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ABSTRACT

Machine unlearning is a critical area of research aimed at safeguarding data pri-
vacy by enabling the removal of sensitive information from machine learning
models. One unique challenge in this field is catastrophic unlearning, where
erasing specific data from a well-trained model unintentionally removes essential
knowledge, causing the model to deviate significantly from a retrained one. To
address this, we introduce a novel approach that regularizes the unlearning pro-
cess by utilizing synthesized mixup samples, which simulate the data susceptible
to catastrophic effects. At the core of our approach is a generator-unlearner frame-
work, MixUnlearn, where a generator adversarially produces challenging mixup
examples, and the unlearner effectively forgets target information based on these
synthesized data. Specifically, we first introduce a novel contrastive objective to
train the generator in an adversarial direction: generating examples that prompt
the unlearner to reveal information that should be forgotten, while losing essential
knowledge. Then the unlearner, guided by two other contrastive loss terms, pro-
cesses the synthesized and real data jointly to ensure accurate unlearning without
losing critical knowledge, overcoming catastrophic effects. Extensive evaluations
across benchmark datasets demonstrate that our method significantly outperforms
state-of-the-art approaches, offering a robust solution to machine unlearning. This
work not only deepens understanding of unlearning mechanisms but also lays the
foundation for effective machine unlearning with mixup augmentation.

1 INTRODUCTION

Machine unlearning (Bourtoule et al., 2021) has gained significant attention due to growing con-
cerns about data privacy. In particular, legislators have enacted regulations such as the GDPR,
which grants data owners the “right to be forgotten”. This has spurred the development of ma-
chine unlearning techniques that enable models to “forget” sensitive data. While retraining models
without sensitive data can achieve accurate unlearning, it is often impractical due to the substantial
computational costs involved. As a result, researchers and practitioners are increasingly exploring
approximate unlearning methods (Thudi et al., 2022; Chen et al., 2023; Chundawat et al., 2023a;
Kurmanji et al., 2024; Shen et al., 2024). These aim to create models that function as if they were
retrained from scratch, but without the prohibitive expenses associated with full retraining.

While approximate unlearning holds promise, it faces the issue of catastrophic unlearning—a phe-
nomenon where a target unlearner model, during the process of unlearning certain data, inadver-
tently forgets or loses knowledge it should retain, resulting in a divergence from the retrained one.
Although recent advances (Chen et al., 2023; Chundawat et al., 2023a; Shen et al., 2024) have intro-
duced retention operations on the remaining data to facilitate preserving the model’s generalizability,
the issue of catastrophic unlearning persists. Despite its importance, effective strategies to address
this problem remain inadequately understood (Choi et al., 2024). To bridge this research gap, our
paper answers the key question: How can we overcome catastrophic unlearning to ensure precise
forgetting—erasing target information without compromising essential knowledge?

To understand why the retaining process cannot handle catastrophic effects, we provide a toy ex-
ample in Figure 1, which shows the challenge of unlearning a specific class for a classifier. This
example demonstrates how issues arise when the forgetting (applied to the Forgetting samples) and
the retaining (applied to the Remaining samples) potentially interfere with one another. Specifically,
the forgetting process may disrupt the retaining process, weakening the model’s ability to general-
ize—especially in the intermediate space between the forgetting and remaining samples. However,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: A toy example of unlearning a focal class (in orange) to motivate our solution. The shaded
orange represents the effects of forgetting, while the shaded blue indicates the retention of remain-
ing knowledge. This example demonstrates how forgetting can inadvertently harm the knowledge
that should be retained, as shown by the overlapping shaded regions, ultimately degrading the gen-
eralizability on unseen data (shown as stars). Notably, we can sythesize mixup samples—which are
strategically mixed from Forgetting and Retaining—to mimic the data vulnerable to the overlapping
catastrophic effects. By removing the forgetting effects and retaining remaining knowledge on these
mixup samples, we can overcome catastrophic unlearning.

by strategically using mixup (Zhang, 2017; Liu et al., 2022; Qin et al., 2024), which generates in-
termediate samples through linear interpolation between the forgetting and remaining data, we can
address this issue. These synthesized mixup samples can simulate data points with catastrophic ef-
fects, enabling us to regularize the target unlearner for more effective unlearning—by minimizing
the negative impact of forgetting on the mixup samples, we make the model behave as if it were
trained solely on the remaining data.

To fully leverage mixed samples for addressing catastrophic unlearning, we propose a novel
generator-unlearner framework going beyond simply adopting the vanilla mixup: an adversarial
generator creates challenging mixup samples from mixing Forgetting and Remaining data, and then
the unlearner is regularized with these hard samples to enhance unlearning robustness. Specifically,
unlike traditional mixup relying on handcrafted rules, our method incorporates a mixup genera-
tor trained by a proposed contrastive loss in an adversarial manner. This generator is designed to
synthesize mixed samples that deliberately challenge the unlearner, causing it to forget remaining
knowledge while revealing information about forgetting data (a reversed direction of unlearning
which removes forgetting and retains remaining). The target unlearner then processes both these
synthetic mixed samples and real data, employing two distinct contrastive losses—one for each data
type—to effectively forget concerning information while retaining essential knowledge. Notably,
the overall method can perform unlearning without explicit labels for forgetting and remaining data,
making it particularly suitable for scenarios where models are initially trained on sparsely-annotated
datasets and labels are largely absent during unlearning. Extensive experiments across benchmark
datasets demonstrate that our method significantly outperforms existing state-of-the-art unlearning
techniques (Bourtoule et al., 2021; Chen et al., 2023; Chundawat et al., 2023a; Kurmanji et al., 2024;
Choi et al., 2024; Shen et al., 2024), both label-agnostic and label-aware.1 Our work underscores
the potential benefits of leveraging mixup samples for machine unlearning.

The contributions of this paper are as follows: First, we introduce a novel unlearning approach that
leverages mixup samples to regularize the unlearner, offering a new strategy for addressing the issue
of catastrophic unlearning. Second, we extend beyond the traditional mixup method by proposing
a generator-unlearner framework, where adversarially-generated examples improve the unlearning
process. This framework is trained using novel contrastive losses without any need for explicit labels
for forgetting and retaining data. Third, empirical evaluations across multiple benchmark datasets
demonstrate that our approach surpasses existing unlearning techniques. To maximize the impact of
our research, we will release the code for MixUnlearn.

1Label-agnostic unlearning refers to algorithms that facilitate unlearning without any need for labels, which
is particularly advantageous in real-world scenarios where much data may be unannotated, as is often the case
in weakly labeled or semi-supervised learning environments. In contrast, label-aware unlearning methods
depend on labeled data to execute the unlearning process.
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2 RELATED WORK

General Unlearning Work. Unlearning techniques are generally divided into two categories: exact
unlearning and approximate unlearning. Exact unlearning focuses on efficiently retraining a model
using only the remaining data. For example, the SISA algorithm (Bourtoule et al., 2021) enhances
retraining efficiency by initially training multiple model checkpoints on distinct data shards, only
retraining the specific checkpoints linked to the data that must be forgotten. As models and datasets
become increasingly complex, the limitations of exact unlearning have led to the rise of approxi-
mate unlearning methods. These methods aim to modify an already trained model by utilizing both
forgotten and retained data, striving to replicate the performance of a model retrained from scratch
(Nguyen et al., 2020; Tarun et al., 2023; Golatkar et al., 2020b; Thudi et al., 2022; Chen et al., 2023;
Kurmanji et al., 2024; Chundawat et al., 2023a; Golatkar et al., 2020a; Liu et al., 2021). Noteworthy
recent advancements include Chundawat et al. (2023a), which employs two teacher models—one
trained on retained data and the other on forgotten data—to guide the unlearning process; Chen
et al. (2023), which refines decision boundaries to facilitate unlearning; and Thudi et al. (2022),
which reverses parameter updates associated with the Forgetting data.

Data Augmentation for Unlearning. Recent research has explored the use of data augmentation
techniques to support the unlearning process (Chundawat et al., 2023b; Tarun et al., 2023; Huang
et al., 2021; Choi et al., 2024). Notable methods include UNSIR (Tarun et al., 2023), GLI (Choi
et al., 2024), and DSMixup (Zhou et al., 2022). UNSIR generates artificial noise to increase clas-
sification loss, thereby facilitating unlearning with noisy data. GLI perturbs retained samples with
noise and maintains model generalizability by preserving performance on noisy retained samples.
Our method offers two advantages over these approaches: (1) Unlike UNSIR, which is limited to
class-level unlearning, our approach is more versatile, supporting both class-level and data-level un-
learning; and (2) While GLI attempts to preserve utility through sample perturbation, it does not
adequately address catastrophic unlearning. DSMixup, one notable method, improves the SISA
framework by converting retraining shards into a smaller set of mixup shards, enhancing retraining
efficiency. Although DSMixup employs Mixup, its purpose and adaptation differ largely from ours.
DSMixup is aimed at “exact unlearning” and improving retraining efficiency, while our approach
focuses on mitigating catastrophic effects in well-trained models, as an “approximate unlearning”
method. Additionally, DSMixup mixes data shards, whereas our method mixes Forgetting and Re-
maining samples. While DSMixup prioritizes efficiency, sometimes at the expense of accuracy, our
method can preserve model generalizability. To our knowledge, we are among the first to leverage
Mixup to address catastrophic unlearning, a challenge unique to approximate unlearning.

Mixup for Traditional Machine Learning. Mixup techniques have been widely used in both su-
pervised and semi-supervised learning settings (Zhang, 2017; Verma et al., 2022; Berthelot et al.,
2019; Jin et al., 2024). Notable advanced methods include AutoMix (Liu et al., 2022) and AdAu-
toMix (Qin et al., 2024), which employ learnable generators to create mixup samples, though their
optimization objectives differ. Despite their success in traditional learning applications, the use of
mixup strategies in the context of unlearning remains underexplored. In particular, training a mixup
generator to effectively enhance the unlearning process is still an open challenge.

3 PRELIMINARY

Let fD be a deep model trained on dataset D, which maps instance x ∈ X to a distribution y ∈ Y
over class labels. Unlearning on fD is to eliminate the knowledge associated with a subset of
the data, denoted as Df ⊂ D, while retaining the knowledge derived from the remaining data,
Dr = D \Df . With an approximate unlearning approach, denoted by U , the original model fD is
transformed into an unlearned model fU = U(fD, Dr, Df ). The goal of the unlearned model fU is
to approximate the performance of fDr , a model trained solely on Dr. We refer to fD as the initial
model, fU as the unlearner, Df as the Forgetting dataset, and Dr as the Remaining dataset.

Conceptually, the unlearning algorithm U can be categorized into two types: label-agnostic and
label-aware. Label-agnostic unlearning does not require access to labels, making it particularly
suited for scenarios where the initial model is trained on largely unannotated datasets, and labels
are not guaranteed to be available during the unlearning phase. In contrast, label-aware unlearning
relies on label information during the unlearning process to facilitate removal of knowledge.
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Figure 2: The goal of our generator is to produce hard mixed samples that challenge the unlearner.
These mixed samples can prompt the unlearner to reveal information related to Forgetting and si-
multaneously disrupt the retention of Remaining, reversing the direction of unlearning process (the
goal of unlearning is to forget Forgetting while preserving Remaining). To train the generator, we
hold the unlearner fixed and update the generator’s parameters with a proposed contrastive objective
of Eq. 3. The unlearner then performs effective unlearning based on these mixed samples.

4 MIXUNLEARN: AN ADVERSARIAL MIXUP UNLEARNING FRAMEWORK

Why does retention apply to the remaining data, yet catastrophic effects on generalizability persist?
This issue likely arises from insufficient model regularization in intermediate regions or interpolation
zones, where the effects of forgetting and retention intersect. For example, consider a classifier
trained to recognize cats and dogs, where we aim for the model to forget the cat class while retaining
knowledge of the dog class. Although retention works for training samples of dogs, unseen dog
samples that exist in the overlapping or interpolation space between cats and dogs gain minimal
benefit. These unseen samples are likely close to the cat class in feature space, making it challenging
to fully mitigate the forgetting effect. Consequently, the model’s ability to generalize to these unseen
dog samples diminishes due to the residual impact of forgetting, leading to catastrophic unlearning.

To mitigate catastrophic unlearning, we propose integrating mixup samples into the machine un-
learning process. Mixup, introduced by Zhang (2017), is a data augmentation technique that creates
new samples by linearly interpolating between two existing samples. By strategically mixing sam-
ples from Forgetting and Remaining, we simulate instances that experience the conflicting forces
of forgetting and retention. These mixup samples allow us to regularize the unlearning process,
reducing the catastrophic effects associated with them.

However, vanilla mixup may not pose a significant challenge to the unlearning process, as it relies
on fixed patterns or linear combinations that the unlearner can handle with relative ease. To more
effectively utilize mixed samples, we propose a mixup generator that adversarially produces more
challenging mixup data, optimized through a novel contrastive loss. These samples are specifically
crafted to exploit the weaknesses of the unlearner by pushing it to discard the Remaining knowledge
while revealing information about Forgetting—the reverse process of unlearning, whose goal is
to forget the Forgetting and retain the Remaining. By introducing these challenging samples, the
unlearner is exposed to complex scenarios, resulting in stronger regularization compared to standard
mixup. Next, we will introduce our adversarial generator and then illustrate how to incorporate these
challenging mixup samples into unlearning.

4.1 LEARNING ADVERSARIAL GENERATOR TO CHALLENGE UNLEARNER

The illustration of our generator is shown in Figure 2. In the generator’s forward pass, each mixed
sample is mixed from one instance in Forgetting set with one in Remaining set. Unlike standard
mixup, which uses simple interpolation (i.e., xmix

ij = λxi + (1 − λ)xj), our generator employs a
learnable mixing function g. This allows for tailoring loss function to increase the complexity of the
mixed samples to challenge the unlearner. The mixed sample xmix

ij is defined as:

xmix
ij = g(xi, xj , λ), (1)

where g is the learnable mixing function, xi is a sample from Forgetting set, xj is from Remaining
set, and λ, drawn from a Beta distribution, determines the mixing ratio between xi and xj .

Mixing Forgetting and Remaining. To operationalize a learnable generator, we utilize the param-
eterized network module MixBlock from prior work (Qin et al., 2024) as the generator g. This
MixBlock can generate attention scores for each element of xi and xj , allowing for dynamic mix-
ing of the two samples. Since MixBlock is trainable, we can also tailor the generator’s behavior
with a customized loss function. The main distinctions of our generator compared to previous work
(Qin et al., 2024) in traditional learning are: 1) its novel application within the emerging domain of
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machine unlearning; 2) a strategic mixup of Forgetting and Remaining samples, rather than random
mixing; and 3) the introduction of a new contrastive objective that efficiently directs the generator
to challenge the unlearner, as we will discuss in detail later.

Specifically, with learnable MixBlock module to produce mixup samples, we extend g as:

xmix
ij = MixBlock(hD(xi), hD(xj), λ), (2)

where hD(xi) and hD(xj) are dense feature representations obtained from initial model fD.2 No-
tably, MixBlock has only 66K parameters and efficient to train.3

Adversarial Optimization. The distinctiveness of our mixup examples lie in their ability to chal-
lenge the unlearning process, where they force the unlearner to expose information about what is
being forgotten while leading it to lose knowledge that should be retained (this is an reversed di-
rection of unlearning). This adversarial goal is achieved by optimizing the generator to output hard
examples with a proposed contrastive loss. Specifically, a novel contrastive loss is applied on mixed
sample xmix

ij to penalize the generator g to generate hard sample (note the “-” sign to achieve adver-
sarial purpose) for challenging unlearner fU :

Lgen = −
∑

xj∈Br

log

(
exp

(
(1− λ) · SimLoss(fU (x

mix
ij ), p(xj))

)∑
xi∈Bf

exp
(
λ · SimLoss(fU (xmix

ij ), p(xi))/τgen
)) , (3)

with p(·) operation retrieves the one-hot label or “sharpened” (Goodfellow et al., 2016) class distri-
bution generated by initial model fD:4

p(x) =

{
y if the label y of x is available (label-aware)
Sharpen(fD(x)) otherwise (label-agnostic)

(4)

The intuition behind the contrastive loss in Eq. 3 operates on two key principles. First, it encour-
ages the model to reveal the distributional information of the forgetting sample (i.e., p(xi)) from the
output of the mixed sample (fU (xmix

ij )). This is reflected in the denominator, where the negative
sign serves an adversarial purpose. Second, it simultaneously disrupts the retention of distribu-
tional knowledge about the retaining sample (p(xj)) from the output of the mixed sample (again,
fU (x

mix
ij )). This is indicated by the numerator, with a negative sign.5 Together, this loss essen-

tially reverses the unlearning process: while “the objective of unlearning” is to forget the forgetting
sample and retain knowledge of the remaining sample, this loss works in the opposite direction.

Specifically, in Eq. 3, Bf denotes a batch of data to be forgotten, while Br represents a batch of
data to be retained. xi refers to a sample to be forgotten, xj to a sample to be retained, and their
mixed sample is given by xmix

ij = g(xi, xj , λ). The λ controls the weights between two SimLoss
for xi and xj according to mixing ratio. SimLoss is defined as the cosine similarity loss, expressed
as (1 − cosine similarity). Moreover, the hyperparameter τgen adjusts the sensitivity of SimLoss,
particularly in the denominator.

4.2 UNLEARNING WITH ADVERSARIAL MIXED SAMPLES

Recall that we have obtained the mixed sample xmix
ij , which encapsulates information from Forget-

ting and Remaining and is designed to challenge the unlearner. We then feed xmix
ij into the unlearner

2Machine unlearning starts with a well-trained fD , allowing us to use its existing feature extractor.
3MixBlock uses parameterized convolutional networks to extract deeper features and compute element-

wise attention masks Mi to mask the elements in xi. With both xi and xj masked, the mixed sample is
computed as xmix

ij = xi ⊙Mi + xj ⊙ (1−Mi), where 1 is a tensor with the same dimensions as xi, with all
elements set to 1. Full details on the MixBlock module can be found in Section 3.2 of (Qin et al., 2024).

4The formula of Sharpen is shown in Appendix A.12. The Sharpen results in sharper contrasts during
optimization, ensuring that the generated examples are more challenging to increase adversarial difficulty.

5Although other adversarial objectives were explored, we found this contrastive loss perform the best. This
success is attributed to the appropriate application of SimLoss, which effectively bounds the loss terms and
reduces the risk of exposing the model to large negative gradients that could negatively impact its parameters.
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fU , ensuring that the unlearner’s prediction no longer retains knowledge of xi, while only preserving
that of xj . The regularization on unlearner with mixed sample is achieved by optimizing fU with:

Lmix =
∑

xj∈Br

log

(
exp

(
(1− λ) · SimLoss(fU (x

mix
ij ), p(xj))

)∑
xi∈Bf

exp
(
λ · SimLoss(fU (xmix

ij ), p(xi))/τmix

)) , (5)

This loss function only change Eq. 3 with different sign and works in reverse: it directs fU to
remove information about xi while retaining the knowledge of xj . A temperature hyperparameter
τmix, again, is used to adjust the sensitivity of the similarity loss.

To further enhance the unlearning process, we add another contrastive loss that operates on the
original real samples xi and xj :

Lreal =
∑

xj∈Br

log

(
exp (SimLoss(fU (xj), p(xj)))∑

xi∈Bf
exp (SimLoss(fU (xi), p(xi))/τreal)

)
. (6)

This loss helps the model unlearn on original real examples xi and xj , reinforcing the retention
of fD(xj) while forgetting distributional information fD(xi) (xi is a forgetting sample and xj is
a remaining sample). Finally, we combine the two losses in a weighted manner to optimize the
unlearner fU :

Lunlearn = Lmix + ωLreal, (7)
where ω balances the importance of the two losses. Our overall framework operates by iteratively
optimizing g and fU . Notably, g only needs to learn 66K parameters in the lightweight MixBlock,
a significantly lower number compared to the unlearner (e.g., 11.3M parameters in ResNet-18). This
design contributes to the overall efficiency. To further enhance efficiency, we optimize g at a specific
interval during adversarial training, rather than at every unlearning iteration. For example, in our
experiments, we optimize g once every four iterations.

5 EXPERIMENTS

We conduct a series of experiments to validate the unlearning effectiveness of MixUnlearn.

5.1 DATASETS AND MODELS

Following prior works (Bourtoule et al., 2021; Chen et al., 2023; Shen et al., 2024), we conduct
experiments on four datasets: CIFAR10 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011) and
MNIST (Deng, 2012), FASHION-MNIST (Xiao et al., 2017). For the CIFAR10 and SVHN, we
adopt an 18-layer ResNet architecture (He et al., 2016). For the MNIST and FASHION, we use a
simple convolutional neural network (CNN) (LeCun et al., 1995) with two convolutional layers.

5.2 BASELINES

We employ two categories of baselines for comparison: label-aware, which require full label infor-
mation, and label-agnostic, which do not rely on any explicit label to function unlearning.

Label-Aware Baselines. This category includes Retrain, regarded as the gold standard. The base-
lines also encompass methods such as Boundary (Chen et al., 2023), SISA (Bourtoule et al., 2021),
Unroll (Thudi et al., 2022), T-S (Chundawat et al., 2023a), SCRUB (Kurmanji et al., 2024), GLI
(Choi et al., 2024), DSMixup (Zhou et al., 2022), and Label-Agnostic Forgetting with Repairing
(LAF+R) (Shen et al., 2024). Among these, LAF+R stands out by performing unlearning at the rep-
resentation level using multiple VAEs (Kingma, 2013), followed by a single retraining epoch. An-
other notable method is GLI, a recent data-augmentation-based approach that applies augmentation
to retained samples to preserve generalizability. Although DSMixup employs mixup, it serves a dif-
ferent goal: it mixes data shards into a smaller set of mixed shards to accelerate retraining, whereas
our approach mixes Forgetting and Remaining to maintain generalizability. Additionally, DSMixup
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is designed for exact unlearning, whereas our method is tailored for approximate unlearning. Full
label information is provided to both these baselines and MixUnlearn during our comparisons.

Label-Agnostic Baselines. This category includes Label Agnostic Forgetting (LAF) (Shen et al.,
2024), a pioneering approach. Due to the scarcity of label-agnostic baselines, we propose two base-
lines. The first, RandLabel, assigns random labels to the forgetting data using a MeanSquaredError
(MSE) loss. An additional MSE loss is applied to preserve the original output distribution for the
remaining data. The second, L-Mix, extends the LAF by incorporating Mixup. In L-Mix, mixed
samples are created by mixing forgetting data with retaining data using the standard rule. The
labels for these mixed samples are mixed by random labels (for the forgetting) and the model’s self-
generated labels (for the retaining). An MSE loss is applied to these mixed samples and labels upon
LAF. The L-Mix is intended to assess the potential of a straightforward adaptation of Mixup. No
label information is provided to these baselines and MixUnlearn during our comparisons.

Full details are shown in Appendix A.3. Experiments are repeated five times with random seeds.

5.3 EVALUATION SETUP AND METRICS

We evaluate MixUnlearn using unlearning setups following Shen et al. (2024). First, in the Class-
Level Unlearning setup, all data from class 0 is removed. We obtain the initial model for unlearning
by training with full dataset with labels. Then we get the Retrain by retraining on the labeled
Remaining subset, following Shen et al. (2024). Second, in the Data-Level Unlearning (Basic)
setup, we randomly remove 40% of the training data labeled with classes 5 through 9. The model
initialization and retraining process follow the same procedure as in the Class-Level Unlearning.

For robustness check, we introduce two additional configurations, extending the Data-Level Un-
learning (Basic) setup. The first involves assessing unlearning methods in a noisy label scenario, re-
ferred to as Data-Level Unlearning (Noisy). The second evaluates unlearning in a semi-supervised
setting, termed Data-Level Unlearning (Semi-Supervised). The key findings are presented in Sec-
tion 5.8, with detailed descriptions provided in Appendix A.6.

Metrics. In the Class-Level Unlearning setup, the evaluation metrics are: Testr (test accuracy on
the remaining classes), Testf (test accuracy on the forgotten class), and ASR (attack success rate of
membership inference attacks, as proposed by Shokri et al. (2017)). For the Data-Level Unlearn-
ing setups (Basic, Noisy, and Semi-Supervised), the relevant metrics include: Trainr (accuracy on
the remaining training data post-unlearning), Trainf (accuracy on the training data targeted for re-
moval), and Test (test accuracy on the test dataset). These metrics reflect the performance, with
results closer to Retrain indicating more effective unlearning outcomes.

5.4 MAIN RESULTS

We present the main results upon two unlearning scenarios: class-level and data-level (Basic), along
with two label configurations: agnostic and aware. For MixUnlearn, depending on label awareness,
we apply different forms of Eq. 4, resulting in two variants for label-agnostic and label-aware setups.

First, Tables 1 and 2 show that our method consistently outperforms existing baselines across a range
of configurations, including both label-agnostic and label-aware settings, as well as data-level and
class-level unlearning (while achieving comparable results in MNIST data-level unlearning). Key
metrics, such as test accuracy and attack success rate (ASR), show that our method delivers compet-
itive results close to Retrain. For example, in class-level unlearning tests on CIFAR-10 and SVHN,
our label-aware approach achieves average test accuracies of 87.10% and 93.95%, respectively, out-
performing state-of-the-art methods such as LAF+R, SISA (an exact unlearning approach), GLI (a
recent data augmentation-based method for approximate unlearning), and DSMixup (an exact un-
learning method utilizing Mixup to accelerate retraining). These findings highlight the effectiveness
of our mixup-based unlearning strategy. We visualize a mixed sample in Appendix A.9, and more
results on ImageNet (Deng et al., 2009) with ViT (Dosovitskiy, 2020) are shown in Section A.11.

Second, although our proposed baseline, L-Mix, outperforms LAF by incorporating standard mixup,
our approach takes it a step further by fully utilizing mixup with hard examples and incorporating a
series of effective contrastive losses. While simpler mixup implementations do lead to performance
improvements, our method achieves significantly greater gains. For instance, MixUnlearn improves
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upon L-Mix on CIFAR-10 in Class-Level Unlearning (87.10 vs. 82.34 in Testr). This highlights
that our method is not only highly effective but also innovative in how it leverages mixup.

Third, it is important to note that the label-agnostic setup presents significantly greater challenges
compared to its label-aware counterpart. For instance, the Testr metric for label-agnostic MixUn-
learn shows a clear disparity when compared to its label-aware version, highlighting the difficulties
that unlearning algorithms face in the absence of explicit labels.

Table 1: Class-Level Unlearning Performance (Mean%±Std%). Closer to “Retrain” is better.
“Aware” is label-aware; “Agnostic” is label-agnostic. Bold indicates the best result for each metric.

CIFAR-10 SVHN

Method Testr Testf ASR Method Testr Testf ASR

A
w

ar
e

Retrain 86.80±0.89 0±0 67.98±2.21 Retrain 94.20±0.78 0±0 59.63±1.77
NegGrad 58.48±3.41 0±0 51.53±1.21 NegGrad 77.12±1.56 5.98±1.33 53.22±2.10
Boundary 82.98±1.98 1.52±0.33 62.33±2.98 Boundary 91.28±1.02 13.12±3.91 61.34±3.05
SISA 73.01±0.56 0±0 51.53±0.12 SISA 92.04±0.81 0±0 62.45±1.34
Unrolling 83.89±2.02 0±0 67.32±1.92 Unrolling 92.01±1.19 88.12±3.12 58.30±3.02
T-S 86.31±1.12 5.20±1.32 46.98±3.26 T-S 92.89±0.82 7.86±2.06 48.97±0.88
SCRUB 34.12±1.23 0±0 49.89±1.23 SCRUB 20.33±0.65 0±0 64.21±1.12
DSMixup 64.31±2.01 0±0 50.83±1.93 DSMixup 82.31±1.90 0±0 50.62±1.77
GLI 84.82±0.65 47.28±5.70 73.03±0.80 GLI 93.44±0.50 63.22±7.77 86.10±0.32
LAF+R 87.20±0.69 0.20±0.04 56.89±1.23 LAF+R 91.35±0.73 0±0 61.89±1.37
Ours 87.10±0.78 0±0 68.30±2.77 Ours 93.95±0.69 0±0 59.97±2.68

A
gn

os
tic LAF 82.01±0.89 3.10±0.98 51.34±1.27 LAF 84.89±1.34 0.78±0.22 56.45±0.65

RandLabel 81.60±0.57 19.90±0.16 64.76±1.56 RandLabel 91.05±1.90 91.11±1.55 62.59±0.83
L-Mix 82.34±0.99 0.66±1.57 53.61±1.88 L-Mix 88.74±0.88 0.30±0.47 52.00±1.11
Ours 86.32±0.56 0±0 68.48±0.67 Ours 93.40±1.35 0±0 62.18±0.72

MNIST FASHION-MNIST

Method Testr Testf ASR Method Testr Testf ASR

A
w

ar
e

Retrain 98.79±0.20 0±0 26.56±1.75 Retrain 92.71±0.47 0±0 38.04±2.11
NegGrad 98.89±0.22 81.89±5.23 38.12±2.11 NegGrad 88.91±0.92 1.23±0.34 37.98±2.45
Boundary 98.43±0.37 96.24±1.32 38.89±2.41 Boundary 86.41±1.78 1.32±0.38 38.45±2.13
SISA 99.11±0.05 0±0 50.24±0.35 SISA 92.33±0.12 0±0 49.80±0.13
Unrolling 97.32±0.76 83.41±5.41 37.45±4.12 Unrolling 87.41±1.23 0.40±0.12 41.41±2.13
T-S 61.53±10.45 0.21±0.05 36.83±3.12 T-S 91.51±0.64 21.43±5.55 26.13±0.78
SCRUB 99.12±0.04 89.31±2.13 32.41±3.21 SCRUB 91.32±0.64 0.51±0.13 35.14±0.89
DSMixup 99.09±0.18 0±0 25.01±0.59 DSMixup 91.56±0.47 0±0 35.33±1.01
GLI 98.99±0.10 99.51±0.32 61.37±0.22 GLI 90.87±0.61 86.42±3.74 60.93±0.04
LAF+R 99.12±0.05 0.23±0.05 25.01±1.24 LAF+R 91.85±0.34 0.33±0.07 34.89±2.89
Ours 98.85±0.04 0±0 27.13±0.77 Ours 92.82±0.66 0±0 38.15±2.54

A
gn

os
tic LAF 97.97±0.26 0.27±0.06 49.31±3.23 LAF 89.88±0.80 3.12±0.82 31.89±1.32

RandLabel 95.68±1.21 50.91±10.88 27.89±2.12 RandLabel 87.96±1.14 39.1±3.36 33.29±0.85
L-Mix 98.05±0.14 0±0 24.01±0.19 L-Mix 90.15±1.33 5.01±2.94 32.95±1.59
Ours 98.88±0.07 0±0 27.37±1.60 Ours 91.80±1.33 0±0 38.07±0.65

5.5 ABLATION

We systematically remove individual components from our method (label-agnostic version), with
the results in Table 3 and Table 4 (Appendix A.4). Specifically, in the w/o MB ablation, we replace
the hard mixup samples with vanilla mixup samples, controlling mix ratio with different values of
α: (1) α = 0.35, which produces mixup ratios skewed close to 1 (the extreme case of 1 represents
no mixing); (2) α = 1.5, which generates mixup ratios centered near 0.5 (indicating equal mixing);
and (3) α = 0.75, which produces a broader range of ratios. Notably, this ablation differs from the
proposed L-Mix baseline in main results, as it uses our contrastive losses (Eq. 5 and Eq. 6).

The results for w/o MB highlight the advantages of using a learnable generator, which improves both
test accuracy and ASR. Among the configurations, α = 0.75 consistently yields better results, likely
due to the creation of more diverse mixup samples, in contrast to α = 0.35 and α = 1.5, which tend
to constrain the mixup ratios closer to 1 or 0.5, respectively. Additionally, the combination of Lmix
and Lreal performs better together than individually. Finally, the sharpening mechanism provides a
modest improvement. Similar trends appear in the data-level unlearning results (Appendix Section
A.4). For example, in the FASHION-MNIST data-level unlearning setup, the inclusion of MixBlock
results in effective forgetting of samples, achieving an average Trainf (the accuracy on forgetting
data) of 91.99, which closely matches the 92.15 achieved by the Retrain. In contrast, the configura-
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Table 2: Data-Level (Basic) Unlearning Performance (Mean%±Std%).
CIFAR-10 SVHN

Method Trainr Trainf Test ASR Method Trainr Trainf Test ASR

A
w

ar
e

Retrain 84.15±0.37 77.85±1.56 86.99±0.78 57.42±1.33 Retrain 83.70±0.35 75.38±1.03 93.44±0.88 58.58±1.59
NegGrad 78.56±0.83 68.78±3.12 82.56±1.23 56.03±0.67 NegGrad 81.22±0.58 68.89±1.49 91.89±1.56 57.86±1.23
Boundary 55.34±1.58 16.99±3.13 52.89±3.67 60.14±1.34 Boundary 65.12±1.56 30.01±2.01 72.02±1.12 87.58±3.91
SISA 66.81±0.22 53.45±0.68 54.49±0.10 37.88±0.09 SISA 83.01±0.25 67.91±0.57 82.98±0.96 51.03±0.58
Unrolling 58.34±1.78 31.04±3.52 60.34±1.89 57.01±1.22 Unrolling 70.12±2.13 47.23±2.09 83.88±0.78 55.45±1.23
T-S 71.54±1.42 71.98±3.12 77.01±3.21 55.62±1.34 T-S 78.52±0.55 73.01±0.89 91.01±0.78 56.12±1.76
SCRUB 29.05±1.45 0.32±0.10 23.89±1.23 56.01±2.02 SCRUB 23.45±0.10 0.23±0.05 20.89±0.23 64.32±2.33
DSMixup 58.19±1.55 53.97±1.39 63.44±1.22 51.12±1.49 DSMixup 73.33±0.98 65.03±0.87 81.48±0.54 52.26±1.10
GLI 79.19±1.28 83.26±1.13 84.34±1.08 73.37±0.83 GLI 82.10±0.83 76.08±1.51 93.10±0.36 78.48±0.36
LAF+R 79.20±1.20 79.20±0.91 84.88±1.21 57.84±0.88 LAF+R 83.40±0.56 76.12±0.68 93.68±0.77 57.91±0.44
Ours 82.01±0.68 76.97±0.52 85.99±1.15 57.45±0.71 Ours 83.37±0.39 75.89±0.68 93.31±0.55 58.11±0.38

A
gn

os
tic LAF 78.12±1.03 73.42±3.56 82.33±2.03 57.70±0.77 LAF 81.60±0.67 76.34±1.32 92.24±0.67 57.80±0.98

RandLabel 77.90±2.67 72.55±2.88 83.38±2.79 56.33±0.91 RandLabel 77.90±1.24 72.55±1.55 83.38±0.89 56.33±1.33
L-Mix 79.01±1.78 79.65±2.21 84.56±1.46 55.89±0.87 L-Mix 81.65±0.51 75.91±0.97 92.44±0.69 57.01±1.01
Ours 79.18±0.98 78.48±1.25 84.82±1.39 57.29±1.02 Ours 81.77±0.28 75.31±1.25 92.46±0.47 57.88±0.74

MNIST FASHION-MNIST

Method Trainr Trainf Test ASR Method Trainr Trainf Test ASR

A
w

ar
e

Retrain 99.50±0.08 98.83±0.06 99.13±0.12 49.63±0.64 Retrain 96.34±0.49 92.34±0.56 90.45±0.36 47.35±0.86
NegGrad 99.02±0.15 98.90±0.17 98.68±0.35 50.67±0.49 NegGrad 93.78±0.45 89.56±0.35 89.44±0.34 46.34±0.78
Boundary 97.55±1.05 94.99±1.69 96.05±1.56 46.99±2.23 Boundary 57.23±3.24 46.89±3.04 52.09±3.88 48.23±1.82
SISA 99.11±0.14 98.44±0.11 99.01±0.08 34.89±0.09 SISA 91.77±0.30 90.89±0.10 90.01±0.30 31.41±0.19
Unrolling 99.64±0.12 99.42±0.28 99.05±0.24 47.89±0.54 Unrolling 89.99±0.43 84.01±0.94 81.43±0.45 47.78±0.61
T-S 94.35±0.98 93.33±2.51 93.67±1.23 48.01±0.88 T-S 83.01±1.34 86.89±2.45 82.67±1.34 44.37±2.40
SCRUB 99.17±0.23 99.04±0.22 98.76±0.12 46.88±0.50 SCRUB 91.12±0.12 88.23±0.45 88.88±0.25 45.35±0.67
DSMixup 99.50±0.14 98.51±0.09 98.97±0.03 47.28±0.05 DSMixup 90.85±0.22 88.15±0.32 88.77±0.31 49.92±0.29
GLI 99.73±0.07 99.70±0.06 99.03±0.11 39.27±1.35 GLI 96.04±0.28 96.30±0.91 90.46±0.22 50.19±0.63
LAF+R 99.43±0.16 99.20±0.27 98.78±0.12 49.20±0.57 LAF+R 94.23±0.35 94.86±1.44 90.55±0.35 47.42±0.32
Ours 99.60±0.06 98.70±0.28 98.60±0.36 49.53±0.73 Ours 95.60±0.86 93.01±1.01 90.50±0.25 47.36±0.22

A
gn

os
tic LAF 98.22±0.77 97.21±1.28 97.44±0.81 47.79±0.92 LAF 91.45±1.46 91.01±2.30 87.33±2.69 46.86±0.76

RandLabel 98.51±0.42 97.35±0.85 97.88±0.51 47.81±0.65 RandLabel 92.27±1.89 93.80±2.53 88.75±1.79 45.12±1.55
L-Mix 99.23±0.07 97.56±1.22 98.00±0.13 45.21±1.01 L-Mix 92.58±1.23 90.99±2.67 88.72±2.44 40.89±3.89
Ours 99.25±0.15 97.78±0.98 98.13±0.19 48.11±0.90 Ours 92.78±1.18 91.99±2.01 88.76±1.15 46.90±0.69

Table 3: Ablation Results for Class-Level Unlearning. MB denotes MixBlock.
CIFAR-10 SVHN

Method Testr Testf ASR Method Testr Testf ASR

Retrain 86.80±0.89 0±0 67.98±2.21 Retrain 94.20±0.78 0±0 59.63±1.77
w/o MB (α = 0.35) 85.01±0.53 0±0 65.24±0.88 w/o MB (α = 0.35) 92.34±0.69 0±0 62.87±1.41
w/o MB (α = 0.75) 85.42±0.32 0±0 65.15±0.76 w/o MB (α = 0.75) 92.74±0.49 0±0 63.24±0.79
w/o MB (α = 1.5) 84.96±0.69 0±0 65.01±0.91 w/o MB (α = 1.5) 92.01±0.86 0±0 63.17±0.98
w/o Lreal 29.30±1.80 0±0 58.42±2.55 w/o Lreal 26.89±1.32 0±0 60.91±1.01
w/o Lmix 82.15±1.69 0±0 61.30±2.31 w/o Lmix 91.68±1.06 0±0 50.95±2.66
w/o Sharpen 85.83±0.89 0±0 70.27±0.69 w/o Sharpen 93.01±0.99 0±0 67.12±0.68
Ours 86.32±0.56 0±0 68.48±0.67 Ours 93.40±1.35 0±0 62.18±0.72

MNIST FASHION-MNIST

Method Testr Testf ASR Method Testr Testf ASR

Retrain 98.79±0.20 0±0 26.56±1.75 Retrain 92.71±0.47 0±0 38.04±2.11
w/o MB (α = 0.35) 99.00±0.22 0±0 30.01±1.02 w/o MB (α = 0.35) 90.96±0.76 0±0 36.24±1.12
w/o MB (α = 0.75) 99.25±0.14 0.06±0.08 29.37±0.47 w/o MB (α = 0.75) 91.33±0.71 0±0 36.33±1.09
w/o MB (α = 1.5) 99.03±0.18 0±0 29.01±0.58 w/o MB (α = 1.5) 91.01±0.89 0±0 36.01±0.98
w/o Lreal 67.00±1.54 1.93±0.13 48.63±1.74 w/o Lreal 40.50±1.43 0±0 43.83±1.15
w/o Lmix 97.49±0.25 0.10±0.06 31.30±0.75 w/o Lmix 87.60±0.38 0±0 38.04±0.62
w/o Sharpen 98.67±0.14 0±0 30.35±1.19 w/o Sharpen 91.55±0.36 0±0 35.24±1.11
Ours 98.88±0.07 0±0 27.37±1.60 Ours 91.80±1.33 0±0 38.07±0.65

tion without MixBlock (w/o MB) yields a Trainf of 95.68, deviating much from the Retrain model.
We provide a hyperparameter sensitivity analysis in Appendix A.5.

5.6 VISUALIZATION OF REPRESENTATIONS

Consistency with Retraining. We observe that MixUnlearn generates a representation space that
closely resembles that of the Retrain. The class separation and clustering patterns are visually simi-
lar, with the airplane acting as a bridge between the bird, deer, ship, and truck classes. This indicates
that MixUnlearn effectively includes the key features of the retrained model. However, this consis-
tency is absent in the initial model, suggesting that our method significantly changes its behavior.
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(a) Retrain Model (b) Initial Model (c) LAF (d) w/o Lmix (e) MixUnlearn
Figure 3: Representation distributions in the class-level unlearning on the CIFAR-10. The blue
denotes forgetting class (class 0; airplane) while the other colors denote the remaining data. The
involved classes are: airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck.

(a) Retrain (b) Initial Model (c) LAF (d) MixUnlearn
Figure 4: Kernel Density Estimate Plots for Loss Distributions. We use the setting of class-level
unlearning on CIFAR10. The horizontal axis is CrossEntropyLoss value and the vertical is density.

Mitigating Catastrophic Unlearning. The incorporation of Lmix mitigates catastrophic effect. In
panel (d), the absence of Lmix leads to more dispersed and less clearly defined clusters, particularly
for the bird class. This happens because, when the model forgets the airplane class, it unintentionally
also forgets the nearby bird class. A similar catastrophic effect is observed with the state-of-the-
art LAF method. However, MixUnlearn successfully mitigates this issue, further supporting the
rationale of leveraging mixup to prevent catastrophic unlearning.

5.7 KERNEL DENSITY ESTIMATE (KDE) PLOT FOR LOSS DISTRIBUTION

Following Choi et al. (2024) and Chen et al. (2023), we use Kernel Density Estimate (KDE) plots
to visualize the distributions of two key cross-entropy losses: Forgetting (blue) and Unseen (red).
A successful unlearning is indicated by the visual alignment with the Retrain’s loss distributions.
Details on plot generation are in Appendix A.7, with results in Figure 4. The Initial Model shows
tightly clustered, lower loss values before unlearning, while LAF (Figure 4c) shows minimal shift,
indicating weaker unlearning. In contrast, MixUnlearn (Figure 11d) closely matches the Retrain
method’s distributions, suggesting superior unlearning performance.

5.8 ROBUSTNESS CHECK ON NOISY-LABEL OR SEMI-SUPERVISED SETUPS

We evaluate MixUnlearn’s robustness in more complex scenarios with noisy or unannotated data,
with detailed results provided in Tables 5 and 6 in the Appendix A.6. In the noisy-label setup, it
shows resilience, matching the Retrain model in accuracy and Attack Success Rate (ASR), outper-
forming competitors. In the semi-supervised setting, with unannotated data, it maintains comparable
performance. These findings emphasize the robustness of MixUnlearn in addressing both noisy and
semi-supervised datasets, making it suitable for real-world applications with imperfect supervision.

5.9 EFFICIENCY

We show the time cost comparison in Figure 8 in Appendix A.8. Our method significantly reduces
time cost compared to Retrain, the unlearning gold standard, and is faster than advanced models
like T-S, SCRUB, and LAF. The efficiency comes from the lightweight MixBlock architecture (66K
parameters) and periodic generator updates, making MixUnlearn a fast and effective solution.

6 CONCLUSION

In this study, we propose a novel machine unlearning method by leveraging mixup samples to miti-
gate potential catastrophic unlearning issue. The mixup samples are created in a generator-unlearner
framework, where an adversarial generator creates challenging mixup examples that compel the un-
learner to draw on information from the forgetting set, while simultaneously losing knowledge from
the remaining data. Then unlearner effectively performs unlearning based on these challenging
mixed examples. Extensive experiments conducted on benchmark datasets validate the superiority
of our method, underscoring the potential of employing mixup techniques for machine unlearning.
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A APPENDIX

A.1 HYPERPARAMETERS AND IMPLEMENTATION

In all experiments, we use a batch size of 32. A learning rate of 1e-5 is applied for CIFAR-10 and
SVHN, while 5e-5 is used for MNIST and FASHION-MNIST. The mix ratio λ is sampled from beta
distribution with α from {0.3, 0.5, 0.75, 1, 1.5}. τgen is searched from {0.05, 0.1, 0.5, 1, 5}, τmix is
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searched from {1, 10, 20, 50} and τreal is searched from {2, 5, 10, 20, 40}. The sharpen temperature
T is set to 0.3. ω is tuned from {0.5, 1, 10, 20, 30}. We implement MixUnlearn in PyTorch, and
NVIDIA GeForce RTX 3090 is used for training. For the MNIST and FASHION-MNIST datasets,
we set the unlearning epoch to 20. For the CIFAR-10 and SVHN datasets, we set the unlearning
epoch to 40.

A.2 INITIAL MODEL

For the CIFAR-10 and SVHN, we use an 18-layer ResNet (He et al., 2016) architecture, which
includes two fully connected layers with output dimensions of 256 and 10. The ResNet model is
trained from scratch without using pre-trained weights. For the MNIST and FASHION-MNIST
datasets, we employ a CNN architecture (LeCun et al., 1995) consisting of two convolutional layers
with 16 and 32 output channels, respectively. The remaining part of the CNN is composed of three
fully connected layers with output dimensions of 256, 128, and 10.

To obtain initial models, we train two 18-layer ResNet models on the CIFAR datasets for 20 epochs
with a learning rate of 5e-5 and train two CNN models on the MNIST datasets for 10 epochs with
a learning rate of 1e-3, following Shen et al. (2024). To ensure model convergence, we examine the
learning curves of these initial models, as shown in Figure 5. Notably, we observe that the training
accuracy is lower than the testing accuracy for the initial models for CIFAR-10 and SVHN. This
can be attributed to the use of data augmentation techniques, such as random cropping, flipping, and
normalization, which effectively reduce overfitting by introducing variability during training.

CIFAR-10 SVHN

Figure 5: Learning Curve of Initial Model.

A.3 BASELINES

For the gold-standard baseline Retrain, we retrain the CNN models on the MNIST datasets for 20
epochs with a learning rate of 1e-3, while the ResNet models on the CIFAR datasets are retrained
for 40 epochs with a learning rate of 5e-5. The learning curves of the Retrain models, presented in
Figure 6, demonstrate the convergence.

For the other baselines, we adhere to the hyperparameters specified in their original studies for the
unlearning process, while tuning additional parameters as needed to optimize performance. Neg-
Grad updates the deep model’s parameters by applying positive gradients to the retaining data and
negative gradients to the forgetting data. We adjust the weight for the loss on the retaining data
using values from {0.001, 0.01, 0.1, 1, 10, 100}. Boundary (Chen et al., 2023) modifies the decision
boundaries between the forgetting and retaining data to reduce the influence of the forgetting data,
with the FSGM bound tuned in the range of 0.1 to 0.5. SISA (Bourtoule et al., 2021) retrains the
model on smaller data shards from the remaining dataset and aggregates the results through ensem-
bling; we set the shard number to 4 for better model generalizability. Unroll (Thudi et al., 2022)
employs a regularization technique to minimize verification error, which quantifies the divergence
between the unlearned model and the retrained model. For this, we use the default parameters. T-S
(Chundawat et al., 2023a) trains two teacher models separately on the forgetting and retaining data,
aligning a student model based on differences in the output spaces of the two teachers. We tune the
weight for the loss on retaining data from {0.0001, 0.01, 0.1, 1, 10, 100} and the temperature from
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CIFAR-10 SVHN

Figure 6: Learning Curve of Retrain Model.

{0.5, 1, 2, 3}. 6 The student model then achieves unlearning based on the output spaces of these
two teachers. SCRUB (Kurmanji et al., 2024) enforces consistency between the model and a teacher
model trained on the retaining data while ensuring inconsistency with a teacher model trained on the
forgetting data. We tune the weight for the retaining teacher from {0.0001, 0.01, 0.1, 1, 10, 100} and
the temperature from {0.5, 1, 2, 3}. DSMixup (Zhou et al., 2022) accelerates SISA by transforming
the data shards required for retraining into a smaller set of mixed data shards; we mix two shards in
this process. GLI (Choi et al., 2024) perturbs the retaining samples and trains the unlearner on these
perturbed samples to maintain generalizability. We tune the perturbation iteration from 2 to 5. For
LAF (Shen et al., 2024), we use the best parameters reported in the original paper. For RandLabel,
we tune the weight for retaining loss from {0.0001, 0.01, 0.1, 1, 10, 100}. For L-Mix, we tune alpha
(i.e., the parameter from the Beta distribution) from {0.3, 0.5, 0.75, 1, 1.5}.

Discussion on Terminating the Unlearning Process. We adopt the common practice of using a
fixed number of unlearning epochs to terminate the unlearning process, as suggested in prior work
(Chundawat et al., 2023a; Kurmanji et al., 2024; Choi et al., 2024; Shen et al., 2024). In our experi-
ments, the baseline methods are allocated a total of 40 unlearning epochs. Additionally, we monitor
the training loss to inspect the progression of the unlearning process. However, determining the
optimal strategy for terminating unlearning remains an open question in the field. Unlike traditional
learning processes, where validation sets can be used for early stopping, unlearning lacks a clear,
standardized approach for effective termination. Should termination rely on metrics such as Trainr,
Trainf , Test, or the Attack Success Rate? Or perhaps a weighted combination of these metrics? For
now, we employ the straightforward strategy of setting a fixed unlearning budget to terminate the
process. Addressing the question of how to effectively terminate unlearning processes is left as a
promising avenue for future research.

A.4 ABLATION RESULTS ON DATA-LEVEL UNLEARNING

The ablation results in Table 4 show that the full configuration (Ours) consistently outperforms con-
figurations where key components, such as MixBlock (MB), Lreal, and Lmix, are removed. Specif-
ically, removing MB results in a noticeable performance drop. For example, on the FASHION-
MNIST dataset, the full configuration achieves a much closer Trainf to Retrain, compared to the
version without MB (91.99% vs. 95.68%), highlighting that MixBlock helps the model forget more
effectively. Excluding Lreal leads to a significant reduction in both training and test accuracy, empha-
sizing its crucial role in the model’s performance. While the removal of Lmix also results in lower
performance, its impact is less severe. The Sharpen component has only a marginal effect on overall
performance. In summary, these results suggest that Lreal is essential for effective unlearning, while
both MB and Lmix also contribute positively to performance.

6This baseline follows the extended approach in the original paper (Chundawat et al., 2023a), which uses
trained models as teachers (e.g., partially retrained models as teachers) rather than the vanilla version of T-
S, which uses the initial model and a random-parameterized model as teachers. We adopt this approach to
align with the baseline setup in Shen et al. (2024), which also uses trained models as teachers. Moreover, our
validation confirms that this extension performs better than the vanilla version of T-S.
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Table 4: Ablation Results for Data-Level Unlearning (Basic). MB denotes MixBlock.
CIFAR-10 SVHN

Method Trainr Trainf Test ASR Method Trainr Trainf Test ASR

Retrain 84.15±0.37 77.85±1.56 86.99±0.78 57.42±1.33 Retrain 83.70±0.35 75.38±1.03 93.44±0.88 58.58±1.59
w/o MB 78.86±0.67 78.57±0.88 84.70±0.96 55.19±0.71 w/o MB 81.76±0.27 76.15±0.64 92.06±0.29 56.74±0.95
w/o Lreal 19.92±1.47 0±0 16.27±0.76 55.52±0.72 w/o Lreal 22.26±1.22 0±0 21.96±1.45 63.35±1.23
w/o Lmix 78.65±0.98 80.57±1.11 84.62±0.99 53.42±0.65 w/o Lmix 81.61±0.66 77.89±0.56 92.41±0.96 56.32±1.21
w/o Sharpen 78.97±0.77 78.12±0.91 84.71±1.11 56.99±0.87 w/o Sharpen 81.67±0.28 75.98±0.94 92.33±0.56 56.66±1.09
Ours 79.18±0.98 78.48±1.25 84.82±1.39 57.29±1.02 Ours 81.77±0.28 75.31±1.25 92.46±0.47 57.88±0.74

MNIST FASHION-MNIST

Method Trainr Trainf Test ASR Method Trainr Trainf Test ASR

Retrain 99.50±0.08 98.83±0.06 99.13±0.12 49.63±0.64 Retrain 96.34±0.49 92.34±0.56 90.45±0.36 47.35±0.86
w/o MB 98.39±0.41 95.62±0.87 97.12±0.88 46.32±0.54 w/o MB 92.54±0.68 95.68±1.32 88.68±0.97 45.99±1.12
w/o Lreal 58.16±1.78 30.29±1.56 49.20±1.33 47.89±1.24 w/o Lreal 27.46±1.03 4.42±0.41 22.44±0.78 43.99±0.78
w/o Lmix 99.78±0.08 99.86±0.07 98.96±0.08 48.04±1.01 w/o Lmix 94.45±0.99 96.79±0.95 88.56±1.34 43.87±1.19
w/o Sharpen 98.97±0.34 97.65±0.94 98.01±0.35 47.97±0.68 w/o Sharpen 92.35±1.01 91.86±1.67 88.43±0.96 46.01±0.76
Ours 99.25±0.15 97.78±0.98 98.13±0.19 48.11±0.90 Ours 92.78±1.18 91.99±2.01 88.76±1.15 46.90±0.69

(a) Adversarial Interval (b) Alpha for Sampling λ (c) ω for Lreal (d) τgen in Lgen

Figure 7: Hyperparameter Sensitivity Analysis on CIFAR-10 class-level unlearning. The X-axis
represents the hyperparameter, and the Y-axis shows test accuracy (%) for the remaining classes.
The ideal test accuracy for the remaining classes is 87.01% (Retrained model).

A.5 SENSITIVITY ANALYSIS ON HYPERPARAMETERS

We perform a hyperparameter sensitivity analysis based on class-level unlearning on CIFAR-10,
with the results presented in Figure 7. The hyperparameters analyzed include: 1) the update interval
for the generator; 2) the alpha parameter for configuring the Beta distribution (Beta(α, α)) used to
sample λ; 3) the loss weight for Lreal, and 4) the temperature τgen in the SimLoss of Lgen.

Figure 7 underscores the significance of tuning these parameters to optimize the performance of
MixUnlearn. First, the generator update interval must be well-configured: if it is in a small value, the
generator may update too quickly, preventing the unlearner from keeping pace. Second, tuning the
α parameter is critical. If α is too small, the Beta distribution becomes concentrated at the extremes,
overlooking the middle range, which can lead to missed valuable samples. Third, the weight ω for
Lreal requires careful balancing. Lastly, fine-tuning the sensitivity of SimLoss, controlled by τgen,
is essential to optimize performance, as it influences temperature scaling during generator training.
Despite this, the analysis shows that MixUnlearn is generally robust across a range of values for
these hyperparameters, maintaining strong performance.

A.6 EXPERIMENTS ON NOISY-LABEL OR SEMI-SUPERVISED SCENARIOS

For robustness check, we introduce two additional configurations for evaluation, extending the Data-
Level Unlearning (Basic) setup:

Data-Level Unlearning (Noisy). In this setup, we randomly assign incorrect labels to 60% of the
training data labeled 0 to 4. These mislabeled samples are then designated as data to be forgotten.
The initial model is trained with these noisy labels, while the retrained model is trained with the
remaining data (note that remaining data’s labels are clean), creating a more complex unlearning
environment (Shen et al., 2024). We assess label-aware methods within this noisy context.
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Data-Level Unlearning (Semi-Supervised). Here, 60% of the training data remains unannotated.
Subsequently, 40% of the samples labeled 5 to 9 are randomly selected for removal. Both the
initial and retrained models are trained in a semi-supervised manner using the established Mean-
Teacher (Tarvainen & Valpola, 2017)—this introduces complexity in unlearning to approximate a
semi-supervisedly retrained model. We evaluate label-agnostic methods in this context.

Table 5: Unlearning Performance (Mean%±Std%) of Data-Level Unlearning (Noisy). All labels,
including potentially noisy ones, are provided to the unlearning algorithm.

CIFAR-10 SVHN

Method Trainr Trainf Test ASR Method Trainr Trainf Test ASR

Retrain 84.30±0.53 3.42±0.35 84.69±1.04 59.56±0.96 Retrain 82.46±0.15 2.37±0.23 93.38±0.35 59.55±1.22
NegGrad 25.31±2.55 5.21±0.83 22.14±1.22 65.30±3.44 NegGrad 18.48±2.68 2.48±1.21 17.46±6.08 58.25±2.05
SISA 62.31±0.27 10.30±0.15 53.02±0.63 46.23±2.61 SISA 80.17±0.13 2.45±0.31 80.02±0.07 44.84±0.04
LAF+R 77.80±0.89 4.88±1.20 78.30±0.79 59.09±0.88 LAF+R 79.39±0.27 2.85±0.17 90.51±0.50 55.09±1.64
Ours 81.12±0.99 4.87±1.18 82.13±1.04 59.14±1.44 Ours 81.01±0.44 2.21±0.37 92.18±0.88 54.13±0.52

Table 6: Unlearning Performance (Mean%±Std%) of Data-Level Unlearning (Semi-Supervised).
No label information is exposed to the unlearning algorithm.

CIFAR-10 SVHN

Method Trainr Trainf Test ASR Method Trainr Trainf Test ASR

Retrain 75.52±0.79 73.81±0.71 80.72±0.91 55.78±1.21 Retrain 81.42±1.12 70.41±0.69 90.50±0.59 57.88±0.97
LAF 65.22±0.75 60.03±1.04 70.13±0.95 52.47±1.05 LAF 77.44±0.76 71.50±0.43 87.04±0.93 54.01±1.34
L-Mix 69.57±1.45 62.86±1.13 74.65±0.98 52.61±1.22 L-Mix 77.70±1.09 71.73±0.77 87.45±1.23 54.81±0.89
Ours 71.35±0.89 71.76±1.30 77.65±1.25 55.35±1.89 Ours 78.58±0.55 69.11±0.88 89.38±0.66 54.50±1.04

We show the corresponding results in Table 5 and Table 6. In the noisy-label scenario, our method
demonstrates robust performance, as seen in both the accuracy and ASR (Attack Success Rate)
metrics which are close to Retrain. This shows that our approach can effectively handle label noise.
In the semi-supervised scenario, where a large percentage of the training data remains unannotated,
our method continues to show strong results. Specifically, our approach maintains high test accuracy
and low ASR, highlighting its ability to deal with missing labels. This is critical in real-world
applications, where full supervision is often not feasible. Overall, these results demonstrate that our
method is highly adaptable and robust, successfully mitigating the challenges posed by both noisy
and semi-supervised datasets, and outperforming other state-of-the-art methods in these settings.

A.7 PROCEDURE OF VISUALIZING LOSS DISTRIBUTION

To generate KDE plots, we compute two sets of cross-entropy loss values for each method. Forget-
ting Loss represents the loss on data that has been unlearned, while Unseen Loss corresponds to the
loss on entirely new data that the model has not previously encountered. For each method, including
Retrain, Initial Model, LAF, and MixUnlearn, we apply the KDE technique to smooth the raw loss
values, providing a clearer visualization of the density of loss values. This approach highlights dif-
ferences in how each method manages forgetting and generalization, offering insights through the
visual comparison of loss distributions.

A.8 TIME COST

Compared to Retraining, which requires a complete model retraining and is thus highly time-
consuming, our method demonstrates significant superiority in efficiency. This inefficiency high-
lights the advantages of approximate unlearning techniques. When compared to teacher-student
models like T-S and SCRUB, which involve additional computational steps for learning from teacher
and student models, our method shows much better time efficiency. Furthermore, our approach out-
performs LAF, the current state-of-the-art method based on VAEs with 150K parameters, in both
time efficiency and scalability. With only 66K parameters, our MixBlock architecture provides a
lightweight yet highly effective solution, substantially reducing time and resource costs while opti-
mizing the unlearning process. As illustrated in Figure 8, our method consistently achieves low time
costs across both CIFAR10 and SVHN datasets.
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(a) CIFAR10 (b) SVHN

Figure 8: Time cost comparison for class-level unlearning. Experiments are conducted using
NVIDIA GeForce RTX 3090. A time cost comparison for class-level unlearning is conducted using
an NVIDIA GeForce RTX 3090. SISA utilizes 4 GPU devices to facilitate unlearning, whereas other
methods use only a single device.

(a) Airplane (b) Frog (c) Mixed Sample

Figure 9: Visualization of the Mixed Sample. The experiment is conducted on class-level unlearning
in CIFAR-10, targeting the unlearning of the ‘Airplane’ class. λ is set as 0.5.

A.9 VISUALIZING MIXED SAMPLE

We present the visualization of the mixed sample in Figure 9. From this, we observe that the mixed
sample predominantly reveals features of the airplane, while the frog’s characteristics are difficult to
discern visually. We hypothesize that this image may cause the unlearning model to primarily reveal
its shortcomings in forgetting the airplane and failing to effectively retain the frog’s information.

A.10 EFFECT OF DATA RATIO FOR UNLEARNING

We evaluate the effect of the data ratio on our method and baselines by considering different pro-
portions of data removed during Data-Level Unlearning. Specifically, we randomly remove 10% to
40% of the training data labeled with classes 5 through 9 to train the initial model. The results are
illustrated in the Figure 10 below.

To better understand the impact of the data ratio on unlearning performance, we quantify the gap
between a focal method (ours or a baseline) and the retrained model. This comparison is performed
using two metrics: training accuracy on the forgotten data (Trainf ) and testing accuracy. For a given
metric, such as Trainf , we calculate the absolute difference between a focal method and the retrained
model. This absolute difference represents the gap between the method’s performance and the gold
standard of retraining. The results of these comparisons are presented in the following figures.

The results demonstrate that increasing the data ratio for forgetting generally makes the unlearn-
ing task more challenging, causing larger deviations between unlearning methods and the retrained
model. This trend is evident across both Trainf and Test Accuracy metrics, where baseline methods
(e.g., NegGrad, TS, GLI, LAF+R) exhibit increasingly higher gaps as the forgetting data ratio grows.
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(a) CIFAR-10: Trainf Gap (b) CIFAR-10: Test Accuracy Gap

(c) SVHN: Trainf Gap (d) SVHN: Test Accuracy Gap

Figure 10: Unlearning gaps between a focal method and the retrained model in terms of Trainf and
Test accuracy.

In contrast, our method consistently achieves a low gap relative to the retrained model, maintaining
robust performance across all data ratios and datasets (CIFAR-10 and SVHN). This highlights the
effectiveness of our approach in handling the unlearning task with minimal deviation, even under
more difficult conditions, and underscores its superiority over baseline methods.

A.11 EXPERIMENTS ON IMAGENET AND VIT

We conduct experiments on the ImageNet dataset (Deng et al., 2009), using the existing ViT model
(Dosovitskiy, 2020) as the model of interest. Specifically, we utilize the pre-trained weights of ”vit-
b16-224-in21k,” which were trained on ImageNet-21K. For our experiments, we use the validation
set of ImageNet-1K, consisting of 50,000 images, as the dataset to manipulate the pre-trained Vision
Transformer model for obtaining initial and retrained models. This dataset is further randomly split
into a training set of 40,000 images (to construct Forgetting and Remaining set) and a testing set of
10,000 images (for validate testing accuracy). For simplicity and clarity, we refer to these subsets as
the “training dataset” and “testing dataset” throughout this section.7

To obtain the initial and retrained models, we follow a specific procedure. The initial model is
trained by fine-tuning “vit-b16-224-in21k” on the 40,000 image training set (20 epochs to ensure
convergence). The retrained model is then obtained by training “vit-b16-224-in21k” on a modified

7We utilize the ImageNet-1K validation set due to its moderate size and challenging nature, encompass-
ing up to 1,000 classification categories and offering higher resolution than the data used in our main results.
While our goal is to evaluate on larger datasets, the computational cost of obtaining initial and retrained mod-
els—ensuring convergence for transformer-based architectures and conducting repeated evaluations—renders
this impractical. Consequently, we adopt this dataset as a pragmatic choice for evaluation.
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(a) Retrain (b) Initial Model (c) LAF (d) MixUnlearn

Figure 11: Kernel Density Estimate Plots for Loss Distributions. We use the setting of class-level
unlearning on ImageNet based on ViT. The horizontal axis is CrossEntropyLoss value and the verti-
cal is density.

version of the training set (20 epochs to ensure convergence), constructed by removing certain data
points. Two unlearning scenarios are considered: class-level unlearning, where all data from 100
classes is removed from the training set, and data-level unlearning, where 500 classes are randomly
selected and 80% of their data points are removed.

Table 7: Unlearning Performance on ImageNet based on ViT

Class-Level Unlearning Data-Level Unlearning

Method Testr Testf ASR Method Trainr Trainf Test ASR

Retrain 78.17±1.88 0.00±0.00 35.66±2.13 Retrain 94.24±1.24 58.63±3.12 72.58±2.18 19.68±2.10
NegGrad 67.24±1.49 2.01±0.42 28.46±1.99 NegGrad 73.82±2.01 28.75±1.45 35.97±2.13 16.34±1.45
SISA 70.50±2.09 0.00±0.00 32.23±1.34 SISA 91.41±1.02 38.24±2.14 68.14±2.56 18.24±2.45
T-S 76.88±1.98 25.90±2.45 30.46±1.01 T-S 92.52±1.34 75.77±2.09 70.09±1.42 16.96±2.34
DSMixup 68.88±3.02 0.00±0.00 25.41±2.23 DSMixup 89.45±1.86 76.14±2.67 65.14±1.46 17.42±2.34
GLI 74.78±2.14 30.41±3.14 31.69±2.31 GLI 90.78±1.44 69.24±1.64 68.14±1.75 17.89±1.34
SCRUB 76.45±0.96 24.08±2.97 29.06±3.67 SCRUB 92.67±1.35 76.41±2.13 69.31±2.64 17.24±2.14
LAF+R 76.47±1.67 23.25±3.98 30.18±1.23 LAF+R 91.01±1.71 87.13±0.97 75.64±3.67 17.97±1.96
Ours 76.91±1.84 1.51±0.37 33.12±1.57 Ours 92.89±1.11 68.27±2.13 74.23±0.75 18.98±1.75

Quantitative Results. Table 7 highlights the effectiveness of our proposed method in achieving pre-
cise unlearning while preserving critical knowledge. The table presents metrics for both class-level
and data-level unlearning scenarios, including Testr (test accuracy on remaining classes), Testf (test
accuracy on forgetting classes), ASR (Attack Success Rate), Trainr (training accuracy on remaining
data), Trainf (training accuracy on forgotten data) and Test (testing accuracy). Our approach out-
performs competing methods across various scenarios. For class-level unlearning, the Testf score of
1.51± 0.37 demonstrates our method’s ability to precisely forget targeted knowledge with minimal
impact on the remaining data. In the data-level unlearning scenario, our method achieves a Trainr
of 92.89± 1.11 and a Test accuracy of 74.23± 0.75, showcasing its robustness in retaining critical
knowledge while effectively handling unlearning tasks.

Visualization. The KDE plots in Figure 11 demonstrate that our method closely replicates the
behavior of the retrained model compared to the existing state-of-the-art LAF approach. While
the initial model shows a significant divergence from the retrained model, our method effectively
achieves unlearning and aligns the distribution to better match the retrained model.

Time Cost Analysis. Figure 12 highlights the time cost for various unlearning techniques. Approxi-
mate unlearning methods demonstrate significant time efficiency by looping over only the forgetting
and remaining data pairs, as opposed to retraining, which requires iterations over the entire dataset.
Notably, our proposed method achieves superior efficiency compared to other methods, showcasing
a substantial reduction in time cost.

A.12 SHARPEN OPERATION

For the sharpening function, we utilize the standard approach of adjusting the temperature of a
categorical distribution, as outlined in Goodfellow et al. (2016). The function is defined as:

Sharpen(q)i =
q

1
T
i∑L

j=1 q
1
T
j

, (8)
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Figure 12: Time cost comparison for class-level unlearning methods on ImageNet using Vision
Transformer (ViT). Notably, the SISA approach leverages four GPUs for distributed training. For
all methods, we use mixed precision training for acceleration.

where q represents the input categorical distribution, i indexes a given dimension of q, T is the
temperature hyperparameter, and L is the total number of categories. As T → 0, the output of
Sharpen(q) converges to a one-hot distribution. In our experiments, we set T = 0.3.

20


	Introduction
	Related Work
	Preliminary
	MixUnlearn: An Adversarial Mixup Unlearning Framework
	Learning Adversarial Generator to Challenge Unlearner
	Unlearning with Adversarial Mixed Samples

	Experiments
	Datasets and Models
	Baselines
	Evaluation Setup and Metrics
	Main Results
	Ablation
	Visualization of Representations
	Kernel Density Estimate (KDE) Plot for Loss Distribution
	Robustness Check on Noisy-Label or Semi-Supervised Setups
	Efficiency

	Conclusion
	Appendix
	Hyperparameters and Implementation
	Initial Model
	Baselines
	Ablation Results on Data-Level Unlearning
	Sensitivity Analysis on Hyperparameters
	Experiments on Noisy-Label or Semi-Supervised Scenarios
	Procedure of Visualizing Loss Distribution
	Time Cost
	Visualizing Mixed Sample
	Effect of Data Ratio for Unlearning
	Experiments on ImageNet and ViT
	Sharpen Operation


