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ABSTRACT

We present a VAE-based data compression method, called VAe Physics Optimized
Reduction (VAPOR), to compress scientific data while preserving physics con-
straints. VAPOR is based on Vector Quantized Variational Auto Encoder (VQ-
VAE) and extended with physics-informed optimization functions and refinement
layers, focusing on compressing and reconstructing scientific data with minimum
loss of information under physics constraints. We demonstrate VAPOR by using
outputs from XGC, a massively parallel fusion simulation code running on the
largest supercomputers. Key features of VAPOR are three-fold; i) find a reduced
representation of physics data, ii) reconstruct the data with a minimum loss, iii)
preserve physics information (e.g., mass, energy, moment conservation).
We discuss challenges in XGC 5D data reconstruction and present our initial expe-
riences and results on how we construct Deep Neural Network (DNN) of VAPOR
to optimize the reconstruction quality of XGC data and integrate XGC’s physics
constraints.

1 INTRODUCTION

As data volume grows at an exceeding rate, several floating-point lossy data compressors, such
as ZFP (Lindstrom, 2014), SZ (Di & Cappello, 2016), and MGARD (Ainsworth et al., 2019), have
been actively developed and applied in many science applications. Recently, researchers have started
looking at deep learning-based methods for data compression as well. While most lossy compres-
sion methods are broadly based on numerical solutions for regression, interpolation, and decompo-
sitions, data compression with deep learning is mostly based on developing a generative process for
a given data set. A family of generative deep learning models, such as Variational Autoencoders
(VAE) (Kingma & Welling, 2013) and Generative Adversarial Network (GAN) (Goodfellow et al.,
2014), has been developed to reconstruct whole images or augment missing parts (Welander et al.,
2018; Yoon et al., 2018; Ganguli et al., 2019).

We have been developing a VAE-based data compression method, called VAe Physics Optimized Re-
duction (VAPOR), with a scientific dataset from XGC, a fusion simulation code (Chang & Ku, 2008;
Ku et al., 2009). VAPOR is based on Vector Quantized Variational Auto Encoder (VQ-VAE) (Razavi
et al., 2019), focusing on compressing XGC’s five-dimensional (5D) particle distribution data as well
as preserving physics constraints. Key features of VAPOR are three-fold; i) find a reduced represen-
tation of physics data, ii) reconstruct the data with a minimum loss, iii) preserve physics information
(e.g., mass, energy, moment conservation).

We will discuss challenges in the data reconstruction of the XGC 5D particle distribution function
data and present our initial experiences and results on how we construct Deep Neural Network
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Figure 1: XGC, a massively parallel fusion simulation code, runs on the largest supercomputers
around the world. It is based on a particle-in-cell approach. Regularly writing particle distribution
data, called F -data, ranging from a few GBs up to TBs, is challenging due to the I/O bottleneck
problem in many high-performance computing systems.

(DNN) for VAPOR to optimize the reconstruction quality of XGC 5D data and integrate XGC’s
physics constraints, and share performance results.

Related work: Multiple GAN-based work, such as SRGAN (Nagano & Kikuta, 2018) and ES-
RGAN (Wang et al., 2018), focus on generating photo-realistic, high-resolution synthetic data. In
contrast, we focus on reconstructing scientific data based on physics quantities.

Adversarial super-resolution for climate data (Stengel et al., 2020) explores generating high-
resolution climate data based on multi-level generative adversarial networks. The work focuses on
generating scientific data by preserving probability densities around, such as, kinetic energy spec-
trum, velocity gradients, etc. Our work focus on data compression and reduction for fusion data
with fusion physics constraints.

2 XGC AND PARTICLE DISTRIBUTION DATA

XGC (Chang & Ku, 2008; Ku et al., 2009) is a gyrokinetic, particle-in-cell code used to simulate
fusion reactor designs, focusing on the multi-scale physics at the edge of the fusion plasmas. XGC is
massively parallel, requiring supercomputers such as Summit in the Oak Ridge National Laboratory
to run, and generates petabytes of data for large-scale runs. Virtual particles are time-advanced or
“pushed” according to governing gyrokinetic equations of motion, and then interpolated or “gath-
ered” to discrete mesh points, for solving electric and magnetic field equations which factor into the
particle motion in subsequent steps. Particles are regularly histogrammed to form particle distribu-
tion functions, F , which is five-dimensional (2D velocity, 3D space) (Figure. 1) and ranges in size
from a few GBs up to a few TBs per each iteration in a large run. Due to I/O bottlenecks on the
supercomputer, often various reductions are applied to F to form physically relevant quantities to
output, such as density (n) and temperature (T ), instead of writing out the entire F data. But because
these always involve a loss of information, methods to quickly and efficiently reduce or compress
this F data (and in the future the particle data itself) are desireable, to enable scientists to capture
richer physics from these simulations.

3 VAPOR

To address the output bottleneck challenge in XGC’s F -data writing, we consider an auto-encoder-
based lossy data compression approach where we can build a data-driven generative model to re-
construct the original data with customized error criteria. One of the key ideas is how to build
a data-driven learning process to find the generative process of XGC’s F -data and develop error
criteria to meet XGC’s physics constraints.

2



Published as a workshop paper at ICLR 2021 neural compression workshop

x Enc(x) x''x'

DecoderEncoder

Autoencoder Refiner
In

pu
t

R
ef

in
ed

 o
ut

pu
t

re
co

ns
tru

ct
ed

(a) The VAPOR architecture.
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(b) An example output.

Figure 2: (a) VAPOR is based on a variational auto-encoder (VAE) architecture attached with a
refinement layer to overcome VAE’s generalization (blurring) effect. We save only the encoded data
(Enc(x)) for compression. Then, for reconstruction, we apply the decoder followed by the refiner.
The objective is to minimize the differences between the input x and the reconstructed output x′′ as
well as the loss in physics constraints. We use a deterministic version of VAE, VQ-VAE, and the
Fourier Neural Operator (FNO) for the refiner. (b) An example shows how VQVAE can regenerate
an XGC output, and the FNO refiner makes further improvement closer to the original data.

We have been developing a VAE-based data compression method called VAe Physics Optimized
Reduction (VAPOR), aiming at learning nontrivial data distribution in an unsupervised fashion and
creating a DNN encoder to find reduced or compressed data representations. In VAPOR, we extend
VAE with custom error functions and refinement processes to obtain the finer reconstructed output.
Figure 2 shows the VAPOR’s neural network architecture and an example output. In the following,
we discuss our design decisions.

Vector quantization VAE: Using Gaussian prior distributions followed by Gaussian reparameter-
ization is a well-known practice in VAE. However, recent reports (van den Oord et al., 2017; Razavi
et al., 2019) demonstrate improved quality based on vector quantization (VQ). The deterministic
nature of the VQ method is also favorable in data compression-reconstruction for its reproducibility.

Loss function: We devise flexible, physics-informed loss functions, improving the accuracy of
reconstructed data and maintaining physics constraints XGC imposed in the reconstruction. In short,
we define the following composite loss function for training:

L = αLrecon + βLVQ + γLphysics (1)
where Lrecon represents reconstruction errors based on the mean squared error measurement, LVQ

represents the loss in the vector quantization, and Lphysics represents physics quantity loss. We want
to preserve mass, momentum, and energy derived from F -data after reconstruction. More details
can be found in Ku et al. (2009); Miller et al. (2021). α, β, and γ are the weight control parameters.

Refinement: We observe VAE’s generalization (blurring) effect. Inspired by super- and multi-
level resolution approaches in (Ledig et al., 2017; Stengel et al., 2020), we add a refiner layer to im-
prove point-wise accuracy. After testing with a few candidates, such as GAN and SR-GAN (Nagano
& Kikuta, 2018), we find the Fourier Neural Operator (FNO) (Li et al., 2020) works well with XGC
data. Fourier transformation helps to improve recovering detailed features in the data. A more
detailed quantitative/qualitative study is scheduled for the next work.

4 EXPERIMENT RESULTS

We demonstrate the performance of VAPOR. We use about 131,160 examples of XGC F -data from
a DIII-D1 simulation. The full simulation consists of over 600 timesteps. We choose a single

1DIII-D is an experimental fusion device operated by General Atomics: https://www.ga.com/
magnetic-fusion/diii-d
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(a) Well-trained
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(b) Inferior

Figure 3: Examples of well-trained and inferior cases generated from VAPOR. The left-most column
images are original, and the middle images show the reconstructed output from VAPOR. The right
column images display the relative absolute error between the two.

Table 1: Data size and compression data size.

Original Raw Encoded Compressed Compressed ZFP
Type Size Data Encoded data∗ Model Size∗ compression

XGC F -data 1.6 GB 200 MB 54 MB - 1.3 GB
VAPOR Model∗∗ 98 MB - - 91 MB -
∗ We apply Gzip to compress further the raw encoded data and the VAPOR model itself.
∗∗ VAPOR model will be reusable as it integrated into the compression/reconstruction software.

timestep where F -data shows turbulent behavior, making it more challenging to compress. Each
F -data is a 2D histogram array of sizes of 39-by-39. We designed VAPOR and FNO with the
number of layers of 41 and 21 respectively, which contains about 1.8 and 2.4 million parameters to
optimize. In Table 1, we summarize the size of the XGC F -data, the size of encoded data generated
by VAPOR, and the size of VAPOR model itself. As common in many lossy compression methods
(such as SZ and MGARD), we demonstrate how we can further reduce the size of encoded data and
VAPOR model parameters by using Gzip. We achieved 8x reduction with VAPOR encoding and
about 29.4x reduction after compressing the encoded data with Gzip. To compare the size by using
other lossy compression method, we chose ZFP and observed only 1.2x compression ratio. More
detailed comparison study remains a future work.

Figure 3 shows a few examples showing the best and worst cases generated by VAPOR. One of the
challenges in compressing XGC F -data is to maintain detailed features after reconstruction. While
VAPOR works well for the F -data in the core area shown in Figure 3(a), F -data near the edge area
(Figure 3(b)) are challenging due to its complex features.

5 CONCLUSION

We present a VAE-based data compression method, called VAe Physics Optimized Reduction (VA-
POR), to compress scientific data while preserving physics constraints. Based on Vector Quantized
Variational Auto Encoder (VQ-VAE), we extend VAPOR with custom optimization functions to in-
tegrate physics constraints. In addition, we add an extra refinement layer based on Fourier Neural
Operator (FNO) to improve point-wise accuracy by overcomeing the blurring generalization effect
common in GAN/VAE-based methods.

We discuss design decisions in VAPOR and demonstrate VAPOR by using real-world scientific
outputs from XGC, a massively parallel fusion simulation code running on DOE supercomputers.
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