) , . . . , 𝑃 (𝐺) ,
where 𝑃 (𝑔) = {𝑝 (𝑔)1 , . . . , 𝑝

(𝑔)
𝑛𝑔 } ⊂ {1, 2, . . . , 𝑁 }, be a partitioning

of the modes {1, 2, . . . , 𝑁 } s.t.,
∑𝐺
𝑔 𝑛𝑔 = 𝑁 . The reordering of an

𝑁 𝑡ℎ-order tensor X ∈ R𝐷1×···×𝐷𝑁 into ordered sets is defined as
𝑟𝑒 (X) (𝑃 (1) ,...,𝑃 (𝐺)) ∈ R𝐽

(1)×···× 𝐽 (𝐺)
, where 𝐽 (𝑔) =

∏
𝑛∈𝑃 (𝑔) 𝐷𝑛 .

Given a tensor X ∈ R𝐷
(1)
1 ×···×𝐷 (1)

𝑁
×𝐷 (2)

1 ×···×𝐷 (𝐺)
𝑁 , we partition

the modes into 𝐺 , 𝑃 (𝑔) = {𝑔𝑁 + 1, · · · , 𝑔(𝑁 + 1)}. The element is
given by 𝑟𝑒 (X) (𝑃

(1) ,...,𝑃 (𝐺))
𝑖 (1) ,...,𝑖 (𝐺) = X

𝑑
(1)
1 ,...,𝑑

(1)
𝑁
,𝑑

(2)
1 ,...,𝑑

(𝐺)
𝑁

, where 𝑖 (1) =

1 +∑𝑁
𝑔=1 (𝑑

(1)
𝑔 − 1)∏𝑔−1

𝑛=1 𝐷
(1)
𝑛 .

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Special cases of reordering are vectorization and matricization.
Vectorization happens when 𝐺 = 1. 𝑣𝑒𝑐 (X) = 𝑟𝑒 (X) ({−1}) ∈ R𝐷 ,
where 𝐷 =

∏𝑁
𝑛=1 𝐷𝑛 and {−1} refers to the remaining unset modes.

Mode-n matricization happens when 𝐺 = 2 and 𝑃 (1) is a single-
ton. 𝑚𝑎𝑡 (X) (𝑛) = 𝑟𝑒 (X) ({𝑛},{−1}) ∈ R𝐷𝑛×𝐷

(\𝑛) , where 𝐷 (\𝑛) =∏𝑁
𝑚=1(𝑚≠𝑛) 𝐷𝑚 .

3.2 Graphical lasso

We use graphical lasso as a part of our model. Given the mode-
(N+1) matricization of the (𝑁 + 1)𝑡ℎ-order TTS,𝑚𝑎𝑡 (X) (𝑁+1) ∈
R𝑇×𝐷 , the graphical lasso [9] estimates the sparse Gaussian inverse
covariance matrix (i.e., network) \ ∈ R𝐷×𝐷 , also known as the
precision matrix, with which we can interpret pairwise conditional
independencies among 𝐷 variables, e.g., if \𝑖, 𝑗 = 0 then variables
𝑖 and 𝑗 are conditionally independent given the values of all the
other variables. The optimization problem is given as follows:

minimize
\ ∈𝑆𝑝++

_ | |\ | |𝑜𝑑,1 −
𝑇∑︁
𝑡=1

𝑙𝑙 (𝑚𝑎𝑡 (X) (𝑁+1)
𝑡, , \), (1)

𝑙𝑙 (𝑥, \) = − 1
2 (𝑥 − `)𝑇 \ (𝑥 − `)

+ 1
2 log det\ − 𝐷

2 log(2𝜋), (2)

where \ must be a symmetric positive definite (𝑆𝑝++). 𝑙𝑙 (𝑥, \) is the
log-likelihood and ` ∈ R𝐷 is the empirical mean of𝑚𝑎𝑡 (X) (𝑁+1) .
_ ≥ 0 is a hyperparameter for determining the sparsity level of
the network, and ∥ · ∥𝑜𝑑,1 indicates the off-diagonal ℓ1-norm. Since
Eq. (1) is a convex optimization problem, its solution is guaranteed
to converge to the global optimum with the alternating direction
method of multipliers (ADMM) [7] and can speed up the solution
time.

3.3 Network-based tensor time series clustering

A real-world complex X cannot be expressed by a single static
network because it contains multiple sequence patterns, each of
which has a distinct relationship/network. To address this issue, we
formulate the network-based TTS clutering problem. It assumes
that 𝑇 time steps of X can be divided into𝑚 time segments based
on 𝐾 networks (i.e., clusters). Let 𝑐𝑝 denote a starting point set of
segments, i.e., 𝑐𝑝 = {𝑐𝑝1, 𝑐𝑝2, . . . , 𝑐𝑝𝑚}, the 𝑖-th segment of X is
denoted as X𝑐𝑝𝑖 :𝑐𝑝𝑖+1 where 𝑐𝑝𝑚+1 = 𝑇 + 1. We group each of the𝑇
points into one of the 𝐾 clusters denoted by a cluster assignment
set F = {𝑓1, 𝑓2, . . . , 𝑓𝐾 }, where 𝑓𝑘 ⊂ {1, 2, . . . ,𝑇 }, and we refer to
all subsequences in the cluster 𝑘 as X[𝑓𝑘] ⊂ X. Then, letting Θ be
a model parameter set, i.e., Θ = {\1, \2, . . . , \𝐾 }, each \𝑘 ∈ R𝐷×𝐷

is a sparse Gaussian inverse covariance matrix that summarizes
the relationships of variables in X[𝑓𝑘]. Therefore, the entire cluster
parameter set is given by M = {M1,M2, . . . ,M𝐾 }, consisting
of M𝑘 = {\𝑘 , 𝑓𝑘 }. Overall, the problem that we want to solve is
written as follows.

Problem 1. Given a tensor time series X, estimate:

• a cluster assignment set, F = {𝑓𝑘 }𝐾𝑘=1
• a model parameter set, Θ = {\𝑘 }𝐾𝑘=1
• the number of clusters 𝐾

4 PROPOSED DMM

In this section, we propose a new model with which to realize
network-based TTS clustering, namely, DMM. We first describe
our model \ , and then we define the criterion for determining the
cluster assignments and the number of clusters.

4.1 Multimode graphical lasso

Assume 𝐾, F are given, here, we address how to define and infer
the model \𝑘 . The original graphical lasso allows \𝑘 to connect any
pairs of variables in a tensor; however, it is too high-dimensional
to reveal relationships separately in terms of the non-temporal
modes. To avoid the over-representation, we aim to capture the
multi-aspect relationships by separating \𝑘 into multimodes to
which we add a desired constraint for interpretability.

We assume that \ is derived from 𝑁 networks, {𝐴(1) , . . . , 𝐴(𝑁) },
where𝐴(𝑛) ∈ R𝐷𝑛×𝐷𝑛 is the𝑛-th network. For example, an element
𝑎
(𝑛)
𝑖, 𝑗

∈ 𝐴(𝑛) refers to the relationship between the 𝑖-th and 𝑗-th
variables of mode-n, In each network, the goal is to capture the
dependencies between 𝐷𝑛 variables. We also assume that there are
no relationships except among variables that differ only at mode-n.
Thus, \ = \ (𝑁) becomes an 𝑁 𝑡ℎ hierarchical Toeplitz matrix [11]
of shape 𝐷 × 𝐷 . \ (𝑛) can be written as follows:

\ (𝑛) =

©«

\ (𝑛−1) 𝐶
(𝑛)
1,2 · · · · · · 𝐶

(𝑛)
1,𝐷𝑛

𝐶
(𝑛)
2,1 \ (𝑛−1) · · ·

.

.

.

𝐶
(𝑛)
3,1 𝐶

(𝑛)
3,2 · · ·

. . .
.
.
.

.

.

.
. . . · · · 𝐶

(𝑛)
𝐷𝑛−2,𝐷𝑛−1 𝐶

(𝑛)
𝐷𝑛−2,𝐷𝑛

.

.

. · · · \ (𝑛−1) 𝐶
(𝑛)
𝐷𝑛−1,𝐷𝑛

𝐶
(𝑛)
𝐷𝑛 ,1

. . . · · · 𝐶
(𝑛)
𝐷𝑛 ,𝐷𝑛−1 \ (𝑛−1)

ª®®®®®®®®®®®®®®®®®¬

,

where \ (1) = 𝐴(1) and 𝐶 (𝑛)
𝑖, 𝑗

∈ R𝐷𝑛×𝐷𝑛 is a diagonal matrix whose
diagonal element is 𝑎 (𝑛)

𝑖, 𝑗
∈ 𝐴(𝑛) , i.e.,𝐶 (𝑛)

𝑖, 𝑗
= 𝑎

(𝑛)
𝑖, 𝑗

·𝛿𝑖 . 𝑗 allows edges
that differ only at mode-n, where 𝛿𝑖 . 𝑗 is the Kronecker delta.

We extend graphical lasso to obtain \ by inferring a sparse 𝐴(𝑛)

from a TTS. The optimization problem is written as follows:

minimize
𝐴(𝑛) ∈𝑆𝑝++

_ | |𝐴(𝑛) | |𝑜𝑑,1

−
𝑇∑︁
𝑡

𝑙𝑙𝑛 (𝑟𝑒 (X) ({𝑁 +1},{−1},{𝑛})
𝑡,:,: , 𝐴(𝑛)), (3)

𝑙𝑙𝑛 (𝑟𝑒 (X)𝑡,:,:, 𝐴(𝑛)) =
𝐷 (\𝑛)∑︁
𝑑=1

{− 1
2 (𝑟𝑒 (X)𝑡,𝑑,: − `𝑑)𝑇𝐴(𝑛) (𝑟𝑒 (X)𝑡,𝑑,: − `𝑑)

+ 1
2 log det𝐴(𝑛) − 𝐷𝑛

2 log(2𝜋) }/𝐷 (\𝑛) , (4)

where `𝑑 ∈ R𝐷𝑛 is the empirical mean of the variable 𝑟𝑒 (X):,𝑑,: ∈
R𝑇×𝐷𝑛 . Eq. (3) is a convex optimization problem solved by ADMM.
We divide the log-likelihood by 𝐷 (\𝑛) to scale the sample size.

4.2 Data compression

To determine the cluster assignment set F and the number of clus-
ters𝐾 , we use theMDL principle [12], which follows the assumption

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Dynamic Multi-Network Mining of Tensor Time Series Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

that the more we compress the data, the more we generalize its un-
derlying structures. The goodness of the modelM can be described
with the following total description cost:

𝐶𝑜𝑠𝑡𝑇 (X;M) =𝐶𝑜𝑠𝑡𝐴 (F) +𝐶𝑜𝑠𝑡𝑀 (Θ)+
𝐶𝑜𝑠𝑡𝐶 (X|M) +𝐶𝑜𝑠𝑡ℓ1 (Θ) . (5)

We describe the four items that appear in Eq. (5).
Coding length cost. 𝐶𝑜𝑠𝑡𝐴 (F) is the description complexity of
the cluster assignment set F , which consists of the following ele-
ments: the number of clusters 𝐾 and segments𝑚 require log∗ (𝐾) +
log∗ (𝑚). 2 The assignments of the segments to clusters require
𝑚 × log∗ (𝐾). The number of observations of each cluster requires∑𝐾
𝑘=1 log

∗ (|𝑓𝑘 |).

𝐶𝑜𝑠𝑡𝐴 (F) = log∗ (𝐾) + log∗ (𝑚)+

𝑚 × log∗ (𝐾) +
𝐾∑︁
𝑘=1

log∗ (|𝑓𝑘 |) . (6)

Model coding cost. 𝐶𝑜𝑠𝑡𝑀 (Θ) is the description complexity of
the model parameter set Θ, which consists of the following ele-
ments: the diagonal values of each cluster at each hierarchy, which
has sizes 𝐷𝑛 × 1, require 𝐷𝑛 (log(𝐷𝑛) + 𝑐𝐹), where 𝑐𝐹 is the float-
ing point cost. 3 The positive values of 𝐴(𝑛) ∈ R𝐷𝑛×𝐷𝑛 require
|𝐴(𝑛)
𝑘

|≠0 (log(𝐷𝑛 (𝐷𝑛 − 1)/2) + 𝑐𝐹), where | · |≠0 describes the num-
ber of non-zero elements in a matrix.

𝐶𝑜𝑠𝑡𝑀 (Θ) =
𝐾∑︁
𝑘=1

𝑁∑︁
𝑛=1

{𝐷𝑛 (log(𝐷𝑛) + 𝑐𝐹) + log∗ (|𝐴(𝑛)
𝑘

|≠0)+

|𝐴(𝑛)
𝑘

|≠0 (log(𝐷𝑛 (𝐷𝑛 − 1)/2) + 𝑐𝐹)}/(𝐷2
𝑛𝑁). (7)

We divide by 𝐷2
𝑛𝑁 to deal with the change of data scale.

Data coding cost. 𝐶𝑜𝑠𝑡𝐶 (X|M) is the data encoding cost of X
given the cluster parameter setM. Huffman coding [6] uses the log-
arithm of the inverse of probability (i.e., the negative log-likelihood)
of the values.

𝐶𝑜𝑠𝑡𝐶 (X|M) =
𝐾∑︁
𝑘=1

𝑁∑︁
𝑛=1

∑︁
𝑡 ∈ 𝑓𝑘

𝑙𝑙𝑛 (𝑟𝑒 (X) ({𝑁+1},{−1},{𝑛})
𝑡,:,: , 𝐴

(𝑛)
𝑘

).

(8)

ℓ1-norm cost. 𝐶𝑜𝑠𝑡ℓ1 (Θ) is the ℓ1-norm cost given a model Θ.

𝐶𝑜𝑠𝑡ℓ1 (Θ) =
𝐾∑︁
𝑘=1

𝑁∑︁
𝑛=1

_ | |𝐴(𝑛)
𝑘

| |𝑜𝑑,1 . (9)

Discovering an optimal sparse parameter _ capable of modeling
data is a challenge, however, the parameter value can be determined
by using MDL to choose the minimum total cost [26].

Our next goal is to find the best cluster parameter set M that
minimizes the total description cost Eq. (5).

2Here, log∗ is the universal code length for integers.
3We used 4 × 8 bits in our setting.

(a) Original cp (b) Left merge (c) Right merge

Figure 2: Illustration of the three candidates. We compare

the total description cost of each of these candidates.

5 OPTIMIZATION ALGORITHMS

Thus far, we have described our model based on graphical lasso and
a criterion based on MDL. The most important question is how to
discover good segmentation and clustering. Here, we propose an ef-
fective and scalable algorithm. The overall procedure is summarized
in Alg. 1. Given an (𝑁 + 1)𝑡ℎ-order TTS X, the total description
cost Eq. (5) is minimized using the following two sub-algorithms.

(1) CutPointDetector: finds the number of segments 𝑚 and
their cut points, i.e., the best cut point set 𝑐𝑝 of X.

(2) ClusterDetector: finds the number of clusters 𝐾 and the
cluster parameter setM.

5.1 CutPointDetector

The first goal is to divide a given X into𝑚 segments (i.e., patterns),
but we assume that no information is known about them in advance.
Therefore, to prevent a pattern explosion when searching for their
optimal cut points, we introduce CutPointDetector based on the
divide-and-conquer method [20].

Specifically, it recursively merges a small segment set of X
while reducing its total description cost, because neighboring sub-
sequences typically exhibit the same pattern. We define w as a set
of user-defined initial segment sizes, i.e., w = {𝑤𝑖 }𝑚𝑖=1, such as the
number of days in each month or any small constant. An example
illustration is shown in Fig. 2. Let \𝑖:𝑖+1 be a model ofX{𝑐𝑝𝑖 : 𝑐𝑝𝑖+1}
at the 𝑖𝑡ℎ segment. Given the three subsequent segments illustrated
in Fig. 2 (a), we evaluate whether to merge the middle segment with
either of the side segments (Fig. 2 (b)(c)). The total description cost
for Fig. 2 (a) is given by 𝐶𝑜𝑠𝑡𝑇 (X; {\𝑖:𝑖+1, \𝑖+1:𝑖+2, \𝑖+2:𝑖+3}), where
we omit the cluster assignment (e.g., { 𝑗}𝑐𝑝𝑖+1−1

𝑗=𝑐𝑝𝑖
}) from the cost for

clarity. If the cost for the original three segments is reduced by
merging, it eliminates the unnecessary cut point and employs a
new model \ for the merged segment. By repeating this procedure
for each segment,𝑚 decreases monotonically until convergence.
See Appendix A.1 for the detailed procedure.

5.2 ClusterDetector

Next, DMM searches for the best number of clusters by increas-
ing 𝐾 = 1, 2, . . . ,𝑚, while the total description cost 𝐶𝑜𝑠𝑡𝑇 (X;M)
is decreasing. To compute the cost, however, we must solve two
problems, namely obtain the cluster assignment set F and the
model parameter set Θ, either of which affects the optimization
of the other. So, we design ClusterDetector with the expectation
and maximization (EM) algorithm. In the E-step, it determines F
to minimize the data coding cost, 𝐶𝑜𝑠𝑡𝐶 (X|M), which is achieved
by solving:

arg min
𝑘∈{1,...,𝐾 }

𝐶𝑜𝑠𝑡𝐶 (X|{\𝑘 , { 𝑗}
𝑐𝑝𝑖+1−1
𝑗=𝑐𝑝𝑖

}), (10)

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Algorithm 1 DMM(X,w)
1: Input: (𝑁 + 1)𝑡ℎ-order TTS X and initial segment sizes set w
2: Output: Cluster parameters Θ and cluster assignments F
3: Initialize 𝑐𝑝 with w;
4: 𝑐𝑝 = CutPointDetector(X, 𝑐𝑝) ; /* Finds the best cut point set */
5: /* ClusterDetector */
6: 𝐾 = 1; Initialize Θ = {\1}; F = {{1, . . . ,𝑇 }};
7: Compute𝐶𝑜𝑠𝑡𝑇 (X; {Θ, F}) ;
8: repeat
9: 𝐾 = 𝐾 + 1; Initialize Θ for 𝐾 clusters;
10: repeat

11: F = SegmentAssignment(X,Θ, 𝑐𝑝) ; /* E-step */
12: Θ = NetworkInference(X, F) ; /* M-step */
13: until F is stable;
14: Compute𝐶𝑜𝑠𝑡𝑇 (X; {Θ, F}) ;
15: until𝐶𝑜𝑠𝑡𝑇 (X; {Θ, F}) converges;
16: return M = {Θ, F};

for the 𝑖-th segment, and then inserts time points from 𝑐𝑝𝑖 to 𝑐𝑝𝑖+1
(i.e., { 𝑗}𝑐𝑝𝑖+1−1

𝑗=𝑐𝑝𝑖
) to the best 𝑘-th cluster 𝑓𝑘 ∈ F . In the M-step, for

1 ≤ 𝑘 ≤ 𝐾 it infers 𝐴(𝑛)
𝑘

(1 ≤ 𝑛 ≤ 𝑁) according to Eq. (3) to
obtain \𝑘 ∈ Θ for a given X[𝑓𝑘]. Note that ClusterDetector starts
by randomly initializing Θ.

Theoretical analysis.

Lemma 1. The time complexity of DMM is 𝑂 (𝑇 ∏𝑁
𝑚=1 𝐷𝑚).

Proof. Please see Appendix A.2. □

6 EXPERIMENTS

In this section, we demonstrate the effectiveness of DMM on syn-
thetic data. We use synthetic data because there are clear ground
truth networks with which to test the clustering accuracy.

6.1 Experimental setting

6.1.1 Synthetic datasets. We randomly generate synthetic (N+1)𝑡ℎ-
order TTS, X ∈ R𝐷1×···×𝐷𝑁 ×𝑇 , which follows a multivariate nor-
mal distribution 𝑣𝑒𝑐 (X𝑡) ∼ N (0, \−1). Each of the 𝐾 clusters has
a mean of ®0, so that the clustering results are based entirely on
the structure of the data. For each cluster, we generate a random
ground truth inverse covariance matrix \ as follows [14, 28]:

(1) For 𝑛 = 1, . . . 𝑁 , set 𝐴(𝑛) ∈ R𝐷𝑛×𝐷𝑛 equal to the adjacency
matrix of an Erdős-Rényi directed random graph, where
every edge has a 20% chance of being selected.

(2) For every selected edge in𝐴(𝑛) , set𝑎 (𝑛)
𝑖, 𝑗

∼Uniform([−0.6,−0.3]∪
[0.3, 0.6]). We enforce a symmetry constraint whereby ev-
ery 𝑎 (𝑛)

𝑖, 𝑗
= 𝑎

(𝑛)
𝑗,𝑖

.
(3) Construct a hierarchical Toeplitz matrix \𝑡𝑒𝑚 ∈ R𝐷×𝐷

using {𝐴(1) , · · · , 𝐴(𝑁) }.
(4) Let 𝑐 be the smallest eigenvalue of \𝑡𝑒𝑚 , and set \ = \𝑡𝑒𝑚 +

(0.1 + |𝑐 |)𝐼 , where 𝐼 is an identity matrix. This ensures that
\ is invertible.

6.1.2 Evaluation metrics. We run our experiments on four different
temporal sequences: A: “1,2,1”, B: “1,2,3,2,1”, C: “1,2,3,4,1,2,3,4”,

Table 2: Macro-F1 score of clustering accuracy for eight dif-

ferent temporal sequences, comparing DMM with state-of-

the-art methods (higher score is better). Best results are in

bold, and second best results are underlined.
†
indicates a

method where the number of clusters is set by BIC. (i): 2𝑛𝑑 -
order TTS 𝐷1 = 10, (ii): 3𝑟𝑑 -order TTS 𝐷1 = 𝐷2 = 10, A: “1,2,1”,
B: “1,2,3,2,1”, C: “1,2,3,4,1,2,3,4”, D: “1,2,2,1,3,3,3,1.”

Data DMM TAGM TAGM † TICC TICC †

(i)
A 0.955 0.915 0.915 0.997 0.997
B 0.926 0.897 0.756 0.884 0.825
C 0.956 0.770 0.811 0.725 0.756
D 0.960 0.907 0.912 0.857 0.952

(ii)
A 0.961 0.514 0.514 0.932 0.923
B 0.962 0.462 0.431 0.844 0.770
C 0.941 0.359 0.396 0.704 0.594
D 0.980 0.438 0.432 0.838 0.741

D: “1,2,2,1,3,3,3,1”, (for example, A consists of three segments and
two clusters \1 and \2.) We set each cluster in each example to
have 100𝐺 observations, where 𝐺 is the number of segments in
each cluster (e.g., A has 𝑇 = 300), and cut points are set randomly.
We generate each dataset ten times and report the mean of the
macro-F1 score.

6.1.3 Baselines. We compare our method with the following two
state-of-the-art methods for time series clustering using the graph-
ical lasso as their model.

• TAGM [43]: combines HMM with a graphical lasso by mod-
eling each cluster as a graphical lasso and assuming clusters
as hidden states of HMM.

• TICC [14]: uses the Toeplitz matrix to capture lag correla-
tions and inter-variable correlations and penalizes changing
clusters to assign the neighboring segments to the same
cluster.

6.1.4 Parameter tuning. DMM and the baselines require a sparsity
parameter for ℓ1-norm. We varied _ = {0.5, 1, 2, 4} and set _ = 4
for DMM and _ = 0.5 for the baselines, which produces the best
results. A matricization of tensor𝑚𝑎𝑡 (X) (𝑁+1) ∈ R𝑇×𝐷 and the
true number of clusters are given to the baselines since the number
of clusters need to be set. To tune TICC, we varied the regularization
parameter 𝛽 = {4, 16, 64, 256} and set 𝛽 = 16, and set the window
size 𝑤 = 1, which is the correct assumption considering the data
generation process.DMM requires us to specifyw. We use the same
𝑤𝑖 (s.t., 𝑖 = 1, . . . ,𝑚) for all initial segments, and we set𝑤𝑖 = 4.

6.2 Results

6.2.1 Clustering accuracy. We take four different temporal sequences
A ∼ D, and two different data sizes (i) and (ii) to observe the ability
of DMM as regards clustering TTS. Table 2 shows the clustering
accuracy for the macro-F1 scores for each dataset. † shows TAGM
and TICC set the number of clusters 𝐾 = {2, 3, 4, 5} by Bayesian
information criterion (BIC). As shown, DMM outperforms the base-
lines in most of the datasets, even for the (i) 2𝑛𝑑 -order TTS datasets.
In particular, the difference in (ii) is even more noteworthy. This is
because TAGM and TICC cannot handle 3𝑟𝑑 -order TTS, struggling
with the many variables of the matricization of the tensor.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Dynamic Multi-Network Mining of Tensor Time Series Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

(a) vs. 2𝑛𝑑 -order TTS (b) vs. 3𝑟𝑑 -order TTS
Figure 3: DMM outperforms the state-of-the art methods:

Clustering accuracy for synthetic data, macro-F1 score vs.

data size, i.e., (a) 2𝑛𝑑 -order TTS (𝐷1,𝑇) = (5 ∼ 50, 800), (b) 3𝑟𝑑 -
order TTS (𝐷1, 𝐷2,𝑇) = (5 ∼ 50, 5, 800).

(a) vs. 𝐷1 = 5 ∼ 50 (b) vs. 𝑇 = 800 ∼ 80000
Figure 4: DMM scales linearly: Computation time vs. data

size, i.e., we vary (a) 𝐷1 (𝐷1 = 5 ∼ 50, 𝐷2 = 5,𝑇 = 800) and (b) 𝑇

(𝐷1 = 5, 𝐷2 = 5,𝑇 = 800 ∼ 80000).

6.2.2 Effect of total number of variables. We next examine how the
number of variables 𝐷1 affects each method as regards accurately
finding clusters. We take the C example and vary 𝐷1 = 5 ∼ 50 for
(a) 2𝑛𝑑 -order TTS and (b) 3𝑟𝑑 -order TTS. As shown in Fig. 3, our
method outperforms the baselines for all 𝐷1 in both tensors. The
performance of TAGM and TICC worsens as 𝐷1 increases, while
DMM maintains its performance even though 𝐷1 increases due to
our well-defined total description cost that can handle the change
in data scale. TAGM and TICC are less accurate in Fig. 3 (b) than
Fig. 3 (a) since they cannot deal with 3𝑟𝑑 -order TTS.

6.2.3 Scalability. We perform experiments to verify the time com-
plexity of DMM. As described in Lemma 1, the time complexity
of DMM scales linearly in terms of the data size. Fig. 4 shows the
computation time of DMM when we vary 𝐷1 (Fig. 4 (a)) and 𝑇
(Fig. 4 (b)). Thanks to our proposed optimization algorithm, the
time complexity of DMM scales linearly with 𝐷𝑛 and 𝑇 .

7 CASE STUDY

We perform experiments on real data to show the applicability of
DMM and demonstrate howDMM can be used to obtain meaningful
insights from TTS.

7.1 Experimental setting

7.1.1 Datasets. We describe our datasets in detail.
Google Trends (#1 ∼ #5). We use the data from Google Trends.
Each tensor contains daily web-search counts. #4 Covid was col-
lected over 10 years from Jan. 1st 2013 to Dec. 31st 2022 to include
the effect of COVID-19. Other datasets are from Jan. 1st 2015 to Dec.
31st 2019 to avoid the effect of COVID-19. The datasets include five
query sets (Appendix B.1). We collect the data from two target areas:
three datasets from the top 10 populated US states and two from
the top 10 countries ranked by GDP score. We normalize the data
every month to achieve clustering that only considers the network.

Table 3: The data size and attributes for each dataset.

ID Dataset Size Description

#1 E-commerce (11, 10, 1796)
(query, state, day)#2 VoD (8, 10, 1796)

#3 Sweets (9, 10, 1796)

#4 Covid (6, 10, 3652) (query, country, day)#5 GAFAM (5, 10, 1796)

#6 Air (6, 12, 1461) (pollutant, site, day)

#7 Car-A (6, 10, 4, 3241) (sensor, lap, driver, meter)#8 Car-H (6, 10, 4, 4000)

Table 4: The number of clusters (# Cl.) and segments (# Seg.),

and log-likelihood (LL) of eight real-world datasets, compar-

ing DMM with state-of-the-art methods. The bold font and

underlines showmethods providing the best and second best

LL, respectively (higher is better).

DMM TAGM TICC
Data # Cl. # Seg. LL # Seg. LL # Seg. LL

#1 2 10 −1.89e5 485 −1.92e5 3 −1.97e5
#2 2 2 −1.68e5 527 −1.65e5 2 −1.68e5
#3 2 7 −1.90e5 502 −1.90e5 17 −1.90e5
#4 4 4 −2.85e5 1778 −2.73e5 5 −2.88e5
#5 2 2 −9.28e4 519 −9.10e4 3 −9.48e4
#6 6 13 −5.19e4 929 −4.82e4 10 −6.34e4
#7 11 11 −5.89e5 1300 −6.33e5 12 −9.36e5
#8 5 12 −1.06e6 974 −1.02e6 6 −1.16e6

Air (#6). We use Air data that collected daily concentrations of six
pollutants at 12 nationally-controlled monitoring sites in Beijing,
China from Mar. 1st 2013 to Feb. 29th 2016 [50]. We fill the missing
values by linear interpolation and normalize the data every month.
Automobile (#7, #8). We use two automobile datasets with dif-
ferent driving courses. #7 Car-A is a city course and #8 Car-H is a
highway course. We observe six sensors every meter: Brake, Speed,
GX (X Accel), GY (Y Accel), Steering angle, Fuel Economy. Four
drivers drive 10 laps of the same course, hence each dataset forms
a 4𝑡ℎ-order tensor. We normalize the data every 10 meters.

The size and attributes of our datasets is given in Table 3.

7.1.2 Hyperparameter. To tune DMM, we vary the sparsity param-
eter _ = {0.5, 1, 2, 4} and set the value that produces the minimum
total description cost. We fix the initial window size𝑤 depending
on the dataset, equal to the normalization period. For a fair com-
parison, for TAGM and TICC, we set the sparse parameter equal
to DMM, and the number of clusters equal to that found by DMM.
For TICC, we vary the regularization parameter 𝛽 = {4, 16, 64, 256}
and set the parameter with BIC.

7.2 Results

7.2.1 Applicability. We show the usefulness of DMM for analyzing
real-world TTS.
Modeling acculacy. Since there are no labels for TTS, we review
the modeling accuracy of DMM by comparing the number of seg-
ments and the log-likelihood. We use cluster assignments to cal-
culate the log-likelihood (Eq. (2)). Table 4 shows the results. DMM

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 5: Computation time of DMM: our method surpasses

its baselines. It is up to 300× faster than TICC.

(a) Original sensor data at a site (Aoti Zhongxin)

(b) DMM assigns every Apr. ∼ Oct. to cluster #2

(c) TAGM casuses frequent switching

(d) TICC assigns most periods to cluster #4
Figure 6: DMM demonstrates effective cluster assignments

on the #6 Air dataset. (a) Original tensor time series data.

Cluster assignments of (b) DMM, (c) TAGM and (d) TICC.

finds a reasonable number of segments and a higher log-likelihood
than TICC. TAGM switches clusters with the transition matrix
of HMM. This works well on synthetic datasets when there are
clear transitions. However, it is not suitable for real-world datasets,
which contain noises and whose network changes gradually. As
a result, TAGM finds the cluster assignments that maximize the
log-likelihood regardless of the number of segments. TICC assigns
neighboring time steps to the same cluster using a penalty 𝛽 . Thus,
its number of segments is close to DMM. However, TICC is not
suitable for tensors, and the log-likelihood is worse than DMM for
most datasets.
Computation time. We compare the computation time needed for
processing real data in Fig. 5. DMM is the fastest for most datasets
since it infers the network for each mode. In contrast, TAGM and
TICC compute the entire network at once. Therefore, they are
more affected by the number of variables at each mode than DMM,
resulting in a longer computation time.

7.2.2 Interpretability. We show how the clustering results pre-
sented by DMM make sense. We have already shown the results of
DMM for clustering over #4 Covid in Section 1 (see Fig. 1). Please
also see the results in #1 E-commerce in Appendix B.2.

(a) DMM networks of cluster #2

(b) TAGM network of cluster #6 (c) TICC network of cluster #4
Figure 7: Networks obtained for each methods for the #6 Air

dataset: (a) DMM detects a pollutant network and a location

network, where it is easy to understand the key relationships

within the cluster. (b) TAGM and (c) TICC find a complex

network, which is difficult to interpret.

Air. We compare the clustering results of DMM, TAGM and, TICC
over #6 Air regarding cluster assignments (Fig. 6) and obtained
networks (Fig. 7). Fig. 6 (a) shows the original sensor data at Aoti
Zhongxin. Fig. 6 (b) shows that DMM assigns Apr. through Oct.
of each year to cluster #2, capturing the yearly seasonality [50].
The cluster assignments of TAGM (see Fig. 6 (c)) switch frecuently,
and TICC (see Fig. 6 (d)) assigns most of the period to cluster #4.
Both cluster assignments are far from interpretable. Fig. 7 shows
the networks obtained with each method. The cluster of DMM (see
Fig. 7 (a)) includes the pollutant network and the location network.
The pollutant network has a strong edge between PM2.5 and PM10,
and the location network, whose nodes are plotted on the map, has
edges only between closely located nodes, both of which match our
expectation and accordingly indicate that DMM discovers inter-
pretable networks. TAGM and TICC (see Fig. 7 (b)(c)) find a network
for all variables. Although the networks are sparse, the large num-
ber of nodes hampers our understanding of the networks. Thus,
the networks from DMM are more interpretable than with other
methods. Consequently, DMM provides interpretable clustering
results that can reveal underlying relationships among variables of
each mode and is suitable for modeling and clustering TTS.

8 CONCLUSION

In this paper, we proposed an efficient tensor time series subse-
quence clustering method, namelyDMM. Our method characterizes
each cluster by multiple networks, each of which is the dependency
network of a corresponding non-temporal mode. These networks
make our results visible and interpretable, enabling the multifac-
eted analysis and understanding of tensor time series. We defined
a criterion based on MDL that allows us to find clusters of data
and determine all user-defined parameters. Our algorithm scales
linearly with the input size and thus can apply to the massive data
size of a tensor. We showed the effectiveness of DMM via extensive
experiments using synthetic and real datasets.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Dynamic Multi-Network Mining of Tensor Time Series Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. 2015. Time-
series clustering–a decade review. Information systems 53 (2015), 16–38.

[2] Sara Alaee, Ryan Mercer, Kaveh Kamgar, and Eamonn Keogh. 2021. Time se-
ries motifs discovery under DTW allows more robust discovery of conserved
structure. Data Mining and Knowledge Discovery 35 (2021), 863–910.

[3] Lei Bai, Lina Yao, Salil S. Kanhere, Xianzhi Wang, and Quan Z. Sheng. 2019.
STG2Seq: Spatial-Temporal Graph to Sequence Model for Multi-step Passenger
Demand Forecasting. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19. International Joint Conferences on
Artificial Intelligence Organization, 1981–1987. https://doi.org/10.24963/ijcai.
2019/274

[4] Bojan Batalo, Lincon S Souza, Bernardo B Gatto, Naoya Sogi, and Kazuhiro
Fukui. 2022. Analysis of Temporal Tensor Datasets on Product Grassmann
Manifold. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 4869–4877.

[5] Donald J. Berndt and James Clifford. 1994. Using Dynamic Time Warping to
Find Patterns in Time Series. In Knowledge Discovery in Databases: Papers from
the 1994 AAAI Workshop, Seattle, Washington, USA, July 1994. Technical Report
WS-94-03. 359–370.

[6] Christian Böhm, Christos Faloutsos, Jia-Yu Pan, and Claudia Plant. 2007. Ric:
Parameter-free noise-robust clustering. TKDD 1, 3 (2007), 10–es.

[7] Stephen P. Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
2011. Distributed Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers. Found. Trends Mach. Learn. 3, 1 (2011), 1–122.
https://doi.org/10.1561/2200000016

[8] Yongjie Cai, Hanghang Tong, Wei Fan, Ping Ji, and Qing He. 2015. Facets: Fast
Comprehensive Mining of Coevolving High-order Time Series. In KDD (Sydney,
NSW, Australia). 79–88.

[9] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2008. Sparse inverse
covariance estimation with the graphical lasso. Biostatistics 9, 3 (2008), 432–441.

[10] Bernardo B Gatto, Eulanda M dos Santos, Alessandro L Koerich, Kazuhiro Fukui,
and Waldir SS Junior. 2021. Tensor analysis with n-mode generalized difference
subspace. Expert Systems with Applications 171 (2021), 114559.

[11] Robert M Gray et al. 2006. Toeplitz and circulant matrices: A review. Foundations
and Trends® in Communications and Information Theory 2, 3 (2006), 155–239.

[12] Peter D Grünwald. 2007. The minimum description length principle. MIT press.
[13] David Hallac, Youngsuk Park, Stephen P. Boyd, and Jure Leskovec. 2017. Network

Inference via the Time-Varying Graphical Lasso. In KDD. 205–213. https://doi.
org/10.1145/3097983.3098037

[14] David Hallac, Sagar Vare, Stephen P. Boyd, and Jure Leskovec. 2017. Toeplitz
Inverse Covariance-Based Clustering of Multivariate Time Series Data. In KDD.
215–223. https://doi.org/10.1145/3097983.3098060

[15] Hrayr Harutyunyan, Daniel Moyer, Hrant Khachatrian, Greg Ver Steeg, and
Aram Galstyan. 2019. Efficient Covariance Estimation from Temporal Data.
arXiv preprint arXiv:1905.13276 (2019).

[16] Shoji Hirano and Shusaku Tsumoto. 2006. Cluster analysis of time-series medical
data based on the trajectory representation and multiscale comparison tech-
niques. In ICDM. IEEE, 896–901.

[17] Baoyu Jing, Hanghang Tong, and Yada Zhu. 2021. Network of Tensor Time Series.
In WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April
19-23, 2021, Jure Leskovec, Marko Grobelnik, Marc Najork, Jie Tang, and Leila
Zia (Eds.). ACM / IW3C2, 2425–2437. https://doi.org/10.1145/3442381.3449969

[18] Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, and Bryan Hooi. 2021.
Ssmf: Shifting seasonal matrix factorization. Advances in Neural Information
Processing Systems 34 (2021), 3863–3873.

[19] Eamonn Keogh. 2002. Exact Indexing of Dynamic TimeWarping. In VLDB (Hong
Kong, China). 406–417.

[20] Eamonn J. Keogh, Selina Chu, David M. Hart, and Michael J. Pazzani. 2001. An
Online Algorithm for Segmenting Time Series. In Proceedings of the 2001 IEEE
International Conference on Data Mining, 29 November - 2 December 2001, San
Jose, California, USA. IEEE Computer Society, 289–296. https://doi.org/10.1109/
ICDM.2001.989531

[21] Tamara G Kolda and Brett W Bader. 2009. Tensor decompositions and applica-
tions. SIAM review 51, 3 (2009), 455–500.

[22] Yu Liu, Quanming Yao, and Yong Li. 2020. Generalizing tensor decomposition
for n-ary relational knowledge bases. In Proceedings of the web conference 2020.
1104–1114.

[23] Anant Madabhushi and George Lee. 2016. Image analysis and machine learning
in digital pathology: Challenges and opportunities. Medical image analysis 33
(2016), 170–175.

[24] Yasuko Matsubara, Yasushi Sakurai, and Christos Faloutsos. 2014. AutoPlait:
Automatic Mining of Co-Evolving Time Sequences. In Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data (Snowbird, Utah,
USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY, USA,
193–204.

[25] Yasuko Matsubara, Yasushi Sakurai, and Christos Faloutsos. 2016. Non-Linear
Mining of Competing Local Activities. In WWW.

[26] Kohei Miyaguchi, Shin Matsushima, and Kenji Yamanishi. 2017. Sparse graphical
modeling via stochastic complexity. In Proceedings of the 2017 SIAM International
Conference on Data Mining. SIAM, 723–731.

[27] Chiyomi Miyajima, Yoshihiro Nishiwaki, Koji Ozawa, Toshihiro Wakita, Kat-
sunobu Itou, Kazuya Takeda, and Fumitada Itakura. 2007. Driver modeling based
on driving behavior and its evaluation in driver identification. IEEE 95, 2 (2007),
427–437.

[28] Karthik Mohan, Palma London, Maryam Fazel, Daniela Witten, and Su-In Lee.
2014. Node-Based Learning of Multiple Gaussian Graphical Models. J. Mach.
Learn. Res. 15, 1 (jan 2014), 445–488.

[29] Ricardo Pio Monti, Peter Hellyer, David Sharp, Robert Leech, Christoforos Anag-
nostopoulos, and Giovanni Montana. 2014. Estimating time-varying brain con-
nectivity networks from functional MRI time series. NeuroImage 103 (2014),
427–443.

[30] Kota Nakamura, Yasuko Matsubara, Koki Kawabata, Yuhei Umeda, Yuichiro
Wada, and Yasushi Sakurai. 2023. Fast and Multi-aspect Mining of Complex
Time-stamped Event Streams. In Proceedings of the ACM Web Conference 2023.
1638–1649.

[31] A. Namaki, A.H. Shirazi, R. Raei, and G.R. Jafari. 2011. Network analysis of a
financial market based on genuine correlation and threshold method. Physica
A: Statistical Mechanics and its Applications 390, 21 (2011), 3835–3841. https:
//doi.org/10.1016/j.physa.2011.06.033

[32] Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos. 2005. Streaming
pattern discovery in multiple time-series. (2005).

[33] Claudia Plant and Christian Böhm. 2011. Inconco: interpretable clustering
of numerical and categorical objects. In Proceedings of the 17th ACM SIGKDD
international conference on knowledge discovery and data mining. 1127–1135.

[34] Marco Ramoni, Paola Sebastiani, and Paul R. Cohen. 2000. Multivariate Clus-
tering by Dynamics. In Proceedings of the Seventeenth National Conference on
Artificial Intelligence and Twelfth Conference on Innovative Applications of Artifi-
cial Intelligence. AAAI Press, 633–638.

[35] Mark Rogers, Lei Li, and Stuart J Russell. 2013. Multilinear Dynamical Systems
for Tensor Time Series. In NIPS. 2634–2642.

[36] Cynthia Rudin. 2019. Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead. Nature machine
intelligence 1, 5 (2019), 206–215.

[37] Havard Rue and Leonhard Held. 2005. Gaussian Markov random fields: theory
and applications. CRC press.

[38] Eduardo J. Ruiz, Vagelis Hristidis, Carlos Castillo, Aristides Gionis, and Alejandro
Jaimes. 2012. Correlating Financial Time Series with Micro-Blogging Activity. In
WSDM (Seattle, Washington, USA). Association for Computing Machinery, New
York, NY, USA, 513–522. https://doi.org/10.1145/2124295.2124358

[39] Tsubasa Takahashi, Bryan Hooi, and Christos Faloutsos. 2017. AutoCyclone:
Automatic Mining of Cyclic Online Activities with Robust Tensor Factorization.
InWWW (Perth, Australia). 213–221.

[40] Kean Ming Tan, Daniela Witten, and Ali Shojaie. 2015. The cluster graphical
lasso for improved estimation of Gaussian graphical models. Computational
statistics & data analysis 85 (2015), 23–36.

[41] Federico Tomasi, Veronica Tozzo, and Annalisa Barla. 2021. Temporal Pattern
Detection in Time-Varying Graphical Models. In ICPR. 4481–4488. https://doi.
org/10.1109/ICPR48806.2021.9413203

[42] Federico Tomasi, Veronica Tozzo, Saverio Salzo, and Alessandro Verri. 2018.
Latent Variable Time-varying Network Inference. In KDD. 2338–2346. https:
//doi.org/10.1145/3219819.3220121

[43] Veronica Tozzo, Federico Ciech, Davide Garbarino, and Alessandro Verri. 2021.
Statistical Models Coupling Allows for Complex Local Multivariate Time Series
Analysis. In KDD. 1593–1603. https://doi.org/10.1145/3447548.3467362

[44] Michail Vlachos, George Kollios, and Dimitrios Gunopulos. 2002. Discovering
similar multidimensional trajectories. In Proceedings 18th international conference
on data engineering. IEEE, 673–684.

[45] Xunxian Wu, Tong Xu, Hengshu Zhu, Le Zhang, Enhong Chen, and Hui Xiong.
2019. Trend-Aware Tensor Factorization for Job Skill Demand Analysis.. In IJCAI.
3891–3897.

[46] Matt Wytock and Zico Kolter. 2013. Sparse Gaussian conditional random fields:
Algorithms, theory, and application to energy forecasting. In International con-
ference on machine learning. PMLR, 1265–1273.

[47] Yimin Xiong and Dit-Yan Yeung. 2004. Time series clustering with ARMA
mixtures. Pattern Recognition 37, 8 (2004), 1675–1689.

[48] Xiang Xuan and Kevin Murphy. 2007. Modeling Changing Dependency Structure
in Multivariate Time Series. In ICML (Corvalis, Oregon, USA). Association for
Computing Machinery, New York, NY, USA, 1055–1062.

[49] Ming Yuan and Yi Lin. 2006. Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society Series B: Statistical
Methodology 68, 1 (2006), 49–67.

[50] Shuyi Zhang, Bin Guo, Anlan Dong, Jing He, Ziping Xu, and Song Xi Chen.
2017. Cautionary tales on air-quality improvement in Beijing. Proceedings of

9

https://doi.org/10.24963/ijcai.2019/274
https://doi.org/10.24963/ijcai.2019/274
https://doi.org/10.1561/2200000016
https://doi.org/10.1145/3097983.3098037
https://doi.org/10.1145/3097983.3098037
https://doi.org/10.1145/3097983.3098060
https://doi.org/10.1145/3442381.3449969
https://doi.org/10.1109/ICDM.2001.989531
https://doi.org/10.1109/ICDM.2001.989531
https://doi.org/10.1016/j.physa.2011.06.033
https://doi.org/10.1016/j.physa.2011.06.033
https://doi.org/10.1145/2124295.2124358
https://doi.org/10.1109/ICPR48806.2021.9413203
https://doi.org/10.1109/ICPR48806.2021.9413203
https://doi.org/10.1145/3219819.3220121
https://doi.org/10.1145/3219819.3220121
https://doi.org/10.1145/3447548.3467362

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

the Royal Society A: Mathematical, Physical and Engineering Sciences 473, 2205
(2017), 20170457.

[51] Seyedjamal Zolhavarieh, Saeed Aghabozorgi, YingWah Teh, et al. 2014. A review
of subsequence time series clustering. The Scientific World Journal 2014 (2014).

Algorithm 2 CutPointDetector(X, 𝑐𝑝)
1: Input: (𝑁 + 1)𝑡ℎ-order TTS X and initial cut points set 𝑐𝑝
2: Output: The best cut point set 𝑐𝑝
3: repeat
4: 𝑖𝑑 = 0, 𝑐𝑝𝑛𝑒𝑤 = 𝜙 ;
5: Θ𝑆 = {\𝑐𝑝0 :𝑐𝑝1 , \𝑐𝑝1 :𝑐𝑝2 , . . . , \𝑐𝑝𝑚 :𝑐𝑝𝑚+1 }
6: Θ𝐸 = {\𝑐𝑝0 :𝑐𝑝2 , \𝑐𝑝2 :𝑐𝑝4 , . . . }
7: Θ𝑂 = {\𝑐𝑝1 :𝑐𝑝3 , \𝑐𝑝3 :𝑐𝑝5 , . . . }
8: while 𝑖𝑑 < 𝑙𝑒𝑛𝑔𝑡ℎ (X) do
9: if 𝑖𝑑 is even then

10: Θ𝐿𝑒𝑓 𝑡 = Θ𝑂 ; Θ𝑅𝑖𝑔ℎ𝑡 = Θ𝐸 ;
11: 𝑖𝑑𝐿𝑒𝑓 𝑡 = ⌊𝑖𝑑/2⌋; 𝑖𝑑𝑅𝑖𝑔ℎ𝑡 = ⌊𝑖𝑑/2⌋ + 1;
12: else if 𝑖𝑑 is odd then

13: Θ𝐿𝑒𝑓 𝑡 = Θ𝐸 ; Θ𝑅𝑖𝑔ℎ𝑡 = Θ𝑂 ;
14: 𝑖𝑑𝐿𝑒𝑓 𝑡 = ⌊𝑖𝑑/2⌋ + 1; 𝑖𝑑𝑅𝑖𝑔ℎ𝑡 = ⌊𝑖𝑑/2⌋ + 1;
15: end if

16: 𝐶𝑠𝑜𝑙𝑜 = 𝐶𝑜𝑠𝑡𝑇 (X; {Θ𝑆 [𝑖𝑑],Θ𝑆 [𝑖𝑑 + 1],Θ𝑆 [𝑖𝑑 + 2] }) ;
17: 𝐶𝑙𝑒 𝑓 𝑡 = 𝐶𝑜𝑠𝑡𝑇 (X; {Θ𝐿𝑒𝑓 𝑡 [𝑖𝑑𝐿𝑒𝑓 𝑡],Θ𝑆 [𝑖𝑑 + 2] }) ;
18: 𝐶𝑟𝑖𝑔ℎ𝑡 = 𝐶𝑜𝑠𝑡𝑇 (X; {Θ𝑆 [𝑖𝑑],Θ𝑅𝑖𝑔ℎ𝑡 [𝑖𝑑𝑅𝑖𝑔ℎ𝑡] }) ;
19: if𝑚𝑖𝑛 (𝐶𝑠𝑜𝑙𝑜 ,𝐶𝑙𝑒 𝑓 𝑡 ,𝐶𝑟𝑖𝑔ℎ𝑡) = 𝐶𝑠𝑜𝑙𝑜 then

20: 𝑐𝑝𝑛𝑒𝑤 = 𝑐𝑝𝑛𝑒𝑤 ∪ 𝑐𝑝 [𝑖𝑑]; 𝑖𝑑+ = 1;
21: else if𝑚𝑖𝑛 (𝐶𝑠𝑜𝑙𝑜 ,𝐶𝑙𝑒 𝑓 𝑡 ,𝐶𝑟𝑖𝑔ℎ𝑡) = 𝐶𝑙𝑒 𝑓 𝑡 then
22: 𝑐𝑝𝑛𝑒𝑤 = 𝑐𝑝𝑛𝑒𝑤 ∪ 𝑐𝑝 [𝑖𝑑 + 1]; 𝑖𝑑+ = 2;
23: else if𝑚𝑖𝑛 (𝐶𝑠𝑜𝑙𝑜 ,𝐶𝑙𝑒 𝑓 𝑡 ,𝐶𝑟𝑖𝑔ℎ𝑡) = 𝐶𝑟𝑖𝑔ℎ𝑡 then
24: 𝑐𝑝𝑛𝑒𝑤 = 𝑐𝑝𝑛𝑒𝑤 ∪ 𝑐𝑝 [𝑖𝑑], 𝑐𝑝 [𝑖𝑑 + 2]; 𝑖𝑑+ = 3;
25: end if

26: end while

27: 𝑐𝑝 = 𝑐𝑝𝑛𝑒𝑤 ;
28: until 𝑐𝑝 is stable;
29: return 𝑐𝑝 ;

Table 5: Google Trends query set.

Name Query

#1 E-commerce
Amazon/Apple/BestBuy/Costco/Craigslist/Ebay/
Homedepot/Kohls/Macys/Target/Walmart

#2 VoD
AppleTV/ESPN/HBO/Hulu/Netflix/Sling/
Vudu/YouTube

#3 Sweets
Cake/Candy/Chocolate/Cookie/Cupcake/
Gum/Icecream/Pie/Pudding

#4 Covid Covid/Corona/Flu/Influenza/Vaccine/Virus
#5 GAFAM Amazon/Apple/Facebook/Google/Microsoft

A ALGORITHMS

A.1 CutPointDetector

Alg. 2 shows the overall procedure for CutPointDetector, which is a
subalgorithm of Alg. 1. For clarity, we describe the total description
cost as 𝐶𝑜𝑠𝑡𝑇 (X; {Θ}). The cluster assignment set for Θ[𝑖𝑑] is a
corresponding segment.

A.2 Proof of Lemma 1

Proof. The computational cost of the DMM depends largely on
the number of CutPointDetector iterations and the cost of infer-
ring Θ at each iteration. Consider that all segments are eventually
merged. Since the total computational time needed to infer Θ is the

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Dynamic Multi-Network Mining of Tensor Time Series Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Figure 8: Total description cost of DMM: our method consis-

tently outperforms its baselines (lower is better).

(a) Clustering results on the original tensor time series

(b) State and query networks

Figure 9: Effectiveness of DMM on #1 E-commerce dataset:

(a) it splits the tensor into two clusters shown by colors (i.e.,

#blue→ “Dairy products” and #pink→ “Online sales”). (b)
each cluster has distinct state and query networks.

sum of {𝐴(1) , · · · , 𝐴(𝑁) } inferences, we discuss the case of 𝐴(𝑛) .
When 𝑇

∏𝑁
𝑚=1(𝑚≠𝑛) 𝐷𝑚 ≫ 𝐷𝑛 , at each iteration, inferring 𝐴(𝑛)

for all segments takes 𝑂 (𝐷𝑛𝑇
∏𝑁
𝑚=1(𝑚≠𝑛) 𝐷𝑚) thanks to ADMM.

If the number of segments is halved at each iteration, the number of
iterations is log2 |w|. If the number of segments decreases by one at
each iteration, the number of iterations is |w|, but this is unlikely to
happen. 𝑇 ≫ log2 |w|, and so the computation cost related to 𝐴(𝑛)

is𝑂 (𝑇 ∏𝑁
𝑚=1 𝐷𝑚). Since𝑇, 𝐷𝑛 ≫ 𝑁 , the repetition of inference for

each mode is negligible. Therefore, the time complexity of DMM is
𝑂 (𝑇 ∏𝑁

𝑚=1 𝐷𝑚). □

B CASE STUDY

B.1 Datasets

We describe the query set we used for Google Trends in Table 5.

B.2 Results

Total description cost.We compare the total description cost of
DMM with TAGM and TICC on real-world datasets in Fig. 8. As
shown, DMM achieves the lowest total description cost of all the
datasets. TAGM has many segments, which results in the large
coding length cost. TICC is not capable of handling tensor, which
results in higher data coding cost compared with DMM.
E-commerce. We demonstrate how effectively DMM works on
the #1 E-commerce dataset. Fig. 9 shows the result of DMM for
clustering over #1 E-commerce. Fig. 9 (a) shows the clustering re-
sults of the original TTS, where each color represents a cluster.
DMM finds 10 segments and two clusters. We name the blue clus-
ter “Dairy products” and the pink cluster “Online sales.” DMM
assigns every Nov. to “Online sales”, the period of Black Friday
and Cyber Monday. Fig. 9 (b) shows the query and state networks
for each cluster. The query network of “Daily products” shows
that there are edges between the local daily products companies
(“costco”, “walmart”, and “target”). On the other hand, with the
query network of “Online sales”, there are many edges, especially
related to large e-commerce companies (“amazon” and “ebay”),
and the state network shows that the top four populated states (
“CA”, “TX”, “FL”, and “NY”) form edges, indicating the similarity
of online shopping among the big states.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

11

	Abstract
	1 Introduction
	1.1 Preview of our results
	1.2 Contributions

	2 Related work
	3 Problem formulation
	3.1 Tensor algebra
	3.2 Graphical lasso
	3.3 Network-based tensor time series clustering

	4 Proposed DMM
	4.1 Multimode graphical lasso
	4.2 Data compression

	5 Optimization algorithms
	5.1 CutPointDetector
	5.2 ClusterDetector

	6 Experiments
	6.1 Experimental setting
	6.2 Results

	7 Case study
	7.1 Experimental setting
	7.2 Results

	8 Conclusion
	References
	A Algorithms
	A.1 CutPointDetector
	A.2 Proof of Lemma 1

	B Case Study
	B.1 Datasets
	B.2 Results

