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Abstract

Dengue fever presents a substantial challenge in1

developing countries where sanitation infrastruc-2

ture is inadequate. The absence of comprehen-3

sive healthcare systems exacerbates the severity4

of dengue infections, potentially leading to life-5

threatening circumstances. Rapid response to6

dengue outbreaks is also challenging due to lim-7

ited information exchange and integration. While8

timely dengue outbreak forecasts have the poten-9

tial to prevent such outbreaks, the majority of10

dengue prediction studies have predominantly re-11

lied on data that impose significant burdens on in-12

dividual countries for collection. In this study,13

our aim is to improve health equity in resource-14

constrained countries by exploring the effective-15

ness of high-resolution satellite imagery as a non-16

traditional and readily accessible data source. By17

leveraging the wealth of publicly available and eas-18

ily obtainable satellite imagery, we present a scal-19

able satellite extraction framework based on Sen-20

tinel Hub, a cloud-based computing platform. Fur-21

thermore, we introduce DengueNet1, an innovative22

architecture that combines Vision Transformer, Ra-23

diomics, and Long Short-term Memory to extract24

and integrate spatiotemporal features from satel-25

lite images. This enables dengue predictions on an26

epidemiological-week basis. To evaluate the effec-27

tiveness of our proposed method, we conducted ex-28

periments on five municipalities in Colombia. We29

utilized a dataset comprising 780 high-resolution30

Sentinel-2 satellite images for training and eval-31

1https://github.com/mimikuo365/DengueNet-IJCAI

uation. The performance of DengueNet was as- 32

sessed using the mean absolute error (MAE) met- 33

ric. Across the five municipalities, DengueNet 34

achieved an average MAE of 43.92±42.19. No- 35

tably, the highest MAE was recorded in Cali at 36

113.65±0.08, whereas the lowest MAE was ob- 37

served in Ibagué, amounting to 5.67±0.18. Our 38

findings strongly support the efficacy of satellite 39

imagery as a valuable resource for dengue predic- 40

tion, particularly in informing public health poli- 41

cies within low- and middle-income countries. In 42

these countries, where manually collected data of 43

high quality is scarce and dengue virus prevalence 44

is severe, satellite imagery can play a crucial role 45

in improving dengue prevention and control strate- 46

gies. 47

1 Introduction 48

Dengue, one of the most ubiquitous mosquito-borne viral in- 49

fections, is the leading cause of hospitalization and death 50

in many parts of the world, especially in tropical and sub- 51

tropical countries [Cattarino et al., 2020]. It is estimated 52

that 129 countries [WHO, 2022] and 4 billion people [CDC, 53

2022] are at risk of dengue infection. In low- and middle- 54

income countries (LMICs) where dengue fever is endemic, 55

the prevalence of dengue outbreaks is exacerbated by multi- 56

farious factors such as barriers in the continuum of care, in- 57

equities in resource allocation, education levels, literacy, and 58

income[Chaparro et al., 2016]. Because there are no specific 59

treatments available for the virus, dengue prevention is crit- 60

ical to reducing its infectious and fatality rate, particularly 61

in hyperendemic regions in LMICs where dengue poses a 62

significant public health predicament [Gutierrez-Barbosa et 63

al., 2020]. Therefore, the strategic utilization of viable early 64



Figure 1: DengueNet model architecture takes in weekly satellite imagery and dengue cases y as input for predicting ŷ (m/px: meters per
pixel; RGB: red, green and blue bands; SWIR: short wave infrared spectrum band; ViT: Vision Transformer; LSTM: Long Short-Term
memory; MLP: Multilayer Perceptron). The LSTM module consists of three stacked standard LSTM layers.

detection approaches for dengue outbreaks in LMICs is not65

only imperative for promoting comprehensive well-being but66

also plays a crucial role in the pursuit of reducing health in-67

equities. By employing these effective approaches, we can68

actively contribute to the realization of equitable healthcare69

access and outcomes, thereby fostering a more inclusive and70

just society.71

Prior research has demonstrated the potential for dengue72

forecasting utilizing pre-collected structural information like73

temperature and precipitation [Martheswaran et al., 2022;74

Jain et al., 2019]. However, conventional data collection tech-75

niques are both costly and difficult to scale. Therefore, seek-76

ing alternative resources, such as publicly available satellite77

imagery, is significant for LMICs where structured data is78

scarce and critical indicators remain lacking. Remote sens-79

ing satellite imagery can be a more cost-effective and effi-80

cient approach than alternative field survey methods and has81

shown potential correlation with weather variables [Ren et82

al., 2021], which are one of the key factors behind dengue83

outbreaks. It also enables a higher revisit frequency and di-84

verse resolutions of imagery over time than surveys where85

repeated measurements at a local level are limited [Lee et86

al., 2017]. Furthermore, the development of surveillance87

systems that rely exclusively on satellite imagery to notify88

public health authorities of early dengue detection can cost-89

effectively enhance the response time to national crises in hy-90

perendemic regions in LMICs.91

This study employs recent advances in machine learning92

(ML) and proposes an ML-based approach for forecasting the93

incidence of dengue cases in five municipalities of Colom-94

bia using satellite imagery. This selection was made due to95

Colombia’s persistent incidence of high levels of reported96

dengue outbreaks from 1978 until 2022 [National Institute of97

Health of Colombia, 2010]. As one of the top five countries98

in the Americas with the highest number of reported dengue99

cases, Colombia’s dengue mortality rate is 4.84 times higher100

than that of other American countries [PAHO, 2022]. Below101

are the three principal contributions to this paper.102

• We introduce a scalable data collection and processing103

framework to extract time-series data from the Sentinel-104

2 satellite. 105

• We propose a novel preprocessing pipeline that can 106

effectively eliminate noises and extract spatiotemporal 107

features from the collected satellite imagery. 108

• Our model, DengueNet, shows positive results, indicat- 109

ing dengue forecasting with time-series satellite imagery 110

alone is a feasible approach for LMICs with limited re- 111

sources. 112

2 Related Works 113

(a) Dengue cases (b) Geographic regions

Figure 2: Municipality-level dengue case numbers and geographic
locations. (a) Dengue cases from 2016 to 2018 were obtained from
the SIVIGILA database for the top five affected municipalities in
Colombia. (b) Geographic locations from satellite imagery for each
municipality.

The epidemiology of dengue is influenced by multiple 114

factors, including seasonal fluctuations in temperature and 115

rainfall, socio-economic determinants such as education and 116

household income [Morgan et al., 2021; Watts et al., 2020], 117

and intra-strain genetic variability [Fontaine et al., 2018]. 118

To comprehend the determinants of dengue infection, stud- 119

ies have been conducted to evaluate the economic, societal, 120

and other facets of dengue outbreaks worldwide. In terms 121

of structured data, notable work by researchers has paired a 122

boosted regression tree framework with longitudinal informa- 123

tion and population surfaces to develop a risk map to under- 124

stand the global distribution of dengue and improve disease 125



Figure 3: Gray-scale satellite band images captured by Sentinel-2 using different wavelengths.

management programs globally [Bhatt et al., 2013]. Similar126

work has been established, which investigates the temporal127

and spatial distribution of dengue fever in India using Kull-128

dorff’s space-time permutation method [Mala and Jat, 2019].129

Other work [Muñoz et al., 2021] has also looked at the as-130

sociation of the local climate with dengue in Colombia us-131

ing linear analysis tools and lagged crossed-correlations such132

as Pearson’s test. Features highly associated with dengue,133

such as environmental, entomological, epidemiological, and134

human-related data, have been explored for dengue pre-135

diction [Roster and Rodrigues, 2021; Karim et al., 2012;136

Guo et al., 2017; Salim et al., 2021]. Other studies have137

used human-related data like mobility [Datoc et al., 2016],138

social media data [Livelo and Cheng, 2018], and distance139

to public transit [Shragai et al., 2022] to build dengue early140

warning systems. In terms of unstructured data, studies com-141

pared street view and aerial images with different convolu-142

tional neural network architectures to estimate dengue rates143

[Andersson et al., 2019].144

Satellite imagery is often adopted with other statistical145

data to perform spatiotemporal tasks, such as weather fore-146

casting, precipitation nowcasting [Moskolaı̈ et al., 2021;147

Son and Thong, 2017; de Witt et al., 2020] and vector-borne148

disease case predictions [Rogers et al., 2002; Li et al., 2022a;149

Abdur Rehman et al., 2019]. While LMICs lack access to150

reliable information systems for data collection and analy-151

sis [Ndabarora et al., 2014; Kruk et al., 2018; Fenech et152

al., 2018], free sources of satellite imagery from cloud-based153

computing platforms, such as Google Earth Engine and Sen-154

tinel Hub, provide an alternative data asset for LMICs for155

early detection of dengue. In our work, we build a repro-156

ducible Sentinel-2 satellite data extraction framework lever-157

aging Sentinel Hub and provide municipality-level predic-158

tions of dengue cases in Colombia per epi week. By solely159

adopting satellite imagery for dengue outbreak prediction,160

our model can focus on learning potential environmental in-161

formation through difference in vegetation over time using162

time-series images to predict dengue cases [Moskolaı̈ et al.,163

2021].164

3 Dataset 165

In this study, we collect satellite imagery and dengue inci- 166

dences from 2016 to 2018 in five Colombian municipalities 167

including Medellı́n, Ibagué, Cali, Villavicencio, and Cúcuta 168

(Figure 2). These municipalities are chosen as they have re- 169

ported relatively high dengue cases in Colombia. Sentinel 170

Hub [Ltd, 2022] is used to collect and process Sentinel-2 171

satellite data. The regions of interest are pre-determined 172

using the different municipalities’ latitude and longitude 173

square coordinates. Each area is sampled per epi week from 174

Sentinel-2’s launch date to the time frame before COVID-19, 175

to create a time-series satellite imagery dataset. We focus on 176

data before COVID-19, as studies show that COVID-19 has 177

impacted dengue transmission [Lim et al., 2020]. Our data is 178

stored in a TIFF format and contains 12 bands from Sentinel- 179

2 as shown in Figure 3. To account for differences in band 180

resolution, we use nearest-neighbor interpolation to increase 181

the resolution of all bands to a uniform 10 meters per pixel. 182

Cloud inteferences are avoided using the LeastCC algorithm, 183

which is configured using Sentinel Hub API to request the 184

images with the least amount of clouds per epi week. We 185

obtain weekly dengue incidences from the Colombian Pub- 186

lic Health System (SIVIGILA). Satellite imagery is matched 187

with dengue cases on an epi-week basis. 188

4 Methodology 189

4.1 Overview 190

To fully examine whether satellite imagery could be used 191

to predict dengue cases, we introduce multiple modules in 192

DengueNet (see Figure 1). The model components are de- 193

signed to capture both the temporal and spatial information 194

from satellite images for dengue outbreak forcasting. First, 195

we conduct band correlation analysis to determine which 196

satellite bands to select and use in our study. We then apply 197

cloud and cloud shadow (CCS) removal on the selected bands 198

to reduce noises in the satellite images. The preprocessed 199

bands are then fed into two spatial feature extraction modules, 200

the Feature-Engineering and the Vision-Transformer (ViT) 201

feature extractors, respectively. The features extracted from 202



Figure 4: Average Pearson’s correlation of the 12 bands for the
Sentinel-2 satellite images across five Colombian municipalities in
the training set from 2016 to 2018. The majority of correlations are
statistically significant (p <0.001).
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Figure 5: Stages involved in the cloud and cloud shadow removal
module. The average tiles are generated using the normal tiles in the
samples (CCS: cloud and cloud shadow).

the two modules are then fed into two multi-layer Long Short-203

term Memory (LSTM) networks that can extract temporal204

features, and eventually concatenated to a fully connected205

neural network for dengue case prediction.206

4.2 Band Selection207

Satellite imagery often contains multiple bands with different208

resolutions, central wavelengths, and channels. An example209

is shown in Figure 3. We aim to reduce the dimensionality210

of the input satellite images while preserving band variance.211

Thus, the band selection module contains two steps. We first212

compute the inter-band correlation matrix from the samples in213

the training set using Pearson’s correlation coefficient (Fig-214

ure 4). We then categorize the bands into different clusters215

and select the ones in different clusters.216

Figure 4 highlights three clusters in our data, each indicat-217

ing the high correlation between the bands (bands 1-5, 6-9,218

and 11-12). We aim to select bands from different clusters for219

the two feature extraction modules to preserve band variance.220

Since bands 11 and 12 correspond to the Short Wave Infrared221

(SWIR) spectrum, which is mainly used for measuring soil222

and vegetation moisture content as it provides good contrast223

between different vegetation types, we intend to select bands224

from this cluster for the Feature-Engineering pipeline. Given225

that both bands show a high correlation, we select band 12226

for its relatively lower correlation coefficient against the other227

satellite bands (bands 1-10) to avoid multicollinearity. For the228

(a) Original image (b) Cloud mask (c) CS mask

Figure 6: Cloud and cloud shadow masks generated in the CCS de-
tection stage in Figure 5. (a) Original image where abnormal tiles
will be swapped with the average of normal tiles. (b) Cloud mask
with detected abnormal cloudy pixels in white and normal pixels in
black. Abnormal tiles detected by the cloud mask are highlighted in
red. (c) Cloud shadow (CS) mask with detected abnormal shadowy
pixels in white and normal pixels in black. Abnormal tiles detected
by the shadow mask are highlighted in green.

ViT feature extraction module, to preserve band diversity and 229

match channels with the pre-training image set, we use bands 230

2, 3, and 4, which correspond to the Red, Green, and Blue 231

channels. 232

4.3 Cloud and Cloud Shadow Removal 233

The cloud and cloud shadow removal (CSR) module is used 234

to remove the cloud and cloud shadow from the selected satel- 235

lite bands by performing CCS detection, image slicing, tile 236

classification, tile averaging, and tile swapping (see Figure 5). 237

As satellite imagery often contains many cloud and cloud 238

shadow noises, CCS detection [Li et al., 2022b] is an essential 239

stage for reducing noises. To identify noisy pixels caused by 240

cloud or cloud shadow coverage, two thresholds are utilized 241

to determine whether a pixel is considered noisy due to the 242

often extreme pixel values in the affected areas. To establish 243

thresholds for detecting cloud and cloud shadow, we evalu- 244

ate the effectiveness of using pixel value percentiles from the 245

training set and compare their performance. Through testing 246

percentiles ranging from the 5th to 95th percentile at 5 per- 247

centile intervals, we choose two percentiles as the detection 248

thresholds for cloud and cloud shadow, respectively. These 249

thresholds are then used to generate the corresponding masks 250

for cloud and cloud shadow (see Figure 6). 251

After obtaining the two masks, we slice each satellite band 252

image into 16×16 tiles. With the sliced tiles and the cloud 253

and cloud shadow masks, tiles are classified into abnormal 254

and normal tiles, where an abnormal tile indicates more than 255

50 percent of pixels in the tile are marked as noise in either 256

mask. For each tile in a different position in the images, 257

we calculate the average tile of that position using the nor- 258

mal tiles By replacing the abnormal tiles in each sample with 259

the corresponding average tiles, we generate noise-eliminated 260

images. These average tiles are obtained by computing the 261

average of normal tiles for a specific position in the images. 262

4.4 Spatial Feature Extractors 263

We adopt two feature extractors to extract different types of 264

spatial features from the satellite images. In the Feature- 265

Engineering feature extractor, we extract statistical pixel- 266

based features from the SWIR band to obtain the texture in- 267



formation. Nine features from both first-order and higher-268

order features, such as Skewness and Joint Average, are col-269

lected using the PyRadiomics library [Van Griethuysen et270

al., 2017]. The details can be found in the GitHub reposi-271

tory. For the ViT module, we adopt transfer learning to over-272

come the limited number of real-world satellite imagery in273

our dataset. We utilize a ViT [Wu et al., 2020] pre-trained on274

ImageNet [Deng et al., 2009] to collect deep learning-based275

features from the RGB bands. The RGB bands are down-276

scaled from 736×736 to 224×224 to fit the model.277

4.5 Model278

The spatial feature extractors are both concatenated to a279

multi-layer LSTM module for extracting the temporal char-280

acteristics. To mitigate overfitting, a dropout layer is added281

after each LSTM layer in the module. The last LSTM lay-282

ers are then concatenated to a multilayer perceptron (MLP)283

with one dense layer and one neuron as the final layer. We284

chose Leaky ReLu [Maas et al., 2013] as the activation func-285

tion to add non-linearity to the regression task. All models are286

trained for 100 epochs with an adaptive learning rate starting287

from 0.0001.288

In this work, we train and evaluate the proposed structure289

on each municipality individually. This is because, with lim-290

ited amount of training data, the model may prioritize learn-291

ing the geographic meaning of different tile positions, within292

the same municipality. Since historical dengue cases are com-293

monly used for dengue prediction, we evaluate the effective-294

ness of satellite imagery with dengue cases. To do so, we use295

the same multi-layer LSTM structure to create a LSTM model296

which takes cases as the model inputs. We also explore model297

performance with both satellite images and cases as inputs by298

concatenating the two LSTM modules from DengueNet with299

the LSTM module from the case model, resulting in a 10× 1300

dimension input to the MLP.301

4.6 Evaluation and Performance Metrics302

For each municipality, we use the first 80 percent of the data303

for training, the next 10 percent of the data for validation,304

and the last 10 percent for testing. We evaluate the proposed305

model structure using Mean Absolute Error (MAE), Sym-306

metric Mean Absolute Percentage Error (sMAPE), and Root-307

Mean-Square Error (RMSE) metrics. sMAPE computes the308

percentage error between the actual value and the predicted309

value. We choose to use sMAPE over MAPE because the310

dengue cases in our dataset have relatively low actual values.311

RMSE penalizes the cases where the difference between the312

actual and the predicted value is the greatest.313

MAE =
1

n

n∑
i=1

|ŷi − yi|, (1)

314

sMAPE =
100%

n

n∑
i=1

2× |ŷi − yi|
(|ŷi|+ |yi|)

(2)

315

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (3)

Refering to Equations 1,2,3, n is the total number of samples 316

to evaluate in the test set, and i represents the sample num- 317

ber. ŷi represents the predicted value from the model, and yi 318

represents the actual value from the test set for each sample 319

starting from (i = 1) to (i = n). 320

5 Results 321

Table 1 presents the performance evaluation of DengueNet in 322

forecasting dengue cases using a time-series of satellite im- 323

agery with a window size of five weeks. Among the five mu- 324

nicipalities assessed, Ibagué exhibits the most favorable per- 325

formance across all metrics, while Cúcuta reports the least 326

favorable performance. These results are anticipated. In 327

Ibagué, apart from an initial peak, the dengue trend is com- 328

paratively more stable than in other municipalities. While the 329

number of dengue cases in Cali appears stable, the high base- 330

line number of cases results in an increase in the MAE. In the 331

case of Cúcuta, given that the training set has relatively low 332

occurrences of dengue, it is reasonable that the model fails to 333

accurately reflect the actual trend of dengue cases for Cúcuta 334

during the testing period. A notable observation is that while 335

the three metrics have different values within one municipal- 336

ity, they report similar results acros municipalities, indicating 337

that DengueNet exhibits relatively stable performance across 338

different metrics. 339

Figure 7 depicts the forecasted dengue cases for five mu- 340

nicipalities utilizing a diverse set of input data, including fea- 341

tures extracted from satellite imagery and historical dengue 342

cases. Comparative analysis is conducted against actual 343

dengue incidences, an LSTM model relying solely on histor- 344

ical cases, and a combined model incorporating both satellite 345

images and cases as input. Upon examination of the figures, 346

it is evident that DengueNet demonstrates the capability to 347

accurately predict most trends, even in the case of Villavicen- 348

cio (refer to Figure 7c), which exhibits greater fluctuations in 349

dengue cases over time. This observation substantiates the 350

effectiveness of DengueNet in forecasting outbreak patterns 351

within the majority of municipalities, relying solely on satel- 352

lite images as input. Furthermore, our model exhibits robust 353

predictive capabilities not only for short-term trends, while 354

performing slightly less worse compared to the LSTM model 355

that solely relies on historical case data, but also demonstrates 356

adaptability by easily incorporating historical case data when 357

available, thus enhancing prediction accuracy. 358

6 Ablation Studies 359

For the ablation studies, we evaluate the usage of the two fea- 360

ture extraction modules as shown in Figure 1, and the CSR 361

module as presented in Table 2. As we observe a high de- 362

gree of similarity among the MAE, sMAPE, and RMSE met- 363

rics in Table 1, our analysis focuses on examining the dif- 364

ferences between the MAE with and without the inclusion of 365

these three modules. For the Feature-Engineering module, 366

four municipalities result in improved MAE, with Medellı́n 367

having the most significant MAE improvement when paired 368

with the CSR module. On the other hand, the CSR module 369

has less impact on the ViT module, with only one municipal- 370

ity showing improved MAE. However, after combining both 371



Metrics Villavicencio Medellı́n Cúcuta Ibagué Cali Average
MAE 25.54±0.06 50.96±0.34 113.65±0.08 5.67±0.18 23.77±0.95 43.92±42.19

sMAPE 72.90±0.27 92.02±0.33 162.91±0.25 40.06±0.83 56.16±1.15 84.81±47.74
RMSE 30.62±0.03 67.86±0.40 120.57±0.07 7.45±0.22 31.80±1.46 51.66±44.17

Table 1: DengueNet evaluation across five municipalities. All experiments are repeated three times, with the average value reported with the
standard deviation. The scores for the municipalities with the best and worst scores are indicated.

ViT FEng CSR Villavicencio Medellı́n Cúcuta Ibagué Cali
✓ ✓ 24.67±0.26 45.48±5.56 113.10±0.08 13.46±0.08 58.10±1.27
✓ 26.25±0.00 44.77±0.79 109.31±0.00 6.21±0.13 33.42±0.42

✓ ✓ 24.00±0.05 80.46±0.03 113.46±0.08 3.52±0.06 96.71±0.08
✓ 27.21±0.29 111.15±0.19 113.58±0.03 6.96±0.16 48.15±0.31

✓ ✓ ✓ 25.54±0.06 50.96±0.34 113.65±0.08 5.67±0.18 23.77±0.95
✓ ✓ 24.40±0.06 42.48±0.96 114.19±0.09 7.25±0.09 42.35±0.81

Table 2: MAE scores with or without the cloud shadow removal (CSR) module combined with different feature extractors across five
municipalities. ViT indicates only features extracted from the ViT module are used. FEng indicates only features extracted from the feature-
engineering module are used. All experiments are repeated three times. Average values are reported ± the standard deviation. The best scores
are highlighted.

(a) Medellı́n (b) Ibagué (c) Villavicencio

(d) Cali (e) Cúcuta

Figure 7: Dengue case prediction was performed for five municipalities per epidemiological week from 2016 to 2018. Three approaches were
evaluated: using satellite imagery features (ViT+FEng), case data (Case), and a combination of both (ViT+FEng+Case). The Ground Truth
label represents the actual number of dengue cases per week. The grey vertical dashed lines indicate the starting weeks of the validation and
testing sets.



Models MAE sMAPE RMSE
ViT (w/ CSR) 50.96 97.66 60.20

FEng (w/ CSR) 63.63 99.24 74.02
ViT+FEng (w/ CSR) 43.92 84.81 51.66

Table 3: Performance comparison of different feature extractors with
the cloud and shadow removal module (w/ CSR). All experiments
are repeated three times and average values are reported. The best
scores are highlighted.

spatial feature extraction modules as inputs, the CSR module372

improves the performance across three municipalities, and the373

average MAE across five municipalities also decreases from374

54.14 to 51.66.375

The effectiveness of having both spatial feature extractors376

is also analyzed in Table 3. With a single feature extrac-377

tor, the ViT feature extractor performs slightly better than the378

Feature-Engineering extractor. However, the lowest average379

MAE, sMAPE, and RMSE are observed when both feature380

extractors are used. This finding is reasonable as the two381

feature extractors retrieve different types of information from382

the satellite imagery. This model architecture design enables383

DengueNet to maintain high performance even if one of the384

feature extraction modules fails to extract crucial features, as385

the other feature extractor can compensate for it.386

7 Discussion387

This study introduces a robust and efficient approach for ex-388

tracting satellite data and presents DengueNet, a novel ar-389

chitecture for predicting dengue outbreaks using satellite im-390

agery. The experimentation phase involves the analysis of391

satellite images and dengue cases spanning from 2016 to392

2018, focusing specifically on five municipalities in Colom-393

bia, a country significantly affected by the prevalence of394

dengue fever. The proposed model combines ViTs with con-395

catenated multi-layer LSTMs to effectively extract both spa-396

tial and temporal information from a series of satellite im-397

agery, resulting in comparable dengue case predictions.398

To address the challenges posed by the dimensionality of399

satellite images, the study incorporates band selection based400

on band-to-band Pearson’s correlation, enabling a compre-401

hensive assessment of Sentinel-2 satellite images. The se-402

lected bands undergo feature extraction through the use of403

both the feature-engineering and ViT modules. The feature-404

engineering pipeline involves dividing satellite images into405

tiles and employing CCS detection to minimize the presence406

of environmental noise artifacts, allowing for the extraction407

of noise-free pixel features. On the other hand, the ViT mod-408

ule utilizes transfer learning from a pre-trained ViT model to409

extract features. These extracted features from both modules410

are subsequently integrated into a concatenated LSTM-based411

model for predicting dengue cases.412

Incorporating freely accessible satellite imagery into our413

DengueNet model holds significant potential for making a414

substantial impact on public health legislation and fairness in415

health. Over the past two decades, dengue fever has emerged416

as a prevalent epidemic in tropical developing countries, ne-417

cessitating the establishment of an effective early warning418

system for preventing and monitoring outbreaks. The fea- 419

sibility of DengueNet for predicting dengue outbreaks has 420

been successfully demonstrated in five municipalities, show- 421

casing its potential for transferability to other geographical 422

regions. Moreover, the computational requirements of the 423

model are relatively low, and its deployment only requires 424

minimal resources, making it an accessible alternative for 425

resource-constrained developing countries. 426

The proposed approach is further reinforced by the inclu- 427

sion of a dockerized version of the satellite extraction frame- 428

work, leveraging Sentinel Hub, which ensures data repro- 429

ducibility and scalability [Alberto et al., 2023]. This empow- 430

ers LMICs to leverage higher quality and more frequently up- 431

dated satellite data, overcoming the limitations of field data 432

collection characterized by irregular revisit rates and vary- 433

ing data quality. The utilization of such information can sig- 434

nificantly contribute to informed policy decisions and strate- 435

gies at the municipality level, enabling early containment of 436

the dengue virus. Ultimately, the proposed method holds 437

immense potential to enhance the prevention and control of 438

dengue fever outbreaks in developing countries, thereby ad- 439

vancing public health outcomes and promoting health equity. 440

8 Conclusion 441

The dockerized satellite extraction framework and 442

lightweight DengueNet model presented in this work 443

present a viable alternative for LMICs, where data collection 444

and preprocessing pose substantial challenges. The perfor- 445

mance of DengueNet, which leverages publicly accessible 446

satellite imagery, exhibits comparable performance to that 447

of a straightforward LSTM model that relies exclusively on 448

dengue cases for dengue prediction. This approach takes 449

us closer to the democratization of data access and the im- 450

plementation of machine learning models globally, thereby 451

aiding in the formulation of informed public health policies 452

and strategies for early warning systems. To ensure safe and 453

responsible integration of satellite imagery and DengueNet, 454

future work should understand and mitigate the sources of 455

bias inherent in machine learning models[Celi et al., 2022; 456

Nazer et al., 2023] to promote fairness and reduce disparities 457

in public health across diverse populations. 458
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[Muñoz et al., 2021] Estefanı́a Muñoz, Germán Poveda,613
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