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Abstract

This paper serves as a foundational step to-001
wards the development of a linguistically moti-002
vated and technically relevant evaluation suite003
for Greek NLP. We initiate this endeavor by in-004
troducing four expert-verified evaluation tasks,005
specifically targeted at natural language in-006
ference, word sense disambiguation (through007
example comparison or sense selection) and008
metaphor detection. More than language-009
adapted replicas of existing tasks, we con-010
tribute two innovations which will resonate011
with the broader resource and evaluation com-012
munity. Firstly, our inference dataset is the013
first of its kind, marking not just one, but014
rather all possible inference labels, account-015
ing for possible shifts due to e.g. ambigu-016
ity or polysemy. Secondly, we demonstrate017
a cost-efficient method to obtain datasets for018
under-resourced languages. Using ChatGPT019
as a language-neutral parser, we transform the020
Dictionary of Standard Modern Greek into a021
structured format, from which we derive the022
other three tasks through simple projections.023
Alongside each task, we conduct experiments024
using currently available state of the art ma-025
chinery. Our experimental baselines affirm the026
challenging nature of our tasks and highlight027
the need for expedited progress in order for028
the Greek NLP ecosystem to keep pace with029
contemporary mainstream research.030

1 Introduction031

It is a well known fact that the natural language032

processing world is running at multiple speeds.033

A select few languages claim the lion’s share in034

the literature, boasting a plethora of models and a035

constant stream of results, while others are strug- 036

gling to keep up with last year’s state of the art. 037

Meanwhile, multilingual models, despite being her- 038

alded as the end-all solution to the issue, often 039

fall short of expectations (Wu and Dredze, 2020; 040

Ogueji et al., 2021; Pfeiffer et al., 2021; España- 041

Bonet and Barrón-Cedeño, 2022; Havaldar et al., 042

2023; Papadimitriou et al., 2023, inter alia). The 043

assumption that one-size-fits-all multilingual mod- 044

els can effectively bridge the language gap is hard 045

to either refute or validate, given the disproportion- 046

ate distribution of training and evaluation resources 047

among languages (Joshi et al., 2020; Yu et al., 2022; 048

Kreutzer et al., 2022). Further muddying the wa- 049

ters is the dubious quality of the increasingly trend- 050

ing multi- and mono-lingual resources generated 051

through minimally supervised machine translations 052

from English (Artetxe et al., 2020; Wang and Hersh- 053

covich, 2023). While such endeavors can certainly 054

make for good first steps, they are neither suffi- 055

cient nor without risks. The wide adoption of the 056

practice threatens resource plurality, as more and 057

more “new” datasets are in fact old in all but lan- 058

guage. Furthermore, it condones the accumulation 059

of academic authority to a select few, namely the 060

authors of the originals, promoting the unhindered 061

perpetuation of their biases and oversights as uni- 062

versal across languages. Worse yet, it outsources 063

linguistic expertise to machine labor, as we are now 064

entrusting our automated processes with capturing 065

the nuances of under-represented languages; ex- 066

actly those languages that require opinionated and 067

targeted expert attention the most. 068

And while a discussion on the structural causes 069

behind the problem and the ways to incentivize 070
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change is long overdue, here we set our aims to-071

wards something more actionable. Noting the strik-072

ing absence of evaluation benchmarks for mod-073

ern Greek, and the language’s limited presence in074

multi-lingual resources, we set out to develop a lin-075

guistically motivated and technically relevant suite076

of evaluation tasks. This paper aims to kickstart077

this endeavor, while serving as an open invitation078

to interested parties. Concretely, we set the pace079

with four evaluation tasks:080

1. a handcrafted dataset for inference, consisting081

of 1 762 sentence pairs, each pair adorned with082

a linguistic characterization in the form of tags083

à la SuperGlue and labeled with a subset (rather084

than an element) of {Neutral, Entailment,085

Contradiction}, aiming to account for all pos-086

sible inference relations between premise and087

hypothesis088

2. a structured translation of the Dictionary of Stan-089

dard Modern Greek, from which we project into090

three tasks:091

(i) a word sense disambiguation task à la092

Words-in-Context, consisting of 117 662093

phrase pairs that correspond to two usage094

examples for a single word, where the sys-095

tem is tasked with telling whether the two096

occurrences have the same meaning or not097

(ii) a more compact & linguistically informed098

version of the same task consisting of099

14 416 unique phrases containing polyse-100

mous words, each word associated to a101

number of senses and their periphrastic def-102

initions, where the system is tasked with103

telling which word sense is associated with104

each usage example105

(iii) a metaphor detection task, associating each106

of the previous phrases to a boolean la-107

bel indicating whether the word in focus108

is used metaphorically or not109

To facilitate research with these tasks, we supply110

accessible entry points to the raw data in the form111

of Python interfaces. For each task, we conduct112

experiments using the currently available state of113

the art machinery and establish baseline scores for114

comparisons.1115

2 OYXOY116

Inspired by Glue and SuperGlue (Wang et al., 2018,117

2019), our goal is to develop a language-adapted118

1Data, interfaces and the code necessary to replicate our
experiments is provided as supplementary material.

suite that selects and extends a few key aspects of 119

the original. Our project, which we lightly dub 120

OYXOY (pronounced /"u.xu/), is not primarily fo- 121

cused on offering general diagnostics, but rather 122

on highlighting the semantic, syntactic, and mor- 123

phological attributes of the Greek language, and 124

quantifying their impact on NLP systems. To that 125

end, we present four high-level tasks that require 126

varying degrees of lexical & sentential meaning 127

comprehension. 128

2.1 Natural Language Inference 129

Our first task is a staple of computational semantics 130

that has endured the test of time: natural language 131

inference (NLI). In their most common form, NLI 132

tasks present the system with an ordered pair of 133

sentences (called a premise and a hypothesis), and 134

request one of three inference relations that must 135

hold between premise to hypothesis: Entailment, 136

Contradiction and Neutral/Unknown. Despite 137

its apparent simplicity and the heaps of progress 138

in modern NLP, the conquest of NLI has proven 139

challenging to this day. Neural systems show a 140

tendency to abuse spurious data patterns over ac- 141

tually performing the (often complicated) reason- 142

ing required to solve the problem, resulting in lim- 143

ited generalization capacity across datasets. For 144

our dataset, we follow Wang et al. (2018, 2019) 145

in establishing a hierarchy of rudimentary but de- 146

scriptive linguistic tags that encompass an array of 147

phenomena that can influence the direction of in- 148

ference. For a glimpse at the full hierarchy of tags 149

used, refer to Table 2. These tags are intended to 150

find use outside the model’s input/output pipeline, 151

providing a guide for categorizing results and draw- 152

ing finer-grained quantitative evaluations. Where 153

our dataset diverges from established practices is 154

in providing an explicit account of inference-level 155

ambiguities not only through the tagging but also 156

through the labeling scheme. Rather than annotat- 157

ing each example pair with any one inference label, 158

we instead specify all possible labels that may hold. 159

To do so, we implicitly consider the product space 160

of all possible readings of both premise and hypoth- 161

esis, and construct the label set arising out of all 162

pairwise interactions; Figure 1 shows two concrete 163

examples under different settings. 164

To create the collection of samples that make up 165

the dataset, we follow a three stage process. At 166

the first stage, each author independently wrote 167

a number of sentence pairs together with a sug- 168
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gested set of tags and labels. Afterwards, each au-169

thor was given a collection of sentence pairs from170

other authors with the tags and labels hidden, and171

was tasked with assigning the tags and labels they172

deemed most appropriate. This way, we end up173

with four unique tag and label sets for each pair.174

Finally, we perform an aggregation of the proposed175

annotations and jointly go through any and all ex-176

amples that contain at least one tag or label that177

does not reach a majority (i.e. counts less than178

three votes). We resolve disagreements by adding179

or removing annotations, thus ensuring internal180

consistency within the dataset. At the end of the181

process, we end up with 1 049 samples, of which182

110 contain more than a single label. The dataset as183

a whole contains 454 Neutral, 414 Entailment184

and 292 Contradiction assignments.185

In parallel to the above, we re-annotate the Greek186

version of FraCaS (Amanaki et al., 2022) according187

to our format specifications, skipping directly to the188

third stage of the pipeline described earlier. The de-189

rived dataset contains an additional 713 examples,190

revealing 30 of them as multi-labeled, with a label191

distribution of 264 Neutral, 345 Entailment and192

134 Contradiction. We serve the two datasets193

independently, but as a single resource.194

2.2 Repurposing the Lexicon195

Transitioning to our next objective, a resource tar-196

geting lexical semantics, we immediately run into197

a roadblock. The construction of a sufficiently198

large dataset centered on the word requires a pro-199

hibitive investment of time and effort. Facing the200

very same challenge, contemporary contributions201

have established the practice of turning to either202

machine translation or crowd-sourced labor, with203

hired workers being overlooked by applied prac-204

titioners (at best, if at all). Albeit pragmatic, this205

approach compromises the quality of the generated206

resources, dismissing domain expertise in the pur-207

suit of improved cost efficiency (a prerequisite, in208

turn, for quantity). As an alternative, we redirect209

our focus towards a frequently-overlooked tradi-210

tional resource: the lexicon. Reputable lexica offer211

a rare mixture of linguistic rigor and extensive cov-212

erage virtually for free, making them a prime can-213

didate for adaptation and repurposing into modern214

applications. In what follows, we showcase how215

this insight can be put into practice, enacting a sen-216

sible and effective way forward for under-resourced217

languages.218

We begin by procuring a copy of the Dictio- 219

nary of Standard Modern Greek (Triantafyllides, 220

1998).2 The dictionary is provided in the form of 221

a minimally structured SQL database, associating 222

each lemma with its lexical entry, a raw text field 223

containing a periphrastic definition and a few us- 224

age examples for each of its senses. Unfortunately, 225

senses and examples are not structurally differenti- 226

ated by the database, but are rather presented in the 227

same field, further intertwined with supplementary 228

details such as usage conditions, morphological 229

information, etc. Instead, the database relies on 230

a combination of formatting strategies, including 231

enumeration and styling, to differentiate between 232

definitions and examples. However, these strate- 233

gies are not consistently applied across the lexicon. 234

To make matters worse, definitions and examples 235

are often woven together (that is, they material- 236

ize as non-contiguous strings), and can at times 237

follow ad-hoc hierarchical arrangements. Conse- 238

quently, even though the textual content effectively 239

conveys information visually, parsing this content 240

with traditional methods proves nigh impossible. 241

As a workaround, and considering that parsing un- 242

structured data is a staple task for large language 243

models, we employ ChatGPT (Brown et al., 2020) 244

for the problem at hand. 245

Our pipeline is as follows. We first utilize the 246

existing database fields to filter the lexical entries 247

that seem to contain at least one example. This 248

results in a collection of 28 831 unique lemmata, 249

each mapped to its lexical entry. We randomly 250

sample 100 of them, which we then manually con- 251

vert into a succinct and minimally structured JSON 252

format, specifying (i) the lemma and (ii) a list of 253

senses, each sense structured as a definition and 254

a list of examples. We put extra effort into disen- 255

tangling hierarchical senses, repeating the elided 256

parts of non-contiguous definitions and examples 257

and removing enumeration identifiers. The yield 258

of this process then serves as the training set for 259

a quick one-shot tuning of ChatGPT3, the input 260

being the raw text (stripped of HTML tags for to- 261

ken economy) and the target being the structured 262

JSON representation. We pass all remaining entries 263

through the trained model. From the model output, 264

we filter out senses that contain no examples and 265

entries that contain less than two senses, and end 266

up with 16 079 examples spread over 7 677 senses 267

2Hosted online at www.greek-language.gr/greekLang/
modern_greek/tools/lexica/triantafyllides.

3We use model gpt-3.5-turbo via the fine-tuning API.
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Premise Ο Κυριάκος φίλησε την Αντιγόνη.

Kyriakos kissed Antigone.
Hypothesis Ο Κυριάκος και η Αντιγόνη φιλήθηκαν.

Kyriakos and Antigone kissed [each other].
Labels Entailment, Unknown
Tags Lexical Entailment:Symmetry/Collectivity

Premise Ο Γιώργος είπε στη Μαρία ότι ξέρει να παίζει κιθάρα.

Giorgos told Maria that [he/she] knows how to play the guitar.
Hypothesis Η Μαρία ξέρει να παίζει κιθάρα.

Maria knows how to play the guitar.
Labels Entailment, Unknown
Tags Lexical Entailment:Factivity:Factive, Predicate-Argument Structure:Anaphora/Coreference

Figure 1: NLI examples 761 and 879, showcasing multiple inferences. In the first example, φιλώ [/filó/] (to kiss) can
be a unidirectional or a reciprocal action (i.e., to give a kiss to vs. to exchange kisses with). In the second example,
pro-drop allows for two possible readings, where either Giorgos or Maria can be the subject of the embedded clause.

and 2 512 entries. Finally, we manually check each268

and every example and entry, throwing away the269

occasional parsing error, homogenizing the presen-270

tation and fixing the JSON formatting as needed.271

The result is 14 416 examples spread over 6 896272

senses and 2 326 entries, from which we derive the273

three evaluation tasks described in the subsections274

to follow.275

The Role of ChatGPT Our decision to incorpo-276

rate a large language model model into our data277

preparation process does not entail any of the epis-278

temological risks commonly associated with gen-279

erative models and/or data augmentation. In our280

use case, the model does not need a deep under-281

standing of the Greek language, the expertise of282

a trained linguist, or the creativity required of a283

human annotator, as it’s neither generating new ex-284

amples nor annotating existing ones per se. Rather,285

it suffices for it to recognize the inconsistent yet286

intuitive hierarchical enumeration patterns present287

in the data, and to convert them into recurring struc-288

tures with consistent formatting. Large language289

models’ attested proficiency in this scenario align290

them perfectly with our needs, allowing us to uti-291

lize the authoritative resource of the lexicon while292

minimizing tedious human labor and cost expendi-293

ture. Indeed, our inspection of the model’s output294

shows a generally high-quality translation, strictly295

faithful to the original input, with only a few minor296

occasional inconsistencies4.297

4The model is sometimes overeager, extending the output
specification with additional fields, in what seems like an
attempt to capture all the information provided in the raw
input.

2.2.1 Words-in-Context 298

The first task is essentially a replica of the Words- 299

in-Context (WiC) part of SuperGlue. It is formu- 300

lated as a binary classification problem, where the 301

system is presented with two sentences containing 302

the same (potentially polysemous) word, and is 303

tasked with telling whether the two occurrences 304

correspond to the same meaning or not. In order 305

to successfully resolve the task, the system needs 306

a dynamic embedding strategy, capable of disam- 307

biguating words depending on their surrounding 308

context. As such, it serves as a primitive test suite 309

for the lexical semantic capacities of bidirectional 310

transformers. 311

Obtaining the task from our dataset is trivial; it 312

suffices to consider the sum of the product space 313

of examples for each lexical entry (with the diago- 314

nals removed), zipped with a boolean sign indicat- 315

ing whether the two examples stem from the same 316

sense. Doing so yields 117 662 data points (i.e., 317

one order of magnitude larger than the correspond- 318

ing fragment of SuperGlue), with a label ratio of 1 319

positive to about 6 negative. 320

2.2.2 Sense Selection 321

The above formulation is straightforward, and di- 322

rectly compatible with the standard sequence clas- 323

sification pipeline commonly employed by NLP 324

architectures. As such, it makes for an accessible 325

entry point for evaluation. However, it represents 326

a dramatic simplification of the disambiguation 327

problem, requiring two usages in juxtaposition and 328

providing little information on what the sense of 329

each usage is. Our source dataset allows us to do 330

better. Given that we have periphrastic definitions 331
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for all5 the possible meanings of each word, we332

can reframe the task as sense selection. Given a333

word, the set of its possible meanings and a us-334

age context, we can prompt a model to predict the335

meaning most likely employed in the given con-336

text. Using periphrastic definitions as a proxy for337

meaning induces a better informed and more real-338

istic evaluation task, requiring and benefiting from339

high-quality contextual representations both at the340

lexical and the sentential level (since the word un-341

der scrutiny will now need to be contrasted to the342

full set of “meanings”). It is also more faithful to343

the source dataset, since the count of data points is344

now in alignment with the number of distinct usage345

examples (as duplication is no longer necessary).346

Each of the 14 416 points is associated with 3.8347

candidate definitions, on average.348

2.2.3 Metaphor Detection349

Our projection of the raw textual entries into struc-350

tured JSON entries has done away with most fields351

irrelevant to word disambiguation. However, we352

have consciously kept markers of metaphoric us-353

age, and homogenized their presentation.6 This354

enables us to filter senses (and by extension, us-355

age examples) that are used metaphorically, pro-356

viding the means for another kind of task alto-357

gether: metaphor detection. Making the simpli-358

fying assumption that metaphor is only present in359

those examples where the word defined is used in a360

metaphoric sense, we end up with 1 017 examples361

of metaphor (7% of the total of all examples) con-362

centrated around 571 senses and associated with363

499 entries, yielding a heavily imbalanced dataset364

for metaphor detection.365

3 Experimental Baselines366

To quantitatively evaluate the difficulty of the tasks367

described in the previous section, and in order to368

facilitate future research in this direction, we set up369

some experimental baselines using the current state-370

of-the-art machinery available for modern Greek.371

All our experiments rest on the tried and tested372

fine-tuning process for BERT-like models (Kenton373

and Toutanova, 2019), using Greek BERT as our374

universal core model (Koutsikakis et al., 2020).375

5Excluding the ones removed by the filtering process.
6They are indicated with (μτφ.) in the periphrastic defini-

tion.

3.1 Natural Language Inference 376

Despite our efforts to create a comprehensive eval- 377

uation suite for natural language inference, the 378

practical use of our dataset presents several chal- 379

lenges. First and foremost, its comparatively small 380

size renders it unsuitable for fine-tuning purposes. 381

This becomes especially problematic considering 382

the lack of NLI datasets tailored specifically for 383

Greek. Compounding these challenges is the fact 384

that our dataset utilizes a multi-label setup, which 385

complicates direct cross-dataset evaluations. To 386

address these challenges, we have chosen to lever- 387

age XNLI (Conneau et al., 2018), a cross-lingual 388

dataset for language inference of substantial size; 389

while XNLI was not initially designed for training 390

purposes, it presents a viable solution considering 391

the constraints we face. We employ an iterative ap- 392

proaching when splitting our dataset, aiming for a 393

30/70 division and taking care to keep the ratio con- 394

sistent for each of the linguistic tags used. We then 395

fine-tune BERT, training on the joined test set of 396

XNLI and the smaller of the two splits, evaluating 397

on the dev set of XNLI, and testing on the larger 398

split. This setup accounts for domain adaptation, 399

while allowing us to frame the problem as multi- 400

label classification (where the XNLI problems are 401

“coincidentally” single-label). 402

Concretely, we independently contextualize the 403

premise and hypothesis sentences, concatenate 404

their [CLS] tokens and project them into three in- 405

dependent logits via an intermediate feed-forward 406

layer of dimensionality 64, gated by the GELU ac- 407

tivation function (Hendrycks and Gimpel, 2016). 408

We train using AdamW (Loshchilov and Hutter, 409

2018) with a batch size of 32 and a learning rate 410

of 10-5. Despite heavy regularization (weight de- 411

cay of 0.1, dropout of 0.33 and early stopping), 412

the model is quick to overfit the training set, with 413

development set performance lagging significantly 414

behind (despite the matching domain). Since ac- 415

curacy is no longer a suitable performance metric, 416

owing to the multi-label setup we have adopted, 417

we report per-class precision, recall and F1 scores 418

over the test set instead, averaged over three rep- 419

etitions. The results, presented in Table 1, are 420

largely underwhelming, indicative of the difficulty 421

of the dataset and confirming the inadequacy of 422

(the Greek fragment of) XNLI as a training and 423

evaluation resource – a fact also noted by Evdai- 424

mon et al. (2023) and consistent with the compar- 425

atively low scores of Amanaki et al. (2022). To 426
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Label Prec. Rec. F1
Unkn. 0.32±4.9% 0.41±1.0% 0.35±3.7%

Ent. 0.52±2.8% 0.46±2.7% 0.48±1.1%

Contr. 0.20±0.7% 0.26±7.6% 0.23±0.6%

Table 1: Per-label test metrics for NLI.

gain a better understanding of the trained model’s427

behavior across different linguistic phenomena, we428

group samples according to their linguistic tags,429

and measure the average Jaccard similarity coef-430

ficient between predicted and true labels (i.e., the431

length of the intersection over the length of the432

union between the two sets). As Table 2 suggests,433

performance is consistently low across the board.434

The model seems to especially struggle with recog-435

nizing the effect of embedded clauses (regardless436

of whether they are restrictive or not), focus associ-437

ating operators, non-intersective adjectives, hypo-438

and hypernymy, antonymy and negation.439

3.2 Sense Disambiguation440

For both variants of the sense disambiguation task,441

we split the dataset’s examples into three subsets:442

a 60% training set, a 20% development set, and a443

20% test set. Additionally, we designate 10% of444

the total lexical entries as test-only, and move the445

associated examples from the training set to the test446

set. This will allow us to evaluate the model’s per-447

formance separately on in- and out-of-vocabulary448

examples (IV and OOV, respectively), i.e. involv-449

ing words that have or have not been encountered450

during training.451

To find the relevant word within each example,452

we lemmatize examples using SpaCy (Honnibal453

et al., 2020, model el_core_news_sm) and iden-454

tify the element within each sequence that corre-455

sponds to the source entry’s lemma, falling back456

to the element with the minimal edit distance if no457

absolute match can be found. Following tokeniza-458

tion, this permits us to create a boolean mask for459

each example, selecting only these tokens that are460

associated with the word/lemma of interest.461

Words-in-Context For the WiC variant, we462

gather minibatches consisting of all examples that463

belong to the same lexical entry. We contextualize464

examples independently, and extract the represen-465

tations of the words of interest by mean pooling466

the last layer representations of the tokens selected467

by each example’s mask. We then compute pair-468

wise similarity scores between pairs in the cartesian469

Tag Jaccard Index (ave.)
Logic

Disjunction 0.32±3.2%

Conjunction 0.41±1.6%

Negation
Single 0.30±1.6%

Multiple 0.46±5.6%

Negative Concord 0.32±0.4%

Comparatives 0.42±3.5%

Quantification
Existential 0.43±1.0%

Universal 0.36±1.3%

Non-Standard 0.37±2.8%

Temporal 0.32±1.1%

Conditionals 0.32±3.2%

Lexical Entailment

Redundancy 0.33±1.1%

Factivity
Factive 0.41±2.2%

Non-Factive 0.32±4.0%

Intersectivity
Intersective 0.38±4.2%

Non-Intersective 0.29±7.4%

Restrictivity
Restrictive 0.28±2.9%

Non-Restrictive 0.27±4.0%

Lexical Semantics
Synonymy 0.46±2.9%

Hyponymy 0.47±1.8%

Hypernymy 0.29±5.6%

Antonymy 0.30±3.2%

Meronymy 0.50±2.5%

Morph. Modification 0.33±1.8%

FAO 0.28±1.3%

Symmetry/Collectivity 0.44±4.1%

Predicate-Argument Structure

Alternations 0.38±2.0%

Ambiguity 0.40±2.9%

Anaphora/Coreference 0.39±0.1%

Ellipsis 0.44±1.7%

Core Arguments 0.55±5.0%

Common Sense/Knowledge 0.36±0.3%

Table 2: Per-tag test metrics for NLI. The tag hierarchy
follows along Wang et al. (2019), with few divergences.
For Logic, we replace Double Negation with Multiple
Negations and differentiate it from Negative Concord.
We add a tag for Non-Standard Quantification, and drop
the Numeral/Interval tag. For Lexical Entailment, we
substitute Morphological Negation with the (more gen-
eral) Morphological Modification. We subcategorize
Lexical Semantics, specifying left-to-right or premise-
to-hypothesis (directional) lexical relations. Finally, we
merge Common Sense and World Knowledge into a
single meta-tag.
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product of examples by applying the dot-product470

operator on the extracted representations, scaling471

the results by the inverse of the square root of the472

model’s dimensionality. These similarity scores473

serve as logits for binary cross entropy training,474

predicting whether the two occurrences of the word475

share the same sense between the two examples.476

Sense Selection For the sense selection variant,477

we create batches by (i) sampling over training ex-478

amples and (ii) constructing the set union of all re-479

lated (candidate) definitions, together with a binary480

boolean relation specifying whether an example481

and a definition belong to the same entry. We then482

independently contextualize all examples and defi-483

nitions, extracting contextual word representations484

for each example as before, and taking each defi-485

nition’s [CLS] token representation as a proxy for486

the sense’s meaning. We compare each word (in487

the context of a single example) to each meaning488

using the same scaled dot-product mechanism as489

before, masking out invalid pairs according to the490

example-to-definition relation mentioned earlier.491

We finally obtain softmax scores for each example492

yielding a probability distribution over candidate493

meanings, which serves as the model outputs for494

standard negative log-likelihood training.495

We train on either task using AdamW with a496

learning rate of 10-5, a weight decay of 10-2 and497

a 25% dropout applied at the dot-product indices,498

and perform model selection on the basis of devel-499

opment set accuracy; once more, development and500

training set performances quickly diverge after a501

few epochs. At this point, we note that both tasks502

use the same notion of sense agreement and both503

our models approximate it by means of the same504

vector operation; their difference lies in the fact505

that one compares a word occurrence to a word oc-506

currence (or: an example to an example), whereas507

the other compares a word occurrence to a set of508

“meanings” (or: an example to all candidate defi-509

nitions) (Hauer and Kondrak, 2022). Intuitively, it510

would make sense that a model that has acquired511

the sense selection task should be able to perform512

adequately on the WiC task without further train-513

ing; indeed, if two word occurrences select the514

same meaning (i.e., maximize their similarity to515

the same vector), they must also be similar to one516

another. To test this hypothesis, we simply apply517

the model obtained by fine-tuning on the sense se-518

lection task, except now recasting the test set in the519

form of the WiC task. 520

We report repetition-averaged aggregates in Ta- 521

ble 3. Performance is not astonishing, but remains 522

well above the random baselines for both tasks 523

(25% for sense selection and 16.7% for WiC), in- 524

dicating that the core model has some capacity 525

for learning and generalization. Sense selection 526

may initially appear as the more challenging of the 527

two tasks, seeing as it involves selecting one target 528

out of multiple options. Nonetheless, the model 529

achieves a consistently higher absolute accuracy 530

there; evidently, comparing one example to a fixed 531

set of senses is easier than comparing two ad-hoc 532

usage examples. To our surprise, we find that the 533

task transfer setup works straight out of the box, 534

to the point where the transfer model in fact out- 535

performs the in-domain model without as much as 536

recalibrating the sigmoid classification threshold. 537

One might hypothesize that this is due to the model 538

memoizing a fixed set of senses and their repre- 539

sentations. However, this is not entirely the case: 540

interestingly, accuracy now improves instead of de- 541

clining in the OOV fragment of the test set. We 542

interpret this as evidencing that the sense selection 543

formulation produces a higher quality error signal, 544

which induces a better informed disambiguation 545

prior during fine-tuning, allowing the (more rudi- 546

mentary) WiC task to be captured without addi- 547

tional effort. 548

3.3 Metaphor Detection 549

The last task, metaphor detection, is also the sim- 550

plest one, being essentially a case of sequence clas- 551

sification. We start by filtering all entries that have 552

at least one metaphoric sense, so as to alleviate the 553

severe class imbalance of the full dataset. From 554

the 499 filtered entries, we reserve 5% for use as 555

an OOV test set. We extract all examples from all 556

entries, and assign to each example a boolean label, 557

indicating whether the sense the example is associ- 558

ated with is metaphoric or not. This produces 3 015 559

examples (2 856 IV and 159 OOV), with a class 560

distribution of about 1 positive to 2 negative. We 561

proceed with training using once more a 60/20/20 562

split on the IV set. 563

We attach a feedforward classifier to the contex- 564

tualized [CLS] token and train using binary cross 565

entropy, optimizing with the same hyper-parameter 566

setup as before. Our results, presented in Table 4, 567

showcase a good ability to recognize metaphoric 568

senses in the words trained on, and a decent gener- 569
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Sense Selection Words-in-Context
Subset # examples accuracy # pairs accuracy1 accuracy2

IV 2 494 0.63±0.20% 8 274 0.50±0.41% 0.51±1.7%

OOV 1 289 0.64±0.41% 9 954 0.48±1.77% 0.54±0.2%

Total 3 784 0.63±0.29% 18 678 0.49±1.09% 0.53±0.86%

1 In-domain evaluation of the words-in-context model.
2 Transfer evaluation of the sense selection model.

Table 3: Test set sizes and performance metrics for the two sense disambiguation tasks.

Subset # Examples Accuracy
IV 572 0.84±6.29%

OOV 159 0.71±2.94%

Total 731 0.82±4.29%

Table 4: Test set performance on the metaphor detection
task.

alization potential to unseen words. Unlike prior570

experiments, we detect a high variability in the571

results between repetitions; one model instance572

has a moderate performance that does not differ573

between the two subsets of the test set, whereas an-574

other achieves a near-perfect score on the IV subset575

while being barely above the random baseline in576

the OOV subset.577

4 Related Work578

NLI is widely considered one of the core problems579

towards natural language understanding, with a580

plethora of evaluation suites (Bowman et al., 2015;581

Conneau et al., 2018; Wang et al., 2018, 2019; Nie582

et al., 2020) which continue to pose significant chal-583

lenge for current state-of-the-art models (Glockner584

et al., 2018; Talman and Chatzikyriakidis, 2019; Be-585

linkov et al., 2019; McCoy et al., 2019; Richardson586

et al., 2020, inter alia). Like GLUE and Super-587

Glue, our inference examples come packed with588

linguistic tags to facilitate diagnostic analysis. Un-589

like other datasets, our examples may specify more590

than one inference label, accounting for all possi-591

ble sentence readings. At the time of writing, other592

than a fragment of XNLI (produced by automatic593

translation), the only NLI dataset for Greek we are594

aware of is by Amanaki et al. (2022) (which we595

adapt here to our format).596

Sense repositories, i.e., mappings between597

words and sets of meanings are often framed as598

dictionary-like structures (Fellbaum, 1998; Nav-599

igli and Ponzetto, 2012). Our dataset stands out600

in providing both a definition and a collection of 601

examples for each sense, allowing the incorpora- 602

tion of either or both into various possible tasks 603

and model pipelines; we show three concrete ex- 604

amples of how this can be accomplished. The tasks 605

obtained, namely words-in-context, sense selection 606

and metaphor detection, are of prime importance 607

for the experimental validation of the lexical seman- 608

tic capacities of language processing systems (Ma 609

et al., 2021; Zhang and Liu, 2023; Choi et al., 2021; 610

Sengupta et al., 2022; Luo et al., 2023). To the best 611

of our knowledge, this is the first dataset of its kind, 612

and among the first lexical resources for Greek in 613

general. 614

5 Conclusions and Future Work 615

Our vision is that of an open-source, community- 616

owned, dynamically adapted, gold-standard suite 617

that enables the linguistically conscious evaluation 618

of the capacities of Greek language models. We 619

have presented four novel tasks and correspond- 620

ing baselines towards that goal. While our results 621

aren’t directly comparable to existing benchmarks, 622

they do highlight the significant challenge our tasks 623

present. This underscores the urgency for acceler- 624

ated progress within the Greek NLP ecosystem 625

to stay aligned with contemporary mainstream re- 626

search. 627

Pending community feedback, we hope to enrich 628

the existing datasets by scaling them up, correct- 629

ing possible artifacts and extending the language 630

domain with regional and dialectal variations. Pos- 631

sible tasks that we would like the project to even- 632

tually incorporate include gender bias detection, 633

paraphrase identification, and natural language in- 634

ference with explanations, among others. We are 635

curious to continue experimenting with ways to 636

utilize traditional resources, and exploring their po- 637

tential as dataset generators for under-resourced 638

languages in conjunction with large language mod- 639

els. 640
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Limitations641

The NLI dataset’s limited size renders it inadequate642

as a comprehensive resource for training and evalu-643

ating NLI systems from scratch. Furthermore, the644

examples were crafted by the authors of this paper,645

who belong to a distinct demographic, unavoidably646

introducing our own cultural, sociopolitical, and647

linguistic biases. The focus is exclusively on stan-648

dard modern Greek, omitting examples of regional649

or dialectal language use. Finally, while the tag650

set employed may provide valuable information, it651

offers only a coarse and incomplete summary of652

the full range of linguistic phenomena observed in653

the wild.654

The lexical dataset, conversely, is not indicative655

of our opinions as authors; the source dictionary656

may contain language use that is outmoded or so-657

cially exclusive. The dataset structure is sufficient658

for us to extract the three tasks we have presented,659

but might prove lacking for more complex tasks660

(like tasks requiring hierarchical or clustered sense661

arrangements, for instance). Despite efforts to en-662

sure semantic accuracy in every entry, sense, and663

example, occasional mistakes may have gone unno-664

ticed. Users should approach the resource critically,665

keeping this in mind.666

Regarding our baselines, we have experimented667

with only a single model. While we acknowledge668

this might entangle the effects of dataset difficulty669

and model robustness, we justify ourselves in re-670

fraining from experimenting with more models,671

since this is neither the prime concern of this paper,672

nor a practice that we necessarily agree with.673
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