

000 001 002 003 004 005 CCD: MITIGATING HALLUCINATIONS IN RADIOLOGY 006 MLLMs VIA CLINICAL CONTRASTIVE DECODING 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 Multimodal large language models (MLLMs) have recently achieved remarkable
032 progress in radiology by integrating visual perception with natural language un-
033 derstanding. However, they often generate clinically unsupported descriptions,
034 known as medical hallucinations, which pose serious risks in medical applica-
035 tions that demand accuracy and image-grounded outputs. Through empirical anal-
036 ysis, we find that prompt-induced hallucinations remain prevalent in radiology
037 MLLMs, largely due to over-sensitivity to clinical sections. To address this, we
038 introduce Clinical Contrastive Decoding (CCD), a *training-free* and *retrieval-free*
039 inference framework that integrates structured clinical signals from task-specific
040 radiology expert models. CCD introduces a dual-stage contrastive mechanism
041 to refine token-level logits during generation, thereby enhancing clinical fidelity
042 without modifying the base MLLM. Experiments on three datasets and multiple
043 models demonstrate that CCD consistently improves overall performance on ra-
044 diology report generation (RRG). **On the MIMIC-CXR dataset, it yields up to a
045 2.78 absolute improvement in RadGraph-F1 when applied to state-of-the-art RRG**
046 **models. Our approach provides a lightweight solution for mitigating medical hal-
047 lucinations, effectively bridging expert models and MLLMs in radiology.**

1 INTRODUCTION

031 Multimodal large language models (MLLMs) have recently shown substantial promise in the med-
032 ical domain (AlSaad et al., 2024; Shen et al., 2025). By coupling vision encoders with pretrained
033 large language models (LLMs) (Chen et al., 2024a; Liang et al., 2024), MLLMs align visual inputs
034 with language representations (Liu et al., 2024b), enabling complex reasoning and generation across
035 multimodal inputs (Yin et al., 2024; Liu et al., 2024a; Wang et al., 2024a). Among various medi-
036 cal specialties, radiology has emerged as a key application area (Tu et al., 2025; Saab et al., 2025),
037 where MLLMs are increasingly used to interpret radiographs and articulate diagnostic findings in
038 clinically precise language (Liu et al., 2019). Compared to general-domain settings, radiology im-
039 poses significantly stricter demands on factual accuracy and clinical reliability (Chen et al., 2024b).

040 Despite recent advances, MLLMs still face critical challenges that limit deployment in real-world
041 settings, with hallucination being a primary concern (Huang et al., 2025). In clinical contexts,
042 this issue is often termed *medical hallucination* (Chen et al., 2024c; Gu et al., 2024), referring to
043 outputs that appear clinically plausible yet are unsupported by the medical image or misaligned
044 with diagnostic intent (Zhu et al., 2025). Such errors are particularly consequential in safety-critical
045 fields like radiology, where even minor inaccuracies can adversely affect diagnosis and ultimately
046 compromise patient treatment (Chen et al., 2024b). In these scenarios, generated outputs must be
047 grounded in medical evidence and adhere to established clinical standards (Wu et al., 2024).

048 Radiology report generation (RRG) involves automatically producing free-text reports from medical
049 images (Liu et al., 2019), such as chest X-rays. As a core task in radiology workflows, it plays a cen-
050 tral role in clinical interpretation and is a key benchmark for advancing medical AI (Monshi et al.,
051 2020). Compared to visual question answering (VQA), which addresses narrowly scoped queries,
052 RRG requires holistic image understanding and precise, clinically grounded expression of find-
053 ings (Yildirim et al., 2024), making it substantially more complex and error-prone. Consequently,
054 medical hallucinations in RRG are often more severe and multi-dimensional, including fabricated
055 pathologies on normal images, misclassification of finding types or locations, and errors induced by

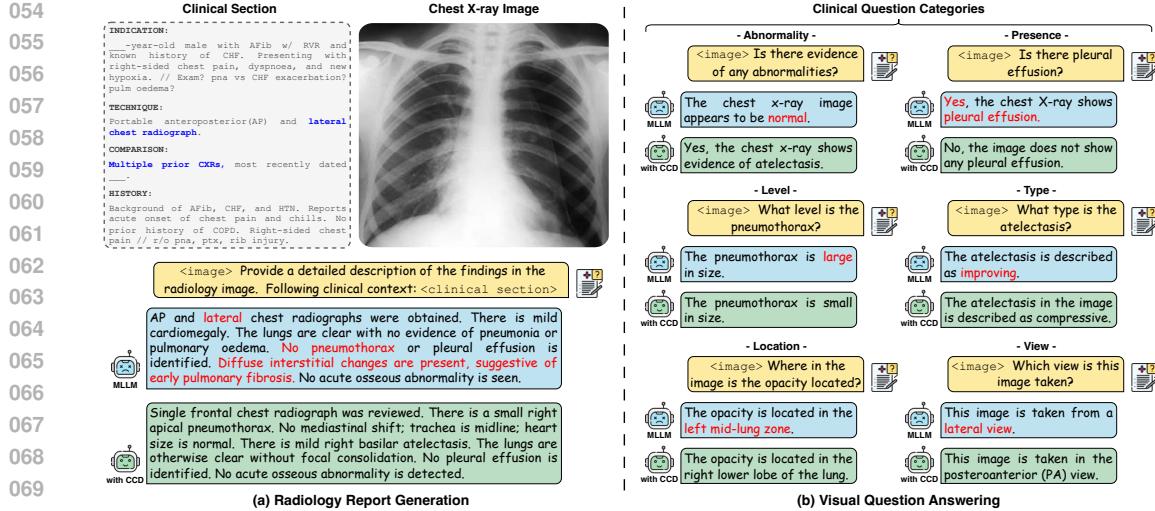


Figure 1: Illustration of the medical hallucinations in MLLMs across two tasks: (a) MAIRA-2 (Banner et al., 2024) for the radiology report generation and (b) LLaVA-Med (Li et al., 2023a) for visual question answering. Medical hallucinations are highlighted in red, referring to generated clinical content that is not supported by the image. Clinically irrelevant or counterfactual information in the reference clinical section is shown in blue. With our Clinical Contrastive Decoding (CCD), medical hallucinations in the baseline models are mitigated across both tasks and question types.

contradictory prompts (Chen et al., 2024c), as in Figure 1 (a). In contrast, hallucinations in VQA typically manifest as isolated factual inconsistencies (Zhu et al., 2025), as in Figure 1 (b).

To mitigate medical hallucinations in RRG, recent advances have explored strategies such as restructuring training data (Zambrano Chaves et al., 2025), sanitising clinical sections using GPT-4V (OpenAI, 2024), and applying retrieval-augmented generation (RAG) (Xia et al., 2025; Hou et al., 2025). However, these approaches often raise privacy concerns, require costly retraining or access to proprietary APIs, and are impractical in low-resource radiology settings where constructing effective retrieval corpora is challenging. To investigate the persistence of medical hallucinations in radiology MLLMs, we conduct an empirical study on RRG in Section 3. Our findings reveal that prompt-induced medical hallucinations (Chen et al., 2024c), triggered by clinically implausible or ambiguous prompts, remain prevalent even when fine-grained inputs are provided (Figure 1, top-left). This highlights the need for inference-time solutions beyond dataset-level interventions.

Motivated by the aforementioned observations, we introduce Clinical Contrastive Decoding (CCD), an inference-time method designed to mitigate medical hallucinations in radiology MLLMs. CCD adopts a two-stage hierarchical contrastive decoding framework that progressively incorporates external clinical signals to guide generation. Specifically, we leverage a task-specific expert model, such as a symptom classifier, to extract structured clinical labels and associated probabilities. Compared to the visual representations learned by the MLLM’s vision encoder, the expert model provides more precise clinical information by capturing multiple symptom-level signals from the image. These signals are integrated in two complementary ways: predicted labels are injected as descriptive prompts to enhance the grounding ability of the MLLM, and probability scores are used to perturb the decoding process, both nudging the outputs toward clinical consistency. This framework enables MLLMs to benefit from additional image-derived knowledge without requiring further alignment or retraining. As a result, CCD is a *training-free* and *retrieval-free* approach that operates entirely at inference time to improve radiology MLLMs. This paper makes the following contributions ¹:

- We conduct an empirical study on RRG and find that prompt-induced medical hallucinations remain prevalent in radiology MLLMs, often stemming from over-sensitivity to clinical sections.
- We propose **CCD**, a general and lightweight inference-time framework that leverages radiology expert models to guide MLLM generation via structured labels and confidence-based guidance.
- Extensive experiments across three datasets and multiple models show that **CCD** consistently enhances linguistic quality and clinical fidelity in RRG, while also improving accuracy on VQA.

¹A detailed explanation of our research aim and scope is provided in Appendix A.1 and Appendix A.2.

108

2 RELATED WORK

110 **Radiology Multimodal Large Language Models.** Substantial advancements have been made in
 111 applying MLLMs to radiology, particularly for generating narrative-style reports directly from medical
 112 images (Sharma et al., 2024; Zhang et al., 2025c). This trend highlights the need for domain-
 113 specific MLLMs that can support clinical workflows, reduce the workload of radiologists, and im-
 114 prove patient care (Huang et al., 2023; Wu et al., 2023). Recent models such as Med-PaLM M (Tu
 115 et al., 2023), MAIRA-1 (Hyland et al., 2024), Lingshu (Team et al., 2025), and Med-Gemma (Sel-
 116 llergren et al., 2025a) have made encouraging progress. However, medical hallucination remains a
 117 key limitation, compromising the clinical reliability of MLLMs (Kim et al., 2025).

118 **Medical Hallucination in Multimodal Large Language Models.** Hallucination in LLMs is com-
 119 monly defined as generating content that is irrelevant or unfaithful to the input (Tonmoy et al.,
 120 2024). In MLLMs, this often manifests as object hallucination, where generated outputs contradict
 121 the visual or factual evidence (Sahoo et al., 2024). Unlike general-domain applications, the med-
 122 ical domain presents unique triggers for hallucinations, such as clinically implausible prompts or
 123 subtle finding cues, and exhibits a markedly lower tolerance for errors (Wang et al., 2025b). The
 124 recent survey by Zhu et al. (2025) examines the causes of medical hallucinations and reviews current
 125 mitigation strategies. Among various contributing factors, strict privacy regulations exacerbate the
 126 scarcity and imbalance of clinical training data (Jiang et al., 2025a), which is a key cause of medical
 127 hallucinations and often more critical than factors introduced during training or inference (Hager
 128 et al., 2024). Corresponding mitigation strategies primarily focus on training-time interventions,
 129 such as constructing datasets that reflect a coherent chain of diagnostic reasoning Lai et al. (2025),
 130 followed by post-training (Banerjee et al., 2024) or deployment with RAG (Sun et al., 2025). At in-
 131 ference time, voting-based mechanisms have been adopted to improve accuracy in VQA (Liu et al.,
 132 2024c), but these approaches do not generalise well to the more complex RRG task.

133 **Radiology Report Generation.** RRG aims to generate free-text descriptions of clinical findings,
 134 establishing it as a central objective in automated medical imaging analysis (Wang et al., 2018).
 135 Recent efforts in RRG have primarily focused on improving the quantity and quality of training data
 136 to reduce medical hallucinations. LLaVA-Rad (Zambrano Chaves et al., 2025) uses an API-based
 137 model to sanitise noisy clinical sections, while retrieval-augmented generation has been explored to
 138 improve factual grounding (Li et al., 2024; Hou et al., 2025). Advanced models, MAIRA-2 (Bannur
 139 et al., 2024) integrates structured clinical sections and prior reports to improve diagnostic grounding,
 140 while Libra (Zhang et al., 2025c) mitigates temporal hallucinations by explicitly modelling historical
 141 image information. However, these approaches often require costly retraining, extensive dataset
 142 curation, and may raise privacy or security concerns. They also rely on retrieval infrastructure,
 143 which limits their practicality in out-of-distribution settings or when adapting to new benchmarks.

144 **Contrastive Decoding Strategies.** Contrastive decoding has emerged as an effective inference-
 145 time approach to mitigate hallucinations in generative models (Leng et al., 2023; Favero et al.,
 146 2024a), offering a lightweight alternative to costly training-time interventions. Visual Contrastive
 147 Decoding (VCD) (Leng et al., 2023) addresses object hallucinations by comparing output distri-
 148 butions between original and distorted visual inputs. Similarly, Instruction Contrastive Decoding
 149 (ICD) (Wang et al., 2024b) explores hallucination amplification under perturbed textual instruc-
 150 tions. Alternative inference-time methods, such as VTI (Liu et al., 2024d), OPERA (Huang et al.,
 151 2024), M3ID (Favero et al., 2024b), and DeCo (Wang et al., 2025a), guide generation using shal-
 152 low visual cues, fixed transformer layers, or token-level confidence scores. Recent work, such as
 153 Attn-Lens (Jiang et al., 2025b), achieves state-of-the-art performance in general-domain settings
 154 by integrating information across multiple attention heads. While effective in such domains, these
 155 methods struggle to mitigate medical hallucinations in radiology, partly due to the grayscale nature
 156 of imaging data and the scarcity of diverse, domain-specific datasets (Singhal et al., 2023). More-
 157 over, radiology MLLMs are often trained for single tasks (e.g., RRG or VQA), which limits the
 158 generalisability of training-free strategies in clinical applications.

159

3 MEDICAL HALLUCINATION IN RADIOLOGY MLLMs

160 In this section, we conduct empirical analyses to examine the behaviour of radiology MLLMs and
 161 identify the causes of prompt-induced medical hallucinations (Chen et al., 2024c). Specifically,

162
 163 **Table 1: Medical hallucination evaluation on MIMIC-CXR.** The baseline uses greedy decoding
 164 without clinical section input. “ \uparrow ” indicates improvement; “ \downarrow ” indicates degradation.

Metric	Clinical Section					
	w/o	w/ Indication	w/ Technique	w/ Comparison	w/ History	w/ All
Lexical:						
ROUGE-L	15.60	15.36 $\downarrow 0.24$	15.61 $\uparrow 0.01$	12.60 $\downarrow 3.00$	15.64 $\uparrow 0.04$	14.83 $\downarrow 0.77$
BLEU	0.95	1.09 $\uparrow 0.14$	0.98 $\uparrow 0.04$	0.81 $\downarrow 0.14$	1.07 $\uparrow 0.12$	0.94 $\downarrow 0.01$
BERTScore	38.19	36.05 $\downarrow 2.14$	37.41 $\downarrow 1.05$	30.07 $\downarrow 8.12$	37.38 $\downarrow 0.81$	35.53 $\downarrow 2.66$
Clinical:						
RadGraph-F1	7.59	7.01 $\downarrow 0.58$	7.35 $\downarrow 0.24$	5.88 $\downarrow 1.71$	7.53 $\downarrow 0.06$	5.80 $\downarrow 1.79$
Temporal-F1	13.65	12.51 $\downarrow 1.14$	12.97 $\downarrow 0.68$	10.13 $\downarrow 3.52$	13.11 $\downarrow 0.54$	12.47 $\downarrow 1.18$
RaTEScore	43.91	43.31 $\downarrow 0.61$	43.78 $\downarrow 0.13$	35.10 $\downarrow 8.81$	43.74 $\downarrow 0.17$	41.92 $\downarrow 1.99$
RadEval-BERT	17.53	17.39 $\downarrow 0.14$	17.07 $\downarrow 0.46$	13.98 $\downarrow 3.57$	17.39 $\downarrow 0.14$	16.48 $\downarrow 1.05$
<i>CheXbert-F1 (Top5):</i>						
Atelectasis	43.07	37.51 $\downarrow 5.56$	39.36 $\downarrow 3.71$	31.29 $\downarrow 11.78$	38.14 $\downarrow 4.93$	22.17 $\downarrow 20.90$
Cardiomegaly	7.49	14.39 $\uparrow 6.90$	8.01 $\uparrow 0.52$	6.29 $\downarrow 1.20$	12.61 $\uparrow 5.12$	11.45 $\uparrow 3.96$
Consolidation	2.37	2.36 $\downarrow 0.01$	2.25 $\downarrow 0.12$	0.89 $\downarrow 1.48$	0.78 $\downarrow 1.59$	9.40 $\uparrow 7.03$
Edema	11.59	15.11 $\uparrow 3.52$	0.90 $\downarrow 10.69$	2.67 $\downarrow 8.92$	12.48 $\uparrow 0.89$	19.19 $\uparrow 7.60$
Pleural Effusion	54.24	48.38 $\downarrow 5.86$	53.22 $\downarrow 1.02$	41.84 $\downarrow 12.40$	52.29 $\downarrow 1.95$	43.18 $\downarrow 11.06$

181
 182 we focus on the chest X-ray modality and the RRG task, which requires comprehensive image
 183 understanding and is more susceptible to medical hallucinations than VQA. The quality of generated
 184 reports thus serves as a strong indicator of overall model performance. We conduct experiments
 185 on the widely used MIMIC-CXR dataset (Johnson et al., 2019b), whose detailed clinical sections
 186 provide a reliable reference for both evaluating hallucinations and guiding generation.

187 **Setup for Medical Hallucinations** Prompt-induced hallucinations refer to errors triggered by
 188 prompts containing misleading or implausible information, thereby serving as a means to evaluate a
 189 model’s robustness in clinically sensitive contexts (Chen et al., 2024c). Previous advanced work has
 190 primarily relied on incorporating clinical sections from radiology reports during MLLM training to
 191 enhance alignment (Bannur et al., 2024; Zhang et al., 2025c). However, such sections may contain
 192 irrelevant or invalid information. For instance, as illustrated in Figure 1 (a) (top-left), the clinical
 193 section references a *lateral view* and *prior CXRs*, which are counterfactual given that only a single
 194 frontal view is available. To assess such medical hallucinations, we prompt the model with varied
 195 clinical sections and evaluate whether it can robustly handle factual inconsistencies while main-
 196 taining the quality of the generated report. We choose LLaVA-Med v1.5 (Li et al., 2023a) as our
 197 baseline due to its extensive training with radiology visual instruction data and strong instruction-
 198 following capability. We adopt the default prompt shown in Figure 1 (a) and use greedy decoding,
 199 the standard setting for radiology MLLMs. In each case, we append a different clinical section, such
 200 as *indication*, *technique*, *comparison*, or *history*, to the end of the default prompt. These sections
 201 are extracted using rule-based heuristics from the MIMIC official repository (Johnson et al., 2018).

202 **Evaluation for Report Generation** We follow prior work and adopt a set of lexical and radiology-
 203 specific metrics (Hyland et al., 2024; Zambrano Chaves et al., 2025), which are widely adopted
 204 as standard evaluation protocols in the field. Lexical metrics such as ROUGE-L (Lin, 2004),
 205 BLEU (Papineni et al., 2002), and BERTScore (Zhang et al., 2020) are used to measure textual over-
 206 lap between generated and reference reports. For domain-specific evaluation, we employ a range of
 207 clinically grounded metrics. RadGraph-F1 (Delbrouck et al., 2022) evaluates overlap in clinical
 208 entities and relations. Temporal-F1 (Zhang et al., 2025c) measures the correctness of temporal de-
 209 scriptions (e.g., worsening or improvement). RaTeScore (Zhao et al., 2024) assesses the accuracy of
 210 medically relevant concepts such as anatomical structures and diagnoses. We also include RadEval-
 211 BERT (Xu et al., 2025a), a radiology-specific evaluation model trained on large-scale corpora to
 212 assess clinical semantic consistency. Finally, we use CheXbert-F1 (Smit et al., 2020) to assess the
 213 model’s ability to accurately mention the five most common findings in generated reports (Irvin
 214 et al., 2019): Atelectasis, Cardiomegaly, Consolidation, Edema, and Pleural Effusion.

215 **Hallucination Drivers: Clinical Context Sensitivity.** As shown in Table 1, appending differ-
 216 ent clinical sections leads to varying degrees of performance change. For lexical metrics, sections
 217 such as *history* and *technique* sometimes result in slight score improvements. This is because these

sections contain clinical terminology and standardised phrasing that resemble the narrative style of radiology reports, thereby making the generated text appear more fluent. In contrast, adding the *comparison* section consistently leads to lower scores (e.g., BERTScore $\downarrow 8.12$). This is because comparison notes often include references to prior exams or temporal changes, which are not observable in the current frontal image. This mismatch between the textual prompt and the visual input introduces context that the model cannot validate, increasing the likelihood of hallucinated content.

For clinical evaluation metrics, we observe a general decline in report quality across all appended sections. Interestingly, when appending *indication*, there is a modest improvement in the detection of certain pathologies, particularly *Cardiomegaly* (CheXbert-F1 $\uparrow 6.90$). This condition often co-occurs with other diseases and is frequently referenced in prior reports or diagnostic histories (Tavora et al., 2012), which may help the model retrieve relevant context during generation. Conversely, performance on findings such as *Pleural Effusion* and *Atelectasis* tends to decrease. These are typically late-stage manifestations (Woodring & Reed, 1996) that require fine-grained visual reasoning. When MLLMs place excessive emphasis on clinical textual guidance, they may overlook subtle visual evidence of pathological changes, leading to medical hallucinations. This suggests that such errors partly stem from the model’s overreliance on prompt-injected clinical context.

Our empirical observations indicate that clinical sections in original reports are not always reliable sources of guidance for MLLMs during generation. In some cases, they introduce misleading signals that can adversely affect downstream tasks such as RRG. Therefore, selecting clinically relevant and contextually appropriate information is essential, particularly during inference. Motivated by this, our proposed CCD leverages domain-specific expert models to extract accurate and well-grounded clinical information, avoiding the ambiguity and noise often present in original report sections.

4 CLINICAL CONTRASTIVE DECODING

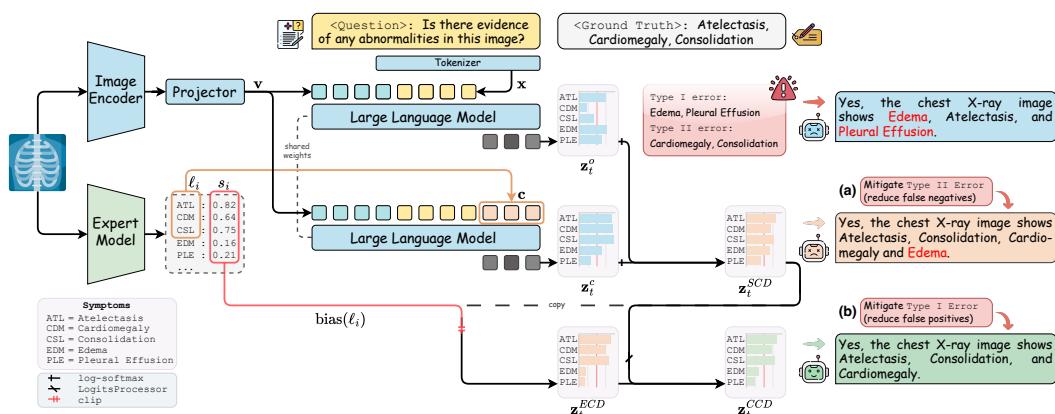


Figure 2: Overview of the CCD framework, which leverages a foundation expert model to enforce clinical consistency in MLLM outputs. During inference, it operates in two stages: **(a) Symptom-grounded Contrastive Decoding**, which incorporates structured clinical labels from the expert model; and **(b) Expert-informed Contrastive Decoding**, which adjusts the latent token logits using expert-derived confidence scores. The output logits are hierarchically calibrated to better match the ground-truth clinical labels. Hallucinated symptoms in the model output are marked in red.

As discussed in Section 3, radiology MLLMs tend to overreact to clinical context, leading to hallucinations that degrade report quality. To address this issue, we propose Clinical Contrastive Decoding (CCD), a practical inference-time framework that dynamically adjusts token logits by incorporating clinically grounded signals from domain-specific expert models. As illustrated in Figure 2, CCD consists of two key stages: **(a) Symptom-grounded Contrastive Decoding**, which aligns the MLLM’s self-perception with expert-derived symptom labels to reduce false negatives; and **(b) Expert-informed Contrastive Decoding**, which applies expert constraints to suppress false positives. Together, they mitigate both under-detection and over-diagnosis, improving clinical reliability.

Preliminaries of MLLM Generation. MLLMs are typically composed of a pretrained visual encoder, a language model as the text decoder, and a projection layer that maps visual tokens into the

latent space of the LLM. The projected visual tokens are dimensionally aligned with the embedded text tokens and then fed into the autoregressive language model for generation. For clarity, we denote the projected visual tokens as $\mathbf{v} = \{v_1, v_2, \dots, v_n\}$, where each $v_i \in \mathbb{R}^d$ and d is the hidden dimension. For the default prompt, we represent it as $\mathbf{x} = \{x_1, x_2, \dots, x_m\}$, where each $x_j \in \mathbb{R}^d$ and m is the number of textual tokens. Let f_θ denote the MLLM parameterized by θ . Given the visual tokens \mathbf{v} and textual tokens \mathbf{x} , the model generates a response sequence $\mathbf{y} = \{y_1, \dots, y_T\}$, where each $y_t \in \mathcal{V}$ is a token from the vocabulary of the language model. Accordingly, the output logits at decoding step t are denoted as $\mathbf{z}_t^o = f_\theta(\mathbf{v}, \mathbf{x}, y_{<t}) \in \mathbb{R}^{|\mathcal{V}|}$.

4.1 SYMPTOM-GROUNDED CONTRASTIVE DECODING (SCD)

SCD builds on the idea of contrastive decoding (Li et al., 2023b), which encourages generation that aligns with a target model while staying distinct from a constraint model. This approach balances fluency and factuality by comparing token likelihoods between models. In our setting, we adapt this framework to radiology by introducing symptom-level signals from a task-specific expert model, guiding the MLLM to avoid false negatives without retraining.

Initial Anchor from Experts. Given the diverse symptoms encountered in real-world clinical settings, we focus on the 14 pathology labels defined in the CheXpert ontology (Irvin et al., 2019) as our target set. To obtain symptom-level supervision, we use a DenseNet-based classifier² pre-trained on the MIMIC-CXR dataset (Johnson et al., 2019b) to predict the 14 pathologies from a given \mathbf{v} , which is widely used as a baseline in medical image classification (Baltruschat et al., 2019). From this expert model, we extract a set of clinical labels $\mathcal{L} = \{(\ell_i, s_i)\}_{i=1}^M$, where each ℓ_i denotes a finding (e.g., “Atelectasis”), and $s_i \in [0, 1]$ represents its predicted probability. These expert-provided symptom labels are filtered using a default threshold (e.g., $s_i > 0.5$), and the selected labels are then used to construct a concise anchor prompt (e.g., “Attention to the following clinical instructions: Atelectasis, Cardiomegaly, ...”), denoted as \mathbf{c} , which guides the model during generation.

Self-perception Alignment. The model generates its internal symptom representation by producing token-level logits conditioned on the initial clinical anchor. For the same image \mathbf{v} , this can be expressed as $\mathbf{z}_t^c = f_\theta(\mathbf{v}, \mathbf{x} \oplus \mathbf{c}, y_{<t}) \in \mathbb{R}^{|\mathcal{V}|}$, where \oplus denotes concatenation. This design aims to guide the MLLM to generate more relevant symptoms by leveraging the additional clinical context, thereby reducing false negatives. We refer to this guided prediction path as the contrastive branch.

Internal Guidance. Following the analysis in Section 3, we note that excessive reliance on clinical context can also lead to hallucinations. To balance the influence of the contrastive branch (\mathbf{z}_t^c) and the original decoding branch (\mathbf{z}_t^o), we integrate them using a contrastive decoding mechanism. To ensure numerical stability and facilitate comparison between distributions from different inputs, we convert logits into log-probabilities using log-softmax:

$$\tilde{\mathbf{z}}_t^o = \log \text{softmax}(\mathbf{z}_t^o), \quad \tilde{\mathbf{z}}_t^c = \log \text{softmax}(\mathbf{z}_t^c) \quad (1)$$

This transformation mitigates scale and shift sensitivity between outputs, especially when the initial anchor induces large deviations from the original distribution. It also prevents unintended amplification of non-symptom tokens. The generation of the t -th output token is then given by:

$$\mathbf{z}_t^{\text{SCD}} = (1 - \alpha) \tilde{\mathbf{z}}_t^o + \alpha \tilde{\mathbf{z}}_t^c \quad (2)$$

where $\alpha \in [0, 1]$ balances original and anchor-conditioned logits. This encourages the model to align generation with clinically meaningful findings, serving as an internal contrastive signal. At this stage, false negatives are primarily suppressed, as illustrated in Figure 2 (a).

4.2 EXPERT-INFORMED CONTRASTIVE DECODING (ECD)

Inspired by Bayesian conditional reasoning (Barber, 2012), ECD further incorporates expert model signals to guide the MLLM’s generation process toward clinically plausible outputs.

Probabilistic Guidance. For each symptom ℓ_i with probability score s_i , we define a token-level bias using a logit transformation:

$$\text{bias}(\ell_i) = \log \frac{s_i}{1 - s_i} \quad (3)$$

²By default, we use the DenseNet from TorchXRayVision (Cohen et al., 2021) for chest X-ray multi-label prediction. Section 5.3 presents an ablation study replacing it with MedSigLIP (Sellergren et al., 2025b).

324 Since these original probability scores s_i reside in a different space from the MLLM’s token logits
 325 \mathbf{z}_t^o , both in scale and semantics, they cannot be directly injected into the decoding stage of MLLMs.
 326 To address this, we transform them into token-aligned logit-based biases, ensuring compatibility
 327 with the model’s output distribution and enabling smooth integration during inference.

328 **Diagnostic Plausibility Constraint.** Inspired by clinical practice, where likelihood ratios of 2, 5,
 329 and 10 are commonly interpreted as indicating weak, moderate, and severe diagnostic evidence, re-
 330 spectively (Deeks & Altman, 2004; Grimes & Schulz, 2005), we cap the logit-based bias as follows:
 331

$$\text{bias}(\tilde{\ell}_i) \leftarrow \text{clip}(\text{bias}(\ell_i), -\text{max_bias}, +\text{max_bias}), \quad \text{max_bias} = \log(\gamma) \quad (4)$$

332 where $\gamma \in \{2, 5, 10\}$. We incorporate the clipped bias to refine the first-stage SCD signal:
 333

$$\mathbf{z}_t^{\text{ECD}} = \mathbf{z}_t^{\text{SCD}} + \text{bias}(\tilde{\ell}_i) \quad (5)$$

334 where $\tilde{\ell}_i$ is a selected symptom label from the expert model, and its corresponding bias is uniformly
 335 added to the token logits. This constraint limits over-correction while preserving the generative
 336 flexibility of the MLLM. To avoid interfering with inherent decoding behaviour, we apply default
 337 decoding controllers on the first-stage SCD logits, as:

$$\hat{\mathbf{z}}_t^{\text{SCD}} = \text{LogitsProcessor}(\mathbf{z}_t^{\text{SCD}}) \quad (6)$$

341 where `LogitsProcessor()` refers to a stack of standard decoding modules from the Transformers
 342 library (Wolf et al., 2020), including commonly used components such as repetition penalties, min-
 343 imum length constraints, and decoding strategies like temperature scaling, greedy decoding, and
 344 beam search. These modules ensure stable and consistent generation behaviour across models.
 345

346 **Sustained Contrastive Adjustment.** While the first-stage SCD encourages the model to generate
 347 more symptom-related content, it may also increase the risk of false positives. To mitigate this,
 348 we incorporate expert-informed constraints to suppress clinically unjustified symptoms. Finally, we
 349 interpolate between the adjusted SCD logits and the ECD output to produce the final token logits:
 350

$$\mathbf{z}_t^{\text{CCD}} = (1 - \beta) \hat{\mathbf{z}}_t^{\text{SCD}} + \beta \mathbf{z}_t^{\text{ECD}} \quad (7)$$

351 where $\beta \in [0, 1]$ balances the contributions of internal contrastive and expert-informed logits, pre-
 352 venting over-reliance on existing true positives while maintaining linguistic fluency. The final next-
 353 token distribution is computed as $p(\tilde{y}_t | \cdot) = \text{softmax}(\mathbf{z}_t^{\text{CCD}})$, where \tilde{y}_t denotes the probability of
 354 the token generated at decoding step t after dual-stage adjustment.

355 As illustrated in Figure 2 (b), CCD integrates symptom-grounded and expert-informed signals to
 356 continuously adjust the MLLM’s output during inference, refining the autoregressive decoding pro-
 357 cess and mitigating both false negatives and false positives in medical hallucinations.
 358

360 5 EXPERIMENTS

361 In this section, we conduct a series of experiments to evaluate the effectiveness of CCD in mitigat-
 362 ing medical hallucinations and improving performance in radiology-specific generation tasks. Our
 363 evaluation spans multiple radiology MLLMs, three datasets, and two key tasks: RRG and VQA.

364 5.1 EXPERIMENTAL SETTINGS

365 **Datasets.** We evaluate our method on three widely used radiology datasets: the official test splits
 366 of MIMIC-CXR (Johnson et al., 2019b) and IU-Xray (Demner-Fushman et al., 2015), and the public
 367 validation set of CheXpert Plus (Chambon et al., 2024), as no official test split is available for the
 368 latter. Following prior works (Sharma et al., 2024; Zhang et al., 2025c), we focus on generating the
 369 *findings* section from a single frontal-view image for the RRG. For the VQA task, we use Medical-
 370 CXR-VQA (Hu et al., 2024), a MIMIC-CXR-derived dataset with six clinical question categories,
 371 shown in Figure 1 (b). Additional dataset details are provided in Appendix B.1.

372 **Evaluation Metrics.** We adopt the same set of metrics described in Section 3 to evaluate report
 373 generation quality. For the VQA task, we report micro-averaged Recall and F1 based on whether
 374 ground-truth labels appear in the generated text. For details on evaluation metrics, see Appendix B.2.

Baselines. In addition to the default greedy decoding strategy, we compare against several recent training-free hallucination mitigation methods proposed in the general domain, including VCD (Leng et al., 2023), OPERA (Huang et al., 2024), ICD (Wang et al., 2024b), DeCo (Wang et al., 2025a), and Attn-Lens (Jiang et al., 2025b). We primarily evaluate the effectiveness of our proposed CCD on two advanced radiology MLLMs: MAIRA-2 (Bannur et al., 2024) for RRG and LLaVA-Med (Li et al., 2023a) for VQA. We use the pathology classifier from TorchXRayVision (Cohen et al., 2021) as the expert model to provide symptom-level predictions from chest X-ray images. Additional decoding strategies and corresponding results are presented in Appendix D.1.

Implementation Details. For all methods, we adopt the default configurations from their original papers to ensure fairness. For CCD, we fix the hyperparameters across tasks: in the first stage, the symptom-grounded guidance strength is set to $\alpha = 0.5$; in the second stage, the expert-informed guidance strength is set to $\beta = 0.5$, and the diagnostic plausibility constraint is controlled by $\gamma = 10$. Additional details, including descriptions of MLLMs and expert model settings, are in Appendix C.

5.2 EXPERIMENTAL RESTULTS

Table 2: **Evaluation on the radiology report generation.** Results on the IU-Xray and CheXpert Plus datasets are reported only for our method. **Best** and second-best results are bolded and underlined, respectively. **The Δ row indicates the absolute score improvement over the baseline.**

Method	Lexical Metric			Clinical Metric					
	ROUGE-L	BLEU	BERTScore	RadGraph-F1	Temporal-F1	RaTEScore	RadEval-BERT	CheXbert ⁵ _{F1}	CheXbert ¹⁴ _{F1}
MIMIC-CXR									
Baseline	19.57	1.61	49.56	16.23	12.11	50.82	16.96	16.14	10.57
+ VCD	19.47	<u>2.02</u>	48.99	15.90	12.57	49.85	<u>17.49</u>	<u>19.17</u>	<u>15.47</u>
+ OPERA	19.18	1.77	49.31	16.06	13.26	50.59	17.09	16.25	11.82
+ ICD	17.43	<u>2.02</u>	46.58	13.65	<u>13.98</u>	47.01	17.13	17.25	12.26
+ DeCo	19.40	1.65	49.33	15.93	<u>12.95</u>	50.65	17.27	16.60	11.57
+ Attn-Lens	19.51	1.68	49.67	16.37	13.45	50.86	17.15	16.74	10.98
+ CCD	20.70	2.10	51.62	19.01	17.58	53.32	17.50	27.05	16.02
Δ	1.13	0.49	2.06	2.78	5.47	2.50	0.54	10.91	5.45
IU-Xray									
Baseline	18.50	2.67	42.19	16.52	66.06	46.86	20.15	4.02	24.14
+ CCD	20.77	<u>3.31</u>	46.25	21.12	67.16	50.47	22.14	19.96	28.23
Δ	2.27	0.64	4.06	4.60	1.10	3.61	1.99	15.94	4.09
CheXpert Plus									
Baseline	18.07	1.83	45.91	14.27	22.78	47.47	1.99	13.54	8.39
+ CCD	18.59	<u>1.84</u>	46.64	14.89	32.04	47.55	2.91	14.76	9.75
Δ	0.52	0.01	0.73	0.62	9.23	0.08	0.92	1.22	1.36

Results on Radiology Report Generation We use MAIRA-2 (Bannur et al., 2024), the top open-source model on the ReXRank leaderboard (Zhang et al., 2024), as our baseline. Table 2 shows that CCD consistently improves both lexical and clinical metrics. Appendix D provides additional comparisons with other methods (in Table 5) and reports results across different MLLMs (in Table 6). These results suggest that CCD consistently outperforms general-domain decoding strategies, especially on clinical metrics such as CheXbert⁵_{F1} (\uparrow 10.91) and RadGraph-F1 (\uparrow 2.78) on MIMIC-CXR. Furthermore, it enhances the performance of advanced radiology MLLMs on the RRG tasks.

Table 3: **Evaluation on the medical visual question answering.** “ \uparrow ” indicates improvement, “ \downarrow ” denotes degradation relative to the baseline. See Appendix F for analysis of the two degraded cases.

Model	Question Classification												Overall	
	Abnormality		Presence		View		Location		Level		Type			
	F1	Recall	F1	Recall	F1	Recall	F1	Recall	F1	Recall	F1	Recall		
LLaVA-Med	35.06	21.25	77.72	63.55	39.93	24.95	10.73	5.67	3.84	1.96	10.64	5.62	41.49	26.17
+ CCD	43.16 \uparrow	27.52 \uparrow	80.91 \uparrow	67.94 \uparrow	41.15 \uparrow	26.04 \uparrow	10.23 \downarrow	5.40 \downarrow	3.92 \uparrow	2.06 \uparrow	10.14 \downarrow	5.36 \downarrow	45.11 \uparrow	29.12 \uparrow

Results on Visual Question Answering We use LLaVA-Med v1.5 (Li et al., 2023a) as the baseline. As shown in Table 3, CCD leads to consistent improvements across most categories. A slight drop is observed for *Location* and *Type* questions, mainly due to the broader and more morphological nature of these findings (e.g., infiltrates, scarring), which are not well captured by the 14-category

432 expert model used for guidance. Nonetheless, CCD maintains competitive overall performance even
 433 in these cases, demonstrating robustness despite the absence of explicit morphological labels.
 434

435 5.3 ABLATION STUDIES

437 As shown in Table 4, we conduct ablation studies on the RRG task using MAIRA-2 to assess the
 438 effectiveness of CCD under different configurations, guided by the following research questions.
 439

440 **Table 4: Ablation studies of CCD.** “w/o” indicates removal of a component; “ \rightarrow ” denotes replace-
 441 ment with an alternative. “ \uparrow / \downarrow ” indicate performance change relative to the baseline.

Method	Lexical Metric			Clinical Metric					
	ROUGE-L	BLEU	BERTScore	RadGraph-F1	Temporal-F1	RaTEScore	RadEval-BERT	CheXbert _{F1} ⁵	CheXbert _{F1} ¹⁴
CCD	20.70	2.10	51.62	19.01	17.58	53.32	17.50	27.05	16.02
w/o SCD	18.22 \downarrow	1.26 \downarrow	49.40 \downarrow	16.71 \downarrow	13.81 \downarrow	51.59 \downarrow	16.65 \downarrow	19.02 \downarrow	12.06 \downarrow
w/o ECD	20.73 \uparrow	1.96 \downarrow	51.72 \uparrow	18.78 \downarrow	17.40 \downarrow	53.21 \downarrow	17.71 \uparrow	21.02 \downarrow	11.47 \downarrow
w/o All	19.57 \downarrow	1.61 \downarrow	49.56 \downarrow	16.23 \downarrow	12.11 \downarrow	50.82 \downarrow	16.96 \downarrow	16.14 \downarrow	10.57 \downarrow
All-class \mapsto Top-5-class	20.98 \uparrow	1.95 \downarrow	51.89 \uparrow	19.27 \uparrow	17.99 \uparrow	53.27 \downarrow	17.78 \uparrow	26.78 \downarrow	14.34 \downarrow
DenseNet \mapsto MedSigLIP	20.92 \uparrow	2.24 \uparrow	51.86 \uparrow	19.32 \uparrow	16.80 \downarrow	53.48 \uparrow	18.12 \uparrow	27.42 \uparrow	16.59 \uparrow

442 **Are both stages of CCD necessary for performance gains?** We evaluate the impact of removing
 443 either SCD or ECD. Excluding SCD, which addresses false negatives, leads to a notable decline in
 444 CheXbert_{F1}^{5,14}, indicating reduced coverage of symptom-related findings. In contrast, removing ECD
 445 causes a relatively smaller drop in clinical metrics compared to SCD, but slightly improves some
 446 lexical scores, suggesting its role in suppressing false positives and promoting concise, accurate
 447 descriptions. Eliminating both stages results in the most substantial overall degradation, confirming
 448 that SCD and ECD are complementary and jointly critical for mitigating medical hallucinations.

449 **Does CCD remain robust under different expert settings?** We evaluate the robustness of CCD
 450 by varying the expert model configurations, as shown in the last two rows of Table 4. Limiting
 451 the expert output to the top-5 most frequent symptoms slightly improves lexical and some clinical
 452 metrics, likely because a smaller label space reduces generation complexity. However, it leads to a
 453 larger drop in CheXbert_{F1}¹⁴ ($\downarrow 1.68$) compared to CheXbert_{F1}⁵ ($\downarrow 0.27$), underscoring the importance of
 454 maintaining broad label space coverage in the pretrained expert model. Replacing the default expert
 455 with MedSigLIP (Sellergren et al., 2025b), an open-source zero-shot symptom classifier introduced
 456 concurrently, yields consistent improvements across both metric types. These results indicate that
 457 CCD benefits from stronger expert guidance while remaining robust across different expert settings.

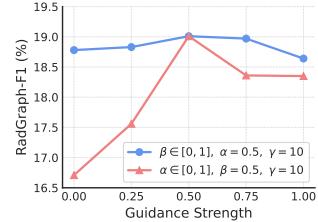
458 5.4 What is the effect of guidance strength on generation?

459 We vary the control weights α and β , which modulate the
 460 influence of symptom-grounded signals and expert-informed
 461 confidence scores, respectively. These weights determine how
 462 much the expert model guides the radiology MLLM during
 463 generation. Figure 3 shows that the model achieves its best
 464 empirical RadGraph-F1 score when both guidance strengths
 465 reach 0.5, indicating the importance of balanced adjustment³.

466 6 CONCLUSION

467 In this work, we address the challenge of medical hallucinations in radiology MLLMs by introducing
 468 **Clinical Contrastive Decoding (CCD)**, a *training-free* and *retrieval-free* inference-time framework.
 469 By leveraging a task-specific expert model and dual-stage interventions on the MLLM’s latent logits,
 470 CCD further improves clinical consistency in RRG and also contributes to VQA performance, all
 471 without retraining or data augmentation. Experiments across diverse models, datasets, and metrics
 472 validate its effectiveness in radiology tasks. Beyond performance, we highlight the complementary
 473 role of foundation expert models in guiding MLLM behaviour, offering a practical path to integrate
 474 domain expertise into generation models. As medical AI evolves, we believe CCD represents a
 475 modest yet meaningful step toward building more trustworthy and clinically aligned systems that
 476 approach physician-level reliability. A detailed discussion of limitations is provided in Appendix G.

477 478 479 480 481 482 483 484 485 ³Appendix E includes detailed results, the ablation study of the plausibility constraint (γ), and random tests.



486 **Figure 3: Ablation study of guid-
 487 ance strength (α, β) ranging from
 488 0 to 1, with others fixed at default.**

486 ETHICS STATEMENT
487488 This study is conducted entirely using publicly available and de-identified datasets. We strictly
489 adhere to the ethical guidelines and usage policies associated with each dataset, ensuring compliance
490 with standards equivalent to CITI “Data or Specimens Only Research” certification or exempt human
491 subjects research protocols. By relying exclusively on open-access data, we promote transparency,
492 reproducibility, and ethical integrity in the development of AI systems. In all figures, the chest X-ray
493 is blurred to preserve privacy and minimize visual discomfort.494 The broader goal of this work is to support the development of medical AI systems that act as assist-
495 tive tools for licensed clinicians rather than replacements. While such systems show strong potential
496 for improving clinical efficiency and diagnostic accuracy, it is essential that they be deployed re-
497 sponsibly and with oversight from qualified radiologists to prevent unintended consequences. In
498 particular, careful consideration is needed to avoid excessive reliance on automated outputs, which
499 may reduce human involvement or worsen existing healthcare disparities. We promote a collabora-
500 tive integration of AI and medical expertise to ensure that these technologies are used safely and
501 equitably in clinical practice.502
503 REPRODUCIBILITY STATEMENT
504505 We are committed to ensuring the reproducibility of our results. Detailed descriptions of the
506 model architecture, training configurations, and hyperparameters are provided in Section 5 and Ap-
507 pendix C. All datasets and baseline models used in our experiments are publicly available and can
508 be accessed with the appropriate research-use certifications. Furthermore, the relevant source code
509 has been included in the supplementary materials to facilitate replication of our experiments.510
511 BIBLIOGRAPHY
512513 Rawan AlSaad, Alaa Abd-Alrazaq, Sabri Boughorbel, Arfan Ahmed, Max-Antoine Renault, Rafat
514 Damseh, and Javaid Sheikh. Multimodal large language models in health care: applications,
515 challenges, and future outlook. *Journal of medical Internet research*, 26:e59505, 2024.516 Wenbin An, Feng Tian, Sicong Leng, Jiahao Nie, Haonan Lin, QianYing Wang, Ping Chen, Xiaoqin
517 Zhang, and Shijian Lu. Mitigating object hallucinations in large vision-language models with
518 assembly of global and local attention, 2025.519 Ivo M Baltruschat, Hannes Nickisch, Michael Grass, Tobias Knopp, and Axel Saalbach. Comparison
520 of deep learning approaches for multi-label chest x-ray classification. *Scientific reports*, 9(1):
521 6381, 2019.522 Oishi Banerjee, Hong-Yu Zhou, Subathra Adithan, Stephen Kwak, Kay Wu, and Pranav Rajpurkar.
523 Direct preference optimization for suppressing hallucinated prior exams in radiology report gen-
524 eration, 2024.525 Shruthi Bannur, Kenza Bouzid, Daniel C. Castro, Anton Schwaighofer, Anja Thieme, Sam Bond-
526 Taylor, Maximilian Ilse, Fernando Pérez-García, Valentina Salvatelli, Harshita Sharma, Felix
527 Meissen, Mercy Ranjit, Shaury Srivastav, Julia Gong, Noel C. F. Codella, Fabian Falck, Ozan
528 Oktay, Matthew P. Lungren, Maria Teodora Wetscherek, Javier Alvarez-Valle, and Stephanie L.
529 Hyland. Maira-2: Grounded radiology report generation, 2024.530 David Barber. *Bayesian reasoning and machine learning*. Cambridge University Press, 2012.531 Pierre Chambon, Jean-Benoit Delbrouck, Thomas Sounack, Shih-Cheng Huang, Zhihong Chen,
532 Maya Varma, Steven QH Truong, Chu The Chuong, and Curtis P Langlotz. Chexpert plus:
533 Augmenting a large chest x-ray dataset with text radiology reports, patient demographics and
534 additional image formats. *arXiv preprint arXiv:2405.19538*, 2024.535 Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Danny Driess, Pete Florence, Dorsa Sadigh,
536 Leonidas Guibas, and Fei Xia. Spatialvlm: Endowing vision-language models with spatial rea-
537 soning capabilities, 2024a.

540 Jiawei Chen, Dingkang Yang, Tong Wu, Yue Jiang, Xiaolu Hou, Mingcheng Li, Shunli Wang,
 541 Dongling Xiao, Ke Li, and Lihua Zhang. Detecting and evaluating medical hallucinations in
 542 large vision language models. *arXiv preprint arXiv:2406.10185*, 2024b.

543

544 Jiawei Chen, Dingkang Yang, Tong Wu, Yue Jiang, Xiaolu Hou, Mingcheng Li, Shunli Wang,
 545 Dongling Xiao, Ke Li, and Lihua Zhang. Detecting and evaluating medical hallucinations in
 546 large vision language models, 2024c.

547 Zeming Chen, Alejandro Hernández-Cano, Angelika Romanou, Antoine Bonnet, Kyle Matoba,
 548 Francesco Salvi, Matteo Pagliardini, Simin Fan, Andreas Köpf, Amirkeivan Mohtashami, Alexan-
 549 dre Sallinen, Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk, Deniz Bayazit, Axel Marmet,
 550 Syrielle Montariol, Mary-Anne Hartley, Martin Jaggi, and Antoine Bosselut. Meditron-70b: Scal-
 551 ing medical pretraining for large language models, 2023.

552

553 Zhihong Chen, Maya Varma, Jean-Benoit Delbrouck, Magdalini Paschali, Louis Blankemeier,
 554 Dave Van Veen, Jeya Maria Jose Valanarasu, Alaa Youssef, Joseph Paul Cohen, Eduardo Pontes
 555 Reis, Emily B. Tsai, Andrew Johnston, Cameron Olsen, Tanishq Mathew Abraham, Sergios Ga-
 556 tidis, Akshay S Chaudhari, and Curtis Langlotz. Chexagent: Towards a foundation model for
 557 chest x-ray interpretation. *arXiv preprint arXiv:2401.12208*, 2024d. URL <https://arxiv.org/abs/2401.12208>.

558

559 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
 560 Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
 561 open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023.

562 Joseph Paul Cohen, Joseph D. Viviano, Paul Bertin, Paul Morrison, Parsa Torabian, Matteo Guar-
 563 rera, Matthew P Lungren, Akshay Chaudhari, Rupert Brooks, Mohammad Hashir, and Hadrien
 564 Bertrand. Torchxrayvision: A library of chest x-ray datasets and models, 2021.

565

566 Jonathan J Deeks and Douglas G Altman. Diagnostic tests 4: likelihood ratios. *Bmj*, 329(7458):
 567 168–169, 2004.

568

569 Jean-Benoit Delbrouck, Pierre Chambon, Christian Bluethgen, Emily Tsai, Omar Almusa, and Cur-
 570 tis Langlotz. Improving the factual correctness of radiology report generation with semantic
 571 rewards. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Findings of the Associa-
 572 tion for Computational Linguistics: EMNLP 2022*, pp. 4348–4360, Abu Dhabi, United Arab
 573 Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
 574 findings-emnlp.319.

575

576 Dina Demner-Fushman, Marc D Kohli, Marc B Rosenman, Sonya E Shooshan, Laritza Rodriguez,
 577 Sameer Antani, George R Thoma, and Clement J McDonald. Preparing a collection of radiol-
 578 ogy examinations for distribution and retrieval. *Journal of the American Medical Informatics
 579 Association*, 23(2):304–310, 2015.

580

581 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 582 bidirectional transformers for language understanding, 2019.

583

584 Alessandro Favero, Luca Zancato, Matthew Trager, Siddharth Choudhary, Pramuditha Perera,
 585 Alessandro Achille, Ashwin Swaminathan, and Stefano Soatto. Multi-modal hallucination con-
 586 trol by visual information grounding. In *Proceedings of the IEEE/CVF Conference on Computer
 587 Vision and Pattern Recognition*, pp. 14303–14312, 2024a.

588

589 Alessandro Favero, Luca Zancato, Matthew Trager, Siddharth Choudhary, Pramuditha Perera,
 590 Alessandro Achille, Ashwin Swaminathan, and Stefano Soatto. Multi-modal hallucination control
 591 by visual information grounding, 2024b.

592

593 Sreyan Ghosh, Chandra Kiran Reddy Evuru, Sonal Kumar, Utkarsh Tyagi, Oriol Nieto, Zeyu Jin,
 594 and Dinesh Manocha. Visual description grounding reduces hallucinations and boosts reasoning
 595 in l4lms, 2025.

596

597 David A Grimes and Kenneth F Schulz. Refining clinical diagnosis with likelihood ratios. *The
 598 Lancet*, 365(9469):1500–1505, 2005.

594 Zishan Gu, Changchang Yin, Fenglin Liu, and Ping Zhang. Medvh: Towards systematic evaluation
 595 of hallucination for large vision language models in the medical context, 2024.
 596

597 Paul Hager, Friederike Jungmann, Robbie Holland, Kunal Bhagat, Inga Hubrecht, Manuel Knauer,
 598 Jakob Vielhauer, Marcus Makowski, Rickmer Braren, Georgios Kaassis, et al. Evaluation and mit-
 599 igation of the limitations of large language models in clinical decision-making. *Nature medicine*,
 600 30(9):2613–2622, 2024.

601 Wenjun Hou, Yi Cheng, Kaishuai Xu, Heng Li, Yan Hu, Wenjie Li, and Jiang Liu. Radar: Enhancing
 602 radiology report generation with supplementary knowledge injection, 2025.
 603

604 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 605 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.
 606

607 Xinyue Hu, Lin Gu, Kazuma Kobayashi, Liangchen Liu, Mengliang Zhang, Tatsuya Harada,
 608 Ronald M Summers, and Yingying Zhu. Interpretable medical image visual question answer-
 609 ing via multi-modal relationship graph learning. *Medical Image Analysis*, 97:103279, 2024.
 610

611 Jonathan Huang, Luke Neill, Matthew Wittbrodt, David Melnick, Matthew Klug, Michael Thomp-
 612 son, John Bailitz, Timothy Loftus, Sanjeev Malik, Amit Phull, et al. Generative artificial intel-
 613 ligence for chest radiograph interpretation in the emergency department. *JAMA network open*, 6
 614 (10):e2336100–e2336100, 2023.
 615

616 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 617 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
 618 models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on Information
 619 Systems*, 43(2):1–55, 2025.
 620

621 Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin, Weiming
 622 Zhang, and Nenghai Yu. Opera: Alleviating hallucination in multi-modal large language models
 623 via over-trust penalty and retrospection-allocation, 2024.
 624

625 Stephanie L. Hyland, Shruthi Bannur, Kenza Bouzid, Daniel C. Castro, Mercy Ranjit, Anton
 626 Schwaighofer, Fernando Pérez-García, Valentina Salvatelli, Shaury Srivastav, Anja Thieme, Noel
 627 Codella, Matthew P. Lungren, Maria Teodora Wetscherek, Ozan Oktay, and Javier Alvarez-Valle.
 628 Maira-1: A specialised large multimodal model for radiology report generation, 2024.
 629

630 Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute, Henrik
 631 Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, Jayne Seekins, David A. Mong,
 632 Safwan S. Halabi, Jesse K. Sandberg, Ricky Jones, David B. Larson, Curtis P. Langlotz, Bhavik N.
 633 Patel, Matthew P. Lungren, and Andrew Y. Ng. Chexpert: A large chest radiograph dataset with
 634 uncertainty labels and expert comparison, 2019.
 635

636 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 637 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 638 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
 639 Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.
 640

641 Yue Jiang, Jiawei Chen, Dingkang Yang, Mingcheng Li, Shunli Wang, Tong Wu, Ke Li, and Li-
 642 hua Zhang. Comt: Chain-of-medical-thought reduces hallucination in medical report generation,
 643 2025a.
 644

645 Zhangqi Jiang, Junkai Chen, Beier Zhu, Tingjin Luo, Yankun Shen, and Xu Yang. Devils in middle
 646 layers of large vision-language models: Interpreting, detecting and mitigating object hallucina-
 647 tions via attention lens, 2025b.
 648

649 Alistair E. W. Johnson, Tom J. Pollard, Nathaniel R. Greenbaum, Matthew P. Lungren, Chih ying
 650 Deng, Yifan Peng, Zhiyong Lu, Roger G. Mark, Seth J. Berkowitz, and Steven Horng. Mimic-
 651 cxr-jpg, a large publicly available database of labeled chest radiographs, 2019a.
 652

653 Alistair EW Johnson, David J Stone, Leo A Celi, and Tom J Pollard. The mimic code repository:
 654 enabling reproducibility in critical care research. *Journal of the American Medical Informatics
 655 Association*, 25(1):32–39, 2018.

648 Alistair EW Johnson, Tom J Pollard, Seth J Berkowitz, Nathaniel R Greenbaum, Matthew P Lun-
 649 gren, Chih-ying Deng, Roger G Mark, and Steven Horng. Mimic-cxr, a de-identified publicly
 650 available database of chest radiographs with free-text reports. *Scientific data*, 6(1):317, 2019b.
 651

652 Yubin Kim, Hyewon Jeong, Shan Chen, Shuyue Stella Li, Mingyu Lu, Kumail Alhamoud, Jimin
 653 Mun, Cristina Grau, Minseok Jung, Rodrigo Gameiro, et al. Medical hallucinations in foundation
 654 models and their impact on healthcare. *arXiv preprint arXiv:2503.05777*, 2025.

655 Yuxiang Lai, Jike Zhong, Ming Li, Shitian Zhao, and Xiaofeng Yang. Med-r1: Reinforcement
 656 learning for generalizable medical reasoning in vision-language models, 2025.

657 Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing.
 658 Mitigating object hallucinations in large vision-language models through visual contrastive de-
 659 coding, 2023.

660 Binxu Li, Tiankai Yan, Yuanting Pan, Jie Luo, Ruiyang Ji, Jiayuan Ding, Zhe Xu, Shilong Liu,
 661 Haoyu Dong, Zihao Lin, and Yixin Wang. Mmedagent: Learning to use medical tools with multi-
 662 modal agent, 2024.

663 Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Nau-
 664 mann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-vision assis-
 665 tant for biomedicine in one day. *arXiv preprint arXiv:2306.00890*, 2023a.

666 Geng Li, Jinglin Xu, Yunzhen Zhao, and Yuxin Peng. Dyfo: A training-free dynamic focus visual
 667 search for enhancing lmms in fine-grained visual understanding, 2025a.

668 Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke
 669 Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimization,
 670 2023b.

671 Zhuowei Li, Haizhou Shi, Yunhe Gao, Di Liu, Zhenting Wang, Yuxiao Chen, Ting Liu, Long Zhao,
 672 Hao Wang, and Dimitris N. Metaxas. The hidden life of tokens: Reducing hallucination of large
 673 vision-language models via visual information steering, 2025b.

674 Chia Xin Liang, Pu Tian, Caitlyn Heqi Yin, Yao Yua, Wei An-Hou, Li Ming, Tianyang Wang, Ziqian
 675 Bi, and Ming Liu. A comprehensive survey and guide to multimodal large language models in
 676 vision-language tasks. *arXiv preprint arXiv:2411.06284*, 2024.

677 Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization
 678 Branches Out*, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
 679 tics.

680 Guanxiong Liu, Tzu-Ming Harry Hsu, Matthew McDermott, Willie Boag, Wei-Hung Weng, Peter
 681 Szolovits, and Marzyeh Ghassemi. Clinically accurate chest x-ray report generation, 2019.

682 Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen, Xutian Zhao, Ke Wang, Liping Hou,
 683 Rongjun Li, and Wei Peng. A survey on hallucination in large vision-language models, 2024a.

684 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.

685 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 686 tuning, 2024b.

687 Jiaxiang Liu, Yuan Wang, Jiawei Du, Joey Tianyi Zhou, and Zuozhu Liu. Medcot: Medical chain of
 688 thought via hierarchical expert, 2024c.

689 Sheng Liu, Haotian Ye, Lei Xing, and James Zou. Reducing hallucinations in vision-language
 690 models via latent space steering, 2024d.

691 Shi Liu, Kecheng Zheng, and Wei Chen. Paying more attention to image: A training-free method
 692 for alleviating hallucination in lvlms, 2024e.

693 Kyungmin Min, Minbeom Kim, Kang il Lee, Dongryeol Lee, and Kyomin Jung. Mitigating hallu-
 694 cinations in large vision-language models via summary-guided decoding, 2025.

702 Maram Mahmoud A Monshi, Josiah Poon, and Vera Chung. Deep learning in generating radiology
 703 reports: A survey. *Artificial Intelligence in Medicine*, 106:101878, 2020.
 704

705 OpenAI. Gpt-4 technical report, 2024.

706 Sophie Ostmeier, Justin Xu, Zhihong Chen, Maya Varma, Louis Blankemeier, Christian Bluethgen,
 707 Arne Edward Michalson Md, Michael Moseley, Curtis Langlotz, Akshay S Chaudhari, and Jean-
 708 Benoit Delbrouck. Green: Generative radiology report evaluation and error notation. In *Findings
 709 of the Association for Computational Linguistics: EMNLP 2024*, pp. 374–390. Association for
 710 Computational Linguistics, 2024. doi: 10.18653/v1/2024.findings-emnlp.21. URL <http://dx.doi.org/10.18653/v1/2024.findings-emnlp.21>.

711

712 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 713 evaluation of machine translation. In *Proceedings of the 40th Annual Meeting on Association for
 714 Computational Linguistics, ACL '02*, pp. 311–318, USA, 2002. Association for Computational
 715 Linguistics. doi: 10.3115/1073083.1073135.

716

717 Fernando Pérez-García, Harshita Sharma, Sam Bond-Taylor, Kenza Bouzid, Valentina Salvatelli,
 718 Maximilian Ilse, Shruthi Bannur, Daniel C. Castro, Anton Schwaighofer, Matthew P. Lungren,
 719 Maria Wetscherek, Noel Codella, Stephanie L. Hyland, Javier Alvarez-Valle, and Ozan Oktay.
 720 RAD-DINO: Exploring scalable medical image encoders beyond text supervision, 2024.

721

722 Fernando Pérez-García, Harshita Sharma, Sam Bond-Taylor, Kenza Bouzid, Valentina Salvatelli,
 723 Maximilian Ilse, Shruthi Bannur, Daniel C. Castro, Anton Schwaighofer, Matthew P. Lungren,
 724 Maria Teodora Wetscherek, Noel Codella, Stephanie L. Hyland, Javier Alvarez-Valle, and Ozan
 725 Oktay. Exploring scalable medical image encoders beyond text supervision. *Nature Machine
 726 Intelligence*, 7(1):119–130, January 2025. ISSN 2522-5839. doi: 10.1038/s42256-024-00965-w.

727

728 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 729 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 730 Sutskever. Learning transferable visual models from natural language supervision, 2021.

731

732 Carveth Read. *Logic, deductive and inductive*. A. Moring, 1914.

733

734 Khaled Saab, Jan Freyberg, Chunjong Park, Tim Strother, Yong Cheng, Wei-Hung Weng, David
 735 G. T. Barrett, David Stutz, Nenad Tomasev, Anil Palepu, Valentin Liévin, Yash Sharma, Roma Ru-
 736 parel, Abdullah Ahmed, Elahe Vedadi, Kimberly Kanada, Cian Hughes, Yun Liu, Geoff Brown,
 737 Yang Gao, Sean Li, S. Sara Mahdavi, James Manyika, Katherine Chou, Yossi Matias, Avinatan
 738 Hassidim, Dale R. Webster, Pushmeet Kohli, S. M. Ali Eslami, Joëlle Barral, Adam Rodman,
 Vivek Natarajan, Mike Schaeckermann, Tao Tu, Alan Karthikesalingam, and Ryutaro Tanno. Ad-
 739 vancing conversational diagnostic ai with multimodal reasoning, 2025.

740

741 Pranab Sahoo, Prabhash Meharia, Akash Ghosh, Sriparna Saha, Vinija Jain, and Aman Chadha.
 742 A comprehensive survey of hallucination in large language, image, video and audio foundation
 743 models. *arXiv preprint arXiv:2405.09589*, 2024.

744

745 Andrew Sellergren, Sahar Kazemzadeh, Tiam Jaroensri, Atilla Kiraly, Madeleine Traverse, Timo
 746 Kohlberger, Shawn Xu, Fayaz Jamil, Cian Hughes, Charles Lau, Justin Chen, Fereshteh Mahvar,
 747 Liron Yatziv, Tiffany Chen, Bram Sterling, Stefanie Anna Baby, Susanna Maria Baby, Jeremy
 748 Lai, Samuel Schmidgall, Lu Yang, Kejia Chen, Per Bjornsson, Shashir Reddy, Ryan Brush, Ken-
 749 neth Philbrick, Mercy Asiedu, Ines Mezerreg, Howard Hu, Howard Yang, Richa Tiwari, Sunny
 750 Jansen, Preeti Singh, Yun Liu, Shekoofeh Azizi, Aishwarya Kamath, Johan Ferret, Shreya Pathak,
 751 Nino Vieillard, Ramona Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane
 752 Riviere, Louis Rouillard, Thomas Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos,
 753 Edouard Yvinec, Michelle Casbon, Elena Buchatskaya, Jean-Baptiste Alayrac, Dmitry Lepikhin,
 754 Vlad Feinberg, Sebastian Borgeaud, Alek Andreev, Cassidy Hardin, Robert Dadashi, Léonard
 755 Hussenot, Armand Joulin, Olivier Bachem, Yossi Matias, Katherine Chou, Avinatan Hassidim,
 Kavi Goel, Clement Farabet, Joelle Barral, Tris Warkentin, Jonathon Shlens, David Fleet, Victor
 756 Cotruta, Omar Sanseviero, Gus Martins, Phoebe Kirk, Anand Rao, Shravya Shetty, David F.
 757 Steiner, Can Kirmizibayrak, Rory Pilgrim, Daniel Golden, and Lin Yang. Medgemma technical
 758 report, 2025a.

756 Andrew Sellergren, Sahar Kazemzadeh, Tiam Jaroensri, Atilla Kiraly, Madeleine Traverse, Timo
 757 Kohlberger, Shawn Xu, Fayaz Jamil, Cian Hughes, Charles Lau, et al. Medgemma technical
 758 report. *arXiv preprint arXiv:2507.05201*, 2025b.

759

760 Harshita Sharma, Valentina Salvatelli, Shaury Srivastav, Kenza Bouzid, Shruthi Bannur, Daniel C
 761 Castro, Maximilian Ilse, Sam Bond-Taylor, Mercy Prasanna Ranjit, Fabian Falck, et al. Mairaseg:
 762 Enhancing radiology report generation with segmentation-aware multimodal large language
 763 models. *arXiv preprint arXiv:2411.11362*, 2024.

764

765 Yiqiu Shen, Yanqi Xu, Jiajian Ma, Wushuang Rui, Chen Zhao, Laura Heacock, and Chenchan
 766 Huang. Multi-modal large language models in radiology: principles, applications, and potential.
 767 *Abdominal Radiology*, 50(6):2745–2757, 2025.

768

769 Peeyush Singhal, Rahee Walambe, Sheela Ramanna, and Ketan Kotecha. Domain adaptation: chal-
 770 lenges, methods, datasets, and applications. *IEEE access*, 11:6973–7020, 2023.

771

772 Akshay Smit, Saahil Jain, Pranav Rajpurkar, Anuj Pareek, Andrew Y. Ng, and Matthew P. Lungren.
 773 Chexbert: Combining automatic labelers and expert annotations for accurate radiology report
 774 labeling using bert, 2020.

775

776 Liwen Sun, James Zhao, Megan Han, and Chenyan Xiong. Fact-aware multimodal retrieval aug-
 777 mentation for accurate medical radiology report generation, 2025.

778

779 Feilong Tang, Chengzhi Liu, Zhongxing Xu, Ming Hu, Zelin Peng, Zhiwei Yang, Jionglong Su,
 780 Minquan Lin, Yifan Peng, Xuelian Cheng, Imran Razzak, and Zongyuan Ge. Seeing far and
 781 clearly: Mitigating hallucinations in mllms with attention causal decoding, 2025.

782

783 Fabio Tavora, Y Zhang, M Zhang, L Li, M Ripple, D Fowler, and Allen Burke. Cardiomegaly is a
 784 common arrhythmogenic substrate in adult sudden cardiac deaths, and is associated with obesity.
 785 *Pathology-Journal of the RCPA*, 44(3):187–191, 2012.

786

787 LASA Team, Weiwen Xu, Hou Pong Chan, Long Li, Mahani Aljunied, Ruifeng Yuan, Jianyu Wang,
 788 Chenghao Xiao, Guizhen Chen, Chaoqun Liu, Zhaodonghui Li, Yu Sun, Junao Shen, Chaojun
 789 Wang, Jie Tan, Deli Zhao, Tingyang Xu, Hao Zhang, and Yu Rong. Lingshu: A generalist foun-
 790 dation model for unified multimodal medical understanding and reasoning, 2025.

791

792 SM Tonmoy, SM Zaman, Vinija Jain, Anku Rani, Vipula Rawte, Aman Chadha, and Amitava Das.
 793 A comprehensive survey of hallucination mitigation techniques in large language models. *arXiv
 794 preprint arXiv:2401.01313*, 6, 2024.

795

796 Tao Tu, Shekoofeh Azizi, Danny Driess, Mike Schaeckermann, Mohamed Amin, Pi-Chuan Chang,
 797 Andrew Carroll, Chuck Lau, Ryutaro Tanno, Ira Ktena, Basil Mustafa, Aakanksha Chowdhery,
 798 Yun Liu, Simon Kornblith, David Fleet, Philip Mansfield, Sushant Prakash, Renee Wong, Sunny
 799 Virmani, Christopher Semturs, S Sara Mahdavi, Bradley Green, Ewa Dominowska, Blaise Aguera
 800 y Arcas, Joelle Barral, Dale Webster, Greg S. Corrado, Yossi Matias, Karan Singhal, Pete Flo-
 801 rence, Alan Karthikesalingam, and Vivek Natarajan. Towards generalist biomedical ai, 2023.

802

803 Tao Tu, Mike Schaeckermann, Anil Palepu, Khaled Saab, Jan Freyberg, Ryutaro Tanno, Amy Wang,
 804 Brenna Li, Mohamed Amin, Yong Cheng, et al. Towards conversational diagnostic artificial
 805 intelligence. *Nature*, pp. 1–9, 2025.

806

807 Chenxi Wang, Xiang Chen, Ningyu Zhang, Bozhong Tian, Haoming Xu, Shumin Deng, and Huajun
 808 Chen. Mllm can see? dynamic correction decoding for hallucination mitigation, 2025a.

809

810 Jiaqi Wang, Hanqi Jiang, Yiheng Liu, Chong Ma, Xu Zhang, Yi Pan, Mengyuan Liu, Peiran Gu,
 811 Sichen Xia, Wenjun Li, et al. A comprehensive review of multimodal large language models:
 812 Performance and challenges across different tasks. *arXiv preprint arXiv:2408.01319*, 2024a.

813

814 Wenzuan Wang, Zizhan Ma, Zheng Wang, Chenghan Wu, Jiaming Ji, Wenting Chen, Xiang Li, and
 815 Yixuan Yuan. A survey of llm-based agents in medicine: How far are we from baymax?, 2025b.

816

817 Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, and Ronald M. Summers. Tienet: Text-image
 818 embedding network for common thorax disease classification and reporting in chest x-rays, 2018.

810 Xintong Wang, Jingheng Pan, Liang Ding, and Chris Biemann. Mitigating hallucinations in large
 811 vision-language models with instruction contrastive decoding, 2024b.

812

813 Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said
 814 Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, Nathan Cooper, Griffin
 815 Adams, Jeremy Howard, and Iacopo Poli. Smarter, better, faster, longer: A modern bidirectional
 816 encoder for fast, memory efficient, and long context finetuning and inference, 2024.

817

818 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 819 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
 820 von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
 821 Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
 822 language processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural
 823 Language Processing: System Demonstrations*, pp. 38–45, Online, October 2020. Association for
 Computational Linguistics.

824

825 Sangmin Woo, Donguk Kim, Jaehyuk Jang, Yubin Choi, and Changick Kim. Don't miss the forest
 for the trees: Attentional vision calibration for large vision language models, 2025.

826

827 John H Woodring and James C Reed. Types and mechanisms of pulmonary atelectasis. *Journal of
 828 thoracic imaging*, 11(2):92–108, 1996.

829

830 Chaoyi Wu, Jiayu Lei, Qiaoyu Zheng, Weike Zhao, Weixiong Lin, Xiaoman Zhang, Xiao Zhou,
 831 Ziheng Zhao, Ya Zhang, Yanfeng Wang, and Weidi Xie. Can gpt-4v(ision) serve medical appli-
 832 cations? case studies on gpt-4v for multimodal medical diagnosis, 2023.

833

834 Jinge Wu, Yunsoo Kim, and Honghan Wu. Hallucination benchmark in medical visual question
 answering. *arXiv preprint arXiv:2401.05827*, 2024.

835

836 Peng Xia, Kangyu Zhu, Haoran Li, Tianze Wang, Weijia Shi, Sheng Wang, Linjun Zhang, James
 837 Zou, and Huaxiu Yao. Mmed-rag: Versatile multimodal rag system for medical vision language
 838 models, 2025.

839

840 Justin Xu, Xi Zhang, Javid Abderezaei, Julie Bauml, Roger Boodoo, Fatemeh Haghghi, Ali Gan-
 841 jizadeh, Eric Brattain, Dave Van Veen, Zaiqiao Meng, David Eyre, and Jean-Benoit Delbrouck.
 842 Radeval: A framework for radiology text evaluation, 2025a.

843

844 Xinhao Xu, Hui Chen, Mengyao Lyu, Sicheng Zhao, Yizhe Xiong, Zijia Lin, Jungong Han, and
 845 Guiguang Ding. Mitigating hallucinations in multi-modal large language models via image to-
 846 ken attention-guided decoding. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings
 847 of the 2025 Conference of the Nations of the Americas Chapter of the Association for Compu-
 848 tational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 1571–1590,
 849 Albuquerque, New Mexico, April 2025b. Association for Computational Linguistics. ISBN 979-
 850 8-89176-189-6. doi: 10.18653/v1/2025.nacl-long.75.

851

852 Nur Yildirim, Hannah Richardson, Maria Teodora Wetscherek, Junaid Bajwa, Joseph Jacob,
 853 Mark Ames Pinnock, Stephen Harris, Daniel Coelho De Castro, Shruthi Bannur, Stephanie Hy-
 854 land, Pratik Ghosh, Mercy Ranjit, Kenza Bouzid, Anton Schwaighofer, Fernando Pérez-García,
 855 Harshita Sharma, Ozan Oktay, Matthew Lungren, Javier Alvarez-Valle, Aditya Nori, and Anja
 856 Thieme. Multimodal healthcare ai: Identifying and designing clinically relevant vision-language
 857 applications for radiology. In *Proceedings of the CHI Conference on Human Factors in Com-
 858 puting Systems*, CHI '24, pp. 1–22. ACM, May 2024. doi: 10.1145/3613904.3642013.

859

860 Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
 861 multimodal large language models. *National Science Review*, 11(12):nwae403, 2024.

862

863 Juan Manuel Zambrano Chaves, Shih-Cheng Huang, Yanbo Xu, Hanwen Xu, Naoto Usuyama,
 864 Sheng Zhang, Fei Wang, Yujia Xie, Mahmoud Khademi, Ziyi Yang, Hany Awadalla, Julia Gong,
 865 Houdong Hu, Jianwei Yang, Chunyuan Li, Jianfeng Gao, Yu Gu, Cliff Wong, Mu Wei, Tristan
 866 Naumann, Muham Chen, Matthew P. Lungren, Akshay Chaudhari, Serena Yeung-Levy, Curtis P.
 867 Langlotz, Sheng Wang, and Hoifung Poon. A clinically accessible small multimodal radiology
 868 model and evaluation metric for chest x-ray findings. *Nature Communications*, 16(1), April 2025.
 869 ISSN 2041-1723. doi: 10.1038/s41467-025-58344-x.

864 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 865 image pre-training, 2023.

866

867 Jiarui Zhang, Mahyar Khayatkhoei, Prateek Chhikara, and Filip Ilievski. Mllms know where to
 868 look: Training-free perception of small visual details with multimodal llms, 2025a.

869

870 Sheng Zhang, Yanbo Xu, Naoto Usuyama, Hanwen Xu, Jaspreet Bagga, Robert Tinn, Sam Pre-
 871 ston, Rajesh Rao, Mu Wei, Naveen Valluri, Cliff Wong, Andrea Tupini, Yu Wang, Matt Mazzola,
 872 Swadheen Shukla, Lars Liden, Jianfeng Gao, Angela Crabtree, Brian Piening, Carlo Bifulco,
 873 Matthew P. Lungren, Tristan Naumann, Sheng Wang, and Hoifung Poon. Biomedclip: a mul-
 874 timodal biomedical foundation model pretrained from fifteen million scientific image-text pairs,
 2025b.

875

876 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evalu-
 877 ating text generation with bert, 2020.

878

879 Xi Zhang, Zaiqiao Meng, Jake Lever, and Edmond S. L. Ho. Libra: Leveraging temporal images
 for biomedical radiology analysis, 2025c.

880

881 Xiaoman Zhang, Hong-Yu Zhou, Xiaoli Yang, Oishi Banerjee, Julián N. Acosta, Josh Miller, Ouwen
 882 Huang, and Pranav Rajpurkar. Rexrank: A public leaderboard for ai-powered radiology report
 883 generation, 2024.

884

885 Linxi Zhao, Yihe Deng, Weitong Zhang, and Quanquan Gu. Mitigating object hallucination in large
 vision-language models via image-grounded guidance, 2025.

886

887 Weiye Zhao, Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, and Weidi Xie. Ratescore: A
 888 metric for radiology report generation, 2024.

889

890 Zhihong Zhu, Yunyan Zhang, Xianwei Zhuang, Fan Zhang, Zhongwei Wan, Yuyan Chen, Qingqin-
 891 gLong QingqingLong, Yefeng Zheng, and Xian Wu. Can we trust AI doctors? a survey of
 892 medical hallucination in large language and large vision-language models. In Wanxiang Che,
 893 Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Asso-
 894 ciation for Computational Linguistics: ACL 2025*, pp. 6748–6769, Vienna, Austria, July 2025.
 895 Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.
 findings-acl.350.

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918	APPENDIX CONTENTS	
919		
920		
921	A Research Objectives	19
922	A.1 Research Aims	19
923	A.2 Research Scope	19
925		
926	B Datasets and Metrics	19
927	B.1 Datasets Description	19
928	B.2 Evaluation Metrics	20
929		
930		
931	C Experimental Details	21
932	C.1 Backbone Models	21
933	C.2 Method Configuration	21
934	C.3 Expert Model Setting	22
935		
936		
937		
938	D Additional Experimental Results	22
939	D.1 Comparison of Decoding Strategies on Radiology Report Generation	22
940	D.2 Comparison of Backbone MLLMs for Radiology Report Generation	24
941	D.3 Alternative Backbone MLLMs for Visual Question Answering	24
942		
943		
944	E Additional Ablation Studies	25
945	E.1 Impact of Varying Control Strength in Clinical Contrastive Decoding	25
946	E.2 Robustness Test of Clinical Contrastive Decoding with Random Prior	26
947		
948		
949	F Balancing Accuracy and Ambiguity	27
950		
951	G Extended Discussion on Limitations	28
952		
953		
954	H Additional Statement: The Use of Large Language Models (LLMs)	29
955		
956	I Additional Statement: Special Acknowledgements	29
957		
958		
959		
960		
961		
962		
963		
964		
965		
966		
967		
968		
969		
970		
971		

972 **A RESEARCH OBJECTIVES**
973974 **A.1 RESEARCH AIMS**
975976 This work introduces **Clinical Contrastive Decoding (CCD)**, a plug-and-play, inference-time frame-
977 work designed to mitigate medical hallucinations in radiology multimodal large language models
978 (MLLMs). The primary objective is to reduce clinically harmful errors, particularly prompt-induced
979 hallucinations (Chen et al., 2024c), without modifying model parameters or requiring additional
980 training. **CCD** enhances output reliability by integrating expert signals, such as predictions from
981 pretrained pathology classifiers, during the decoding process. Designed to be model-agnostic, it
982 applies broadly across MLLM architectures and tasks, including RRG and VQA.
983984 To facilitate a fair comparison, it is also important to clarify what this work does not aim to ad-
985 dress. We do not propose new model architectures or novel training methodologies. Our focus is
986 on test-time decoding. Therefore, we do not compare with approaches that involve architectural
987 modifications, additional training, or retrieval-based augmentation requiring external corpora. Nor
988 do we attempt to eliminate all forms of medical hallucination. Instead, our focus is on reducing
989 prompt-induced hallucinations that carry clinical importance or potential risk. Even the mitigation
990 of a subset of hallucinations can lead to meaningful gains in overall task performance. For instance,
991 in the case of view-type VQA tasks, symptom-guided decoding enables models to answer more
992 accurately. This is because most findings are concentrated in frontal-view chest X-rays, whereas
993 lateral-view images provide less diagnostic signal for common conditions (Bannur et al., 2024). As
994 a result, incorporating expert-derived symptom likelihoods helps the model infer the appropriate
995 view type, even when such information is not explicitly stated in the question.
996997 **A.2 RESEARCH SCOPE**
998999 This study is restricted to the use of pretrained radiology-focused MLLMs for medical imaging
1000 tasks involving chest X-rays, which represent the most commonly used imaging modality in clin-
1001 ical practice. All experiments are conducted using only frontal-view chest radiographs, specifically
1002 anterior-posterior (AP) and posterior-anterior (PA) projections. We focus on two downstream tasks:
1003 radiology report generation (RRG) and visual question answering (VQA). The backbone models
1004 evaluated in this work include MAIRA-2 (Bannur et al., 2024), Libra (Zhang et al., 2025c), LLaVA-
1005 Rad (Zambrano Chaves et al., 2025), and LLaVA-Med (Li et al., 2023a). These models are used
1006 without any additional finetuning. For external guidance, we incorporate predictions from pretrained
1007 image-level expert models, either supervised classifiers (e.g., DenseNet from TorchXRayVision (Co-
1008 hen et al., 2021)) or zero-shot vision-language models (e.g., MedSigLIP (Sellergren et al., 2025b)),
1009 that estimate the presence of clinical findings.
10101011 Several important areas are intentionally excluded from the scope of this work. We do not address
1012 other medical imaging modalities such as computed tomography (CT), magnetic resonance imag-
1013 ing (MRI), or ultrasound. Our framework does not incorporate multi-modality signals derived from
1014 clinical notes, laboratory values, or electronic health records (EHRs). Our scope is restricted to hal-
1015 lucinations arising in radiology-specific MLLMs, and does not extend to general-domain MLLMs.
1016 In particular, we focus on prompt-induced hallucinations, a critical and under-addressed subset of
1017 medical hallucinations. Furthermore, post-processing techniques such as output filtering, retrieval
1018 augmentation, or report rewriting are outside the focus of this study. The proposed **CCD** method op-
1019 erates entirely at inference time and does not require model retraining, which ensures compatibility
1020 with a wide range of pretrained models while maintaining low deployment overhead.
10211022 **B DATASETS AND METRICS**
10231024 **B.1 DATASETS DESCRIPTION**
10251026 **MIMIC-CXR** (Johnson et al., 2019b) A large-scale, publicly available dataset comprising
1027 377,110 chest radiographs from 227,835 imaging studies, each paired with a free-text radiology re-
1028 port. We make use of the JPEG images from the MIMIC-CXR-JPG release (Johnson et al., 2019a),
1029 which are derived from the original DICOM files. To ensure consistency, only anterior-posterior
1030 (AP) or posterior-anterior (PA) frontal views are retained.
1031

1026 Each report is preprocessed to extract five clinically relevant sections: *Findings*, *Indication*, *Technique*,
 1027 *Comparison*, and *History*. This is done using pattern-matching heuristics based on the official
 1028 preprocessing scripts (Johnson et al., 2018). We evaluate on the official test split, which consists of
 1029 2,461 studies that contain frontal-view images and non-empty “Findings” sections.
 1030

1031 **IU-Xray** (Demner-Fushman et al., 2015) A publicly available dataset for medical image analysis,
 1032 consisting of 7,470 chest X-ray images and 3,955 corresponding diagnostic reports. To ensure
 1033 compatibility with both MLLMs and expert models, all images are converted to PNG format. For
 1034 evaluation, we select 3,307 frontal-view cases that include non-empty “Findings” sections.
 1035

1036 **CheXpert Plus** (Chambon et al., 2024) A large-scale dataset comprising 223,462 image-report
 1037 pairs from 187,711 studies across 64,725 patients. Since the official test split is not publicly available,
 1038 we use the validation set, which includes 72 frontal-view samples with non-empty “Findings”
 1039 sections for evaluation on the report generation task.
 1040

1041 **Medical-CXR-VQA** (Hu et al., 2024) A large-scale visual question answering dataset derived
 1042 from MIMIC-CXR, focusing exclusively on antero-posterior (AP) and postero-anterior (PA) chest
 1043 X-ray views. It includes six predefined question types: *abnormality*, *location*, *type*, *level*, *view*, and
 1044 *presence*. We use only the official test split, which contains 78,124 image-question pairs.
 1045

B.2 EVALUATION METRICS

1046 **Lexical Metrics** We employ commonly used natural language metrics to assess the textual overlap
 1047 between generated and reference reports. Specifically, ROUGE-L (Lin, 2004) measures the
 1048 length of the longest common subsequence, BLEU (Papineni et al., 2002) computes n-gram precision
 1049 with a brevity penalty, and BERTScore (Zhang et al., 2020) leverages contextual embeddings
 1050 from BERT (Devlin et al., 2019) to assess semantic similarity. All metrics are computed with their
 1051 default configurations. For BLEU, we report results using BLEU-4 (i.e., n=4), following prior work.
 1052

1053 **Clinical Metrics** We adopt several radiology-specific metrics to evaluate the clinical relevance and
 1054 accuracy of generated reports. RadGraph-F1 (Delbrouck et al., 2022) parses reports into structured
 1055 graphs composed of clinical entities (e.g., anatomical sites and observations) and their relations.
 1056 Temporal-F1 (Zhang et al., 2025c) extends this by assessing the correctness of temporal descriptors
 1057 such as “worsened,” “improved,” or “stable.” RaTeScore (Zambrano Chaves et al., 2025) focuses
 1058 on critical diagnostic concepts and anatomical details, offering robustness to medical synonyms
 1059 and sensitivity to negation cues. RadEval-BERT (Xu et al., 2025a) leverages a radiology-adapted
 1060 ModernBERT model (Warner et al., 2024) to assess semantic similarity between generated and
 1061 reference reports. CheXbert-F1 (Smit et al., 2020) applies an automatic labeler to extract “present,”
 1062 “absent,” or “uncertain” labels for 14 clinical conditions (Irvin et al., 2019); we report both the full
 1063 14-class F1 and the 5-class version for common pathologies.
 1064

1065 To ensure fairness, reproducibility, and consistency with prior work, all lexical and clinical evaluation
 1066 metrics are computed using the RadEval (Xu et al., 2025a) toolkit, with each metric applied
 1067 using its default configuration.
 1068

1069 **VQA Evaluation** For the visual question answering (VQA) task, we report micro-averaged Recall
 1070 and F1 scores, computed based on whether ground-truth labels are present in the generated
 1071 responses. Since the model outputs are in free-form natural language (e.g., “There is evidence of
 1072 opacity in the left lung.”), and the ground truth is a structured label list (e.g., “atelectasis, opacity”),
 1073 we only assess whether each reference label is mentioned in the generated text.
 1074

1075 Specifically, true positives are counted as ground-truth labels that appear in the output, and false
 1076 negatives are those that are missing. False positives are not penalised, as it is inherently difficult to
 1077 determine which additional labels in a free-text sentence constitute hallucinations. This formulation
 1078 aligns well with the clinical objective of ensuring that critical findings are not missed.
 1079

1078 We adopt micro-averaging across all samples to reflect the overall coverage and correctness of label
 1079 inclusion. Compared to macro-averaging, micro-averaging gives appropriate weight to frequent
 1080 conditions and avoids over-penalising rare labels in sparse multi-label settings. This makes micro
 1081 Recall and F1 the most suitable metrics for evaluating free-text VQA responses in radiology.
 1082

1080 **C EXPERIMENTAL DETAILS**
10811082 In this section, we provide additional details about the four backbone MLLMs used in our experiments,
1083 along with the decoding strategies and expert model configurations. All experiments are
1084 conducted on two NVIDIA RTX 3090 GPUs (24GB memory each) with BF16 precision enabled.
1085 Since CCD is a fully test-time decoding strategy, it requires no additional training and can be applied
1086 directly to any pretrained MLLM. Despite incorporating an expert model and a two-stage decoding
1087 process, it maintains a lightweight deployment cost. On average, CCD incurs an inference-time
1088 overhead of approximately $1.45\times$ relative to standard greedy decoding. The actual runtime may
1089 vary depending on hardware configurations, particularly the floating-point operations per second
1090 (FLOPS) supported by the GPU.1091 **C.1 BACKBONE MODELS**
10921093 **MAIRA-2** ⁴ (Bannur et al., 2024) A model developed specifically for grounded radiology report
1094 generation, where the goal is not only to produce clinically accurate reports but also to localise
1095 findings within the image. The model is built upon the LLaVA framework (Liu et al., 2023), and
1096 incorporates a frozen Rad-DINO-MAIRA-2 vision encoder (Pérez-García et al., 2024), a Vicuna-
1097 7B (Chiang et al., 2023) language backbone, and a four-layer MLP that facilitates cross-modal
1098 alignment between image features and language representations.1099 **Libra** (Zhang et al., 2025c) A temporally-informed multimodal model designed for generating
1100 the *Findings* section in chest X-ray reports. Distinct from traditional single-image approaches,
1101 Libra processes longitudinal image pairs to capture disease evolution. It integrates a frozen Rad-
1102 DINO (Pérez-García et al., 2025) encoder with Meditron-7B (Chen et al., 2023), linked through a
1103 Temporal Alignment Connector. This connector incorporates a Layerwise Feature Extractor and a
1104 Temporal Fusion Module to encode multi-scale visual changes into a unified representation.1105 **LLaVA-Rad** (Zambrano Chaves et al., 2025) An instruction-tuned multimodal model designed
1106 for radiology report generation. It builds upon the LLaVA (Liu et al., 2023) architecture and employs
1107 LoRA (Hu et al., 2021) for parameter-efficient finetuning. To reduce training cost, the model is
1108 trained exclusively on MIMIC-CXR data, which offers high-quality radiology reports. These reports
1109 are further refined using GPT-4 (OpenAI, 2024) structuring to enhance label clarity and consistency.
1110 For visual encoding, LLaVA-Rad adopts a BiomedCLIP (Zhang et al., 2025b) model pretrained on
1111 biomedical image–text pairs, improving domain alignment with radiological content.1112 **LLaVA-Med** (Li et al., 2023a) A biomedical adaptation of the LLaVA (Liu et al., 2023) model,
1113 trained on a large-scale synthetic instruction-following dataset generated from PMC-15M (Zhang
1114 et al., 2025b) image–text pairs. Instructions are automatically generated using GPT-4 (OpenAI,
1115 2024) without manual annotation. The model is finetuned in two stages: first aligning on biomedical
1116 image–text data, then learning open-ended instruction following. We use version 1.5 of LLaVA-
1117 Med, which adopts Mistral-7B (Jiang et al., 2023) as the language model and includes a jointly
1118 trained CLIP image encoder (Radford et al., 2021). This version is well-suited for biomedical VQA
1119 tasks, effectively handling clinical questions and extracting relevant findings from chest X-rays.1120 **C.2 METHOD CONFIGURATION**
11211122 Since the MAIRA-2 (Bannur et al., 2024) model largely follows the LLaVA architecture (Liu et al.,
1123 2023), with the main differences being the use of a specialised image encoder and a four-layer
1124 fully connected multi-layer perceptron for vision-language alignment, we apply each training-free
1125 decoding method using the default LLaVA-type settings specified in its original publication. All
1126 comparison methods are implemented according to their published hyperparameter recommendations
1127 to enable fair and consistent evaluation. We do not perform any additional tuning of these
1128 hyperparameters beyond what is reported in the respective works. A summary of these decoding
1129 methods is provided in Appendix D.1.1130 ⁴To ensure fair and consistent evaluation, chat templates and system prompts in MAIRA-2 are disabled;
1131 default instructions are provided to all models.

1134
1135

C.3 EXPERT MODEL SETTING

1136 For the DenseNet model provided by TorchXRayVision (Cohen et al., 2021), we adopt the CheXpert
 1137 Pathology Classifier, which is pretrained on the CheXpert dataset (Irvin et al., 2019). This model
 1138 outputs probability scores for each of the 14 predefined pathologies, with label smoothing applied
 1139 around the 0.5 threshold to enhance prediction stability. These confidence scores are directly used
 1140 as expert guidance signals within our CCD framework.

1141 For MedSigLIP (Sellergren et al., 2025b), a concurrent and publicly released variant of SigLIP (Zhai
 1142 et al., 2023) tailored to encode medical images and text into a shared embedding space, we perform
 1143 zero-shot classification over a predefined list of symptom labels following the official instruction
 1144 format. Each prediction is based on a pair of textual prompts, such as “a chest X-ray with Atelectasis”
 1145 and “a chest X-ray with no Atelectasis.” By comparing the model’s confidence scores for
 1146 these alternatives, we obtain the probability associated with the positive prompt, which indicates the
 1147 likelihood of the symptom being present in the image. These probabilities are subsequently used as
 1148 expert-derived guidance signals in the CCD module.

1149

1150 D ADDITIONAL EXPERIMENTAL RESULTS

1151

1152 D.1 COMPARISON OF DECODING STRATEGIES ON RADIOLOGY REPORT GENERATION

1153

1154 To provide a more comprehensive evaluation of CCD in comparison with other training-free hallu-
 1155 cination mitigation methods, we expand upon the analysis in Section 5.2 by including an additional
 1156 set of recent approaches. In total, we evaluate against eleven training-free methods under the same
 1157 experimental settings. **The following is a brief overview of these methods.**

1158

VCD (Leng et al., 2023) introduces contrastive decoding by comparing the output distributions
 1159 from original and perturbed images. This approach reduces over-reliance on dataset priors and uni-
 1160 modal statistical biases. M3ID (Favero et al., 2024b) amplifies the influence of visual inputs during
 1161 decoding, encouraging the model to generate tokens with higher visual-text mutual information.
 1162 AVISC (Woo et al., 2025) detects visually misaligned tokens by examining attention patterns and
 1163 dynamically refines the next-token prediction by contrasting logits from original versus visually-
 1164 blinded inputs. OPERA (Huang et al., 2024) introduces a decoding-time penalty on logits to curb
 1165 overconfidence, combined with a rollback mechanism that reviews earlier summary tokens and real-
 1166 locates selections when needed. ICD (Wang et al., 2024b) contrasts the distributions from standard
 1167 and instruction-perturbed inputs to amplify alignment uncertainty and effectively suppress hallu-
 1168 cinated concepts embedded in the original distribution. PAI (Liu et al., 2024e) intervenes in the
 1169 inference stage to steer the decoding process toward the original image perception direction, primar-
 1170 ily by adjusting the self-attention heads in the decoder layers of MLLMs. VTI (Liu et al., 2024d)
 1171 steers the latent space representations during inference to stabilise vision features, thereby reducing
 1172 hallucinations. DeCo (Wang et al., 2025a) adaptively selects preceding layers and proportionally
 1173 fuses their information into the final layer to dynamically adjust output logits. VISTA (Li et al.,
 1174 2025b) mitigates hallucinations by combining two strategies: strengthening visual information in
 1175 the activation space and utilising early-layer activations to guide more semantically coherent de-
 1176 coding. Attn-Lens (Jiang et al., 2025b) mitigates hallucinations by refining visual attention through
 1177 the aggregation of signals from multiple attention heads. MARINE (Zhao et al., 2025) addresses
 1178 object hallucinations by incorporating image-grounded guidance only at the prompt level into the
 1179 decoding process. In our evaluation, we adopt the *MARINE-Truth* setting, using ground-truth labels
 1180 of thoracic structures such as the lungs, heart, and pleural cavity as grounded references.

1181

1182 Additionally, in the general domain, numerous recent **training-free** methods have been proposed to
 1183 mitigate hallucinations in MLLMs. These methods are publicly available and widely used within
 1184 the research community. However, their underlying task assumptions are often incompatible with
 1185 radiology-specific generation settings. For example, methods such as VDGD (Ghosh et al., 2025)
 1186 first prompt an MLLM to generate a textual description of the image, which is then concatenated
 1187 as a prefix to the original prompt. Similarly, SumGD (Min et al., 2025) constructs summarised
 1188 instructions to guide the model prior to decoding. These types of strategies are not applicable to
 1189 radiology models, which are often instruction-tuned for tasks such as radiology report generation.
 1190 Since the report itself serves as a detailed image description, adding a separate generated caption
 1191 will introduce redundancy or interfere with the model’s instruction-following behaviour.

1188
 1189 **Table 5: Comparison of report generation performance across decoding methods.** MAIRA-
 1190 2 (Bannur et al., 2024), the top open-source model on the ReXrank (Zhang et al., 2024) leaderboard,
 1191 is used as the baseline. Results on IU-Xray and CheXpert Plus are reported only for our method.
 1192 **Best** and **second-best** results are bolded and underlined, respectively.

Method	Lexical Metric			Clinical Metric					
	ROUGE-L	BLEU	BERTScore	RadGraph-F1	Temporal-F1	RaTEScore	RadEval-BERT	CheXbert _{F1} ⁵	CheXbert _{F1} ¹⁴
MIMIC-CXR									
Baseline	19.57	1.61	49.56	16.23	12.11	50.82	16.96	16.14	10.57
+ <i>VCD</i>	19.47	<u>2.02</u>	48.99	15.90	12.57	49.85	<u>17.49</u>	19.17	15.47
+ <i>M3ID</i>	14.45	1.50	41.11	11.85	13.35	43.77	15.87	22.34	10.16
+ <i>AVISC</i>	<u>19.68</u>	1.94	49.28	15.80	12.49	50.04	17.39	16.17	12.84
+ <i>OPERA</i>	19.18	1.77	49.31	16.06	13.26	50.59	17.09	16.25	11.82
+ <i>ICD</i>	17.43	<u>2.02</u>	46.58	13.65	13.98	47.01	17.13	17.25	12.26
+ <i>PAI</i>	18.46	1.68	49.13	16.24	<u>13.99</u>	50.51	16.93	17.59	12.69
+ <i>VTI</i>	19.21	1.68	49.77	<u>16.42</u>	13.48	<u>51.20</u>	16.87	12.13	8.75
+ <i>DeCO</i>	19.40	1.65	49.33	15.93	12.95	50.65	17.27	16.60	11.57
+ <i>VISTA</i>	10.98	0.80	36.59	6.43	13.61	38.94	16.84	<u>26.28</u>	<u>15.82</u>
+ <i>Attn-Lens</i>	19.51	1.68	<u>49.67</u>	16.37	13.45	50.86	17.15	16.74	10.98
+ <i>MARINE</i>	18.88	1.62	48.92	14.59	8.97	50.43	17.09	8.37	5.91
+ CCD	20.70	2.10	51.62	19.01	17.58	53.32	17.50	27.05	16.02
IU-Xray									
Baseline	18.50	2.67	42.19	16.52	66.06	46.86	20.15	4.02	24.14
+ CCD	20.77	3.31	46.25	21.12	67.16	50.47	22.14	19.96	28.23
CheXpert Plus									
Baseline	18.07	1.83	45.91	14.27	22.78	47.47	1.99	13.54	8.39
+ CCD	18.59	1.84	46.64	14.89	32.04	47.55	2.91	14.76	9.75

1215 While some methods, such as FarSight (Tang et al., 2025) and iTaD (Xu et al., 2025b), focus heavily
 1216 on improving caption generation, their design motivations are largely driven by issues such as
 1217 attention collapse, positional information decay, and the progressive reduction of attention weights
 1218 to image tokens as model depth increases. However, these issues are less relevant for tasks such as
 1219 visual question answering (VQA), which typically require only short, discrete responses. Conse-
 1220 quently, such methods are not directly applicable to VQA settings.

1221 Furthermore, some methods attempt to mitigate hallucinations by refining the visual input. For
 1222 instance, ViCrop (Zhang et al., 2025a) performs automatic visual cropping to select important patch
 1223 tokens, which are then re-concatenated with the original image tokens for generation. DyFo (Li
 1224 et al., 2025a) leverages grounding-based visual expert models, such as Grounding DINO, to conduct
 1225 visual search and eliminate object-level hallucinations. AGLA (An et al., 2025) uses adaptive masks
 1226 to select relevant image patches as visual prompts, while masking out irrelevant regions. While these
 1227 approaches have shown promising results in the general domain, their applicability to radiology is
 1228 also limited. This is primarily due to the lack of strong pretrained grounding models in the medical
 1229 domain, as well as the use of single-channel grayscale chest X-rays instead of three-channel natural
 1230 images, which significantly constrains the applicability of visual prompt strategies in this setting.

1231 In contrast to the methods discussed above, our proposed approach is more suitable for radiology
 1232 MLLMs and the tasks defined within this setting. As shown in Table 5, the results reaffirm our
 1233 earlier findings that CCD consistently improves the performance of backbone models across both
 1234 lexical and clinical evaluation metrics. **To further evaluate the clinical effectiveness of CCD, we ad-**
 1235 **ditionally adopt the GREEN framework (Ostmeier et al., 2024) for both quantitative and qualitative**
 1236 **assessment.** GREEN leverages the natural language understanding capabilities of language models
 1237 **to identify and explain clinically significant errors in radiology reports. On MIMIC-CXR with the**
 1238 **RRG task, the MAIRA-2 baseline achieves a GREEN score of 18.03. After applying CCD, the**
 1239 **score increases to 19.14 (↑ 1.11), indicating better clinical alignment in the generated reports.**

1240 In summary, these results show that CCD is more effective for radiology-specific generation tasks
 1241 than general-domain strategies, particularly for chest X-ray interpretation. This highlights its advan-
 1242 tages in incorporating domain-specific knowledge into the decoding process.

1242 D.2 COMPARISON OF BACKBONE MLLMs FOR RADIOLOGY REPORT GENERATION
1243
12441245 Table 6: **Overall performance on the radiology report generation task.** Our method is com-
1246 pared with baselines that use greedy decoding without any clinical section input. “ \uparrow ” indicates
1247 improvement, “ \downarrow ” denotes degradation relative to the baseline.

Method	Lexical Metric			Clinical Metric					
	ROUGE-L	BLEU	BERTScore	RadGraph-F1	Temporal-F1	RaTEScore	RadEval-BERT	CheXbert _{F1} ⁵	CheXbert _{F1} ¹⁴
MIMIC-CXR									
LLaVA-Med	15.60	0.95	38.19	7.59	13.65	43.91	17.53	25.78	21.89
+ CCD	15.00 \downarrow	0.65 \downarrow	35.00 \downarrow	8.07 \uparrow	13.87 \uparrow	46.05 \uparrow	17.57 \uparrow	42.30 \uparrow	33.14 \uparrow
LLaVA-Rad	25.03	8.06	53.32	22.35	22.11	53.97	28.37	58.21	54.48
+ CCD	25.32 \uparrow	7.43 \downarrow	54.24 \uparrow	23.52 \uparrow	22.59 \uparrow	55.70 \uparrow	28.30 \downarrow	58.22 \uparrow	54.63 \uparrow
Libra	21.50	4.74	50.52	20.46	19.59	53.13	24.99	59.46	51.76
+ CCD	24.18 \uparrow	6.26 \uparrow	53.06 \uparrow	22.65 \uparrow	19.88 \uparrow	55.30 \uparrow	25.82 \uparrow	60.02 \uparrow	52.78 \uparrow
IU-Xray									
LLaVA-Med	11.94	0.39	34.58	7.14	60.23	43.02	20.12	7.71	5.44
+ CCD	11.52 \downarrow	0.29 \downarrow	31.85 \downarrow	7.35 \uparrow	49.00 \downarrow	43.05 \uparrow	19.55 \downarrow	18.75 \uparrow	8.13 \uparrow
LLaVA-Rad	21.07	4.18	48.37	22.42	32.99	56.66	21.07	42.11	47.50
+ CCD	25.36 \uparrow	5.62 \uparrow	56.38 \uparrow	31.73 \uparrow	36.80 \uparrow	64.94 \uparrow	23.24 \uparrow	42.48 \uparrow	47.56 \uparrow
Libra	24.31	2.99	51.59	26.38	59.06	56.22	23.63	43.86	45.46
+ CCD	24.27 \downarrow	4.44 \uparrow	50.92 \downarrow	26.47 \uparrow	62.07 \uparrow	58.67 \uparrow	24.74 \uparrow	44.05 \uparrow	45.53 \uparrow
CheXpert Plus									
LLaVA-Med	14.40	0.72	32.59	4.63	25.00	42.16	4.63	25.84	25.00
+ CCD	14.45 \uparrow	0.84 \uparrow	33.78 \uparrow	8.49 \uparrow	28.09 \uparrow	44.58 \uparrow	2.71 \downarrow	29.84 \uparrow	26.40 \uparrow
LLaVA-Rad	18.94	2.67	43.31	17.13	14.36	47.14	6.67	51.96	50.93
+ CCD	19.43 \uparrow	2.66 \downarrow	47.16 \uparrow	17.81 \uparrow	23.89 \uparrow	50.31 \uparrow	6.73 \uparrow	51.99 \uparrow	51.37 \uparrow
Libra	18.87	2.14	47.04	19.20	27.18	49.33	7.58	45.68	50.08
+ CCD	19.87 \uparrow	3.23 \uparrow	48.03 \uparrow	20.15 \uparrow	30.91 \uparrow	49.38 \uparrow	7.85 \uparrow	46.75 \uparrow	50.21 \uparrow

1273
1274 In addition to MAIRA-2 (Bannur et al., 2024), we evaluate CCD on several other MLLMs to assess
1275 its generalisability in the radiology report generation task. These include Libra (Zhang et al., 2025c)
1276 and LLaVA-Rad (Zambrano Chaves et al., 2025), which are specifically tailored for the RRG task,
1277 as well as LLaVA-Med (Li et al., 2023a), a domain-specific foundation MLLM. We evaluate these
1278 models on three datasets: MIMIC-CXR (Johnson et al., 2019b), IU-Xray (Demner-Fushman et al.,
1279 2015), and CheXpert Plus (Chambon et al., 2024). Importantly, we do not tune the control strength
1280 hyperparameters of CCD. All models are evaluated using the default CCD settings, which may
1281 under-optimise performance for certain backbones.

1282 As shown in Table 6, applying CCD consistently improves overall performance across all back-
1283 bones, particularly in terms of clinical metrics. Interestingly, we observe that improvements in
1284 clinical consistency may occasionally come at the cost of lexical quality. For instance, LLaVA-Med
1285 exhibits a $1.64\times$ gain in the CheXbert_{F1}⁵, but also shows slight decreases in lexical metrics. This
1286 suggests that choosing appropriate hyperparameters for each model is critical to achieving a bal-
1287 anced trade-off between lexical and clinical performance. Overall, these results support the general
1288 applicability of CCD in enhancing radiology MLLMs across different architectures and evaluation
1289 settings, consistent with the conclusions drawn in Section 5.2.

1290
1291 D.3 ALTERNATIVE BACKBONE MLLMs FOR VISUAL QUESTION ANSWERING
1292

1293 Following the same experimental settings as in Section 5.3 and Table 3, we further evaluate the gen-
1294 eralisation of CCD using an alternative model, CheXagent-8B (Chen et al., 2024d). This model is
1295 an instruction-tuned foundation model for chest X-ray interpretation and integrates a vision encoder
1296 with a cross-modal adapter to align visual and textual representations.

1296
 1297 **Table 7: Performance of CCD on the Medical Visual Question Answering with CheXagent-8B**
 1298 “ \uparrow ” indicates improvement, “ \downarrow ” denotes degradation relative to the baseline.

Model	Question Classification												Overall	
	Abnormality		Presence		View		Location		Level		Type			
	F1	Recall	F1	Recall	F1	Recall	F1	Recall	F1	Recall	F1	Recall		
CheXagent	61.75	45.74	68.18	59.40	38.28	23.97	7.67	3.99	27.24	15.77	8.54	4.46	47.67	33.12
+ CCD	62.28 \uparrow	45.22 \downarrow	68.83 \uparrow	52.47 \downarrow	39.89 \uparrow	24.91 \uparrow	9.93 \uparrow	5.23 \uparrow	42.50 \uparrow	26.99 \uparrow	8.77 \uparrow	4.59 \uparrow	51.15 \uparrow	34.36 \uparrow

1304
 1305 As shown in Table 7, CCD improves F1 scores across all evaluated categories and achieves better
 1306 overall performance compared to the baseline. For specific categories such as *abnormality* and
 1307 *presence*, we observe a moderate decrease in recall accompanied by a notable increase in precision,
 1308 resulting in an overall gain in F1 score. This suggests that the model becomes more cautious in its
 1309 predictions, producing fewer false positives while preserving overall reliability.

1310 Moreover, employing a stronger backbone such as CheXagent-8B helps mitigate the modest declines
 1311 observed in the *Location* and *Type* categories (see Appendix F), suggesting that improved base model
 1312 capacity can complement CCD’s effectiveness across question types. This is particularly beneficial
 1313 in cases where expert models offer limited coverage of fine-grained radiological signals, such as
 1314 lesion morphology or spatial localisation, which may otherwise bias the guidance process.

E ADDITIONAL ABLATION STUDIES

E.1 IMPACT OF VARYING CONTROL STRENGTH IN CLINICAL CONTRASTIVE DECODING

1320 To understand the impact of guidance strength in **CCD**, we perform ablation studies by varying
 1321 its three control hyperparameters (α , β , and γ). In each experiment, we vary one hyperparameter
 1322 while keeping the other two fixed, allowing us to isolate its effect on generation performance. These
 1323 hyperparameters regulate the balance between the original MLLM output and the guidance from the
 1324 clinical expert, determining how much influence each component has on the final generation. All
 1325 experiments are conducted using MAIRA-2 (Bannur et al., 2024) as the backbone model, evaluated
 1326 on the MIMIC-CXR (Johnson et al., 2019b) dataset for the radiology report generation task.

1328
 1329 **Table 8: Ablation study of the α hyperparameter.** $\beta = 0.5$ and $\gamma = 10$ are used as default values.
 1330 **Best** and **second-best** results are bolded and underlined, respectively. $\alpha \in [0, 1]$.

α	Lexical Metric			Clinical Metric					
	ROUGE-L	BLEU	BERTScore	RadGraph-F1	Temporal-F1	RaTEScore	RadEval-BERT	CheXbert _{F1} ⁵	CheXbert _{F1} ¹⁴
0.00	18.22	1.26	49.40	16.71	13.81	51.59	16.65	19.02	12.06
0.25	19.71	1.49	50.73	17.56	15.49	52.68	16.95	16.89	10.52
0.50	20.70	2.10	51.62	19.01	17.58	53.32	17.50	27.05	16.02
0.75	<u>20.89</u>	<u>2.59</u>	<u>51.80</u>	18.36	<u>17.53</u>	<u>53.03</u>	18.36	<u>33.00</u>	21.36
1.00	20.95	2.94	51.69	<u>18.45</u>	17.12	52.82	<u>18.25</u>	33.54	<u>17.73</u>

1339
 1340 **Effect of α on Guidance Strength** As shown in Table 8, we investigate the effect of varying α ,
 1341 which controls the overall guidance strength in the first stage of Symptom-grounded Contrastive
 1342 Decoding. Increasing α strengthens the model’s reliance on labels provided by the expert model
 1343 to suppress false negatives. We observe that as α increases from 0 to 1, both lexical metrics and
 1344 CheXbert-based scores consistently improve. However, other metrics such as RadGraph-F1 and
 1345 RaTEScore begin to degrade once α exceeds 0.5.

1346 This suggests that while stronger anchor label guidance can enhance entity coverage and clinical
 1347 consistency, it may also result in overly verbose generations. Specifically, setting $\alpha = 1$ causes
 1348 the model to fully rely on the initial expert-provided anchor, producing detailed descriptions that
 1349 include more symptom labels and semantic content than necessary. To balance lexical fluency and
 clinical accuracy, we adopt $\alpha = 0.5$ as the default setting.

1350
 1351 **Table 9: Ablation study of the β hyperparameter.** $\alpha = 0.5$ and $\gamma = 10$ are used as default values.
 1352 **Best** and second-best results are bolded and underlined, respectively. $\beta \in [0, 1]$.

β	Lexical Metric			Clinical Metric					
	ROUGE-L	BLEU	BERTScore	RadGraph-F1	Temporal-F1	RaTEScore	RadEval-BERT	CheXbert _{F1} ⁵	CheXbert _{F1} ¹⁴
0.00	20.73	1.96	51.72	18.78	17.40	53.21	17.71	21.02	11.47
0.25	<u>20.72</u>	2.02	<u>51.65</u>	18.83	<u>17.54</u>	<u>53.30</u>	<u>17.54</u>	22.68	12.69
0.50	20.70	2.10	51.62	19.01	17.58	53.32	17.50	27.05	16.02
0.75	20.51	2.05	51.43	<u>18.97</u>	17.18	53.23	17.53	28.42	<u>17.95</u>
1.00	19.85	<u>2.07</u>	50.83	18.64	16.37	53.03	17.47	<u>28.15</u>	19.65

1361
 1362 **Effect of β on Guidance Strength** As shown in Table 9, we investigate the effect of varying β ,
 1363 which controls the overall guidance strength in the second stage of Expert-informed Contrastive
 1364 Decoding. Increasing β corresponds to stronger reliance on the expert model’s confidence scores,
 1365 aiming to reduce false positives. We observe that as β increases, clinical metrics, especially the
 1366 CheXbert-based scores, consistently improve. However, lexical scores follow the opposite trend and
 1367 gradually decrease. In addition, RadGraph-F1, Temporal-F1, and RaTeScore begin to decline when
 1368 β exceeds 0.5.

1369 This degradation in lexical metrics is attributed to the model overfocusing on symptom-related de-
 1370 scriptions under strong probabilistic constraints. In particular, when the latent logits for certain
 1371 diseases are excessively large, the model not only suppresses false positives but also amplifies ex-
 1372 isting **true positives**. As illustrated by the bar chart in Figure 2, this behaviour leads to verbose
 1373 generations, which compromise the fluency and naturalness of the radiology report style. To strike
 1374 a balance between clinical accuracy and lexical quality, we adopt $\beta = 0.5$ as the default setting.

1375 **Table 10: Ablation study of the γ hyperparameter.** $\alpha = 0.5$ and $\beta = 0.5$ are used as default
 1376 values. **Best** and second-best results are bolded and underlined, respectively. $\gamma \in \{2, 5, 10, \text{null}\}$.

γ	Lexical Metric			Clinical Metric					
	ROUGE-L	BLEU	BERTScore	RadGraph-F1	Temporal-F1	RaTEScore	RadEval-BERT	CheXbert _{F1} ⁵	CheXbert _{F1} ¹⁴
2	<u>20.70</u>	1.98	<u>51.65</u>	18.85	17.52	<u>53.32</u>	<u>17.56</u>	22.20	12.45
5	20.71	2.05	51.67	<u>18.98</u>	17.65	53.35	17.55	25.52	14.52
10	<u>20.70</u>	2.10	51.62	19.01	<u>17.58</u>	<u>53.32</u>	17.50	27.05	<u>16.02</u>
null	20.35	<u>2.06</u>	51.40	18.85	17.41	53.14	17.60	<u>26.21</u>	16.35

1384
 1385 **Effect of γ on Guidance Strength** As shown in Table 10, we evaluate the effect of varying γ ,
 1386 which controls the strength of the Diagnostic Plausibility Constraint in the second stage of Expert-
 1387 informed Contrastive Decoding. We experiment with values of $\gamma \in \{2, 5, 10\}$ and also include a
 1388 baseline where the constraint is removed entirely (denoted as `null`). As γ increases, the plausibility
 1389 threshold becomes more relaxed, allowing the model to be more influenced by the expert model’s
 1390 confidence scores. This, in turn, amplifies the suppression of false positives and the reinforcement
 1391 of true positives, particularly in borderline cases. While some metrics such as RadEval-BERT and
 1392 CheXbert_{F1}¹⁴ peak at lower constraint strengths, the overall performance in both lexical and clin-
 1393 ical metrics is best balanced when $\gamma = 10$. Therefore, we adopt $\gamma = 10$ as the default setting,
 1394 corresponding to a clinically meaningful threshold for severe diagnostic evidence.

1395 E.2 ROBUSTNESS TEST OF CLINICAL CONTRASTIVE DECODING WITH RANDOM PRIOR 1396

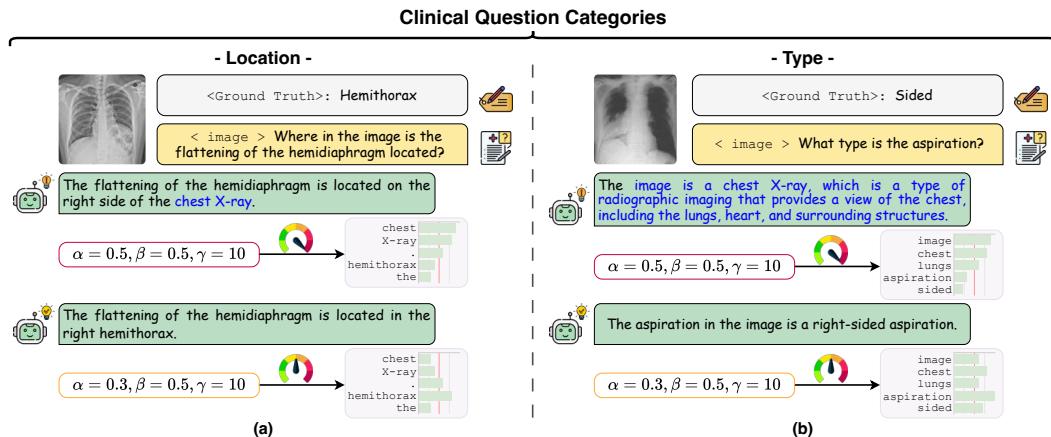
1397 Since our method relies on guidance signals from a task-specific expert model, and Section 5.3
 1398 has demonstrated that stronger experts contribute to improved MLLM performance, it is important
 1399 to assess how CCD behaves when this guidance becomes unreliable. To this end, we conduct an
 1400 adversarial ablation study, where the expert model is deliberately degraded by replacing its outputs
 1401 with randomly generated signals. This setting allows us to evaluate the robustness of CCD under
 1402 faulty or misleading expert supervision. This experiment is conducted using MAIRA-2 (Bannur
 1403 et al., 2024) as the backbone model, evaluated on the MIMIC-CXR (Johnson et al., 2019b) dataset
 for the radiology report generation task, with CCD hyperparameters kept at the default values.

1404
1405 **Table 11: Adversarial ablation study of CCD.** The *Random Setting* indicates that the signals from
1406 the expert model are replaced with randomly generated values. **Best** and second-best results are
1407 bolded and underlined, respectively.

Method	Lexical Metric			Clinical Metric					
	ROUGE-L	BLEU	BERTScore	RadGraph-F1	Temporal-F1	RaTEScore	RadEval-BERT	CheXbert ⁵ _{F1}	CheXbert ¹⁴ _{F1}
Baseline	19.57	<u>1.61</u>	49.56	16.23	12.11	50.82	<u>16.96</u>	16.14	10.57
+ Random Setting	20.04	1.39	<u>51.57</u>	<u>16.51</u>	<u>14.07</u>	50.29	16.85	<u>16.46</u>	10.29
+ CCD	20.70	2.10	51.62	19.01	17.58	53.32	17.50	27.05	16.02

1414
1415 As shown in Table 11, although the random setting introduces mild fluctuations in performance,
1416 there is no significant degradation across lexical or clinical metrics. This demonstrates that CCD
1417 does not substantially impair the MLLM’s generation quality, even when the expert signal is ad-
1418 versarial. These findings highlight the robustness and compatibility of our method: **it enhances**
1419 **downstream performance only when the expert provides meaningful guidance, while grace-**
1420 **fully falling back to the base model’s behaviour otherwise.**

F BALANCING ACCURACY AND AMBIGUITY



1424
1425 **Clinical Question Categories**
1426
1427 **- Location -**
1428 <Ground Truth>: Hemithorax
1429 <image> Where in the image is the flattening of the hemidiaphragm located?
1430 The flattening of the hemidiaphragm is located on the right side of the chest X-ray.
1431 $\alpha = 0.5, \beta = 0.5, \gamma = 10$ chest X-ray hemithorax the
1432 $\alpha = 0.3, \beta = 0.5, \gamma = 10$ chest X-ray hemithorax the
1433 The flattening of the hemidiaphragm is located in the right hemithorax.
1434 $\alpha = 0.3, \beta = 0.5, \gamma = 10$ chest X-ray hemithorax the
1435 **- Type -**
1436 <Ground Truth>: Sided
1437 <image> What type is the aspiration?
1438 The image is a chest X-ray, which is a type of radiographic imaging that provides a view of the chest, including the lungs, heart, and surrounding structures.
1439 $\alpha = 0.5, \beta = 0.5, \gamma = 10$ image chest lungs aspiration sided
1440 $\alpha = 0.3, \beta = 0.5, \gamma = 10$ image chest lungs aspiration sided
1441 The aspiration in the image is a right-sided aspiration.
1442 $\alpha = 0.3, \beta = 0.5, \gamma = 10$ image chest lungs aspiration sided
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980

Upon examining the latent logits distribution⁵, we observe that ground-truth tokens often have lower activation scores compared to tokens associated with more generic symptom labels. This behaviour arises from the initial anchor stage of CCD, which introduces a strong bias toward common CheXpert-related symptoms, resulting in conservative outputs. In this case, the model tends to favour frequently seen “true positive” tokens and under-represents more specific or context-dependent concepts, leading to what can be considered “dummy” false negatives.

To explore this further, we reduce the control strength of the first decoding stage by adjusting α from 0.5 to 0.3. This softens the expert guidance, allowing the model to generate more accurate and specific answers in both *Location* and *Type* categories. These findings suggest that different question types may exhibit varying levels of sensitivity to CCD’s control parameters.

While fine-grained control can improve performance for specific question categories, it also underscores a broader challenge: achieving the right balance between conservative and expressive generation. Overly cautious answers may avoid clinical errors but sacrifice specificity, while assertive responses can introduce misleading or incorrect information. This trade-off leads to an important question in the context of medical AI: **What constitutes a “better” response in radiology MLLMs?**

“It’s better to be roughly right than precisely wrong.”

— Carveth Read
Logic: Deductive and Inductive

This quote from Read (1914) aptly reflects the philosophy behind our decoding strategy. In high-stakes settings such as radiology, generating responses that are somewhat ambiguous but clinically plausible is often preferable to confidently asserting inaccurate conclusions. From a system-level perspective, this approach improves overall reliability without compromising safety. CCD navigates this space by providing a balanced mechanism that moderates the influence of expert signals during generation while maintaining flexibility. Ultimately, this reflects a broader tension in aligning AI behaviour with clinical reasoning, where ambiguity, uncertainty, and contextual judgment are fundamental to the decision-making process.

G EXTENDED DISCUSSION ON LIMITATIONS

While our study demonstrates promising results across multiple benchmarks, several limitations merit consideration, particularly in clinical applications where the requirements for safety, reliability, and interpretability are significantly more stringent than in general-purpose AI tasks.

First, both the MIMIC-CXR (Johnson et al., 2019b) and Medical-CXR-VQA (Hu et al., 2024) datasets originate from the same institution, the Beth Israel Deaconess Medical Center. This may introduce institution-specific biases in patient demographics, imaging protocols, and clinical reporting practices, potentially limiting the generalisability of our findings to other healthcare settings with differing patient populations or workflows. Our choice of these datasets is primarily motivated by their unique status as the only publicly available sources that comprehensively align chest X-ray images with detailed free-text reports and structured question-answer annotations.

Second, all evaluations in this study rely on automatic metrics that serve only as relative references to the ground truth. While this approach is consistent with existing literature on radiology-focused MLLM evaluation, more robust validation would benefit from reader studies or expert review by licensed radiologists to further assess the clinical plausibility and safety of the generated outputs.

Third, our experiments rely on publicly available models such as MAIRA-2 (Bannur et al., 2024), of which only the 7B variant is currently open-sourced. Larger versions (e.g., MAIRA-2 13B) are not yet publicly accessible. Meanwhile, many high-performing models are only accessible via third-party APIs, which limits our ability to perform controlled experiments and to investigate scaling behaviours within our framework. This is particularly restrictive for our method, which requires direct access to the model’s latent logits space in order to apply targeted modifications. **Furthermore**,

⁵This differs from the logit plots in Figure 2, where the truncation point is defined as the token immediately following the model’s first output of a symptom phrase, namely after “Yes, the chest X-ray image shows ...”.

1512 since our evaluations are conducted in a shared offline environment, online latency in real-world
 1513 deployments may differ significantly.

1514
 1515 Moreover, while CCD demonstrates strong performance with empirically chosen hyperparameters,
 1516 it currently lacks an adaptive mechanism to adjust control strength based on task complexity, prompt
 1517 context, or model uncertainty. Exploring dynamic control strategies that can respond to such internal
 1518 or external signals may be a promising direction for future work—particularly for achieving a better
 1519 trade-off between clinical accuracy and generation fluency across diverse applications.

1520 In addition, most radiology MLLMs and expert models are trained on well-curated datasets like
 1521 MIMIC-CXR (Johnson et al., 2019b), where image quality is standardised and acquisition conditions
 1522 are controlled. As noted in Appendix A.2, these models do not cover other modalities such
 1523 as computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound. However, real-
 1524 world clinical practice often involves lower-quality inputs, including portable X-rays or images from
 1525 heterogeneous equipment. Evaluating robustness under such distribution shifts remains an important
 1526 direction for future research.

1527 In conclusion, this work takes a step toward advancing radiology-oriented multimodal language
 1528 models (MLLMs) toward physician-level reasoning. Our results show that even current state-of-the-
 1529 art models can be further improved by incorporating domain-specific expert models, as demonstrated
 1530 by our proposed **CCD** framework. Although generative foundation models are developing rapidly,
 1531 we believe that specialised expert models are still a necessary part of medical AI, especially in safety-
 1532 critical tasks like medical imaging. This study presents a possible way to combine the strengths of
 1533 both types of models to improve clinical accuracy.

1534 H ADDITIONAL STATEMENT: THE USE OF LARGE LANGUAGE MODELS 1535 (LLMs)

1536 In this work, we used a generative AI model to assist with colour editing and refinement of the
 1537 icons in Figure 1, 2, and 4. This step was intended solely to improve visual clarity and enhance the
 1538 overall readability of the figures. The use of this tool was strictly limited to visual presentation and
 1539 did not influence the scientific content, analysis, or experimental results presented in the paper. We
 1540 also employed Overleaf’s AI assistant to ensure spelling and grammar consistency throughout the
 1541 manuscript, using UK English conventions.

1542 I ADDITIONAL STATEMENT: SPECIAL ACKNOWLEDGEMENTS

1543 We would like to express our sincere gratitude to the reviewers on OpenReview⁶ for their insightful
 1544 comments and suggestions on this work. We strongly encourage readers to consult the public review
 1545 discussions, which not only provide valuable context for understanding our contributions, but may
 1546 also serve as a source of inspiration for future research.

1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

⁶<https://openreview.net/forum?id=eEnW7lUXxY>