
Under review as submission to TMLR

HESSO: Towards Automatic Efficient and User Friendly
Neural Network Training and Pruning

Anonymous authors
Paper under double-blind review

Abstract

Structured pruning is a popular technique for compressing deep neural networks (DNNs) into ef-
ficient sub-networks. However, existing methods often require multi-stage process, engineering
efforts, and human expertise. The Only-Train-Once series (OTOv1-v3) has been proposed to re-
solve some pain points by streamlining the workflow. However, the built-in sparse optimizers in the
OTO series need extensive hyperparameter tuning and implicit control over sparsity, necessitating
human intervention. To address these limitations, we propose the Hybrid Efficient Structured Sparse
Optimizer (HESSO), which automatically and efficiently train a DNN within a single run to produce
a high-performing sub-network. HESSO significantly reduces the need for manual hyperparameter
tuning by solving a sparsity constrained optimization problem and enjoys user-friendly integration
for generic training applications. In addition, to tackle the common issue of irreversible pruning
performance collapse in certain DNNs, we further propose the Corrective Redundant Identification
Cycle (CRIC), which integrates seamlessly with HESSO. The extensive numerical results showcase
that HESSO can achieve competitive performance on various state-of-the-art benchmarks and sup-
port most DNN architectures. Moreover, CRIC can effectively prevent the irreversible performance
collapse and further enhance the performance of HESSO on certain applications.

1 Introduction

Large deep neural networks (DNNs) have successfully powered a variety of applications (Goodfellow et al., 2016;
Shinde & Shah, 2018; Dong et al., 2021). However, their typical significant time and space complexities make in-
ference expensive and restrict deployment in resource-constrained environments. Consequently, how to compress the
full DNN to the greatest extent while preserving the performance becomes essential in many industrial and academic
AI deployment pipelines. There are various model compression techniques including but not limited to pruning (Chen
et al., 2021c; 2023c; Fang et al., 2023; Wu et al., 2024), knowledge distillation (Hinton et al., 2015; Gou et al., 2021)
and quantization (Han et al., 2015), which have been well developed in the past decades.

Structured pruning typically serves as the foremost technique to produce an optimal sub-network from a pre-defined
full DNN by identifying and removing redundant structures (Gale et al., 2019; Han et al., 2015; Chen et al., 2021c;
2023c; Fang et al., 2023; Wang et al., 2024; Wu et al., 2024). Classical pruning methods focus on conducting a
multi-stage procedure, requiring significant engineering efforts and expertise to manually build pruning search space,
identify redundant structures, construct sub-network, and fine-tune to recover lost knowledge. To alleviate the human
engineering burden, recent works (Chen et al., 2023c;b; Fang et al., 2023) have proposed pruning dependency graph to
automate the pruning search space and sub-network construction. OTOv1-v2 (Chen et al., 2021c; 2023c) further unify
these multi-stage components together, requiring only a single training run to directly get a compact sub-network with-
out the need of further fine-tuning. Specifically, they rely on (Dual) Half-Space Stochastic Gradient Descent (D)HSPG
methods to train and prune simultaneously and have introduced a rigorous theoretical version AdaHSPG+ (Dai et al.,
2023).

Although OTOv1 and OTOv2 have significantly advanced the ease of use in DNN joint training and structured pruning,
they still face challenges due to the complexity of the built-in (D)HSPG methods (Chen et al., 2021c; 2023c; 2020c;a).
Specifically, these methods often require substantial hyper-parameter tuning for different downstream applications

1

Under review as submission to TMLR

Conv1

b1 ∈ R
31

K̂1 ∈ R
31×28×3×3

Conv2

b2 ∈ R
31

K̂2 ∈ R
31×28×3×3

Conv3

b3 ∈ R
30

K̂3 ∈ R
30×28×3×3

Conv4

b4 ∈ R
30

K̂4 ∈ R
30×31×3×3

Conv5

b5 ∈ R
30

K̂5 ∈ R
30×31×3×3

Relu Relu

Relu

Relu

Conv1

b1 ∈ R
64

K̂1 ∈ R
64×32×3×3

Conv2

b2 ∈ R
64

K̂2 ∈ R
64×32×3×3

Conv3

b3 ∈ R
128

K̂3 ∈ R
128×32×3×3

Conv4

b4 ∈ R
128

K̂4 ∈ R
128×64×3×3

Conv5

b5 ∈ R
128

K̂5 ∈ R
128×64×3×3

Relu Relu

Relu

Relu

5.5x Smaller

from only train once import OTO

oto = OTO(model=target DNN, ...)

optimizer = oto.hesso(...)

optimizer = oto.hesso cric(...)

optimizer.step()

oto.construct subnet()

or

Select optimizer.

Train as normal.

Construct pruned subnetwork.

Automatic Any DNN Joint Training and Structured-Pruning

Figure 1: Automatic DNN joint training and structured pruning experience achieved by the pruning mode of OTO
along with the proposed HESSO and its enhanced HESSO-CRIC optimizer. The procedure could be applied onto
varying DNN and applications, and seamlessly integrated into any training pipeline to directly produce a compact
pruned sub-network without further fine-tuning.

and DNN architectures (Dai et al., 2023; Wu et al., 2024). Furthermore, the sparsity explorations are implicit, which
requires optimization expertise, thereby diminishes the practical convenience and usability.

Moreover, many modern pruning and neural architecture search methods rely on saliency scores (e.g., Taylor based)
to identify redundant structures. However, they often suffer performance degradation due to mistakenly identifying
indispensable structures as redundant. This degradation can sometimes be irreversible due to architectural design
constraints, transparency of training datasets, and high training resource cost, posing practical challenges for their use.

To address these issues, we propose HESSO: Hybrid Efficient Structured Sparse Optimizer for automatic one-shot
DNN training and structured pruning. Compared to the HSPG family, HESSO offers several advantages. First, it
significantly simplifies the hyper-parameter setup, providing considerable practical convenience. Second, it employs
a progressive pruning strategy to explicitly control the sparsity exploration, making it user-friendly. Third, HESSO
optionally incorporates a novel Corrective Redundancy Identification Cycle (CRIC) mechanism, which more accu-
rately identifies redundant groups, thereby minimizing the risk of irreversible performance collapse caused by pruning
indispensable structures. We now summarize our main contributions as follows.

• Efficient Hybrid Training and Pruning Optimizer. We propose an efficient and easy-to-use optimizer, HESSO,
to enable automatic joint structured pruning and training for various model architectures and applications. HESSO
progressively identifies redundant groups through flexible saliency score estimations and utilizes a hybrid training
scheme to effectively transfer knowledge from redundant groups to important ones, thereby maintaining the perfor-
mance of the pruned model. Compared to the D(HSPG) in OTO, HESSO explicitly controls sparsity exploration and
knowledge transfer, minimizes the need for hyper-parameter tuning. As a result, HESSO becomes the first optimizer
to realize convenient joint DNN training and pruning to the best of our knowledge.

• Corrective Redundancy Identification Cycle. We propose a novel Corrective Redundancy Identification Cycle
(CRIC) to improve the accuracy of redundancy identification. CRIC addresses the approximation errors often as-
sociated with popular Taylor-based saliency scores, thereby reducing the risk of mistakenly pruning indispensable
groups. CRIC employs a voting mechanism and measures the saliency scores of each group candidate using a multi-
sampling approach towards the origin. CRIC can be integrated into HESSO or future joint optimizers to ensure
reliable model performance by offering a more accurate assessment of group significance.

• Numerical Experiments. We validate the efficacy of HESSO and its enhanced version HESSO-CRIC across a
variety of tasks. Specifically, we evaluate its performance on high-level computer vision tasks such as image clas-
sification and object detection, low-level vision tasks like super-resolution, as well as natural language processing
tasks including large language models. The numerical results demonstrate that HESSO performs competitively, and
in many cases, exceeds the state-of-the-art benchmarks, offering significant practical convenience. Additionally,

2

Under review as submission to TMLR

CRIC effectively mitigates the issues of irreversible collapse in pruned models, especially in challenging cases,
further showcasing its utility.

2 Related Works

In this section, we present a brief literature review on automatic structured pruning, knowledge transfer and neural
architecture optimization.

General Pruning Procedures. Structured pruning aims to compress DNNs by removing unnecessary structures
while maintaining performance (Han et al., 2015; Wen et al., 2016). The general procedure typically involves: (i)
training a full model; (ii) identifying and removing redundant structures to construct a slimmer DNN based on various
criteria (Lin et al., 2019; He et al., 2018a; Wen et al., 2016; Li et al., 2020b; Zhuang et al., 2020; Chen et al., 2017;
2018; 2021a; 2020b; Gao et al., 2020; Zhuang et al., 2020; Meng et al., 2020; Yang et al., 2019; Zhou et al., 2019; van
Baalen et al., 2020; Frankle & Carbin, 2018); and (iii) retraining the pruned model to recover any accuracy lost during
pruning. These methods often require a complex and time-consuming process, involving multiple training iterations
and significant domain knowledge to manually handle each step.

Automated Pruning Given Pre-defined Search Space. To resolve the pain points of human interventions, auto-
mated pruning is raising interests from different perspectives. Given a predefined search space, AMC (He et al.,
2018b) employs reinforcement learning agents to automatically determine the optimal pruning ratio. EagleEye (Li
et al., 2020a) further introduces a sub-network evaluation scheme based on adaptive batch normalization, which can
be integrated into AMC. OFA (Cai et al., 2020) automates the generation of sub-networks for different hardware
platforms in a single process. While these approaches yield impressive performance, their application is limited to
predefined search spaces. Moreover, AMC incurs additional training costs for its reinforcement learning agent. OFA’s
training procedure is complex and heavy to adopt all sub-networks, which requires prior knowledge of the optimal
training procedure for the largest super-network to ensure performance, making its implementation inconvenient.

Automated Pruning Over DNNs. On the other hand, automatically pruning arbitrary models without prior knowl-
edge of the search space remained a significant challenge. Recent methods, such as OTO (Chen et al., 2021c; 2023c;b)
and DepGraph (Fang et al., 2023), have made progress in automating the structured pruning process for general
DNNs via dependency graph analysis. Subsequent works like (Wang et al., 2024) and (Ren et al., 2024) automates
pruning over ONNX models. ATO (Wu et al., 2024) introduces ControlNet upon OTOv2. Among these, OTO of-
fers a one-shot joint training and pruning framework that can seamlessly integrate into various training processes
to produce high-performing sub-networks in a single run (see Figure 2 for a high-level overview). While these au-
tomated approaches have significantly improved user convenience, end-users still face significant challenges with
hyper-parameter tuning and optimization expertise to calibrate OTO’s built-in HSPG family (Chen et al., 2020c; Dai
et al., 2023). Furthermore, some DNNs contain indispensable structures, the pruning of which leads to irreversible
performance degradation. Identifying these critical structures remains an open problem that is often handled manually
on a case-by-case basis, complicating practical use.

In this work, we address these challenges by proposing an efficient and user-friendly joint training and pruning opti-
mizer, HESSO along with its enhanced version, HESSO-CRIC, which reliably identifies indispensable structures to
ensure performance.

Knowledge Transfer. To retain the performance of a pruned sub-network, HESSO-(CRIC) incorporates a knowl-
edge transfer mechanism through a hybrid training scheme. This approach differs from prior methods, which explic-
itly use knowledge distillation from unpruned models to preserve information in pruned models. Existing techniques
typically require expensive computations that involve both pruned and unpruned models, either by processing log-
its (Lagunas et al., 2021) or the hidden activations of intermediate layers (Xia et al., 2022; Ko et al., 2023). In contrast,
our approach preserves knowledge without incurring such computational costs. Another related works, ResRep (Ding
et al., 2021b) and SliceGPT (Ashkboos et al., 2024), also aim to preserve computational invariance. The knowledge
transfer in HESSO-(CRIC) similarly seeks to maintain computational invariance but does so by preserving objective
function levels. However, SliceGPT is restricted to transformer architectures and requires manually injecting addi-
tional layers. ResRep is restricted to CNN architectures and require conducting structurally re-parametrization via

3

Under review as submission to TMLR

computing resetting gradients. HESSO-(CRIC) is architecture-agnostic, efficient and user-friendly, demonstrating
both scalability and versatility.

Neural Architecture Optimization. Another related realm is the optimization over pre-specified neural architecture.
NAO (Luo et al., 2018) encodes the DNN architecture into a latent representation, search over the latent space, then
decodes back to a revised architecture. NAT (Guo et al., 2019) performs operator transformation upon the given DNN
to produce more accurate network. These approaches transform and improve the existing DNNs, yet not search an
optimal sub-network. As a result, their produced networks are typically not significantly compact compared to the
baseline models. Contrarily, our approach focuses on automatically and effectively discovering compact sub-networks
given pre-specified DNNs via structured pruning.

Conv1 BN1Input

Conv2 BN2

Conv3 BN3

Conv5 BN5

MaxPool

Conv4 BN4AvgPool

Concat Conv6 Conv7 BN7

Conv8 BN8

Linear1AvgPool Output

(a) Trace graph of target DNN.

Conv1Input

Conv2 BN2

Conv3 BN3

Conv5 BN5

MaxPool

Conv4 BN4AvgPool

Concat BN6 Conv7

Conv8

Linear1AvgPool OutputLinear2

Conv6

(b) Pruning dependency graph.
K̂2 γ2 β2K̂1

GC

PZIG = {GPZIG = {Gprune = GPZIG

⋃
GC

PZIG } }

γ2

6
β2

6
K̂4 γ4 β4 γ4

6
β4

6
K̂3 b3 γ3 β3 γ3

6
β3

6
K̂5 γ5 β5 K̂6 K̂7 K̂8 W1 W2

(c) Pruning Zero-Invariant Groups.

Figure 2: Automated trainable variable partitions for one-shot structured pruning. Given the trace graph shown in
Figure 2a, automatic pruning frameworks such as OTOv2 (Chen et al., 2023c) construct a pruning dependency graph
shown as Figure 2b and partition the trainable variables as pruning zero-invariant groups G in Figure 2c.

3 HESSO

Given a target DNN with variables and architecture to be optimized, HESSO formulates a structured sparsity con-
strained optimization problem upon the set of parameter groups G. Specifically, it aims to achieve group sparsity over
the prunable variables with a target sparsity level of K. The optimization problem is formulated as:

minimize
x∈Rn

f(x), s.t. Card ({g ∈ G|[x]g = 0}) = K, (1)

where f is the training loss function and [x]g denotes the parameters corresponding to a parameter group g ∈ G. Note
that the constraint in problem 1 enforces that exactly K parameter groups in G are pruned. One example of the set G is
zero-invariant groups, which is introduced in (Chen et al., 2021b, Definition 1). In particular, we call G zero-invariant
groups (ZIGs) if each group g ∈ G is zero-invariant in the sense that all of the parameters in g being zeros results in
its corresponding output to the next layer to be zeros as well. For details on how to identify zero-invariant groups, we
refer readers to OTO framework (Chen et al., 2021b; 2023c;b) and references therein.

During the optimization process, HESSO begins with a warm-up stage, where the variables are trained using gradient
descent or its variants. The purpose of the warm-up stage is to collect gradient information and guide the DNN

4

Under review as submission to TMLR

Algorithm 1 HESSO: Hybrid Efficient Structured Sparsity Optimizer

1: Input. Initial variable x0, learning rate α, warm-up steps Tw, pruning periods P , period length Tp, target group
sparsity level K, and variable partition G = GI

⋃
GR.

2: Warm up Tw steps via SGD or its variants.
3: Initialize redundant groups GR ← ∅.
4: Initialize important groups GI ← G.
5: Compute sparsity for each pruning period K̂ := K/P .
6: for each pruning period p = 0, 1, · · · , P − 1 do
7: Pickup Ĝp in GI with K̂-least saliency scores.
8: Update GI ← GI \ Ĝp.
9: for t = 0, 1, · · · , Tp − 1 do

10: Compute trial iterate x̂t+1 ← xt − αt∇f(xt).
11: Compute transferring ratio for each g ∈ Ĝp:

[γt]g ←
Tp − t− 1

Tp − t

∥[xt]g∥
∥[x̂t+1]g∥

.

12: Update redundant and important variables:

[xt+1]Ĝp
← [γt]Ĝp

[x̂t+1]Ĝp
,

[xt+1]GI
← [x̂t+1]GI

.

13: end for
14: Update GR ← GR ∪ Ĝp.
15: end for
16: Training important group variables till convergence.
17: Return the final iterate x∗

HESSO.

into a relatively favorable region for convergence. Following this, HESSO enters the progressive pruning stage. At
each pruning period p, it selects a subset Ĝp ⊂ GI , consisting of groups within GI that have bottom-K̂ saliency
scores. After that, the parameters within the selected groups Ĝp are then gradually projected towards zero over the
subsequent Tp steps. Throughout the progressive pruning stage, HESSO gradually forgets the knowledge in the set Ĝp

and conducts regular training for parameters within important groups GI , thereby facilitating the transfer and recapture
of knowledge. We refer to this approach as hybrid training, where distinct training strategies are applied to different
groups. Note that at each pruning period p, the parameters in the set GR is not updated since they have already been
projected to zero and thus removed. Therefore, we only need to update weight parameters in the set Ĝp ∪ GI . By
the end of each pruning period p, we update the redundant groups GR by merging the set Ĝp into GR. Finally, once
all redundant groups are identified and are projected onto zero, the parameters in the remaining important groups GI

continue to be trained until final convergence. The main procedure is outlined in Algorithm 1.

Remark 3.1. We claim that Algorithm 1 strictly enforces the sparsity constraint in Problem 1 to be satisfied. Specifi-
cally, during each pruning period p, all variables within the set Ĝp are projected to zero at iteration t = Tp − 1 since
[γt]g = 0 for all g ∈ Ĝp at that iteration. By the end of each pruning period, the set Ĝp is merged into redundant groups
GR and is permanently removed from further optimization. By the end of (P − 1)th pruning period, all parameters in
the redundant group GR has been zeroed out. As a result, the final solution satisfies the target sparsity constraint.

3.1 Saliency Score

After warming up Tw steps in Algorithm 1, HESSO starts to identify redundant groups upon the target group sparsity
level K to partition the groups G into important groups GI and redundant groups GR, i.e., GI

⋃
GR = G and |GR| = K.

HESSO achieves it by periodically measuring the importance of each parameter group g ∈ G. To begin, we initialize
the important groups as the whole group set (GI ← G), and the redundant groups as empty (GR ← ∅). Given a pre-
defined pruning periods P , we identify K̂ ← K/P important groups to designate as redundant during each period.
The redundant groups are the ones with bottom-K̂ saliency scores. In particular, the redundant groups GR and the

5

Under review as submission to TMLR

important groups GI are updated as follows:

GR ← GR

⋃
Bottom-K̂

g∈GI

SaliencyScore([x]g, [∇f(x)]g),

GI ← GI \ Bottom-K̂
g∈GI

SaliencyScore([x]g, [∇f(x)]g).

The selection of the saliency score in HESSO is flexible and can be tailored to different purposes. By default, we
consider the categories presented in Appendix B.

3.2 Hybrid Training in HESSO

After identifying the redundant groups in Section 3.1, the next step involves projecting these groups onto zero and
transfering their knowledge to the important groups, ensuring that the pruned model retains its performance. This is
accomplished through a hybrid training scheme.

For the redundant groups GR, we progressively and uniformly push their parameters towards zero. This process is
detailed in line 11-12 in Algorithm 1 and decipted in Figure 3. The goal is to ensure that the parameters in the redundant
groups become zero after Tp steps. During this penalization process, there is a risk of forgetting the knowledge
contained in the redundant groups, which may manifest as a degradation in the objective function’s value. To mitigate
this, we employ a standard optimization method, such as vanilla SGD or its variants such as Adam, on the important
groups GI . This step aims to continue optimizing the objective function f and preserve the model’s performance
despite the pruning of redundant groups. By maintaining the optimization of the important groups, the knowledge lost
from the redundant groups can be transferred and compensated for, ensuring that the pruned model remains effective.

g1 g2 g3

g4 g5 g6

g7 g8 g9

g10 g11 g12

Variable Groups G

Saliency

Score

g1 g5 g6

g8 g10 g11

g2 g3 g4

g7 g9 g12

GR

Identify Redundancy

GI

Hybrid Training

[xk]GR

00

[xk]GI

[xk+1]GI

−αk[∇f(xk)]GI
[xk+1]GR

−αk[∇f(xk)]GR

Knowledge

Transfer

Important Groups Redundant Groups

Figure 3: HESSO uses saliency scores to periodically identify redundant groups GR from the group set G and marks
the remaining groups as important groups GI . A knowledge transfer mechanism is proceeded by employing hybrid
training strategies onto GR and GI . In particular, the variables in GR are progressively projected onto zeros after
gradient descent. The important variables are kept training via gradient descent to migrate the impact of redundant
project onto the objective function.

Next, we provide brief intuitive comparisons of HESSO against two popular pruning algorithms.

Minimize tuning efforts compared to DHSPG. DHSPG in OTOv2 involves significant hyper-parameter tuning to
adjust parameters for sparsity exploration. This tuning often requires domain-specific knowledge, as the appropriate
settings can vary depending on the particular application or dataset. This requirement can make DHSPG more complex
and less accessible, particularly for practitioners without extensive expertise in hyper-parameter and sparse optimiza-
tion. Contrarily, HESSO offers more explicit control over sparsity exploration. The pruning process in HESSO is
regulated by the pruning periods P and the period length TP , which determine the pace and extent of the pruning
procedure. This structured approach simplifies the process, making it easier to manage.

Architecture-agnostic computational invariance compared to ResRep and SliceGPT. ResRep (Ding et al.,
2021b) and SliceGPT (Ashkboos et al., 2024) are proposed to preserve computational invariance, i.e., making pruned
and full models produce similar outputs, for CNNs and transformers, respectively. However, they are architecture
specific, requires additional efforts, such as injecting additional layers in SliceGPT and computing reset gradients
in ResRep. The knowledge transfer in HESSO similarly seeks to maintain computational invariance but does so by
preserving objective function levels. In addition, HESSO is architecture-agnostic, efficient and user-friendly, demon-
strating both scalability and versatility compared with ResRep and SliceGPT.

6

Under review as submission to TMLR

As a result, HESSO is generally easier to use and more adaptable to various applications, as it significantly reduces the
need for extensive tuning and specialized knowledge. The design of hybrid training for knowledge transfer effectively
promotes the performance of pruned model. It makes HESSO a more efficient and user-friendly option for achieving
structured sparsity and ensuring consistent application across different tasks and domains.

3.3 Approximation Errors of Saliency Scores

Although HESSO can tackle most DNNs and tasks, it may yield unsatisfactory results when the target DNN possesses
certain indispensable structures. We first clarify the concept of a minimal removal structure and then define when such
a structure becomes indispensable. We say a structure removal if and only if the DNN without this component still
serves as a valid DNN. Moreover, a removal structure is called minimal if and only if it can not be further decomposed
into multiple removal structures.

Definition 3.2 (Indispensable structure). Given a deep neural network M, a minimal removal structure is called
indispensable if removing it fromM would cause significant performance degradation, which can not be recovered
given user resources. In particular, we say a minimal removal structure as ϵ-indispensable associated with an objective
f if pruning the variables [x]g → 0 deteriorates f at least ϵ, i.e., f(x|[x]g → 0) ≥ f(x) + ϵ for a minimization
optimization problem. The degradation ϵ can not be recovered by (i) keeping trainingM, (ii) the training cost such as
GPU days exceeding user budget, or (iii) the training receipt forM is black-box and hard to be reproduced.

The origin of indispensable structures varies. One reason may be due to architectural design issues where certain
layers in M play more critical roles than others and are very sensitive to any modifications, as exemplified by a
low-level vision benchmark in Section 4.1. Another reason could be the learning strategy. For instance, in large
language models (LLMs), it has been observed that knowledge is unevenly distributed across different layers (Chen
et al., 2023a). Removing any of these structures could result in an irreversible collapse of the DNN’s performance.

Saliency score approximation errors. Existing saliency scores may fail to accurately identify indispensable struc-
tures. As detailed in Appendix B, these scores are typically designed to approximate the effect of projecting groups
of variables to zero on the objective function. A key limitation arises with common scores, such as Taylor-based
importance scores: these scores are only reliable when the current iterate is very close to the origin. Unfortunately,
this "proximity to the origin" condition is rarely met in real-world training and pruning scenarios. For instance, with
Taylor-based importance scores, the approximation error grows proportionally with ∥[x]g∥, as noted in Proposition 3.3.
This means that the farther the iterate is from the origin, the greater the error becomes. Consequently, this can result
in the false positive pruning of essential structures, leading to performance degradation.

Proposition 3.3 (Approximation error of Taylor importance). Suppose the gradient and second-order derivative of f
are bounded. Use first-order mL and second-order mQ Taylor approximations to measure the function value f after
pruning g ∈ G, i.e., [x]g → 0. Let s satisfy [s]G\g = [0]G\g and [s]g = −[x]g , Then the approximation error bound
|f(x + s)−mL(x + s)| and |f(x + s)−mQ(x + s)| are proportional toO(∥[x]g∥2) andO(∥[x]g∥3), respectively.

3.4 Corrective Redundancy Identification Cycle

To address the limitations discussed in Section 3.3, we propose a novel Corrective Redundant Identification Cycle
(CRIC). This method aims to more reliably identify redundant structures within the target DNN, even when indispens-
able structures are present. The CRIC mechanism can be seamlessly integrated into HESSO, enhancing its ability to
accurately discern which parts of the model can be pruned without compromising performance.

To mitigate the issue of false positive redundant predictions caused by approximation errors, such as Taylor expansion,
CRIC measures the saliency score of redundant group candidate multiple times along their projection towards the
origin. Unlike the greedy strategy used in HESSO, CRIC incorporates a corrective cycle mechanism. This mechanism
iteratively labels groups as redundant and tracks the violating groups, a group that was initially predicted as redundant
(i.e., low saliency score), but later exhibits a relatively high saliency score during re-evaluation, suggesting that it may
have been misclassified. To capture these inconsistencies, we utilize the violating group set V , which collects groups
that appear more redundant or deviate significantly from the current redundancy estimate. This allows CRIC to refine
its decisions across iterations.

7

Under review as submission to TMLR

Algorithm 2 Corrective Redundant Identification Cycle (CRIC)

1: Input. Trainable variable x, learning rate α, termination tolerance T , target group sparsity K, sampling steps T ,
and prunable variable partition G.

2: Initialize S to store saliency scores for each g ∈ G.
3: Initialize violating group set V:

V ← {g : g ∈ G with bottom-K saliency scores}.

4: Initialize historical setH ← V .
5: while |V| > T do
6: Initialize trial violating group set V̂ ← ∅.
7: Initialize α0 ← α, λ0 ← λ, and x0 ← x.
8: for t = 0, 1, · · · , T − 1 do
9: Compute trial x̃t+1 ← xt − αt∇f(xt).

10: Penalize variables in the violating set:

[xt+1]V ←
T − t− 1

T − t

[xt]V
∥[x̃t+1]V∥

.

11: Compute saliency scores of G and merge to S.
12: Update set V̂ if new violating groups appear:

V̂ ← V̂ ∪ ({g : g ∈ G with bottom-K scores} \ V) .

13: Update penalty λt and learning rate αt.
14: end for
15: Update violating set V ← V̂ \ H.
16: Update historical setH ← H

⋃
V .

17: end while
18: Set redundant set GR upon saliency score collection S:

GR ← {g : g with bottom-K scores in S}.

19: Return. Identified redundant groups GR and important groups GI as G \ GR.

As shown in Algorithm 2, V is initialized as the bottom-K saliency score groups in line 3. A historical set H is used
to track groups whose saliency scores have been fully exploited through multiple sampling along the projection to the
origin. This set is initialized as empty set in line 4.

The corrective cycle continues as long as the violating set is large, specifically when |V| > T , where T is a user-
defined termination threshold (defaulting to ∅). During each cycle, groups in V are progressively projected toward
zero, with saliency scores re-evaluated at uniformly spaced points along the projection path. Groups with persistently
low saliency scores and not yet visited in H are added to a new set V̂ for the next iteration. The cycle stops when the
number of violating groups becomes negligible, i.e., when |V| ≤ T . Through this corrective refinement process, CRIC
effectively reduces false positive redundancy predictions and addresses failure cases of HESSO, as demonstrated in
Section 4.

Theorem 3.4 guarantees that CRIC terminates within a finite number of iterations, preventing endless loops and exe-
cuting efficiently. We provided detailed proof for Theorem 3.4 in Appendix A. Furthermore, Corollary 3.5 provides
an upper bound on the number of cycles required by CRIC, ensuring a practical and efficient pruning process.

Theorem 3.4 (Finite termination of CRIC). The corrective redundancy identification cycle (Algorithm 2) terminates
within a finite number of steps for any termination tolerance T .

Corollary 3.5 (Upper bounds of cycle numbers). Given the termination tolerance T , CRIC terminates with no more
than (|G| −K)/ max {T , 1} cycles.

8

Under review as submission to TMLR

Once the corrective cycles terminate, the saliency scores obtained are deemed reliable. At this point, the redundant set
GR is constructed based on these reliable saliency scores, as indicated in line 18. This set of redundant groups is then
returned for further use, such as hybrid training in HESSO (as detailed in Algorithm 1). For simplicity, the HESSO
variant that utilizes CRIC for identifying redundant groups is referred to as HESSO-CRIC throughout the paper, as
outlined in Algorithm 3. This naming convention distinguishes the variant from HESSO, highlighting the addition of
the corrective cycle mechanism that enhances the reliability of the pruning process.

4 Numerical Experiments

We numerically demonstrate the efficacy of HESSO across a wide range of applications, from low-level vision tasks
such as super-resolution (Zhou et al., 2024), to high-level vision tasks including image classification (He et al., 2016),
and object detection (Shi et al., 2020), as well as natural language processing tasks such as question answering (Ra-
jpurkar et al., 2016) and the popular foundational large language models (Ding et al., 2023). The architectures used
in these experiments encompass a variety of CNN benchmarks (Chen et al., 2023c) and transformers (Vaswani et al.,
2017). These experiments involve training either from scratch or using a pre-trained checkpoint (when available)
to validate the versatility of HESSO-(CRIC). Furthermore, we provided ablation studies of HESSO-(CRIC) in Sec-
tion 4.6, hyper-parameters sensitivity analysis in Section 4.7, hyper-parameter tuning effort studies in Section 4.8, and
computational complexity analysis in Appendix D. For details of the experiment setup, we refer readers to Appendix E.

4.1 Super Resolution
Table 1: Structurally pruning CARNx2.

Optimizer Exclusion of Group Sparsity # of Params FLOPs PSNR
Dispensable Structure Set14 B100 Urban100

Baseline – – 100% 100% 33.5 32.1 31.5
DHSPG Manual 50% 24.1% 24.3% 33.2 31.9 31.1
DHSPG No 50% ✗ ✗ ✗ ✗ ✗
HESSO Manual 20% 66.8% 66.9% 33.5 32.1
HESSO Manual 30% 50.6% 50.8% 32.3 32.0 31.5
HESSO Manual 40% 39.7% 40.0% 33.3 32.0 31.3
HESSO Manual 50% 30.5% 30.8% 33.2 31.9 31.1
HESSO Manual 60% 33.1 31.8 31.0
HESSO No 50% ✗ ✗ ✗ ✗ ✗

HESSO-CRIC Automatic 20% 66.8% 66.9% 33.5 32.1 31.8
HESSO-CRIC Automatic 30% 53.2% 53.4% 33.4 32.1 31.7
HESSO-CRIC Automatic 40% 40.1% 40.4% 33.3 32.0 31.5
HESSO-CRIC Automatic 50% 28.4% 28.7% 33.3 32.0 31.3
HESSO-CRIC Automatic 60% 17.7% 18.1% 33.2 31.9 31.1

A
v
e
ra

g
e
P
S
N
R

FLOPs Reduction (%)
30 40 80

31.9

32.4

32.2

32.1

32.0

32.3

50 60 70

32.5

90

HESSO-CRIC (2025)

HESSO (2025)

DHSPG (2023)

We first selected the popular CARN architecture (Ahn et al., 2018) for the super-resolution task with a scaling factor of
two, referred to as CARNx2. The benchmark DIV2K dataset (Agustsson & Timofte, 2017) was used for training, while
Set14 (Zeyde et al., 2010), B100 (Martin et al., 2001), and Urban100 (Huang et al., 2015) datasets were employed
for evaluation. Initially, we utilized OTO’s pruning dependency analysis to identify minimal removable structures
and partitioned the trainable variables into pruning-zero-invariant groups. However, directly applying DHSPG or
HESSO led to significant performance degradation that was not reversible. This issue stems from the architectural
design, where the penultimate convolutional layer is critical for generating satisfactory visual results, making it an
indispensable structure. Pruning this layer caused the remaining filters to fail in generating reasonable visual outcomes.
However, the saliency score deems them as redundant due to significant approximation errors and thus, results in
irreversible performance collapse.

OTOv2 (Chen et al., 2023c) manually excluded these indispensable structures from pruning. However, this manual
identification is time-consuming and requires expert knowledge. To address this, we applied HESSO-CRIC to CARN
and observed that it automatically identified these crucial structures as important groups, leading to a successfully high-
performing pruned model. As shown in Table 1, when manually excluding indispensable structures, both DHSPG and
HESSO significantly reduced FLOPs and parameters by approximately 33% to 80%, with negligible PSNR degrada-
tion. HESSO-CRIC achieved a better trade-off between FLOPs reduction and PSNR, as demonstrated by exhibiting
the frontier curve under varying pruning ratios. Visual examples shown in Figure 7 at Appendix F further cross-verify
the performance preservation by our approaches.

9

Under review as submission to TMLR

4.2 Image Classification

We first employed HESSO-(CRIC) to structurally prune a pretrained OFA network (Cai et al., 2020) on the benchmark
ImageNet (Deng et al., 2009). The OFA network was produced by searching from a MobileNetV3 based super-network
and could achieve 80.0% top-1 test accuracy on ImageNet. We find that both HESSO-(CRIC) could effectively dis-
cover pruned sub-networks with similar size and MACs while with higher performance than other OFA networks, i.e.,
78.6% and 78.2% versus 76.9% test accuracy.

Table 2: Structurally pruning MobileNet Search Space.

Method # of Params FLOPs Top Acc-1 (%)
OFALARGE # 75 (Cai et al., 2020) 100% 100% 80.0
MobileNetV2 (Sandler et al., 2018) 37.2% 50.4% 72.0
MobileNetV3-Large (Howard et al., 2019) 59.1% 36.8% 75.2
OFA # 75 (Cai et al., 2020) 63.6% 38.7% 76.9
HESSO 61.3% 36.9% 78.2
HESSO-CRIC 62.5% 37.8% 78.6

Figure 4: ResNet50 on ImageNet.

We next benchmark ResNet50 (He et al., 2016) on ImageNet. As shown
in Figure 4, HESSO-CRIC approximately forms a Pareto frontier in the
trade-off between top-1 accuracy and FLOPs reduction across a range of
group sparsity levels from 50% to 90%. Both HESSO and DHSPG per-
form competitively, although they lie within the Pareto frontier. Notably,
all aforementioned three methods produce structurally pruned sub-networks
that are smaller in size, require fewer FLOPs, and achieve higher accuracy
compared to most existing approaches (Huang & Wang, 2018; Zhou et al.,
2019; Ding et al., 2021a; Wu et al., 2024; Yang et al., 2019; You et al.,
2019; Zhou et al., 2019). These results demonstrate the effectiveness of our
proposed joint pruning and training optimizer on this widely used struc-
tured pruning benchmark. Finally, we note that the ATO method (Wu et al.,
2024) achieves slightly higher top-1 accuracy at around 50% FLOPs re-
duction compared to HESSO-CRIC. This is because ATO is designed to
maximize performance through a bi-level optimization framework involving a learnable mask and a task-specific Con-
trolNet. While this enhances accuracy, it comes at the cost of increased complexity, reduced efficiency, and limited
generality.

4.3 Object Detection

Table 3: Structurally pruning Yolov5l on COCO.

Method # of Params FLOPs mAP0.5 mAP0.5:0.95
Baseline 100% 100% 66.31% 47.71%
HFP (Enderich et al., 2021) 50% 49.5% 63.5% 43.4%
TCFP (Jeon et al., 2022) 50% 53.5% 61.8% 42.7%
HESSO (30% group sparsity) 49% 52.3% 63.1% 44.4%
HESSO-CRIC (30% group sparsity) 49% 52.3% 63.1% 44.5%

Next, we tested HESSO on the popu-
lar YOLO (Redmon et al., 2016) object
detection model using the COCO bench-
mark dataset (Lin et al., 2014). Table 3
presents the structured pruning results for
YOLOv5l (Jocher et al., 2022). Note that we
selected YOLOv5l to facilitate comparisons
with other existing benchmarks. We applied HESSO and HESSO-CRIC with a target group sparsity of 30%, resulting
in a sub-network containing 49% of the original parameters. This allows for direct comparison with benchmarks that
retain 50% of the model’s parameters. The results show that a single run of HESSO and HESSO-CRIC achieved
significantly higher Mean Average Precision (mAP) compared to other pruning approaches, which often require more
complex, multi-stage procedures. Further visualization details can be found in Figure 7 in Appendix F.

10

Under review as submission to TMLR

Table 4: Structurally pruning Bert on SQuAD.

Method Group Sparsity # of Params F1-score
Baseline 100% 88.3% 88.5%

ProxSSI (Deleu & Bengio, 2021) – 83.4%† 82.0%
HSPG (Chen et al., 2021c) – 91.0% 84.1%
HSPG (Chen et al., 2021c) – 66.7% 82.0%

DHSPG 10% 93.3% 87.7%
DHSPG 30% 80.1% 87.3%
DHSPG 50% 68.3% 86.2%
DHSPG 70% 55.0% 83.8%
HESSO 10% 94.78% 87.20%
HESSO 30% 84.33% 86.72%
HESSO 50% 73.88% 86.46%
HESSO 70% 63.34% 85.50%
HESSO 90% 53.0% 84.25%

HESSO-CRIC 10% 94.78% 87.48%
HESSO-CRIC 30% 84.32% 87.10%
HESSO-CRIC 50% 73.88% 86.50%
HESSO-CRIC 70% 63.44% 85.96%
HESSO-CRIC 90% 53.0% 84.10%

† Approximate value based on (Deleu & Bengio, 2021).

F
1
-S
co

re
(%

)

Params Reduction (%)
0 10 50

82

87

85

84

83

DHSPG (2023)

86

20 30 40

HSPG (2021)

ProxSSI (2021)

88

HESSO-CRIC (2025)

HESSO (2025)

4.4 Question and Answering

Later, we compared HESSO-(CRIC) with DHSPG, HSPG, and a representative proximal method ProxSSI (Deleu
& Bengio, 2021) for pruning a transformer model Bert (Vaswani et al., 2017), evaluated on the SQuAD question-
answering benchmark (Rajpurkar et al., 2016). It is important to note that proximal methods have been standard
algorithms for solving sparse optimization problems for decades. However, they are not effective at exploring sparsity
while maintaining model performance in deep learning applications (Dai et al., 2023).

As shown in Table 4, HESSO, HESSO-CRIC, and DHSPG perform competitively on this task in terms of parameter
reduction while maintaining F1 scores. However, DHSPG achieves these results after extensive hyper-parameter
tuning, which is not convenient. HSPG penalizes all variables toward zero which severely restricts the optimization
search space, leading to suboptimal performance. ProxSSI additionally lacks sufficient sparsity exploration capacity,
being not comparable.

4.5 Large Language Model

Finally, we evaluated HESSO-(CRIC) on large language models (LLMs). Since both HESSO and HESSO-CRIC
utilize full gradient information, we focused on LLMs with fewer than 3 billion parameters, such as the represen-
tative Phi-2-2.7B (Javaheripi et al., 2023), to ensure that a single 80GB GPU is sufficient, without requiring tensor
parallelism (Ding et al., 2023). Our experimental setup followed that of LoRAShear (Chen et al., 2023a).

We observed that without conducting a knowledge distribution analysis and manually skipping certain layers from
pruning, as LoRAShear (Chen et al., 2023a) did, HESSO often led to an irreversible performance collapse. This is
because knowledge in LLMs is unevenly distributed across layers due to the learning strategy. The saliency scores
calculated upon the pretraining weights may fail to identify essential structures, making it difficult to differentiate
between indispensable components and those that could be pruned. As a result, pruning such critical structures severely
degrades the model’s performance, making recovery with limited resources nearly impossible.

HESSO-CRIC was able to automatically bypass these crucial structures, enabling effective and successful pruning. We
then compared with SliceGPT (Ashkboos et al., 2024), LLM-Pruner (Ma et al., 2023), LoraShear (Chen et al., 2023a)
and LoraPrune (Zhang et al., 2023) across several popular benchmarks. Our findings indicate that HESSO-CRIC con-
sistently outperforms them at varying pruning ratios, with performance improvements becoming more pronounced as
the pruning ratio increases. This is because LLM-Pruner, LoRA-Prune, and LoRAShear are LoRA-based techniques.

11

Under review as submission to TMLR

Table 5: HESSO-CRIC over Phi-2-2.7B.

Pruning Ratio Method BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Baseline Phi-2-2.7B 83.30 79.11 73.82 75.77 80.05 54.18 51.40 71.09
Ratio = 20% SliceGPT (Ashkboos et al., 2024) 68.56 74.16 61.22 67.56 70.20 41.04 38.80 60.22

LLM-Pruner (Ma et al., 2023) 61.28 62.79 36.79 53.12 52.23 31.06 30.00 46.75
LoraShear (Chen et al., 2023a) 62.29 68.12 45.28 58.8 61.91 32.42 34.00 51.81
LoraPrune (Zhang et al., 2023) 57.22 67.79 45.1 54.85 61.87 35.15 33.80 50.83
HESSO-CRIC 69.67 74.37 62.27 66.54 72.30 41.44 38.20 60.67

Ratio = 25% SliceGPT (Ashkboos et al., 2024) 63.70 71.49 57.72 66.46 65.86 38.99 39.80 57.71
LLM-Pruner (Ma et al., 2023) 62.26 60.55 33.86 51.07 47.81 30.63 28.80 45.00
LoraShear (Chen et al., 2023a) 62.17 64.85 41.27 55.56 56.52 30.46 31.80 48.95
LoraPrune (Zhang et al., 2023) 62.54 64.69 40.19 52.33 56.02 33.62 32.40 48.83
HESSO-CRIC 67.06 73.77 58.51 65.18 70.66 38.60 38.00 58.74

Ratio = 30% SliceGPT (Ashkboos et al., 2024) 38.17 61.04 42.05 60.38 50.80 28.07 31.2 44.53
LLM-Pruner (Ma et al., 2023) 62.11 59.36 32.27 51.54 44.07 30.03 29.8 44.17
LoraShear (Chen et al., 2023a) 62.17 63.22 39.25 57.14 51.77 28.58 30.00 47.45
LoraPrune (Zhang et al., 2023) 62.29 63.10 35.86 51.62 51.43 31.74 32.40 46.92
HESSO-CRIC 67.61 72.14 53.11 62.75 62.74 34.81 36.20 55.62

Lora primarily focuses on fine-tuning well-trained models and is less effective in capturing knowledge for underfitted
models, such as pruned LLMs.

4.6 Ablation Studies of HESSO-(CRIC)

Hybrid VS standard training. To highlight the necessity of the hybrid training scheme in our HESSO design,
we compare two variants: HESSO with standard training and HESSO with hybrid training. In the standard training
scheme, all weight parameters in the redundant group are projected to zero in a single pruning step. In contrast, the
hybrid scheme progressively project weight parameters in the redundant group to 0. As shown in Table 6, replacing
hybrid training with standard training leads to a significant drop in performance across all sparsity levels. This degra-
dation is expected, as standard training causes a substantial loss of knowledge due to the abrupt removal of parameters,
whereas the hybrid scheme better preserves knowledge during pruning.

Table 6: Performance comparison between standard and hybrid training schemes under varying group sparsity levels in
HESSO. Results are reported as F1 score on the BERT SQuAD dataset. The hybrid scheme consistently outperforms
the standard scheme, especially at higher sparsity levels.

Sparsity=10% Sparsity=30% Sparsity=50% Sparsity=70% Sparsity=90%
Standard Training 85.05% 83.95% 82.41% 80.57% 76.23%
Hybrid Training 87.20% 86.72% 86.46% 85.50% 84.25%

HESSO over saliency scores. We next evaluate the performance of HESSO under various saliency score definitions.
Notably, HESSO performs surprisingly poorly when using average magnitude as the saliency score. We hypothesize
that this is due to the averaging effect, which compresses the score values and diminishes the contrast between im-
portant and redundant groups. This reduced discrepancy makes it more difficult to accurately distinguish and prune
redundant groups, thereby increasing the likelihood of misclassification. A similar issue appears to affect the cosine
similarity saliency score, particularly at high sparsity levels (e.g., 70% and 90%).

Interestingly, we also observe that one with 1st Taylor-based saliency score occasionally outperforms the one with 2rd
Taylor-based saliency score. This can be explained by the fact that our approximation of the Hessian is based on the
squared gradient, which does not capture true Hessian information.

Among all variants, the mixed saliency score consistently outperforms others at sparsity levels of 50%, 70%, and 90%.
Moreover, HESSO with the mixed saliency score exhibits significantly lower performance variation across different
sparsity levels compared to other methods. Based on these empirical findings, we adopt the mixed saliency score as the
default setting (see Appendix E). A more in-depth investigation into the root causes behind the varying effectiveness
of saliency scores is an important direction for future work.

12

Under review as submission to TMLR

Table 7: Ablation study on saliency scores for different sparsity levels. Results are reported as F1 score on the BERT
SQuAD dataset.

Magnitude Average Magnitude Cosine Similarity 1st Taylor 2nd Taylor Mixed
HESSO (30% sparsity) 86.24% 7.92% 85.88% 87.32% 86.87% 86.72%
HESSO (50% sparsity) 84.21% 8.06% 73.05% 85.90% 85.81% 86.46%
HESSO (70% sparsity) 82.71% 2.03% 8.27% 83.95% 83.81% 85.50%
HESSO (90% sparsity) 80.91% 1.94% 6.59% 82.14% 82.01% 84.10%
Mixed = 0.2*Magnitude + 0.2*Average Magnitude + 0.2*Cosine Similarity + 0.2*1st Taylor + 0.2*2nd Taylor.

CRIC over saliency scores. We first conduct ablation study of CRIC under different saliency scores. The default
format of CRIC primarily targets the most commonly used saliency scores that are sensitive to approximation errors
caused by distances to the origin. For saliency scores with such higher sensitivities, CRIC’s multiple sampling strat-
egy—gathering information along the direction toward the origin—and its voting mechanism over historical statistics
can effectively mitigate these identification issues.

To validate this, we include an ablation study for CRIC to demonstrate its improvements across varying saliency scores.
As shown in the results, for commonly used saliency scores, CRIC effectively improves performance. However,
magnitude and average magnitude benefits less from CRIC due to the persistence of large approximation errors, even
as the groups of iterates move closer to the origin.

Table 8: Ablation Studies of CRIC on Zero-Shot Pruning Phi2.

Magnitude Avg Magnitude Cosine Similarity 1st Taylor 2nd Taylor
No CRIC CRIC No CRIC CRIC No CRIC CRIC No CRIC CRIC No CRIC CRIC

Perplexity↓ 629.1 489.4 713.5 644.6 525.5 53.4 438.3 28.6 378.2 37.1

Furthermore, for saliency scores whose approximation errors are not dependent on the distance to the origin, the
philosophy of CRIC can still be applied with proper adaptations. In such cases, it is critical to analyze the root causes
of the approximation errors for the given saliency scores. Based on these root causes, CRIC’s multiple sampling
strategy can be adjusted to collect more targeted signals, thereby reducing identification errors in these scenarios.

4.7 Hyper-parameters Sensitivity Analysis

Pruning periods. We first investigate the sensitivity of HESSO’s performance with respect to the pruning period
(see Algorithm 1). Specifically, we evaluate a range of pruning periods {1, 2, 5, 10}. As shown in Figure 5(a), the
F1 score remains largely stable across these settings when the group sparsity level is fixed. A slight improvement in
performance is observed as the pruning period increases. Based on this observation, we empirically choose a pruning
period of 10, as recommended in our experimental setup (Appendix E).

Sampling steps and termination tolerance. We further investigate the sensitivity of CRIC to two key hyperparam-
eters: the number of sampling steps and the termination tolerance (see Algorithm 2). As shown in Figure 5(b), the F1
score remains largely stable across different sampling steps {1, 2, 5, 10} under a fixed group sparsity level. A slight
performance gain is observed as the number of sampling steps increases, likely due to more opportunities to correct
misclassified redundant groups. Based on this, we set the number of sampling steps to 10. Regarding termination
tolerance, the F1 score shows minimal sensitivity to values {0, 10, 20, 50}, as illustrated in Figure 5(c). Increasing
the termination tolerance can reduce the number of CRIC cycles (see Line 5 in Algorithm 2) and thus lower the total
runtime. Accordingly, we set the termination tolerance to 50.

4.8 Comparative Analysis of Hyper-parameters Tuning Efforts

A key advantage of HESSO over HSPG methods in the OTO series lies in its white-box optimization design, which
enables explicit control over group sparsity. In contrast to HSPGs, where achieving target group sparsity level requires
extensive task-specific hyperparameter tuning (e.g., the regularization parameter λ, amplification factors λamplify,
and smoothing terms ϵ), HESSO only requires the specification of a desired group sparsity level. That said, no

13

Under review as submission to TMLR

1 2 5 10
(a) Pruning periods

85.0

85.5

86.0

86.5

F1
 S

co
re

1 2 5 10
(b) Sampling steps

0 10 20 50
(c) Termination tolerance

Sparsity=70% Sparsity=50% Sparsity=30%

Figure 5: We evaluate the sensitivity of HESSO to three key hyperparameters: pruning periods (HESSO), sampling
steps (HESSO-CRIC), and termination tolerance (HESSO-CRIC). Experiments are conducted on the BERT model
using the SQuAD dataset for the Question Answering task. The F1 score is used as the evaluation metric. We consider
group sparsity levels of 30%, 50%, and 70%, and report the average results over three independent runs to ensure
robustness.

additional tuning of sparse-optimizer-specific hyperparameters is needed for HESSO, which significantly simplifies
the training process and reduces overall tuning efforts. To illustrate this, Table 9 presents a side-by-side comparison
of hyperparameter tuning requirements across several representative tasks. As shown in the DHSPG column, tuning
HSPG requires careful sweeping over multiple hyperparameters to reach the target sparsity (e.g., sweeping over λ =
{10−4, 10−3, 10−2, 10−1}), whereas HESSO-(CRIC) adopts a single, general-purpose recipe that applies across all
tasks without modification.

Table 9: Sparse optimization related hyper-parameter tuning efforts comparisons.

HESSO-(CRIC) DHSPG
Super-Resolution CARNx2 General Recipe as described in Table 12 of Appendix E. Selected Recipe: λ = 10−2, λamplify = 20, ϵ = 0.0, etc.
Image-Classification ResNet General Recipe as described in Table 12 of Appendix E. Selected Recipe: λ = 10−3, λamplify = 2, ϵ = 0.95, etc.
Question-Answering Bert General Recipe as described in Table 12 of Appendix E. Selected Recipe: λ = 10−3, λamplify = 2, ϵ = 0.0, etc.
Comments Only need to specify target group sparsity. Grid search required over multiple hyperparameters per task

to reach target sparsity.

Additionally, this comparison focuses only on hyper-parameters specific to sparse optimizers. Black-box optimizers
like HSPGs inherently manage sparsity exploration processes, which demand further tuning of broader training param-
eters, such as learning rate schedules and the number of epochs. In contrast, the white-box design of HESSO-(CRIC)
reduces such complexities via a general recipe in Table 12 at Appendix E and low sensitivities to hyperparameters,
offering a more user-friendly, efficient, and practical solution.

5 Conclusion

In this work, we introduced HESSO-(CRIC), a novel Hybrid Efficient Structured Sparse Optimizer tailored for pruning
deep neural networks while preserving performance. By combining a hybrid training strategy with explicit, progres-
sive pruning control, and the Corrective Redundant Identification Cycle (CRIC), HESSO-(CRIC) effectively tackles
challenges such as tuning efforts, user difficulty, and irreversible performance degradation. Our experiments across
diverse domains show that it not only competes with but often surpasses state-of-the-art methods.

Overall, HESSO and its enhanced version, HESSO-CRIC, represent a significant advancement in the field of structured
pruning, offering a robust and versatile solution for optimizing deep neural networks with minimal human intervention.
These contributions pave the way for more efficient and scalable model compression techniques, potentially leading
to broader adoption in real-world applications where resource constraints are critical.

14

Under review as submission to TMLR

While HESSO is architecture-agnostic and compatible with full-parameter training, scaling it to larger language mod-
els requires integrating established parallelization techniques and optimization strategies (e.g., data/model/pipeline
parallelism and ZeRO). As part of our future work, we plan to extend HESSO to larger LLMs such as 7B, 32B, and
70B parameter models. We are also interested in exploring its application to multimodal LLMs.

References
Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution: Dataset and study. In

Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2017.

Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast, accurate, and lightweight super-resolution with cascading
residual network. In Proceedings of the European conference on computer vision (ECCV), pp. 252–268, 2018.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James Hensman.
Slicegpt: Compress large language models by deleting rows and columns. arXiv preprint arXiv:2401.15024, 2024.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once for all: Train one network and specialize
it for efficient deployment. In International Conference on Learning Representations, 2020.

Tianyi Chen, Frank E Curtis, and Daniel P Robinson. A reduced-space algorithm for minimizing ℓ1-regularized convex
functions. SIAM Journal on Optimization, 27(3):1583–1610, 2017.

Tianyi Chen, Frank E Curtis, and Daniel P Robinson. Farsa for ℓ1-regularized convex optimization: local convergence
and numerical experience. Optimization Methods and Software, 2018.

Tianyi Chen, Tianyu Ding, Bo Ji, Guanyi Wang, Yixin Shi, Sheng Yi, Xiao Tu, and Zhihui Zhu. Orthant based
proximal stochastic gradient method for ℓ1-regularized optimization. arXiv preprint arXiv:2004.03639, 2020a.

Tianyi Chen, Bo Ji, Yixin Shi, Tianyu Ding, Biyi Fang, Sheng Yi, and Xiao Tu. Neural network compression via
sparse optimization. arXiv preprint arXiv:2011.04868, 2020b.

Tianyi Chen, Guanyi Wang, Tianyu Ding, Bo Ji, Sheng Yi, and Zhihui Zhu. Half-space proximal stochastic gradient
method for group-sparsity regularized problem. arXiv preprint arXiv:2009.12078, 2020c.

Tianyi Chen, Tianyu Ding, Bo Ji, Guanyi Wang, Yixin Shi, Jing Tian, Sheng Yi, Xiao Tu, and Zhihui Zhu. Orthant
based proximal stochastic gradient method for ℓ1-regularized optimization. In Machine Learning and Knowledge
Discovery in Databases: European Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020,
Proceedings, Part III, pp. 57–73. Springer, 2021a.

Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin Shi, Sheng Yi, and Xiao
Tu. Only train once: A one-shot neural network training and pruning framework. Advances in Neural Information
Processing Systems, 34:19637–19651, 2021b.

Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin Shi, Sheng Yi, and
Xiao Tu. Only train once: A one-shot neural network training and pruning framework. In Advances in Neural
Information Processing Systems, 2021c.

Tianyi Chen, Tianyu Ding, Badal Yadav, Ilya Zharkov, and Luming Liang. Lorashear: Efficient large language model
structured pruning and knowledge recovery. arXiv preprint arXiv:2310.18356, 2023a.

Tianyi Chen, Tianyu Ding, Zhihui Zhu, Zeyu Chen, HsiangTao Wu, Ilya Zharkov, and Luming Liang. Otov3: Auto-
matic architecture-agnostic neural network training and compression from structured pruning to erasing operators.
arXiv preprint arXiv:2312.09411, 2023b.

Tianyi Chen, Luming Liang, DING Tianyu, Zhihui Zhu, and Ilya Zharkov. Otov2: Automatic, generic, user-friendly.
In International Conference on Learning Representations, 2023c.

Yutong Dai, Tianyi Chen, Guanyi Wang, and Daniel P Robinson. An adaptive half-space projection method for
stochastic optimization problems with group sparse regularization. Transactions on machine learning research,
2023.

15

Under review as submission to TMLR

Tristan Deleu and Yoshua Bengio. Structured sparsity inducing adaptive optimizers for deep learning. arXiv preprint
arXiv:2102.03869, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee, 2009.

Tianyu Ding, Tianyi Chen, Haidong Zhu, Jiachen Jiang, Yiqi Zhong, Jinxin Zhou, Guangzhi Wang, Zhihui Zhu, Ilya
Zharkov, and Luming Liang. The efficiency spectrum of large language models: An algorithmic survey. arXiv
preprint arXiv:2312.00678, 2023.

Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jungong Han, Yuchen Guo, and Guiguang Ding. Lossless cnn
channel pruning via decoupling remembering and forgetting. Proceedings of the IEEE International Conference on
Computer Vision, 2021a.

Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jungong Han, Yuchen Guo, and Guiguang Ding. Resrep: Lossless
cnn pruning via decoupling remembering and forgetting. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 4510–4520, 2021b.

Shi Dong, Ping Wang, and Khushnood Abbas. A survey on deep learning and its applications. Computer Science
Review, 40:100379, 2021.

Lukas Enderich, Fabian Timm, and Wolfram Burgard. Holistic filter pruning for efficient deep neural networks. In
Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp. 2596–2605, 2021.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards any structural
pruning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 16091–
16101, 2023.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv
preprint arXiv:1803.03635, 2018.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

Shang-Hua Gao, Yong-Qiang Tan, Ming-Ming Cheng, Chengze Lu, Yunpeng Chen, and Shuicheng Yan. Highly
efficient salient object detection with 100k parameters. In European Conference on Computer Vision, pp. 702–721.
Springer, 2020.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1. MIT Press, 2016.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A survey. International
Journal of Computer Vision, 129(6):1789–1819, 2021.

Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen, Jian Chen, Peilin Zhao, and Junzhou Huang. Nat: Neural architecture
transformer for accurate and compact architectures. Advances in Neural Information Processing Systems, 32, 2019.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating deep convolu-
tional neural networks. arXiv preprint arXiv:1808.06866, 2018a.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model compression and
acceleration on mobile devices. In Proceedings of the European Conference on Computer Vision (ECCV), pp.
784–800, 2018b.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

16

Under review as submission to TMLR

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 1314–1324, 2019.

Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from transformed self-exemplars.
In Proceedings of the IEEE conference on computer vision and pattern recognition, 2015.

Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks. In Proceedings of
the European conference on computer vision (ECCV), pp. 304–320, 2018.

Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jyoti Aneja, Sebastien Bubeck, Caio César Teodoro Mendes,
Weizhu Chen, Allie Del Giorno, Ronen Eldan, Sivakanth Gopi, et al. Phi-2: The surprising power of small language
models. Microsoft Research Blog, 1(3):3, 2023.

Jihun Jeon, Jaemyung Kim, Jin-Ku Kang, Sungtae Moon, and Yongwoo Kim. Target capacity filter pruning method
for optimized inference time based on yolov5 in embedded systems. IEEE Access, 10:70840–70849, 2022.

Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, Yonghye Kwon, Kalen Michael, Jiacong Fang, Colin
Wong, Zeng Yifu, Diego Montes, et al. ultralytics/yolov5: v6. 2-yolov5 classification models, apple m1, repro-
ducibility, clearml and deci. ai integrations. Zenodo, 2022.

Jongwoo Ko, Seungjoon Park, Yujin Kim, Sumyeong Ahn, Du-Seong Chang, Euijai Ahn, and Se-Young Yun. NASH:
A simple unified framework of structured pruning for accelerating encoder-decoder language models. In Findings
of the Association for Computational Linguistics: EMNLP 2023, pp. 6076–6093, 2023.

François Lagunas, Ella Charlaix, Victor Sanh, and Alexander Rush. Block pruning for faster transformers. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 10619–10629,
2021.

Bailin Li, Bowen Wu, Jiang Su, and Guangrun Wang. Eagleeye: Fast sub-net evaluation for efficient neural network
pruning. In European Conference on Computer Vision, pp. 639–654. Springer, 2020a.

Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool, and Radu Timofte. Group sparsity: The hinge between filter
pruning and decomposition for network compression. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8018–8027, 2020b.

Shaohui Lin, Rongrong Ji, Yuchao Li, Cheng Deng, and Xuelong Li. Toward compact convnets via structure-sparsity
regularized filter pruning. IEEE transactions on neural networks and learning systems, 31(2):574–588, 2019.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization. Advances in neural
information processing systems, 31, 2018.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large language models.
Advances in neural information processing systems, 36:21702–21720, 2023.

David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented natural images and
its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings Eighth
IEEE International Conference on Computer Vision. ICCV 2001, volume 2, pp. 416–423. IEEE, 2001.

Fanxu Meng, Hao Cheng, Ke Li, Huixiang Luo, Xiaowei Guo, Guangming Lu, and Xing Sun. Pruning filter in filter.
arXiv preprint arXiv:2009.14410, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for machine com-
prehension of text. arXiv preprint arXiv:1606.05250, 2016.

17

Under review as submission to TMLR

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788, 2016.

Dongdong Ren, Wenbin Li, Tianyu Ding, Lei Wang, Qi Fan, Jing Huo, Hongbing Pan, and Yang Gao. Onnxpruner:
Onnx-based general model pruning adapter. arXiv preprint arXiv:2404.08016, 2024.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 4510–4520, 2018.

Yixin Shi, Aman Orazaev, Tianyi Chen, and Sheng YI. Object detection and segmentation for inking applications,
September 24 2020. US Patent App. 16/360,006.

Pramila P Shinde and Seema Shah. A review of machine learning and deep learning applications. In 2018 Fourth
international conference on computing communication control and automation (ICCUBEA), pp. 1–6. IEEE, 2018.

Mart van Baalen, Christos Louizos, Markus Nagel, Rana Ali Amjad, Ying Wang, Tijmen Blankevoort, and Max
Welling. Bayesian bits: Unifying quantization and pruning. arXiv preprint arXiv:2005.07093, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural information processing systems, pp. 5998–6008, 2017.

Xun Wang, John Rachwan, Stephan Günnemann, and Bertrand Charpentier. Structurally prune anything: Any archi-
tecture, any framework, any time. arXiv preprint arXiv:2403.18955, 2024.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep neural networks.
arXiv preprint arXiv:1608.03665, 2016.

Xidong Wu, Shangqian Gao, Zeyu Zhang, Zhenzhen Li, Runxue Bao, Yanfu Zhang, Xiaoqian Wang, and Heng
Huang. Auto-train-once: Controller network guided automatic network pruning from scratch. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16163–16173, 2024.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate models. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 1513–1528, 2022.

Huanrui Yang, Wei Wen, and Hai Li. Deephoyer: Learning sparser neural network with differentiable scale-invariant
sparsity measures. arXiv preprint arXiv:1908.09979, 2019.

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global filter pruning method for
accelerating deep convolutional neural networks. arXiv preprint arXiv:1909.08174, 2019.

Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-representations. In
International conference on curves and surfaces. Springer, 2010.

Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan Zhuang. Loraprune:
Pruning meets low-rank parameter-efficient fine-tuning. arXiv preprint arXiv:2305.18403, 2023.

Jinxin Zhou, Tianyu Ding, Tianyi Chen, Jiachen Jiang, Ilya Zharkov, Zhihui Zhu, and Luming Liang. Dream: Dif-
fusion rectification and estimation-adaptive models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8342–8351, 2024.

Yuefu Zhou, Ya Zhang, Yanfeng Wang, and Qi Tian. Accelerate cnn via recursive bayesian pruning. In Proceedings
of the IEEE International Conference on Computer Vision, pp. 3306–3315, 2019.

Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-level structured pruning
using polarization regularizer. Advances in Neural Information Processing Systems, 33, 2020.

18

Under review as submission to TMLR

A Proof of Theorem 3.4

Proof. The statement is equivalent to that the violating cycle line 5-17 in Algorithm 2 terminates within finite number
of steps. For convenience, we denote Vl as the violating set at lth cycle. The statement then becomes that there exists
an L <∞, such that VL = ∅. We now prove it as a two-step fashion.

At first, we show that the violating set at lth loop Vl is disjoint to those at all previous loops {Vi}i=l−1
i=0 . This is true

since the Vl is constructed excluding elements in the (l − 1)th historical setHl

Vl ← V̂l−1 \ Hl−1, (2)

and Hl−1 is the union of previous violating set Hl−1 =
⋃i=l−1

i=0 Vi. Therefore, Vl is disjoint to all violating sets
{Vi}i=l−1

i=0 .

Secondly, we prove by contradiction. Suppose there exists no an L < ∞, such that VL = ∅. Since Vl is disjoint with
{Vi}i=l−1

i=0 , it implies that Vl must include previously unseen and new element from G. Consequently, the historical
set Hl =

⋃i=l
i=0 Vi will have infinite number of elements as l tends to∞, i.e.,

lim
l→∞

|Hl| =∞. (3)

However, equation 3 contradicts that the historical set Hl is a subset of group partition set G, and the cardinality of G is
finite. Therefore, we conclude the corrective redundancy identification cycle always terminates within a finite number
of steps.

B Saliency Score

Magnitude. The importance of a parameter group can be determined by its magnitude. We further normalized against
all the current important instances, mapping the score into the range [0, 1]. Heuristically, a group of variables with
lower magnitude—implying they are closer to zero—typically contributes less to the model output. Therefore, such
groups are often considered less important and more likely to be pruned.

scoremag([x]g)← ∥[x]g∥2 ,

scoremag([x]g)←
scoremag([x]g)∑

g∈GI
scoremag([x]g) .

(4)

Average Magnitude. While considering the overall magnitude can be useful, it may introduce bias by dispropor-
tionately favoring groups with more parameters, marking them as more important. To address this potential bias, the
average magnitude is also considered. This metric measures the average parameter magnitude within each group, pro-
viding a normalized assessment that accounts for the number of parameters in each group. Consequently, the algorithm
can more fairly compare groups of different sizes and prevent the overrepresentation of larger groups.

scoreavg-mag([x]g)←
∥[x]g∥2

|
√
|g||

,

scoreavg-mag([x]g)←
scoreavg-mag([x]g)∑

g∈GI
scoreavg-mag([x]g) .

(5)

Cosine Similarity. Another criterion for determining group importance is the cosine similarity between the projection
direction of parameter group and the negative gradient direction of the objective function. It can be calculated as the
cosine similarity between −[x]g and the negative gradient −[∇f(x)]g , followed by a normalization to map onto a
common scale. This metric evaluates whether projecting a group of parameters onto zero (i.e., moving towards the
origin along the negative parameter direction) aligns with a descent direction for the objective function. A descent
direction is expected to decrease the objective function value, suggesting that pruning group of parameters onto zero
may not significantly regress model’s performance. As a result, such groups are more likely to be marked as redundant.

19

Under review as submission to TMLR

scorecosine([x]g, [∇f(x)]g)←
[x]⊤g [∇f(x)]g

(∥[x]g∥ ∥[∇f(x)]g∥)
,

scorecosine([x]g, [∇f(x)]g)← scorecosine([x]g)∑
g∈GI

scorecosine([x]g) .

(6)

Taylor Importance. To further quantitatively approximate the effect of projecting the parameter group [x]g onto
zero on the objective function, we can employ the Taylor expansion. Taylor expansion could estimate the impact of
small changes in the parameters on the function value, allowing us to consider varying orders of Taylor importance. In
particular, the first-order Taylor expansion provides a linear approximation of the objective function around the current
parameter point. The impact of setting [x]g → 0 can be estimated by the dot product of the gradient and the change
in parameters. It helps identify groups whose removal likely decrease objective function.

scoreTaylor-1st([x]g, [∇f(x)]g)← |f(x)− f(x|[x]g → 0)| ≈ |[x]⊤g [∇f(x)]g|,

scoreTaylor-1st([x]g, [∇f(x)]g)←
scoreTaylor-1st([x]g, [∇f(x)]g)∑

g∈GI
scoreTaylor-1st([x]g, [∇f(x)]g) .

(7)

The second order Taylor importance is based on the second-order Taylor expansion. It includes the Hessian matrix,
capturing the curvature of the objective function. This approximation considers not only the gradient but also the
second derivative, providing a more accurate estimate of the impact of setting [x]g → 0.

scoreTaylor-2nd([x]g, [∇f(x)]g)← |f(x)− f(x|[x]g → 0)| ≈ [x]⊤g [∇f(x)]g + 1
2[x]⊤g [∇2f(x)]g[x]g,

scoreTaylor-2nd([x]g, [∇f(x)]g)←
scoreTaylor-2nd([x]g, [∇f(x)]g)∑

g∈GI
scoreTaylor-2nd([x]g, [∇f(x)]g) .

(8)

C HESSO-CRIC Pseudocode

In this section, we provide the pseudocode of algorithm HESSO-CRIC.

Algorithm 3 HESSO-CRIC

1: Input. trainable variable x0, learning rate α, warm-up steps, Tw, and hybrid training steps Th.
2: Warm-up for Tw steps via SGD or its variants.
3: Use CRIC in Algorithm 2 to get redundant and important groupss GR and GI .
4: Hybrid Training for Knowledge Transfer.
5: for t = 0, 1, · · · , Th do
6: Compute trial iterate x̂t+1 ← xt − αt∇f(xt).
7: Compute transferring penalty ratio [γt]g ← T −t−1

T −t
∥[xt]g∥
∥[x̂t+1]g∥ for each g ∈ GR.

8: Update redundant group variables [xt+1]GR
← [γt]GR

[x̂t+1]GR
.

9: Update important group variables [xt+1]GI
← [x̂t+1]GI

.
10: end for
11: Keep training variables in important groups till convergence.
12: Output. The final iterate x∗.

D Computational Cost Analysis

In this section, we present the time and space complexities of HESSO-(CRIC). For ease of presentation, we introduce
several notations in Table 10.

20

Under review as submission to TMLR

Table 10: Notations.

Symbol Definition Remark
N # of trainable variables with gradient
G The set of parameter groups The common setup could be pruning/erasing zero-invariant groups.
|G| The size of G Typically negligible compared to N , see the below table.
T # of training steps

Tht # of hybrid training steps Set as Tht = T/10 in our generic recipe.
P # of pruning periods Set as P = 10 in our generic recipe.
S # of sampling steps in CRIC Set as S = 10 in our generic recipe.
C # of cycles in CRIC Empirically terminates within 10 cycles.

HESSO-(CRIC) requires additional time and space complexities while the additions are negligible. In our numerous
realistic applications besides the presented academic benchmarks, HESSO-(CRIC) are quite efficient, typically as
efficient as standard training via vanilla optimizers. Detailed complexity results are presented in Table 11.

Table 11: Space and Time Complexity Comparison.

Optimizer Variant Space Complexity (Peak) Time Complexity Space Complexity Projected onto Phi2 Time Complexity Projected onto Phi2
SGD Standard O(2N) O(NT) O(2N) O(NT)
HESSO SGD O(2N + ∥G∥) O(NT + ∥G∥P) O(2.00015N) O(NT + 1.5× 10−3N)
HESSO-CRIC SGD O(2N + ∥G∥S) O(NT + ∥G∥P + ∥G∥SC) O(2.0015N) O(NT + 1.515× 10−1N)
Adam/AdamW Standard O(3N) O(2NT) – –
HESSO Adam/AdamW O(3N + ∥G∥) O(2NT + ∥G∥P) O(3.00015N) O(2NT + 1.5× 10−3N)
HESSO-CRIC Adam/AdamW O(3N + ∥G∥S) O(2NT + ∥G∥P + ∥G∥SC) O(3.0015N) O(2NT + 1.515× 10−1N)

E Recommended Experimental Setup

We recommend the following hyperparameter configuration in Table 12 for HESSO and HESSO-CRIC across various
applications and DNN architectures. For the target DNN to be trained and compressed, end-users likely already have
a well-established training pipeline that allows the DNN to achieve high performance. To enhance usability, we
recommend inheriting the hyperparameters in HESSO and HESSO-CRIC from the baseline training scheme wherever
there is overlap, such as with optimizer variants and first- and second-order momentum.

Table 12: Recommended hyper-parameters and training strategies for HESSO and HESSO-CRIC.

Hyper-parameter Type Recommended Setup

Optimizer variant HESSO-(CRIC) Inherit as the baseline optimizer. Currently support {SGD, Adam, AdamW}.

Group sparsity HESSO-(CRIC)
Set upon the target pruned model size. If all variables could be pruned, the pruned model size could be
approximately equal as quadratic of the density level. In addition, a randomly pruned model could be
obtained by OTO’s APIs.

First-order momentum HESSO-(CRIC) Inherit as the baseline optimizer’s first-order momentum.

Second-order momentum HESSO-(CRIC) Inherit as the baseline optimizer’s second-order momentum.

Weight-decay HESSO-(CRIC) Inherit as the baseline optimizer’s weight-decay.

Initial learning rate HESSO-(CRIC) Inherit as the baseline optimizer’s initial learning rate.

Saliency Score Criteria HESSO-(CRIC) By default equally considering the scores in Section 3.1.

Start pruning step HESSO-(CRIC) Set up as 1/10 of total training steps.

Pruning steps HESSO-(CRIC) Set up as 1/10 of total training steps.

Pruning periods HESSO Empirically suggest to set as 10.

Sampling steps HESSO-CRIC Empirically suggest to set as 10.

Learning rate scheduler Training Inherit as the baseline training, yet might need adjustments in some application to ensure the model after
reaching target group sparsity is sufficiently trained under relatively large learning rate.

Total training steps Training Inherit as the baseline training and adjust upon the learning rate scheduler.

Start training from scratch or pre-
training checkpoint Training Both are supported. For better performance, recommend to start from pretraining checkpoint if available.

This inheritance strategy should also be applied to other hyperparameters related to the training pipeline, such as
training steps and learning rate schedules, though some slight adjustments may be needed for some applications due

21

Under review as submission to TMLR

to the hybrid training process. We recommend beginning pruning at 1/10 of the total training steps and completing
progressive pruning over another 1/10 of the total training steps. Because of the hybrid training stage, the learning rate
schedule might require modification to ensure the DNN is sufficiently trained at a reasonably high learning rate after
reaching the target group sparsity level.

Additionally, HESSO and HESSO-CRIC support training either from scratch or from a pre-trained checkpoint. For
better performance and faster convergence, we recommend starting from a pre-trained status if such a checkpoint is
available. We summarize the recommended hyperparameter selections and training strategies in Table 12. Note that
better hyperparameter setups or training strategies may exist for specific domain tasks to achieve superior performance.
For the remainder of the manuscript, we conduct experiments according to the above recommended criteria.

F Supplementary Pictures

(a) Pretrained YOLOv5l. (b) Group Sparsity = 30%.

(c) Pretrained YOLOv5l. (d) Group Sparsity = 30%.

Figure 6: Visual examples of pruned YOLOv5l.

22

Under review as submission to TMLR

(a) Low resoluted image. (b) Group Sparsity = 20%. (c) Group sparsity = 30%.

(d) High resoluted image. (e) Group Sparsity = 50%. (f) Group Sparsity = 60%.

Figure 7: Visual examples of pruned CARNx2 produced HESSO-CRIC on Urban100.

23

	Introduction
	Related Works
	HESSO
	Saliency Score
	Hybrid Training in HESSO
	Approximation Errors of Saliency Scores
	Corrective Redundancy Identification Cycle

	Numerical Experiments
	Super Resolution
	Image Classification
	Object Detection
	Question and Answering
	Large Language Model
	Ablation Studies of HESSO-(CRIC)
	Hyper-parameters Sensitivity Analysis
	Comparative Analysis of Hyper-parameters Tuning Efforts

	Conclusion
	Proof of Theorem 3.4
	Saliency Score
	HESSO-CRIC Pseudocode
	Computational Cost Analysis
	Recommended Experimental Setup
	Supplementary Pictures

