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ABSTRACT

Spatio-temporal grounding describes the task of localizing events in space and
time, e.g., in video data, based on verbal descriptions only. Models for this task are
usually trained with human-annotated sentences and bounding box supervision.
This work addresses this task from a multimodal supervision perspective, propos-
ing a framework for spatio-temporal action grounding trained on loose video and
subtitle supervision only, without human annotation. To this end, we combine
local representation learning, which focuses on leveraging fine-grained spatial in-
formation, with a global representation encoding that captures higher-level repre-
sentations and incorporates both in a joint approach. To evaluate this challenging
task in a real-life setting, a new benchmark dataset is proposed providing dense
spatio-temporal grounding annotations in long, untrimmed, multi-action instruc-
tional videos for over 5K events. We evaluate the proposed approach and other
methods on the proposed and standard downstream tasks showing that our method
improves over current baselines in various settings, including spatial, temporal,
and untrimmed multi-action spatio-temporal grounding.

1 INTRODUCTION

Spatio-temporal grounding (STG) describes the challenging task of locating events in space and
time within video data based on text referential expressions. Methods in this field usually rely on
a combination of spatio-temporal bounding box annotation, together with a human-generated cap-
tion, describing the visual content of the bounding box (Yang et al., 2022a; Jin et al., 2022), which
limits their generalizability beyond the given training scenario. Compared to that, multimodal self-
supervised learning tries to leverage “free” data sources, such as video and automatic speech recog-
nition (ASR) captions from large-scale instructional videos to learn representations without human
annotation (Miech et al., 2019; 2020; Alayrac et al., 2020; Akbari et al., 2021; Chen et al., 2021).
The resulting models achieve state-of-the-art performance on zero-shot tasks such as cross-modal
video retrieval or classification and also for zero-shot temporal action segmentation and detection
based on free text queries (Zhukov et al., 2019; Kuehne et al., 2019; Tang et al., 2019; Chen et al.,
2021; Shvetsova et al., 2022), but usually lack spatial localization abilities. Other approaches focus
on label-free spatial grounding, e.g. by training on image-caption (Akbari et al., 2019; Yang et al.,
2022b; Li et al., 2022a; Wang et al., 2022; Zhong et al., 2022) or video-caption pairs (Tan et al.,
2021; Shi et al., 2019). The goal is to correctly localize a referential expression in an image or each
video frame, e.g., via a bounding box or a heatmap. However, those methods are not optimized to
detect whether an event is present in a video. The assumption is thus that the evaluated expression
is visible in the image or in all video frames.

The following work aims to bring together those ideas to address the task of spatio-temporal action
grounding from multimodal supervision in untrimmed videos. We propose a grounding approach
that uses video-text pairs based on ASR transcripts in instructional videos and learns the spatial
representation of free-text events as well as their temporal extent, as shown in Figure 1. To this end,
we leverage two different representations of the visual data: a global feature representation based
on full-frame information to define the temporal extent of an event and a local representation based
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Task: Spatio-Temporal Grounding - Find the temporal boundary of a 
queried action in an untrimmed video and spatially localize the action. 

"Crack egg" …backgroundbackground…

… …

Evaluation Setup: Referential queries - "Crack egg", "Mix egg", etc.

Training Setup:  Unlabeled videos with narrated instructions

"To this we will add 
one carrot chopped 
into jong jullien …"

"… you can use the 
forks to pull it a bit 
appart…"

"… stir it a bit so it mixes 
well…"

background "Mix egg"

Figure 1: Learning Spatio-temporal ground-
ing in untrimmed videos. In training, we learn
from unlabeled videos without human annota-
tion. In evaluation, we perform spatio-temporal
grounding using an action description such as
“crack egg” as a query. The model needs to lo-
calize both the action’s temporal boundary and
spatial region in the long untrimmed video. We
visualize the heat-map from the annotation points
as well as derived bounding boxes.

Dataset Annotation
Spatial Temporal

V-HiCo object bb + human bb -
AVA-Kinetics object bb + human bb -
THUMOS14 - action boundaries
ActivityNet - action boundaries
HACSSegment - action boundaries
YouCook II - multi-action boundaries
Cross-Task - multi-action boundaries
COIN - multi-action boundaries
EPIC KITCHENS-100 - multi-action boundaries
Ego4D - multi-action boundaries
JHMDB51-21 human tubes -
UCF101-24 human tubes action boundaries
Daly human tubes action boundaries
Vid-STG human tubes action boundaries
HC-STVG human tubes action boundaries
AVA human tubes action boundaries
YouCook-Interactions action bb -
GroundingYoutube (ours) action bb + center points multi-action boundaries

Table 1: Comparison of spatial, temporal,
and spatio-temporal grounding datasets. V-
HiCo (Li et al., 2021), AVA-Kinetics (Li et al.,
2020), THUMOS14 (Idrees et al., 2017), Activ-
ityNet (Caba Heilbron et al., 2015), HACSSeg-
ment (Zhao et al., 2019), YouCook II (Zhou et al.,
2018b), Cross-Task (Zhukov et al., 2019), COIN (Tang
et al., 2019), EPIC KITCHENS-100 (Damen et al.,
2022), Ego4D (Grauman et al., 2022), JHMDB51-
21 (Jhuang et al., 2013), UCF101-24 (Soomro
et al., 2012) Daly (Weinzaepfel et al., 2016),
Vid-STG (Zhang et al., 2020), HC-STVG (Tang
et al., 2021), AVA (Gu et al., 2018), YouCook-
Interactions (Tan et al., 2021).

on frame-wise grid features for spatial localization. The motivation for this dualism is that while the
local representation captures the spatial correlations between vision and text input, this can be too
fine-grained to learn a holistic representation of the frame, while the global representation can be
assumed to capture a more compact, aggregated view compared to local data and thus to provide a
more reliable cue for the task of temporal localization. However, compared to the hand-annotated
video-caption setup of most spatio-temporal grounding methods, the ASR text can be noisy as not all
comments refer to visible events. Further, as there is only a loose temporal correlation, the described
activities might not be precisely aligned, can be scattered over multiple frames, or not be present at
all (Miech et al., 2020; Han et al., 2022). Therefore, we propose to specifically select frames to
capture only those useful for training. To this end, we look for frames that match the vocabulary
of the respective text, leveraging a selection strategy by Sinkhorn optimal transport (Cuturi, 2013).
This allows us to train a model that can localize actions in space and time within videos without
labeling supervision.

To evaluate spatio-temporal grounding in untrimmed videos, a new benchmark, GroundingYouTube,
is proposed. It is based on the existing MiningYouTube dataset (Kuehne et al., 2019) and extended
with spatio-temporal localization information. This setup differs from other benchmarks such as
(Tan et al., 2021; Chen et al., 2019; Zhou et al., 2018a) in two ways: first, by using multiple center
point annotations, it focuses on the grounding of referential actions itself instead of interacting
humans or objects which are usually labeled; second, the dense annotations of multiple actions in
the video allow us to benchmark action grounding in long, realistic untrimmed videos compared
to existing, often pre-clipped benchmarks(Chen et al., 2019; Zhang et al., 2020). The benchmark
provides queries for 512 different event types and over 5K spatio-temporal annotations as shown in
Figure 1. A comparison of current datasets is shown in Table 1.

To evaluate the proposed approach as well as the new benchmark, the system is trained on the
HowTo100M dataset (Miech et al., 2019) and compared to state-of-the-art methods based on full,
weak, and self-supervision for spatial and temporal, as well as combined spatio-temporal grounding
tasks. It shows that existing methods usually do well in one of the two aspects, spatial or temporal
grounding. In contrast, the proposed method can combine spatial and temporal aspects of semantic
concepts without label annotation.
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We summarize the contributions of this work as follows1: (1) We propose a framework for spatio-
temporal grounding in untrimmed videos based on weakly aligned multimodal supervision without
human annotation, employing a combination of global and local representation learning to learn the
spatio-temporal extent of actions. (2) To facilitate this task, we propose a frame selection strategy
based on Sinkhorn-Knopp Optimal transport that improves the quality of the acquired learning sam-
ples, leading to more effective supervision. (3) We provide a new benchmark and annotations to
evaluate this challenging problem on real-world multi-action instructional video data.

2 RELATED WORK

Supervised Spatio-temporal Grounding. Spatio-temporal Grounding refers to the problem of
localizing a sequence of bounding boxes (a spatio-temporal tube) for a target object described by an
input text. This problem has been addressed by various approaches TubeDETR (Yang et al., 2022a),
STCAT (Jin et al., 2022), STVGBert (Su et al., 2021), STVGBert (Su et al., 2021), STGVT (Tang
et al., 2021), STGRN (Zhang et al., 2020). These methods rely on proposal networks such as Faster
R-CNN (Ren et al., 2015) or MDETR (Kamath et al., 2021) to predict bounding box coordinates
for learning text-to-region interaction. All those approaches rely on supervised training with the
human-annotated sentence and bounding box supervision, provided, e.g., by datasets such as Vid-
STG (Zhang et al., 2020) and HC-STVG (Chen et al., 2019). While those datasets provide a temporal
aspect, temporal detection is usually limited to identifying the start and end frame of a single ac-
tion in a video. Compared to that, an untrimmed setting usually comprises multiple actions in a
longer video that can be separated by longer background sequences. This conceptually differs from
previous works (Chen et al., 2019) that typically use short videos of around 5-10 seconds.

Multimodal Self-supervised Learning. The field of multimodal self-supervised learning aims
to learn data representations by leveraging large amounts of unlabeled data with multiple modali-
ties. Early works (Weston et al., 2011; Frome et al., 2013) started by projecting images and text
into a joint visual-language embedding space, where embeddings of semantically similar pairs are
close. Those ideas have now grown into systems such as MIL-NCE (Miech et al., 2020) using
the HowTo100M dataset (Miech et al., 2019) to train a video-language embedding space from 1.2
million instructional videos paired with text descriptions from ASR. Follow-up works, including
(Alayrac et al., 2020; Akbari et al., 2021; Rouditchenko et al., 2020; Chen et al., 2021; Shvetsova
et al., 2022) show that using videos without annotation enables an effective multimodal embedding
space via contrastive learning.

Based on those advantages, approaches started to address the problem of Spatial Video Grounding
from multimodal self-supervised aiming to identify spatial locations in a trimmed video based on text
descriptions without the need for bounding box annotation during training. One of the early works
studied this task in the context of weakly supervised learning scenarios where we learn ground-
ing with human-annotated captions of the video (Zhou et al., 2018a). In this context, works (Tan
et al., 2021; Shi et al., 2019) have focused on object grounding benchmarks such as YouCook2-
BoundingBox (Zhou et al., 2018b), which provides bounding box annotations for visible objects in
cooking videos. Other works such as GLIP (Li et al., 2022a) and RegionCLIP (Zhong et al., 2022)
combine the principles of large-scale vision language training with bounding box fine-tuning on
object detection datasets (Gupta et al., 2019; Lin et al., 2014). Recently, the YouCook-Interactions
dataset (Tan et al., 2021) and CoMMA (Tan et al., 2021) have been proposed for the spatial ground-
ing of objects and actions with multimodal self-supervision from HowTo100M videos. All these
works assume that the video is temporally clipped with respect to the grounding phrase.

Compared to that, Temporal Video Grounding aims to determine the set of consecutive frames
corresponding to a text query in an untrimmed video (Jiang et al., 2014; Soldan et al., 2021), thus
predicting temporal boundaries of action instances. Recent work such as MIL-NCE (Miech et al.,
2020), MCN (Chen et al., 2021), and VideoCLIP (Li et al., 2022b) utilize large-scale pretraining for
grounding actions temporally via text-to-frame similarity matching on video datasets such as Min-
ingYouTube (Kuehne et al., 2019) or CrossTask (Zhukov et al., 2019) without proposals. However,
the majority of methods lack spatial localization ability (Zeng et al., 2020; Zhao et al., 2021).

1We will make the code and the annotations publicly available.
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Figure 2: Spatio-temporal grounding approach. (a) We aim to select frames with groundable
objects and actions. To this end, projected text features are matched with respective frame features.
(b) Sinkhorn optimal transport is then leveraged to optimize the selected frames wrt. the text input.
(c) Based on the selected frames, a global representation is learned to allow for temporal localization,
as well as (d) a local representation to ground the action description in the spatial region.

3 A GLOBAL-LOCAL FRAMEWORK FOR SPATIO-TEMPORAL GROUNDING

3.1 GENERAL SETUP

The goal of the proposed method is to temporally and spatially localize actions based on free-text
queries in untrimmed videos. To this end, two representations are learned, a local and a global
one. We start with narrated video clips, each associated with a corresponding visual representation
and text narration. Namely, for each clip X = {V,S}, let V stand for the video clip and S for
the text narration sentence generated by the automatic speech recognition (ASR) system. Each clip
V consists of T × N spatio-temporal tokens {vt,n}, where t ∈ {1, ..., T} represents the number
of frames in the video and n ∈ {1, ..., N} represents the number of spatial grid region tokens or
features in a frame. The text sentence S consists of K words {s1, ..., sK}. We represent localized
features by the tokens from each modality, and the global features {V, S} are acquired either by
mean-pooling over the local features or by using the CLS token from the transformer as in Radford
et al. (2021). We learn transformations f : V → Rd to a d-dimensional representation f(V ) ∈ Rd

from the global representation V , and g : S → Rd, to produce similar d-dimensional text global
embeddings: g(S) ∈ Rd. Similar to {f, g}, we note {f ′

, g
′} to be the transform for localized

features, where local features {v, s} are also projected as d-dimensional representations.

3.2 REPRESENTATION GUIDED FRAME SAMPLING

Learning from multimodal self-supervision is challenging since the narration is likely to be noisy,
thus containing more information than the actual task descriptions due to poor temporal alignment
or cut scenes (Han et al., 2022), which is the key differences between weakly supervised vision-
caption grounding and multimodal self-supervised grounding. This work pursues a frame selection
strategy to improve object grounding and temporal alignment during training. We start from a longer
sequence U , where U > T , which includes the video frames before and after the ASR boundaries
that could contain actions or objects in the sentence. Our goal is to find T frames out of the U frames
that are most relevant to the actions and objects in the sentence S. We formalize it as an optimal
transport problem utilizing the Sinkhorn-Knopp algorithm (Cuturi, 2013).

Optimal transport for text-to-frame assignment. To acquire the optimal assignment from word
features to video frames, an assignment matrix Q is computed from each video and ASR pair as
shown in Figure 2(a). This cross-model optimal transport mechanism is applied to assignment Q
from the projected cross-model similarity P between word tokens and each video frame, where
P = g(S)

⊗
f(V)⊤ ∈ RK×U . To compute the assignment matrix, the text and video projection

layers from the global representation in Figure 2(c) are used to project multimodal features into a
common space for feature similarity calculation. We investigate various granularities of the features
where we compute the similarity between the text features at the word (local) / sentence (global)
level and the visual feature at frames (global) / spatiotemporal tokens (local) level to acquire P, as
shown in Table 5. To ensure that the word-to-frame assignment contains more diversity instead of
just saturated assignments to a single video frame, we add a constraint by Sinkhorn that requires label
assignments to be equally distributed across various video frames representing diverse object/action
concepts. Details of the Sinkhorn optimal transport are included in the appendix 7.1.
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3.3 LOCAL REPRESENTATIONS FOR SPATIAL LOCALIZATION

To capture multimodal interaction with finer granularity, we need to learn the projection between
tokenized features as shown in Figure 2(d). We extract spatio-temporal region features vtn from the
video. Also, we extract word features sk which represents the feature from word k. All tokenized
features are projected through a linear layer. To compute attention between the tokenized features,
we stacked two cross-modal attention layers with a self-attention layer in the middle, as illustrated
in Figure 2 (d). Cross-modal attention is computed similar to the standard attention mechanism (Lee
et al., 2018). Given a spatio-temporal token vtn from a video, we compute the attention score to
all of the words sk, where k ∈ {1, ...,K} in the ASR sentence S by αtnk = exp(etnk)∑K

k=1 exp(etnk)
in the

same video clip, where etnk = cosine(vtn, sk). We then acquire a contextual video token feature
v̄tn =

∑K
k=1 αtnksk, which encoded text contextual information. Note that the contextual vector

is represented by aggregating the representations from the other modality. Follow the standard self-
attention computation (Vaswani et al., 2017) K, Q, V represent the features for the keys, queries,

and values as: Attn(K,Q, V ) = softmax

(
(Q⊤K)√

dk

)
V where dk is the dimension of the key. In

our case, we feed each contextual features {v̄tn,s̄k} right after the first cross-attention layer to be
the K, Q, V to acquire its self-attended representation. The localized attention model was trained
using contrastive loss.To represent the video clip V and ASR sentence S , we mean-pool over the
spatio-temporal tokens in video V̄ = 1

TN

∑TN
r=1 v̄r, and words S̄ = 1

K

∑K
k=1 s̄k respectively. Let(

V̄ (l), S̄(l)
)

be the l-th training example pair. We adopt the Noise Contrastive Estimation (NCE)
loss (Gutmann & Hyvärinen, 2010) and the localized attention losses LLocal :

− 1
B

B∑
l=1

[(
log eV̄l·S̄l−δ

eV̄l·S̄l−δ +
B∑

k=1
k ̸=l

eV̄
imp
k ·S̄l

)
+

(
log eV̄l·S̄l−δ

eV̄l·S̄l−δ +
B∑

k=1
k ̸=l

eV̄l·S̄imp
k )

)]
(1)

where B is the batch. V̄ imp
k and S̄imp

k represent imposter samples, and δ is a margin hyperparameter.

3.4 GLOBAL REPRESENTATIONS FOR TEMPORAL LOCALIZATION

We learn the global representation of a video clip and a sentence by contrastive loss, as shown
in Figure 2(c). We again use the NCE loss function (Gutmann & Hyvärinen, 2010). The global
contrastive loss LGlobal follows the formulation as Equation 1 while using the global representations
V and S, which are the [CLS] tokens from both modalities, instead of the local representations.
Projecting the global features to the same space ensures that the features across different modalities
are comparable. Since global representations encode information from the entire video, it is essential
in encoding temporal information for the later downstream tasks. The final model is optimized by
the sum of both losses as LFinal = LLocal + LGlobal.

3.5 INFERENCE FOR SPATIO-TEMPORAL GROUNDING.
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Figure 3: Spatio-temporal inference. Both temporal
and spatial representations are used for spatio-temporal
grounding: Starting by predicting the action boundary,
spatial grounding is performed on the selected frames
using the predicted label to find corresponding regions.

To perform spatio-temporal grounding on
untrimmed videos, we start from tempo-
ral action detection as shown in Figure 3.
Given a pool of possible action descrip-
tions on the left and an untrimmed video,
we perform feature similarity matching
using the global representation ([CLS] to-
ken) per frame with a threshold τ to fil-
ter backgrounds. We pick the action
class with the largest similarity score per
frame. Later, we use the predicted action
class and feed it into the local represen-
tation branch to compute spatial ground-
ing. We follow attention rollout (Abnar &
Zuidema, 2020) to compute feature sim-
ilarity between visual tokens and text to-

5



Under review as a conference paper at ICLR 2024

kens through the cross-attention and self-attention. In the end, we acquire an attention heatmap for
later downstream evaluation. More information on inferencing are in appendix 8.2.

4 GROUNDINGYOUTUBE BENCHMARK

Current downstream datasets either provide spatial (Tan et al., 2021), temporal annotation (Kuehne
et al., 2019), or short video clip with spatio-temporal annotation (Zhang et al., 2020). These datasets
do not provide the opportunity to evaluate both aspects, spatial and temporal grounding, in an
untrimmed long video manner. We, therefore, extend one of the current benchmarks, MiningY-
ouTube (Kuehne et al., 2019), which already provides dense temporal annotations, and we annotate
video clips in the dataset with spatial information.

Annotating the spatio-temporal extent of actions can be challenging as there is no clear visible out-
line as in object annotation, nor is there a unique signal to indicate the temporal begin and end points.
Similarly, grounding systems do not produce pixel-exact bounding boxes, but rather indicate regions
of interest. Detector-free spatial grounding models (Arbelle et al., 2021) address this fuzziness by
relying on pointing game accuracy, thus only using the center point of the heat map for evaluation.
Lending on this idea, annotators were asked to mark the presumed center point of the action. Com-
pared to bounding boxes, center point annotation can be advantageous because annotators are not
visually distracted by object outlines, so it is more likely that the most important region will be
selected. We capture five annotations per frame, resulting in a density-based heat map.

Starting from 5,091 clips showing one of the 512 action classes, we adopt the methodology used
for temporal action localization developed in (Gu et al., 2018) and label one frame per second,
resulting in 26, 987 frames. We annotated all frames with five repeats per image, resulting in five
annotations per frame and 134, 935 point labels in total. Following the previous evaluation setting
using bounding boxes (Kalogeiton et al., 2017), we get the union of all annotated points in a single
frame with an additional distance to construct the bounding box. We provide more information
on the annotation process and dataset analysis are in the appendix 10. Video examples are in the
supplement.

5 EXPERIMENTS

5.1 DATASETS

Training Data: HowTo100M dataset contains 1.2M instructional videos along with their corre-
sponding automatically generated speech (ASR) transcriptions.

Downstream Datasets: GroundingYoutube (GYT) is used to evaluate the task of multi-action
spatio-temporal grounding as described in Section 4. MiningYoutube (MYT) (Kuehne et al., 2019)
provides temporal annotation and is limited to the domain of cooking instruction videos. YouCook-
Interaction (YC-Inter) (Tan et al., 2021) is an extension of the YouCook2 dataset (Zhou et al.,
2018b) for cooking instruction providing bounding boxes for 6K selected frames. The bounding
boxes usually comprise the hand and the tool mentioned in the respective sentence-wise annotation.
To further benchmark on general video domains on the V-HICO dataset (Li et al., 2021) with 6.5k
videos with human-object interaction bounding boxes annotations, and Daly action dataset (Wein-
zaepfel et al., 2016), featuring videos consisting of daily actions such as “brushing teeth”.

5.2 BASELINE METHODS

The proposed system is compared to various multimodal methods based on self- and weak supervi-
sion: MIL-NCE (Miech et al., 2020), which utilizes S3D (Xie et al., 2018) and word2vec (Mikolov
et al., 2013) to project two modalities into a common space, is chosen as the standard baseline
for this task; CoMMA (Tan et al., 2021), the best-performing model for spatial representations in
self-supervised learning (we denote CoMMA† to represent the model that uses weights shared by
the author2); CLIP (Radford et al., 2021), an image-text model trained with transformer architec-
ture, is further applied as the backbone and trained with (Tan et al., 2021) to construct CoMMA‡;

2We thank the authors for providing code and weights.
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GroundingYoutube

Method Backbone DataSet Supervision Modality IoU+Point mAP
0.1 0.2 0.3 0.4 0.5 0.1:0.5

CoMMA† (Tan et al., 2021) S3D HT250K Self VT 1.02 2.18 1.72 1.11 0.93 0.37 1.26
MIL-NCE (Miech et al., 2020) S3D* HT100M Self VT 4.67 33.94 25.16 12.65 3.42 0.41 15.11
Ours S3D HT100M Self VT 9.12 42.70 35.49 25.16 16.22 10.05 25.92

GLIP (Li et al., 2022a) Swin-L* Cap24M Weak IT 1.24 2.83 2.10 1.52 0.96 0.37 1.56
CoMMA‡ (Tan et al., 2021) CLIP HT100M Self VT 1.68 3.51 2.32 1.88 0.99 0.40 1.82
CLIP (Radford et al., 2021) CLIP HT100M Self IT 3.59 29.54 22.15 9.16 2.48 0.39 12.74
RegionCLIP (Zhong et al., 2022) ResNet-101* CC3M Weak IT 5.65 35.65 27.43 15.69 4.31 0.86 16.78
Ours CLIP HT100M Self VT 10.09 42.81 36.05 25.84 17.10 11.35 26.63
Ours CLIP* HT100M Self VT 11.53 43.64 36.94 26.78 19.45 14.61 28.26

MIL-NCE(temp.)+RegionCLIP(spa.) - - - VT 9.21 40.54 34.97 22.38 13.79 9.18 22.33

Table 2: Spatio-temporal grounding on GroundingYouTube full videos. (V: video, I: image, T:
text.) ∗ indicates finetuned backbone.

GLIP (Li et al., 2022a) and RegionCLIP (Zhong et al., 2022), state-of-the-art image-text ground-
ing models that combine large-scale image caption pretraining and object detection fine-tuning,
which we consider weakly supervised as the bounding box proposal network was trained on other
human-annotated data. We further construct a strong baseline MIL-NCE+RegionCLIP where we
use MIL-NCE for temporal localization and RegionCLIP for spatial grounding following the infer-
ence pipeline of Figure 3 without additional training. Finally, two fully supervised models, Tube-
DETR (Yang et al., 2022a) and STCAT (Jin et al., 2022) are included for comparison. Further details
of the implementation and experimental settings can be found in the appendix 8.1. Inference setups
for each baseline are described in Section 8.2.

5.3 DOWNSTREAM TASKS

We considered the following downstream tasks to evaluate spatio-temporal grounding abilities of
various models (detailed description is included in the appendix 8.3):

(i) Spatio-temporal grounding in untrimmed video is evaluated on the proposed Grounding
Youtube dataset. The entire video and the respective pool of action instructions were provided.
The model needs to localize each action step in time (start-time/end-time) and space (location in the
video) as described in Figure 3. We evaluate in two metrics: IoU+Pointing game combines spatial
grounding (Akbari et al., 2019) and temporal grounding (Kuehne et al., 2019) metrics. We also
compute video mAP following previous evaluation (Gu et al., 2018), where we set IoU threshold
between GT and predicted spatio-temporal tubes. A prediction is correct when it surpasses the IoU
threshold. We compute the mAP over all classes.

(ii) Spatial grounding is given a text description to localize the corresponding region in the trimmed
video. This task is evaluated using the pointing game accuracy. If the predicted point lies in the
ground truth bounding box, the result counts as a “hit” and counts as “miss” otherwise. The final
accuracy is calculated as a ratio between hits to the total number of predictions # hits

# hits+# misses . We
also report the mean average precision (mAP) following the settings from V-HICO (Li et al., 2021).

(iii) Temporal grounding provides videos with the respective actions and their ordering, including
the background. The goal is to find the correct frame-wise segmentation of the video. We follow
the inference procedure in (Kuehne et al., 2019) to compute the alignment given the similarity input
matrix. The task is evaluated by intersection over detection (IoD), defined as G∩D

D the ratio between
the intersection of ground-truth action G and prediction D to prediction D, and the Jaccard index,
which is an (IoU) given as G∩D

G∪D .

5.4 COMPARISON WITH STATE-OF-THE-ART METHODS

(i) Spatio-temporal grounding in untrimmed video: We first compare the proposed method with
other approaches designed for spatial or temporal grounding in Table 2. It shows that models with-
out specific loss designs for spatial grounding (MIL-NCE (Miech et al., 2020), CLIP (Radford et al.,
2021)) show good mAP scores but lower pointing game accuracy. Out of the two weakly super-
vised methods, GLIP (Li et al., 2022a) and RegionCLIP (Zhong et al., 2022)), trained with aligned
image-text, RegionCLIP show significantly better performance in this setting, while both perform
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YC-Inter GroundingYT V-HICO Daly

Method Backbone Data Super. Mod. Acc Acc mAP Acc mAP Acc mAP

MIL-NCE (Miech et al., 2020) S3D* HT100M Self VT 23.67 27.45 8.21 12.65 11.23 13.84 24.23
CoMMA† (Tan et al., 2021) S3D HT250K Self VT 48.63 47.68 23.38 40.97 21.45 54.48 33.39
Ours S3D HT100M Self VT 53.98 60.62 44.93 44.32 24.31 66.35 45.93

CLIP (Radford et al., 2021) CLIP HT100M Self IT 14.10 12.50 3.49 29.23 12.51 18.02 27.28
CoMMA‡ (Tan et al., 2021) CLIP HT100M Self VT 52.65 47.56 36.42 55.20 34.54 61.06 44.37
RegionCLIP (Zhong et al., 2022) RN50x4* CC3M Weak IT 51.56 52.84 23.42 57.92 37.82 67.12 48.62
GLIP (Li et al., 2022a) Swin-L* Cap24M Weak IT 52.84 53.62 24.73 66.05 41.17 - -
Ours CLIP HT100M Self VT 57.10 55.49 43.12 60.71 39.28 70.08 50.56
Ours CLIP* HT100M Self VT 58.35 56.98 45.32 62.34 41.56 71.35 52.78

TubeDETR (Yang et al., 2022a) MDETR Vid-STG Full VT 51.63 53.24 41.76 63.23 40.87 84.21 62.98
STCAT (Jin et al., 2022) ResNet-101 Vid-STG Full VT 54.47 55.90 44.21 65.34 41.10 85.42 63.94

Table 3: Video spatial grounding. We evaluate the accuracy of the pointing game and the mean
average precision. ∗ indicates finetuned backbone.

GroundingYT MiningYT YC-Inter. GroundingYT MiningYT YC-Inter.
Spatio-temporal Temporal Spatial Spatio-temporal Temporal Spatial

w/o Sinkhorn with Sinkhorn

None 17.43 18.34 57.42 - - -
Global T - Global V 18.24 19.38 56.31 18.96 19.89 57.34
Global T - Local V 18.01 19.31 57.56 18.53 19.35 57.67
Local T - Global V 18.05 19.85 57.34 19.32 20.36 58.13
Local T - Local V 18.31 19.48 57.86 19.43 20.16 58.51

Average over last two 18.36 19.68 57.77 19.45 20.33 58.35

Table 5: Frame selection: (a) Sinkhorn selection results in better supervision. (b) We investigate all
possible combinations of global and local representations for frame selection similarity matching.

in a similar range in the spatial grounding scenario (see Table 3). We attribute this behavior to the
fact that RegionCLIP distinguishes frames with relevant queries better from background than GLIP,
leading to better temporal localization. Further, the proposed method improves over the other base-
lines underlining the need to incorporate global (temporal) and local (spatial) representations. We
compared our strong baseline MIL-NCE+RegionCLIP, which combines two approaches specialized
in temporal and spatial aspects, to our task. Experiments showed that combining a joint objective
that learns spatial and temporal information jointly results in better performance than simply apply-
ing the best temporal and spatial model. Also, such a combine objective also benefits more when
the visual backbone is finetued as well. We construct a split with single action shown in appendix
9.2.

(ii) Spatial grounding: Second, we compare the performance of the proposed framework to other
methods on the task of spatial grounding, including models with weak supervision, as well as models
trained in a fully supervised setting in Table 3. In the instruction video domain (GYT and YC-
Inter), the proposed approach achieves the best result among all weakly and self-supervised trained
methods. In the general domain (V-HICO and Daly), the method also achieves competitive results,
showing the generalizability of the model to other domains. Note that in the Daly dataset, the
classes are verbs, which are not detectable by the object-focused model GLIP. Compared to their
weakly trained counterparts, fully-supervised model (TubeDETER (Yang et al., 2022a), STCAT (Jin
et al., 2022)) achieve competitive performance in the general domain (V-HICO, Daly) and slightly
lower performance in instruction domain (GYT, YC-Inter) due to the domain gap with respect to the
training data.

Method Backbone Data Super. IoU IoD

Mining: MLP (Miech et al., 2020) TSM MiningYT Weak 9.80 19.20
CoMMA* (Tan et al., 2021) S3D HT250K Self 2.05 5.63
MIL-NCE (Miech et al., 2020) S3D* HT100M Self 18.69 26.74
Ours S3D HT100M Self 19.18 27.65
Ours CLIP HT100M Self 19.88 28.50
Ours CLIP* HT100M Self 20.33 29.67

Table 4: Temporal Grounding on MiningYoutube.
∗ indicates finetuned backbone.

(iii) Temporal grounding: We finally eval-
uate temporal grounding in Table 4. Here, it
shows that global representations also profit
from local representation learning.This hy-
pothesis is further validated in the ablation
studies in Table 6, where we ablate both
losses for all three settings and show a con-
sistent improvement in the joint loss formu-
lation.
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Figure 4: Visualization on GroundingYoutube. Red box: annotation. Heatmap: prediction.

5.5 ABLATION STUDY

We perform ablation studies with respect to all three settings, spatio-temporal grounding, as well
as spatial and temporal grounding alone, reporting performance for spatio-temporal grounding on
GroundingYT using mAP with IoU@0.4, on temporal grounding using MiningYT IoU, and on
spatial grounding using YC-Inter. pointing game. Additional ablation are in appendix 9.3.

Frame selection strategy. We perform an ablation on the possible frame selection strategies for our
method (Figure 2(b) and Section 3.2). In Table 5, None uses all frames within the ASR boundary
(U = T ) as our video training data. Global represents the [CLS] token in text and video. Lo-
cal uses the words and spatio-temporal tokens. In the setting Sinkhorn was not applied, the top
T frames with the highest similarity score were selected. When we set spatio-temporal tokens
as the selection target, we sum over the scores with respect to each frame to acquire the frame
similarity score. It shows that selecting frames based on Sinkhorn selection leads to consistently
better results as it enforces more variety of visual concepts but also captures frames with possible
groundable objects. It further shows that word tokens are more suitable than the global text CLS
token for frame selection. Finally, we see that depending on the task (spatial vs. temporal), a local
resp. global representation is better, and a combination of both works best for spatio-temporal
grounding. We provide runtime analysis of such frame selection strategy in the appendix 9.1.

GroundingYT MiningYT YC-Inter.
Spatio-temp Temporal Spatial

only Local loss 7.29 5.23 55.29
only Global loss 9.28 19.12 36.23
w/ Both loss 19.45 20.33 58.35

Table 6: Loss ablations: both losses con-
tribute to the final loss, and the existence of
global loss helps the localization task.

Global and local loss. As mentioned in the spatio-
temporal evaluation, both features contribute signifi-
cantly to the final grounding result. We test the model
by ablating out each loss. As shown in Table 6, not
only that each loss contributes to the task of spatio-
temporal grounding on the GYT, but also the whole is
more than the sum of its parts (losses) since this task
requires both spatial and temporal detection. The re-
duced impact of the global loss in the case of YC-Inter is based on the fact that this is a pure spatial
grounding dataset (no background frames) without temporal detection, and the local loss plays a
more critical role. We observe the same patterns in the temporal grounding result for MYT, where
spatial localization wasn’t directly contributing to the final performance.

5.6 QUALITATIVE RESULTS

We visualize our spatio-temporal result in Figure 4. For the GLIP model, we output the bounding
box with the highest confidence score and visualize its center point. We found GLIP model focuses
on the salient object while our model focuses more on human-object interaction.

6 CONCLUSION

We presented an approach for learning spatio-temporal grounding with self-supervision and a new
dataset: GroundingYoutube annotations, where we densely annotate spatio-temporal points/boxes
from untrimmed multi-action videos. Our method includes a frame selection mechanism that iden-
tifies frames with groundable objects to adapt the learning process for untrimmed videos. Further-
more, we jointly learn global representations, which capture temporal information, and local rep-
resentations learning fine-grained multimodal interactions between video and text. We conducted
extensive experiments to evaluate the performance of our approach showing state-of-the-art perfor-
mance in spatio-temporal grounding, as well as temporal and spatial grounding alone.
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This appendix is organized as follows:

7. Details on the methodology.

8. Details on the experimental setup.

9. Additional experiments.

10. Details on the annotation process and dataset analysis

7 METHOD DETAILS

7.1 SINKHORN OPTIMAL TRANSPORT

To acquire the optimal assignment from word features to video frames, an assignment matrix Q
is computed from each video and ASR pair as shown in Figure 2(a). This cross-model optimal
transport mechanism is applied to assignment Q from the projected cross-model similarity P be-
tween word tokens and each video frame, where P = g(S)

⊗
f(V)⊤ ∈ RK×U . To compute the

assignment matrix, the text and video projection layers from the global representation in Figure
2(c) are used to project multimodal features into a common space for feature similarity calculation.
To ensure that the word-to-frame assignment contains more diversity instead of just saturated as-
signments to a single video frame, we add a constraint that requires label assignments to be equally
distributed across various video frames representing diverse object/action concepts. This is achieved
by restricting Qv to a transportation polytope Qv:

Q =
{
Q ∈ RU×K

+ |Q1K = 1
U 1U ,Q

⊤1U = 1
K1K

}
, (2)

which enforces the soft-assignment distribution Q to assign an equal marginal probability to each
of the U frames instead of converging to a single frame. The vector 1U represents one vector with
dimension U × 1.

The next goal is to enforce this transportation polytope Q. A solution for Q is now computed
using the optimal transport Sinkhorn-Knopp algorithm (Caron et al., 2020; Cuturi, 2013) as shown
in Figure 2(b). The Sinkhorn-Knopp algorithm also normalizes the distribution of P as:

Q = Diag(α) exp
(
P
ε

)
Diag(β), (3)

where α and β are scaling vectors that restrict Q to have a uniform distribution across region assign-
ment. ε is a parameter that controls the smoothness of the mapping (Caron et al., 2020).

The T frames are then selected by the corresponding assignment Q from the frames with top T
aggregated similarity sum over each word for further training. Note that the selection part P is
from a trainable projection. While acquiring a better word-to-region projection during training,
we hypothesize that the frame selection also benefits. The respective frame selection strategy is
evaluated in Table 5.

8 EXPERIMENTAL SETUP

8.1 BACKBONES AND TRAINING

We evaluate the proposed method on backbones, CLIP (Radford et al., 2021) and S3D-word2vec
(Miech et al., 2020). We described the detailed setup as well as the training in the following.

CLIP models. For both the visual and text backbone, we use the pretrained weights from CLIP
(Radford et al., 2021) with transformer ViT-B/32 and fix the encoder. Both the visual and text
encoder has a final embedding size of 512. We apply them to video segments with 12-28 seconds,
processing 1 frame per second. An evaluation of how many frames to process (identical to the
number of seconds) is shown in Table 9. It shows the best results when we start with 80 possible
frames U (as described in Section 3.2), from which T = 16 frames are selected for training. Ablation
of the number of frames T used for training is shown in Table 10. We used a batch size of B = 64
video clips.
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S3D-word2vec models. For the video backbone, we follow (Tan et al., 2021) and use S3D initial-
ized by MIL-NCE on HowTo100M (Miech et al., 2020) at the rate of 5 frames per second and fix
the video encoder. The global video clip features were max-pooled over time and projected into
embeddings of dimension 512. We used the mean-pooled S3D spatio-temporal features to represent
the global representation of the video following the S3D architecture (Xie et al., 2018). For the text
feature, we follow (Miech et al., 2019) using a GoogleNews pre-trained word2vec model (Mikolov
et al., 2013) and max-pooling over words in a given sentence to acquire the text global feature. We
follow (Miech et al., 2020) to use the max-pooled word embedding to represent the sentence (global
representation) since there is no [CLS] token. Also, the sentence feature is used for the query word
selection instead of the [CLS] token. We use a batch size of B = 96 video clips.

Training. For the training of both backbone settings, we use an Adam optimizer (Kingma & Ba,
2015) with a learning rate of 1e−4. In the setting of fintining CLIP, we set a learning rate of 1e−7
for the CLIP backbone. The model is trained for 10 epochs on 4 V100 GPUs, which takes about two
days.

8.2 INFERENCE

Inference for the proposed model and CoMMA. For inference in the case of temporal grounding,
as shown in Figure 3(a), we first normalize the global feature for video and text. We used a (tempo-
ral) threshold θ = 0.5 to separate detections from the background. In spatial grounding, we acquire
an attention heatmap using the attention rollout (Abnar & Zuidema, 2020) described in Section 3.5.
We set a spatial threshold τ = 0.01 to create the mask, as shown in Figure 3(b). The choice of this
spatial threshold is evaluated in Table 12.

GLIP, RegionCLIP baseline inference. In spatial grounding, we are given a text query and need to
localize it in the frame. GLIP and RegionCLIP predict multiple bounding boxes corresponding to the
text query. We select the predicted bounding box with the highest confidence score as the prediction
result. We use the center point of the predicted bounding box for the pointing game evaluation as the
model prediction. For mAP evaluation, we use the predicted bounding box to compute IoU with the
ground truth bounding box. In spatio-temporal grounding, we input all possible action description
labels as candidates similar to Figure 3(a). We pick the class with the highest confidence score as the
predicted label. If the model made no prediction, we would predict it as “background”. The spatial
inference is the same as the spatial grounding setting.

TubeDETR, STCAT baseline inference. TubeDETR and STCAT are spatio-temporal grounding
models trained to predict a single spatio-temporal tube per video. In both cases, TubeDETR and
STCAT, we use models trained on the Vid-STG dataset with 448x448 resolution and evaluate them
for the task of spatial grounding. Since this dataset contains mostly short videos (<30sec), we
observed that both methods will also only predict a trajectory tube in this temporal range (<30sec),
no matter how long the input video is. To allow us to apply them to longer videos (>30sec), we split
the longer videos based on sliding windows of 5-sec for better performance.

MIL-NCE, CLIP baseline inference. Both models are trained based on global representations for
both input modalities, videos/images and text. We can, therefore, directly compute a sentence-to-
video-frame similarity to perform the temporal grounding for Figure 3(a), following the same pro-
cess as the proposed method for temporal grounding. For spatial grounding, we compute sentence-
to-region feature similarity. Both visual backbones produce a 7x7 grid feature. We normalize the
sentence and region features, then select a spatial threshold τ = 0.5 to create the mask for the mAP
evaluation.

8.3 EVALUATION METRICS

(i) Spatio-temporal grounding in untrimmed video is evaluated on our annotated GroundingY-
outube dataset. We combined the spatial and temporal grounding evaluation as before (Kuehne et al.,
2019; Akbari et al., 2019) to form the spatio-temporal evaluation. The entire video and the respective
pool of action instructions were provided. The model needs to localize each action step in temporal
(start-time/end-time) and spatial (location in the video) as described in Figure 3. We evaluate in two
metrics: IoU+Pointing game combines the evaluation setting from the spatial grounding (Akbari
et al., 2019) and temporal grounding (Kuehne et al., 2019) metrics. For each video frame, the pre-
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diction is correct when the model predicts the correct action for the frame. Also, given the predicted
action as a query, the maximum point of the heatmap aims to lie within the desired bounding box.
We then compute the Intersection over Union (IoU) over all the predictions with the GT to acquire
the final score. We also compute video mAP following previous evaluation (Gu et al., 2018), where
we set IoU threshold between GT and predicted spatio-temporal tubes. A prediction is correct when
it surpasses the IoU threshold. We then compute the mAP over all classes. We form a 3D prediction
mask following Figure 3 and compute IoU between our 3D heatmap and 3D tube.

(ii) Spatial grounding is given a text query description to localize the corresponding region in the
trimmed video. We use GroundingYoutube, Youcook-Interaction, V-HICO, and Daly for evaluation.
This task is evaluated using the pointing game accuracy. Given the query text and video, we
compute the attention heatmap on the video as described in Figure 3(b). If the highest attention
similarity score lies in the ground truth bounding box, the result counts as a “hit” and counts as
“miss” otherwise. The final accuracy is calculated as a ratio between hits to the total number of
predictions # hits

# hits+# misses . We report the mean average precision (mAP) following the settings from
V-HICO (Li et al., 2021). Given a human-object category as the text query, we aim to localize the
spatial location in the video frame. The predicted location is correct if their Intersection over-Union
(IoU) with ground truth bounding boxes is larger than 0.3. Since we do not use any bounding box
proposal tools or supervision, we create an attention heatmap as described in Figure 3(b) to create a
mask for IoU computation. We follow (Li et al., 2021) and compute the mAP over all verb-object
classes.

(iii) Temporal grounding provides videos with the respective actions and their ordering, including
the background. The goal is to find the correct frame-wise segmentation of the video. We follow
the inference procedure in (Kuehne et al., 2019) to compute the alignment given our similarity input
matrix. The task is evaluated by intersection over detection (IoD), defined as G∩D

D the ratio between
the intersection of ground-truth action G and prediction D to prediction D, and the Jaccard index,
which is an (IoU) given as G∩D

G∪D .

9 ADDITIONAL EXPERIMENTS

9.1 RUNTIME ANALYSIS

We analyze the computational costs of sampling and loss. We sample 16-second videos at a frame
rate of 5 FPS (80 frames in total). We report the execution time for a single batch (batch size = 64)
averaged over 100 batches. For the frame sampling strategy: (1) Random select 8 frames: 1.48s.
(2) Optimal transport based selection of 8 frames out of 64: 1.54s. (3) Entire 64 frames: 1.74s. The
execution time of our method is close to traditional random sampling while capturing diverse visual
concepts, which improves the training process. For the global and local components: (1) Global
loss only: 1.1s. (2) Local loss only: 1.52s. (3) Both losses: 1.54s. Computation of the local loss is
more time-consuming than the global loss due to its requirement for features with finer granularity.

9.2 SINGLE-ACTION SPATIO-TEMPORAL GROUNDING.

Current spatio-temporal detection and grounding datasets (Jiang et al., 2014; Gu et al., 2018) usually
aim to discriminate a single given action class from the background class in a short clip. This differs
from our setup of spatio-temporal grounding in untrimmed videos, which usually comprises a set of
phrases that need to be detected in a 3-5 min long video. To allow an evaluation of spatio-temporal
grounding approaches based on single phrase grounding, we construct a clip-level evaluation where
the clip varies from 9 sec to 60 sec. Given an action step, we append the video segments before and
after the steps with the same time length of the action step to form the final video clip. This results
in 2,895 clips for the spatio-temporal clip grounding evaluation. For each clip, the temporal action
intervals occupy 33% of corresponding videos, which demonstrates the difficulty of the setting. In
this setting, instead of selecting the possible action step from a pool, the ground truth action step
was given as the text query for spatio-temporal grounding. This allows us to directly compare with
supervised spatio-temporal grounding methods (Yang et al., 2022a; Jin et al., 2022) as described in
Section 5.4. As shown in Table 7, we observe that the baseline GLIP models achieve a much better
performance compared to Table 2. This is due to the fact that this setting does not require the model
to select the text query from the pool, which the GLIP model was not trained to do. Moreover, we
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GroundingYoutube

Method Backbone DataSet Supervision Modality IoU+Point mAP
0.1 0.2 0.3 0.4 0.5 0.1:0.5

CoMMA* (Tan et al., 2021) S3D-word2vec HT250K Self VT 1.10 7.46 5.84 4.20 2.65 1.53 4.93
MIL-NCE (Miech et al., 2020) S3D-word2vec HT100M Self VT 12.41 45.91 32.33 15.35 3.70 2.56 19.54
Ours S3D-word2vec HT200K Self VT 19.46 51.95 40.31 26.81 16.27 7.81 28.63

CoMMA† (Tan et al., 2021) CLIP HT200M Self VT 2.64 8.94 6.89 5.47 4.18 2.67 5.63
CLIP (Radford et al., 2021) CLIP HT200K Self IT 11.34 43.28 30.64 11.20 3.10 1.94 18.03
RegionCLIP (Zhong et al., 2022) ResNet-101 CC3M Weak IT 17.42 51.86 40.23 26.10 15.23 7.29 28.14
GLIP (Li et al., 2022a) Swin-L Cap24M Weak IT 18.15 52.61 41.83 26.93 17.23 8.46 29.41
Ours CLIP HT200K Self VT 20.81 53.24 42.96 29.17 20.36 11.84 31.51

TubeDETR (Yang et al., 2022a) MDETR Vid-STG Full VT 26.43 63.47 50.95 38.23 28.31 19.34 40.06
STCAT (Jin et al., 2022) ResNet-101 Vid-STG Full VT 27.84 64.96 52.13 40.61 30.49 20.55 41.75

Table 7: Single-action spatio-temporal grounding in short videos. We compare spatio-temporal
grounding approaches based on single phrase grounding. To this end, we construct a clip-level
evaluation based on the action segments of GroundingYouTube, where each action segment varies
from 9 sec to 60 sec. We append video segments before and after the annotated action with the same
time length of the action step to form the final video clip. This allows us to directly compare with
supervised spatio-temporal grounding methods (Yang et al., 2022a; Jin et al., 2022).

find that weakly supervised methods, GLIP and RegionCLIP, show only limited ability to differ-
entiate the queried action from the background, which leads the model to ground the text query in
most of the frames. However, both demonstrate powerful localization ability in foreground action
segments, which results in a decent performance. The fully-supervised trained models (TubeDETR,
STCAT) achieved a balance in localizing temporally and spatially, resulting in the best performance
on this task.

Attention GroundingYT MiningYT YouCook-Inter.
Architecture Spatio-temporal Temporal Spatial

Self+Cross 15.4 18.7 54.1
Cross+Self 15.9 18.9 54.5
Cross+Cross 16.5 19.3 56.2
Cross+Self+Cross 17.1 19.9 57.1

Table 8: Ablation on different attention architecture

# of frames 60 80 100 120 140

GYT (Spatio-temporal) 16.4 17.1 17.0 16.8 16.1
YC-Inter (Spatial) 56.3 57.1 56.8 56.7 55.9

Table 9: Ablation of # of frames used for selection

9.3 ABLATION AND DECISION CHOICES

We performed additional ablation studies using the CLIP backbone without finetuning.
Attention architecture. We tested different architectures by stacking the self-attention or cross-
attention block in the model to calculate contextualized local representations, as shown in Fig-
ure 2(d). As shown in Table 8, we found that the standard multimodal transformer architecture
(self+cross) to have the worst performance. Using two cross-attention blocks was beneficial in in-
corporating more cross-modal interaction between local features. Finally, including a self-attention
layer slightly improves the final representations by encoding better single-modality representations.

Frames used for selection. As shown in Table 9, we perform an ablation study on the number of
candidates frames U used for training. We found that selecting 80 frames (16 seconds) achieves the
best performance, comprising the useful video information in training while not including too many
irrelevant concepts that diverge from the action/object in the ASR sentence.
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Frame length 1 4 8 16 24

GYT (Spatio-temporal) 5.2 9.5 16.1 17.1 16.5
YC-Inter (Spatial) 31.1 48.2 55.5 57.1 56.1

Table 10: Effect of # video frames used for training

Train/test supervision VT/VT VAT/VT VAT/VAT

GYT (Spatio-temporal) 16.2 16.8 17.0
YC-Inter (Spatial) 53.9 53.6 53.8

Table 11: Effect of audio supervision in train and test

Number of frames for training. We further evaluated the impact of different numbers of frames T
used for training. As shown in Table 10, selecting fewer frames for training significantly causes the
performance to drop. We hypothesize that the model not only fail to capture the temporal dynamics
with fewer frames but also loses some frames with groundable objects in the sentence while training.
We also hypothesize that with a too large number of frames, more irrelevant frames might be selected
during training, which decreases the performance.

Effect of audio in training and testing. Unlike text which describes a discrete concept as a tar-
get to ground, audio serves as a continuous representation that is highly relevant to the temporal
information. For example, we can determine an action started when we hear a “cracking” sound. In
Table 11, we tested our model using the additional audio modality. For the audio branch, we com-
pute log-mel spectrograms and use a DAVEnet model (Harwath et al., 2018) initialized by MCN on
HowTo100M (Chen et al., 2021) to extract audio features. We extend the global and local loss pairs
from VT to VT, VA, and AT following (Shvetsova et al., 2022). We found when training and test-
ing with audio, the spatio-temporal result increases the temporal performance while the spatial-only
result remains the same. This validates our assumption that audio contributes more to temporal un-
derstanding. When we trained on audio and tested without audio, the performance increased over the
VT model, showing that the audio serves as useful supervision for better video/text representations.

Threshold for attention mask. As shown in Figure 3(b), we apply a threshold to create a mask
from the result of attention rollout. Note that this threshold τ is not a hyperparameter that affects the
training or the model but simply serves as a means to an end to compute the mAP scores. We did
not systematically optimize this threshold, but instead, Test different thresholds for attention scores
for all relevant models (COMMA, ours) using the spatio-temporal grounding mAP IoU@0.4 on our
GroundingYoutube dataset as shown in Table 12. We find 0.01 to be a reasonable threshold among
all models, performing best on COMMA and giving at least the second best results for the proposed
model.

10 GROUNDINGYOUTUBE ANNOTATION

We include more visualizations of our annotated GroundingYoutube dataset in video format at
sup/Annotation visualization videos.pptx.

The data annotation was divided into three phases: During Phase I (Sec. 10.1, a graphical user
interface (UI) and the task description were developed. In Phase II, the dataset was given to the
annotators to generate the key points (Sec. 10.1). In Phase III, a manual quality control step was
performed (Sec. 10.2).

10.1 DEVELOPMENT OF THE GRAPHICAL USER INTERFACE AND TASK DESCRIPTION

The annotation of a large amount of data is often one of the most expensive aspects of a machine
learning pipeline design, which is why the annotation time per datum should be kept as short as
possible. There are two points that can be optimized, (1) the training or the task “message” for the
annotators and (2) the graphical user interface by minimizing interaction times.
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Treshold Backbone 0.1 0.05 0.01 0.005 0.001

CoMMA* S3D-word2vec 0.76 0.90 0.93 0.91 0.86
Ours S3D-word2vec 15.35 15.88 16.22 16.34 16.12

CoMMA† CLIP 0.88 0.92 0.99 0.94 0.91
Ours CLIP 15.93 16.33 17.10 17.05 16.24

Table 12: Threshold for attention score on GroundingYoutube mAP@0.4

Figure 5: A screenshot of our simplified annotation interface. On the top, the annotation task
is described in simple and short words to save reading time. To make interacting with the UI as
intuitive as possible, actions are limited to simple button clicks and setting the key point by clicking
on the image.

While tasks are usually formulated in such a way that no ambiguities arise, i.e. all possible edge
cases are somehow covered, and simple words are used, in this case, we made a conscious decision
to choose questions as short as possible, and that would give the annotator room for interpretation.
We did this because it was hard to predict where people would actually locate actions in images. We
also created a 1 min 30 sec long user training video where we demonstrate the task using exemplary
keypoint annotations and explain how to use the UI.

Our annotation UI was designed with a special focus to keep it as intuitive as possible and reducing
the interaction time. Our UI only provided five functionalities (set/unset a keypoint, undo the last
image, image can’t be solved, and image is corrupt) which were clearly described in text buttons
(see Figure 5). Further, to reduce the cognitive load of our workers, images were presented in the
form of work packages, each containing 25 images. Hence, we could ensure that completing a task
would take no longer than 6 minutes.

The annotation of all 26, 987 images was performed with five distinct repeats per image, resulting
in 134, 935 labels in total. All labels were generated by 13 professional annotators in total, which
took them 5s in average per image. However, it should be noted that the number of images where
an annotator placed a keypoint differs along all the workers (see Figure 6) and that the vast majority
of all images have been answered by five annotators only. Examples are shown in Figure 7.

During the annotation, professional annotators were given a short instruction video at the beginning
and then asked to click on the center of the given action without additional instructions. They were
further free to choose “can’t answer” if they could not locate the action, e.g., at the beginning and
end of the clip. Thus, the number of available key points per image differs, and we choose majority
voting to determine whether an action is present, resulting in new, refined temporal boundaries
compared to the original annotation.

We found that the point-wise annotation resulted in roughly three distinct patterns, which depend
on the captured scenario, as shown in Figure 8. In the case of half portrait or even wider shots in
Figure 8a, annotations are highly locally centered. We further found that in some cases, the point
annotation can also represent the flow of the action, e.g., pouring oil in Figure 8b, or even split into
two separate clusters in Figure 8c.
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Figure 6: Number of keypoints per image. It can be seen that 48% of the data has all 5 key points
and 19% has not a single annotation

(a) Can’t solve (b) Single point

(c) Four points (d) Five points

Figure 7: Sample annotations. The purple point represents the center point of the annotations in
the frame. 48% of the data has all 5 key points, and 19% has not had a single annotation.

10.2 QUALITY CONTROL

Since the label quality of the datasets used is a critical factor in the performance of machine learning
models, we verified the correctness of a subset of our images using an experienced annotation spe-
cialist for 1, 026 randomly selected frames. To evaluate the data quality, we evaluate the agreement
between the annotation specialist and the annotations provided by the annotators. To this end, we
considered an annotation as a false positive if three annotators or more have set a key point, although
no action can be seen in the image, and as a false negative if three annotators or more have not set
a key point, even though an action can be seen in the image. The entire sample was assessed using
these criteria, with the specialist disagreeing with the annotators in only a total of 1.1% ± 3% (FP:
0.7% ± 3%, FN: 0.4% ± 3%). We also found that annotations significantly diverted in terms of
spread. Namely, wider shots tend to be highly centered, whereas zooming in together with the usage
of larger objects such as a pan or a spatula results in more widespread key points. We also analyzed
how often those cases occur and found that 14.0% of the selected frames show a widespread pattern.

Sample size calculation To this end, we first needed a representative subset of NS images of our
data. We calculated the required sample size based on the following two formulas:

N0 =
z2

ϵ2
· p · (1− p) (4)

where α is the confidence interval, p the expected probability of the appearance of a quality aspect
(e.g., widespread answers), epsilon is the accepted error margin, and Q(α) is the percent point
function of a normal distribution and z = Q(1− α

2 ).
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(a) Wider shot (b) Flow action (c) Split to two

Figure 8: Example of keypoint annotations under different conditions.

Figure 9: Visualization on automatic bounding box generation from points.

As N0 would be the required sample size for an infinitely large population, we applied the finite
population factor that results from sampling without replacement from a finite population.

NS =
(N0 ·N)

N0 + (N − 1)
(5)

where N is the total number of images.

We set α = 95%, epsilon = 3%, and our sample size of N = 26, 987. As the probability of the
quality aspect is unknown, we set p = 50%, which resulted in 1, 026 being checked for quality
control.

Distribution Type mAP@0.4
Widespread actions 18.34
Saturated actions 15.96
Total 17.10

Table 13: Performance on the annotation distribution types of widespread v.s. saturated.

10.3 DATASET USAGE FOR EVALUATION

Bounding box generation: For evaluation purposes, we get the union of all annotated points in a
single frame with additional distance respect to the height H and width W as shown in Figure 9.
We manually check the auto-generated bounding boxes and adjust the bounding box when needed.

Performance on widespread and saturated action. We evaluate the performance of different ac-
tion distributions using the spatio-temporal grounding mAP IoU@0.4 setting. We define widespread
actions to have an area larger than a certain threshold A. Here, we set A = 60, 000 pixels. As shown
in Table 13, the performance of the widespread actions was higher since it had a higher tolerance of
spatial localization error.
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