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Abstract
Computing the differential entropy for distributions known up to a normalization constant is a
challenging problem with significant theoretical and practical applications. Variational inference
is widely used for scalable approximation of densities from samples, but is under-explored when
only unnormalized densities are available. Messaoud et al. [61] introduced P-SVGD, a particle-
based variational method using Stein Variational Gradient Descent. However, we show that P-
SVGD scales poorly to high-dimensional spaces. We propose MET-SVGD, an extension of
P-SVGD that scales efficiently with convergence guarantees. MET-SVGD achieves SOTA results
on scaling SVGD. We significantly outperform P-SVGD on entropy estimation, Maximum Entropy
Reinforcement Learning, and image generation with Energy-Based Models benchmarks. Code:
https://tinyurl.com/2esyfx8j.

1. Introduction
The differential entropy [19, 78] of a d-dimensional random variable X with a probability density
function p(x) = p̄(x)/Z is H(p) =−Ex∼p(x)[log p(x)] =−

∫
p(x) log p(x)dx, with Z =

∫
p̄(x)dx

being the normalization constant. The entropy plays a central role in machine learning [73]. While
significant progress has been made on estimating entropies from samples [8, 63], settings where
only the unnormalized density is available remain under-explored. Recently, Messaoud et al. [61]
introduced Parametrized Stein Variational Gradient Descent (P-SVGD), which leverages Stein
Variational Gradient Descent (SVGD) sampler [56] to construct a variational distribution qL from
p̄. SVGD updates a set of interacting particles {xi}Mi=1 using a deterministic velocity field ϕ(·) that
balances a gradient force and a repulsive one:

ϕ(xli) = Exl
j∼ql

[
κ(xli, x

l
j)∇xl

j
log p(xlj) +∇xl

j
κ(xli, x

l
j)
]
, (1)

following the update rule xl+1
i = xli+ϵϕ(x

l
i). ϵ is the step-size, ql is the particles distribution at

step l∈ [1, L] and κ(·, ·) is typically an RBF kernel, i.e., κ(xi, xj)=exp(−||xi−xj ||2/2σ2), with
bandwidth σ2 set heuristically as the median of the particles squared differences. P-SVGD derives a
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Figure 1: P-SVGD limitations.

closed form expression of ql at every step l including the last step L:

log qL(xL) = log q0(x0)− ϵ
L−1∑
l=0

Exl
j∼ql

[
Tr
(
∂ϕ̄(xl, xlj)/∂x

l
)]

+O(ϵ2), (2)

where ϕ̄(xl, xlj) is the contribution of xlj to the update of particle xl and ϕ(xl) = Exl
j
[ϕ̄(xl, xlj)] is

defined in Eq.1. The trace term is approximated using only first-order derivatives and, for efficiency,
the authors omit a trace-of-Hessian term Tr(∇2

xl log p(x
l)) by sampling xlj ̸=xl:

log qL(xLi )=log q0(x0i )−ϵ
L−1∑
l=0

M−1∑
i̸=j=0

κ(xlj , x
l
i)

Mσ2

(
d−
∥xli−xlj∥2

σ2
−(xli−xlj)⊤∇xl

j
log p(xlj)

)
+O(ϵ2). (3)

qL can approximate a broad class of densities under mild assumptions [90], enabling accurate
estimation of H(p) with compelling results in MaxEntr RL. Despite its promise, we show that
P-SVGD has several limitations including sensitivity to SVGD hyperparameters, mode collapse,
poor convergence to non-smooth targets and limited scalability in high-dimensional spaces (Fig. 1).
To address these challenges, we introduce MET-SVGD, an extension of P-SVGD that scales to
high-dimensional distributions with improved accuracy and convergence guarantees. MET-SVGD
learns step-wise kernel bandwidths and step-sizes, replacing the non-robust heuristics of P-SVGD;
upgrades its local invertibility condition to a principled global one that satisfies the assumptions in
the entropy derivation; consolidates two independent, informal step-size constraints into a unified,
principled rule; efficiently restores the missing Hessian term via Hutchinson’s estimator; incorporates
a Metropolis–Hastings correction step to ensure asymptotic convergence; and adaptively tunes the
number of sampling steps to better handle complex, high-dimensional distributions.
MET-SVGD achieves SOTA performance on SVGD scalability benchmarks. Additionally, it sig-
nificantly outperforms P-SVGD on image generation (20 vs 88 FID) and MaxEnr RL tasks (2.3%
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Figure 2: Novelty over P-SVGD. Limitations (L) and corresponding Fixes (F).
and 1.5% better final returns on Walker2d-v2 and Humanoid-v2 [12], respectively). By bridging
variational inference, SVGD, and MH methods, MET-SVGD sets a novel framework for entropy
estimation from unnormalized densities and scalable sampling.

2. Approach

Similarly to P-SVGD, MET-SVGD is a VI-based method for computing the entropy of distributions
p known up to a normalization constant, i.e., it approximates p with a tractable, sample-efficient
distribution and estimates H(p) using the entropy of this distribution. MET-SVGD introduces a
series of optimizations to address P-SVGD’s key limitations as illustrated in Fig. 2B: [L1-F1] P-
SVGD introduces two informal independent constraints on the step-size including a local invertibility
one, although CVF requires global invertibility; MET-SVGD unifies these constraints into a single
principled one satisfying global invertibility (Sec. 2.1). [L2-F2] P-SVGD exhibits high sensitivity to
hyperparameters (Fig. 1A-iii) with no tuning guidelines; we show that this is due to the accumulation
of noise in the trace term of Eq. 2, leading to entropy divergence and mitigates this by learning the
SVGD hyperparameters via reverse KL minimization (Sec. 2.2). [L3-F3] P-SVGD suffers from
poor convergence to non-smooth targets and sampling mode collapse (Fig. 1B and Fig. 1C), due
to its divergence control heuristic and the absence of convergence guarantees in the finite particle
regime; MET-SVGD replaces this heuristic with a MH step, guaranteeing asymptotic convergence
independently from the number of particles (Sec. 2.4). [L4-F4] P-SVGD’s omission of the trace-
of-Hessian term limits its scalability to high-dimensions (Fig. 1D) which MET-SVGD efficiently
restores as explained in Sec. 2.3. [L5-F5] P-SVGD uses a fixed number of steps (L), which may be
insufficient for convergence; MET-SVGD determines Lc using the Stein Identity (Sec. 2.2).

2.1. Conditions On The SVGD Step-Size For Invertibility and log-det Approximation

In P-SVGD, Eq. 3 was derived by (1) leveraging the CVF (App. 5.2) assuming invertibility, and
(2) approximating the log-det term in the CVF with an efficient trace one. Thes steps introduce
two conditions on the SVGD step-size: (1) ϵ ≪ σ and (2) ϵ||∇xlϕ(xl)||∞ ≪ 1. However, these
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conditions present two major issues: (1) Both are informal (use of≪); in practice, ϵ is simply set to
an arbitrarily small value, hoping that both constraints hold, which may not be true and often results
in more steps than necessary. (2) The step-size condition only guarantees local invertibility, whereas
the CVF requires global invertiblity. To address this, we extend a sufficient condition for invertible
residual networks (Behrmann et al. [7]) to SVGD. We also derive a precise condition on ϵ for the
log-det approximation (Proposition 2) and unify both into a single efficient bound (Corollary 3).

Proposition 1 (Sufficient condition for global SVGD invertibility) Let f : Rd → Rd with f =
(f1 ◦ · · · ◦ fL) denote a sequence of SVGD updates with f l = I+ϵϕl. We denote by Lip

(
ϕl
)

the
Lipschitz constant of the velocity ϕl at step l. f is invertible if: ϵ Lip

(
ϕl
)
< 1, for all l ∈ [0, L− 1].

The proof is in App. 7.1. Using the mean value theorem (App.5.6), we estimate this Lipschitz
constant as ∥∇ϕl∥2=maxxl ∥∇xlϕ(xl)∥2 with ∥ · ∥2 being the spectral norm (largest singular value).

Proposition 2 (Sufficient condition for log-det Approximation) Let ϕl :Rd→Rd, log | det(I +
ϵ∇ϕl)|=ϵTr(∇ϕl) if ϵ |λmax

(
∇ϕl

)
|<1 for all l∈ [0, L− 1], with λmax being the largest eigenvalue

value and ∇ the gradient operator w.r.t the input.

Corollary 3 The distribution induced by the SVGD update (Eq. 1) using an RBF kernel is given by
Eq. 3 if ϵ < ϵlUB = 1/ supx

√
Tr(∇ϕl(x)∇ϕl,T (x) for all l∈ [0, L− 1].

Proof Sketch: Given A ∈ Rd×d, the following always holds: |λmax(A)| ≤ ∥A∥2 ≤
√

Tr(AAT ).
Proof is in App. 7.3, where we also show that Tr(AAT ) can be efficiently computed using only
first-order derivatives and vector dot products, making this condition practical.

2.2. Optimized SVGD Parameters
A major drawback of P-SVGD is its high sensitivity to the RBF kernel bandwidth σ, which [61]
attribute to violation of the invertibility of the SVGD update rule (Eq. 1): In a 2-d Gaussian target
setup (reproduced in Fig. 1A), they show that, paradoxically, although SVGD and Langevin Dynamics
(LD) (update rule in App. 5.1) qualitatively converge to the target, i.e., the particles reach high-
density regions (Fig. 1A-i), the entropy estimate only converges for specific σ values, e.g., σ=5
(Fig. 1A-ii). The authors hypothesise that this is due to LD being inherently non-invertible and
SVGD being invertible only for certain σ values. This is incorrect: in Fig. 1A-iii, we show that the
step-size condition from Corollary 3 is always satisfied. Instead we show that the poor quantitative
convergence ofH(qL) toH(p) arises from the cumulative residual noise in the trace term of Eq. 2,
i.e., Exl∼ql [Tr(∇xlϕ(xl))]↛ 0 as l→∞ (Fig. 1A-iv), resulting in a quasi-linear growth in the
entropy with the number of steps (Fig. 1A-ii). To address this, we propose leveraging the closed-form
expression of qLc

θ to learn a step-wise kernel bandwidth σlθ2 and step-size ϵlθ3 alongside the initial
distribution q0θ1 by minimizing the reverse KL-divergence:

θ∗ =argmin
θ

ExLc∼qLc
θ
[log qLc

θ (xLc)− log p(xLc)], s.t. ϵlθ3 ≤ ϵ
l
UB ∀l ∈ [0, Lc − 1],

with ϵlUB being the upper-bound from Corollary. 3 and θ={θi}3i=1. Besides, we derive an efficient
convergence check based on the Stein Identity (SI) enabling an adaptive number of steps Lc, rather
than fixing it a priori: SI(qlθ, p) =

√
Exl [ϕθ(xl)T∇xl log p(xl) + Tr(∇xlϕθ(xl))]. Note that the

expression above only depends on Tr(∇xlϕ(xl)) which can be computed efficiently (App. 8.3).
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2.3. Corrected Derivation of qlθ
As explained in Sec. 2, P-SVGD approximate the expectation over particles in Eq. 2 by exclud-
ing the updated particle itself (xl ̸= xlj), so that the trace term can be estimated using only first-
order derivatives and thereby avoiding explicit Hessian computation. While this approximation
is valid asymptotically, it breaks in the finite-particle regime and translates into inconsistent up-
dates across particles (i = j term is missing), leading to particles following different distribu-
tions, and making the entropy ill-defined. This is a key source of P-SVGD’s poor scalability as
shown in Fig. 1D (orange vs brown). To address this, MET-SVGD adds the missing term to
the entropy using (1) the Hutchinson estimator [39] and (2) the double differentiation trick [83]:
Tr(∇2

xl
i
log p(xli))

(1)
=Ev∼pv

[vT∇2
xl
i
log p(xli)v]

(2)
=Ev∼pv

[∇xl
i
(vT∇xl

i
log p(xli))v], where pv is chosen such

that E[v]=0 and E[vvT ]=I (e.g., pv is the Radamacher distr). Importantly, SVGD is less sensitive
to trace approximation errors compared to other MCMC methods (e.g., LD) as shown in Fig. 12.
Notably, the trace term in SVGD is scaled by the number of particles M :

log qLθ (x
L)=log q0θ1(x

0) + ϵlθ3

L−1∑
l=0

∑
xl
j ̸=xl

Tr

(
∂ϕ̄θ(x

l, xlj)

∂xl

)
+
ϵlθ3
MV

V−1∑
v=0

∇xl

(
vT∇xl log p(xl)

)
v,

unlike LD: log qLθ (xL)=log q0θ1(x
0)+(ϵlθ3/V )

∑L−1
l=0

∑V−1
v=0 ∇xl(vT∇xl log p(xl))v (App. 7.8).

2.4. Divergence Control via Metropolis Hastings

To prevent divergence during sampling due to steepness in the target, P-SVGD introduces a heuristic
that removes particles deviating beyond a fixed number of standard deviations from the mean of
the initial Gaussian distribution q0θ1 (Fig. 2B). This heuristic, however, exacerbates mode collapse
by discouraging exploration of distant modes (Fig. 1C). Instead, we propose a more principled
MH-based divergence control [69]. After each update, the proposed position x̃l=xl−1+ϵθ3ϕθ(x

l−1)
is accepted with probability αl

θ (i.e., xl= x̃l), otherwise the old position is retained (i.e., xl=xl−1).
We compute αl

θ efficiently by leveraging Tr(∇xlϕθ(x
l)): logαl

θ=min[0, log p̄(x̃l)−log p̄(xl−1)+
ϵθ3Tr(∇xlϕθ(x

l))] (proof in App. 8). MET-SVGD is MH with an efficient SVGD-based proposal
distribution. It therefore inherits asymptotic convergence guarantees from MH (details in App. 6.8).

3. Experiment

Figure 3: FID on CIFAR10.
The modification between two
consecutive configs is bolded.

Entropy Estimation on Gaussian (Fig.1A, Fig.1D, Fig.13) and
GMM (Fig.15, Fig.20) Targets. MET-SVGD consistently outper-
forms P-SVGD, notably, Fig.1D and Fig.20 show that, while P-
SVGD and projection-based baselines, e.g., S-SVGD [32] struggle
to scale beyond 20-d spaces, MET-SVGD achieves high accuracy
in up to 100-d. Note that MET-SVGD mitigates the vanishing re-
pulsive force (Fig.13c) identified as the root cause of SVGD’s poor
scalability in [6].
Learning EBMs. Training EBMs pϕ(x)= p̄ϕ(x)/Z via maximum
likelihood is intractable due to the partition function Z. When the
sampler has a tractable distribution qθ, a tight lower bound can be
computed: LELBO(ϕ, θ) = Ex∼qθ [log p̄ϕ(x)]−Ex∼pd [log p̄ϕ(x)] +
H(qθ), as detailed in App. 10. The entropy is often omitted due to its computational complexity,
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yielding the commonly used contrastive divergence loss LCD(ϕ). We optimize LELBO(ϕ, θ) using
both P-SVGD and MET-SVGD, and train with LCD(ϕ) using LD. Experiments are conducted on the
Moon dataset [68] (Fig. 21) and CIFAR10 (Fig. 3). For CIFAR10, we report the Frechet Inception
Distance (FID) over 5 seeds. In Fig. 3, we show that not including the trace of Hessian in MET-
SVGD (purple) leads to divergence. Using an adaptive number of steps Lc stabilizes the training
(green). Replacing σmed with the learnable one (red) improves stability and yields significantly better
FID scores relative to P-SVGD (orange). Additionally, learning the step-size (brown) enables faster
convergence to the target (ϵlθ3 ≫ ϵ in Fig. 25) and results in smoother landscapes (Fig. 24). Yet,
experiments with MH diverge. In App. 10, we show that MH-augmented updates lead to a high
rejection rate due to landscape complexity. This results in poor sampling and eventually divergence.
To mitigate this, in future work, we plan to explore controlling the Lipschitz constant of the target.
Also, learning only the kernel bandwidth does improve over P-SVGD. We attribute this to vanishing
gradients in high-dimensions, i.e., the kernel collapses to zero. We plan to explore dimension-wise
decomposable kernels. Qualitative results and implementation details are in App. 10. Max-Entropy
RL additional results are in App. 11.

4. Conclusion

MET-SVGD is a novel VI approach for entropy estimation from unnormalized density. It bridges the
gap between VI, particle-based inference and MCMC; sets a new SOTA for scaling SVGD sampling
to high-dimensional and non-smooth densities; and introduces a framework for learning sampler
parameters end-to-end and is also a new residual flow model with full rank Jacoian and adaptive
number of layers.
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Supplementary Material

!

Figure 4: MET-SVGD is a new variational inference approach for entropy estimation of distributions
known up to a normalization constant. It extends P-SVGD [61] to high-dimensional spaces by
adressing its key limitations (see Fig. 1).

MET-SVGD is a novel variational inference approach for entropy estimation that overcomes
key limitations of P-SVGD [61], particularly poor convergence and scalability in high-dimensional
spaces (Fig. 1). To achieve this, it introduces: (1) Sufficient condition for global invertibility. (2)
Optimized parameter search for improved stability (Sec. 2.2). (3) Metropolis-Hastings augmented
SVGD updates to ensure asymptotic convergence (Sec. 2.4). (4) A correction term to the density
estimation in P-SVGD (Sec. 2.3). MET-SVGD maintains computational efficiency, requiring no
significant additional memory or runtime overhead. Its full workflow is illustrated in Algorithm 1.
Beyond entropy estimation, MET-SVGD can be valuable to different research communities:

• MET-SVGD bridges the gap between Metropolis-Hastings algorithms (MH) [69], particle-
based sampling techniques (SVGD) [56], and parametrized variational inference (P-VI) [28],
leveraging the strengths of each (Tab. 1): (1) scalability from P-VI, (2) expressivity, conver-
gence detection, and particle efficiency from SVGD, as well as (3) convergence guarantees
from MH. See Fig. 3

• MET-SVGD is a new approach for unprecedentedly scaling SVGD to high-dimensional spaces
while being computationally more efficient than all proposed approaches in the literature
[32, 60]

• MET-SVGD is a new approach for end-to-end learning of sampler parameters. It enables
training samplers via KL-divergence minimization, achieving compelling results for both LD
(Fig. 6b) and SVGD (Fig.6a).

• MET-SVGD is a new normalizing flow model with (1) an adaptive number of updates
controlled by a convergence check and (2) a full-rank Jacobian for improved flexibility and
expressivity (Fig. 7). We plan to extend MET-SVGD to image generation using flow-matching
in future work.

The detailed algorithm is in Alg.1. We build a library for MET-SVGD. Our code is available at:
https://anonymous.4open.science/r/Variational-Inference-with-SVGD--3F81/
README.md.
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Criterion P-VI MCMC SVGD P-SVGD MET-SVGD

Expressivity ✗ ✓ ✓ ✓ ✓✓

Convergence
Detection ✓ ✗ ✓ ✓ ✓

Convergence
Guarantees ✗ ✓ ✗ ✗ ✓

Sampling
Efficiency ✓ ✗ ✓ ✓ ✓

Tractable
Entropy ✓ ✗ ✗ ✓ ✓

Parameter
Efficiency ✓ - - ✓✓ ✓✓

Table 1: MET-SVGD inherits advantages of different
approximate inference methods: VI, SVGD, and MCMC.

Figure 5: MET-SVGD bridges the
gap between parametrized
variational inference (P-VI),
particle-based variation inference
(SVGD), and MCMC methods,
inheriting the strengths of each.

(a) SVGD (b) LD

Figure 6: MET-SVGD provides a principled approach to learn sampler parameters via first
computing the particles induced density, then Learning the parameters through KLD minimization.

Figure 7: MET-SVGD is a normalizing flow model with a full rank Jacobian and an adaptive number
of layers.

The rest of the appendix is organized as follows:

• Appendix 5: Preliminaries, including the Change of Variable formula for probability densities,
Jacobi’s formula corollary, the Stein Identity, the Banach Theorem and the implicit function
theorem.
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Table 2: P-SVGD vs MET-SVGD

Category P-SVGD MET-SVGD

Invertibility Condition Local (Implicit Function Theoremm);
imprecise: ϵ ≪ σ (Proposition 3.2, P-
SVGD paper)

Global (Banach Theorem); precise: ϵ <√
Tr(∇ϕl∇ϕl,⊤) (Corollary 3)

Entropy Trace Approxima-
tion

Imprecise: ϵ||∇ϕl||∞ ≪ 1 (Theorem
3.1, P-SVGD paper)

Automatically implied by invertibility
condition (Corollary 3)

Divergence Control Heuristic: particles truncation beyond
3 std from q

(0)
θ1

mean (Eq. 9, P-SVGD
paper)

Metropolis-Hastings correction (Sec-
tion 2.4)

Tr(Hessian) in Entropy Omitted; invalid for finite particles
(Theorem 3.3, P-SVGD paper)

Restored via Hutchinson estimator (Sec-
tion 2.3)

Kernel Bandwidth σ Median heuristic: O(M2) Learned via lightweight GNN (Section
2.2)

Step Size ϵ Fixed Learned via lightweight GNN (Section
2.2)

Number of Steps L Fixed Adaptive via Stein Identity (Section
2.2)

Computation Grid search for ϵ, median heuristic for
σ2 (O(M2))

Efficient reuse of Tr(∇ϕl) for the in-
vertibility bound (Corollary 3), MH
correction (Proposition 2.4), and con-
vergence check ; GNN inference adds
minor overhead (Section 2.2)

Memory - Two small GNNs for σ, ϵ (Section 2.2)
Convergence Guarantee L,M →∞ L→∞
Empirical Performance Sensitive to hyperparameters (Fig. 1A);

mode collapse (Fig. 1C); poor scalabil-
ity to non-smooth and high-dimensional
targets (Fig. 1B and Fig. 1D)

SoTA entropy on G/GMM (Fig. 11 and
Fig. 15); better FID, stability in EBMs
for image generation (Fig. 3); improved
MaxEnt RL returns (Fig. 26)
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• Appendix 6: Related work and Background on entropy estimation, variational inference,
sampling-based variational inference, Normalizing Flows, Metropolis-Hastings, SVGD and
the Stein Identity.

• Appendix 7: Derivation of closed-form density expressions for LD and SVGD samplers
using RBF, Bilinear, and DKEF kernels. This section also includes derivation of the sufficient
condition on the step-size.

• Appendix 8 Derivation of the Metropolis-Hastings augmented entropy

• Appendix 9: Additional results on entropy estimation

• Appendix 10: Additional results on learning EBMs for image generation

• Appendix 11: Additional results on MaxEntr RL
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Algorithm 1: MET-SVGD (Training)

input : Unormalized density p̄. SVGD parameters: (i) initial distr. q0θ1 , (ii) number of particles M ,
(iii) maximum number of steps L, (vi) RBF kernel variance deepnet σθ2 and (v) learning rate
deepnet ϵθ3 .

output : θ∗ = {θ∗1, θ∗2, θ∗3}.
1: for Each training iteration do
2: l = 0 % initialize the number of SVGD steps
3: {x0i }

M−1
i=0 ∼ q0θ1 % sample initial particles from q0θ1

4: q0MH = q0θ1 % Initialize q0MH
5: % Run SVGD chain to convergence of SI (Eq. 2.2)
6: while

(
l ≤ L

)
and

(
∆SI(qMH,l

θ , p) ≤ 0
)

do

7: ϵlθ3 = GNN({xli}
M−1
i=0 ; θ3) % Compute learning rate

8: ϵlθ3 = min(ϵlθ3 , ϵ
l
UB) % Learning rate truncation (Corr.3)

9: σlθ2 = GNN({xli}
M−1
i=0 ; θ2) % Compute kernel variance

10: x̃l+1
i ←xli+ϵϕ(x

l
i), ∀i∈ [0,M − 1] % SVGD update (Eq .1)

11: % Metropolis Hastings Step (Sec. 2.4)
12: αl

i,θ2,3
= (αl

i,θ2,3
)al , al ∈ {0, 1}, ∀i∈ [0,M − 1] % MH acceptance probability

13: uli ∼ N (0, I) % Generate uniform random number
14: xl+1

i = x̃l+1
i If uli ≥ αi, Else xl+1

i = x̃li, ∀i∈ [0,M − 1] % Update
15: % Update qMH,l

θ (Sec. 8.4)

16: log qMH,l
θ (xl) = log qMH,l−1

θ (xl−1) + log

[
exp

(
log(αl

θ2,3
) − ϵθ3Tr(∇xlϕ(xl))

)
+

exp
(
log(1− αl

θ2,3
)
)]

17: l← l + 1 % Update number of steps
18: end while
19: Lc ← l
20: H(qLc

θ ) = −1
M

∑M−1
i=0 log qMH,Lc(xLc

i ) % Compute entropy
21: % Update θ
22: {θ∗1 , θ∗2 , θ∗3} = argmaxθ1,θ2,θ3 E

xLc∼q
MH,Lc
θ

[log p(x)] +H(qMH,Lc
θ )

23: end for
24: Return θ∗ = {θ∗1, θ∗2, θ∗3}
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5. Preliminaries

In the following, we review preliminaries about Langevin Dynamics, the Change of Variable formula
for pdfs, the corollary of the Jacobi formula, the Banach theorem, the Mean Value theorem, a
Sufficient Condition for residual flows invertibility and the Stein Identity.

5.1. Langevin Dynamics

SGLD [92] is a popular Markov chain Monte Carlo (MCMC) method for sampling from a distribution.
It first initializes a sample x0 from a random initial distribution. Then at every step, it adds the
gradient of the current proposal distribution p(x) to the previous sample xl, together with a Brownian
motion ξ∼N (0, I). We denote with ϵ the step size. The iterative update for SGLD is:

xl+1 = xl + ϵ∇xl log p(xl) +
√
2ϵξ. (4)

5.2. Change of Variable Formula (CVF)

We first introduce the concept of an Invertible Function.
According to [51], the following holds: if F : Z → X is an invertible function then:

pX(x) = pZ(z)
∣∣∣det∂F−1(x)

∂x

∣∣∣ = pZ(z)
∣∣∣ det∂F (z)

∂z

∣∣∣−1

5.3. Implicit Function Theorem

Let f : Rn → Rn be continuously differentiable on some open set containing a, and suppose
det (∇xf(x)) ̸= 0. Then, there is some open set V containing x and an open W containing f(x)
such that f : V →W has a continuous inverse f−1 :W → V which is differentiable ∀y ∈W .

5.4. Corollary of Jacobi’s Formula

Given an invertible matrix A, the following equality holds:

log(detA) = Tr (logA) = Tr
(∑∞

k=1
(−1)k+1 (A − I)k

k

)
. (5)

The second equation is obtained by taking the power series of logA. Hence, under the assumption
∥A− I∥∞ ≪ 1, we obtain: log(detA) ≈ tr(A− I), where ∥ · ∥∞ is the infinity norm.

5.5. Banach Theorem

We begin by introducing the concepts of a cauchy sequence and a contractive mapping. Next, we
discuss the Banach Fixed Point theorem.

Theorem 4 (Cauchy Sequence) If a sequence {xn}n∈N satisfy either of the following conditions:

1. |xn+1 − xn| ≤ αn, ∀n ∈ N

2. |xn+2 − xn+1| ≤ α|xn+1 − xn|, ∀n ∈ N,

where 0 < α < 1, then {xn} is a Cauchy sequence.
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Theorem 5 (Contractive Mapping) Let (X , d) be a metric space with d a distance function and
let ϕ : X → X be a mapping on X . ϕ is called a contraction if and only if:

∃K ∈ [0, 1[ s.t. d(ϕ(x), ϕ(x̃)) ≤ Kd(x, x̃), ∀x, x̃ ∈ X (6)

Theorem 6 (Banach Fixed Point) Let (X, d) be a complete metric space (i.e., all Cauchy Se-
quences are convergent) with d a distance function. If ϕ is a contraction, then it has a unique fixed
point x∗ ∈ X , i.e., ϕ(x∗) = x∗ and

∀x0 ∈X, lim
n→∞

ϕn(x0) = x∗, with ϕn(x0) = ϕ ◦ϕ ◦ · · · ◦︸ ︷︷ ︸
n times

ϕ(x0) = xn.

Proof The proof is structured in two main parts: we first establish the existence of a fixed point by
showing that (xn)n∈N is a Cauchy sequence. Then prove uniqueness of the fixed point using a proof
by contradiction.

Step 1: Existence of a fixed point. (xn)n∈N is a Cauchy sequence, we distinguish two cases:
consecutive samples and non-consecutive samples.

• consecutive samples:

d(xn+1, xn) = d(ϕ(xn), ϕ(xn−1)) ≤ K d(xn, xn−1) ≤ K2 d(xn−1, xn−2) ≤ · · · ≤ Kn d(x1, x0)

• non-consecutive samples xn and xm with n < m

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + · · ·+ d(xm+1, xm)

≤ (Kn−1 +Kn−2 + · · ·+Km) d(x1, x0)

≤ Km
n−1−m∑
k=0︸ ︷︷ ︸

≤
∑∞

k=0 K
k

Kk d(x1, x0)

≤ Km

( ∞∑
k=0

Kk

)
d(x1, x0) =

Km

1− q
d(x1, x0)

It follows that {xn}n∈N is a Cauchy sequence since d(xn, xm) → 0 as n,m → ∞. Because
the metric space is complete, this implies convergence to a limit x∗ ∈ X : i.e., , x∗ = limn→∞ xn.
Additionally, since ϕ is continuous,

ϕ(x∗) = ϕ
(
lim
n→∞

xn

)
= lim

n→∞
ϕ(xn) = lim

n→∞
xn+1 = x∗.

Hence, x∗ is a fixed point of ϕ.
Step 2: Uniqueness of the fixed point. Assume that there exist two distinct fixed points x∗

and x̂ such that ϕ(x∗) = x∗ and ϕ(x̂) = x̂. Then, If x∗ ̸= x̂ ⇒ d(x∗, x̂) = d(ϕ(x∗), ϕ(x̂)) ≤
K d(x∗, x̂) Which implies⇒ d(x∗,x̂)

d(x∗,x̂) ≤ K ⇒ 1 ≤ K. which contradicts the assumption that K < 1.
Hence, the fixed point exists and is unique. We can compute it using the following algorithm:
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Algorithm 2: Inverse of g(x) via fixed point iteration

input y0 = g(x), number of fixed-point iterations n
1: for i = 0 · · ·n− 1 do
2: yi+1 = y0 − g(yi)
3: end for
4: Return yn = g(x)−1

5.6. The Mean Value Theorem

Theorem 7 Let f : Rn → R be differentiable on Rn with a Lipschitz continuous gradient∇f . Then
for given x and x̄ in Rn, there is y = x+ t(x− x̄) with t ∈ [0, 1], such that

f(x)− f(x̄) = ∇f(y) · (x− x̄).

5.7. Stein Identity ([54])

Let p(x) be a continuously differentiable density supported onX ⊆ Rd, and let ϕ(x) = [ϕ1(x), · · · , ϕd(x)]T
be a vector-valued function. Stein’s identity states that for sufficiently regular ϕ, we have:

Ex∼p[Apϕ(x)] = 0,

where the Stein operator Ap is defined as: Apϕ(x) = ϕ(x)∇x log p(x) +∇xϕ(x).
Proof We can verify this identity using integration by parts under mild boundary assumptions: either
p(x)ϕ(x) = 0, ∀x ∈ ∂X when X is compact, or lim∥x∥→∞ ϕ(x)p(x) = 0 when X = Rd.

In the following we assume X = [a, b]:

Ex∼p[Apϕ(x)] =

∫ b

a
p(x)ϕ(x)∇x log p(x) + p(x)∇xϕ(x) dx

(i)
=

∫ b

a
ϕ(x)∇xp(x) + p(x)∇xϕ(x) dx

(ii)
= [ϕ(x)p(x)]ba

(iii)
= 0

(i) Uses the identity ∇x log p(x) =
∇xp(x)
p(x) .

(ii) Applies integration by parts:
∫ b
a f(x)g

′(x) + f ′(x)g(x) dx = [f(x)g(x)]ba.

(iii) Boundary term vanishes under the stated assumptions.
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6. Related Work

In the following, we review work on the differential entropy, variational inference, sampling-based
variational inference, Normalizing Flows, Stein Variational Gradient Descent (SVGD), Parametrized-
SVGD (P-SVGD), and Metropolis Hastings (MH) convergence.

6.1. Differential Entropy

Differential entropy, first introduced by Shannon in his foundational work on information theory [77],
has been widely studied in statistics [1, 10, 97]. For a continuous random variable z with density
p(z), the entropy is defined as:

H(x) = −
∫ ∞

−∞
p(x) log

(
p(x)

)
dx.

Applications of Entropy: Entropy plays a crucial role in machine learning, Bayesian inference (BI),
reinforcement learning (RL), and variational inference (VI): (i) In classification & calibration, the
entropy measures model confidence [81], used in active learning [95]. (ii) In Bayesian Inference, the
Maximum Entropy principle ensures the least informative prior [10]. (iii) In Reinforcement learning,
it prevents overly deterministic policies by incorporating entropy into the reward function [3, 36].
(iv) Variational inference & generative Models: The entropy appears in ELBO [46] for posterior
approximation and mitigates mode collapse in GANs and VAEs [4, 9].

Challenges in Entropy Estimation: Despite its simple definition, entropy is analytically
tractable only for limited distributions. For instance, for a uniform p(x) = 1

b−a for x ∈ [a, b] and
p(x) = 0 for x /∈ [a, b] the entropy isH(p) = 1

2 [1 + log(2πσ2)]. for a Gaussian p(x) = N (µ, σ2),
the entropy is H(p(y|µ, σ2)= 1

2

(
1+log(2πσ2)

)
. For general distributions, numerical integration

(e.g., Monte Carlo) is required as direct computation is often infeasible. Different methods have been
developed for entropy estimation from samples.

Entropy estimation methods from samples can be classified into:

• Plug-in Estimators: Estimate density from data, then apply entropy formula. Given a sample
x = {xi}Mi=1, the plug-in method estimates the pdf p̂(x) from the data and then substitutes
this estimate into the entropy formula: HPLUGIN(p) ≈ − 1

M

∑M
i=1 log p̂(xi). This approach

was first proposed by Dmitriev et al. [24] and later investigated by others using kernel
density estimator [35, 41, 62, 66], histogram estimator [33, 35] and field-theoretic approaches
[17]. Early approaches leverage kernels that capture pairwise distances between the particles.
For instance, Parzen-Rosenblatt estimator [65, 71]: p̂(x) = 1

wpn

∑M
i=1 κ

(
x−xi
w

)
, where w

denotes the bandwidth and κ is a kernel density. The resulting entropy estimator was analyzed
by Ahmad and Lin [2]. Schraudolph [76] extended this approach using a kernel estimator:
p̂(x) = 1

M

∑M
i=1 κΣi(x − xi), where Σ = (Σ1, · · · ,Σn) are distinct diagonal covariance

matrices and κΣ(x) ∼ N (0,Σ) is a centered Gaussian density with covariance matrix Σ.
Pichler [66] introduced KNIFE, a kernel-based estimator for density estimation (DE) defined
as: p̂KNIFE(x; θ) =

∑M
i=1 µiκΣi(x − bi), where Σ = (Σ1,Σ2, . . . ,Σn), and θ = (Σ, b, µ),

with the constraints
∑M

i=1 µi = 1. The covariance matrices Σi are symmetric and positive
definite but not necessarily diagonal. Despite its advantages, the method has a significant

21



CAN WE ESTIMATE THE ENTROPY OF ARBITRARY DISTRIBUTIONS KNOWN UP TO A NORMALIZATION CONSTANT?

limitation in its simple structure, being restricted to either individual Gaussian kernels or
Gaussian Mixture Models (GMMs) with a fixed number of components n. This can limit its
flexibility in modeling complex data distributions. Traditional off-the-shelf density estimators
often suffer from key drawbacks, such as non-differentiability, computational intractability, or
an inability to adapt to changes in the underlying data distribution. These limitations make
them unsuitable for applications requiring integration into neural network training pipelines as
regularizers. To improve density estimation for non-negative random variables, recent studies
have suggested replacing Gaussian kernels with Poisson weight-based estimators to fit counts
or rate-based data [15] defined as: p̂POIS(x) = k

∑∞
i=0

(
Fn(

i+1
k )− Fn(

i
k )
)
e−kx (kx)i

i! , where
Fn(.) is the empirical distribution function, and k is a smoothing parameter. Additionally, the
concept of learning kernel parameters end-to-end has been explored, providing a foundation
for modern differentiable approaches. The idea of learning kernel parameters end-to-end
has also been explored previously [76, 91], providing a foundation for modern differentiable
approaches.

• Sample-spacing Estimates use distances between ordered samples (e.g., Vasicek estimator [89]).
Sample spacing methods rely on the spacing of sorted samples and was initiated by Vasicek
[89]: HV asicek(p) ≈ − 1

M

∑M
i=1 log

(
n
2m

(
xi+1 − xi

))
, where xi are the order statistics and

m is a positive integer smaller than n
2 . One of the greatest weakness of sample-spacing-based

estimator is the choice of spacing parameter m, which does not have the optimal form.

• Nearest-Neighbor Methods: leverage distances to k-th nearest neighbor [49]. This method
estimates entropy using distances to the k-th nearest neighbor in the sample space [49], i.e.,
H(p) ≈ ψ(n)− ψ(k) + log(cd) +

d
n

∑M
i=1 log ϵi, where ψ is the digamma function defined

as the logarithmic derivative of the gamma function d
dx ln(Γ(x)), cd is the volume of the unit

d-dimensional ball, and ϵi is the distance to the k-th nearest neighbor.

• Variational Inference: Optimizes a surrogate distribution q(x) to approximate p(x) [45].
The entropy is computed as [45]: H(p) ≈ −Eq(x)[log q(x)], where q(y) is optimized to
approximate p(x). q is chosen to be easy to sample from, e.g., Gaussians, GMMs and
Normalizing Flows [67].

• Mutual Information (MI) Estimators: Approximate entropy indirectly via MI relationships,
i.e., I(x, y) = H(px) +H(py)−H(px,y), [9], where px,y is the joint distribution and px · py
is the product of the marginal distributions px and py. Neural networks were used to ap-
proximate the mutual information between two variables using the Donsker-Varadhan rep-
resentation of the KL-Divergence [25]: DKL(p∥q) = supT∈T

(
Ep[T (x)]− logEq[e

T (x)]
)
,

where T is a class of functions where Px,y is the joint distribution and px · py is the
product of the marginal distributions. The MI lower bound is expressed as: Iθ(x; y) =
supθ

(
Epx,y [Tθ(x, y)]− logEpx·py [e

Tθ(x,y)]
)
, where: Tθ(x, y) is the output of a neural net-

work parameterized by θ, Epx,y [Tθ(x, y)] is the expectation over samples from the joint
distribution px,y, and Epx·py [e

Tθ(x,y)] is the expectation over samples from the product of the
marginals. The neural network is trained to maximize this bound, providing an approximation
of I(x; y). If two of these three entropies H(px), H(py) or H(px,y) are available, the third
one can be computed.
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• Ensemble Methods: Weight different entropy estimators adaptively [84]. The estimators in
the ensemble are assigned different weights, and the overall entropy estimate is calculated
as a weighted combination of the individual estimators where optimal weights are deter-
mined by solving a convex optimization problem. [5] proposed an innovative approach to
estimating the entropy of high-dimensional data by decomposing the target entropy into
two components: HCADEE(x) =

∑d
i=1 xi +Hcopula, where H(y) is the total entropy of the

multivariate distribution, H(xi) is the marginal entropy of each variable, and Hcopula rep-
resents the entropy of the copula, capturing the dependencies between variables. The idea
comes from the fact that any density distribution p(x) can be decomposed as the following:
p(x) = p1(x1) . . . pd(xd)c

(
F1(x1), . . . , Fd(xd)

)
, where c(u1, . . . , ud) is the density of cop-

ula. The copula entropy is estimated recursively by splitting the data into subgroups based
on statistically dependent dimensions. This recursive process (1) identifies pairs or groups
of dimensions with high statistical dependence, (2) splits the data along these dimensions
and (3) repeats the process within each subgroup until the dependencies are resolved. [43]
proposed a leave-one-out technique to improve the robustness of entropy estimation using the
von Mises expansion-based estimator. The key idea is to iteratively remove one data point from
the sample and compute the entropy estimate using the remaining data points. This procedure
helps reduce bias and ensures that the estimator is not overly influenced by any single data
point. The leave-one-out entropy is given by: HLOO(x) = 1

M

∑M
i=1H(x−i) where H(x−i),

is calculated for x−i = {x1, ..., xi−1, xi+1, ..., xn}. This approach provides a more robust
estimate of the entropy by mitigating the influence of outliers or anomalous data points.

A summary of these methods is provided in Tab. 3.

Method Formula Key Idea
Analytical H(x) Closed-form expressions
Plugin − 1

M

∑M
i=1 log p̂(xi) Sampling-based estimation

KDE − 1
M

∑M
i=1 log

(
1
nh

∑M
j=1 κ

(
xi−xj

h

))
Density smoothing

KNIFE
∑M

i=1 µiκΣi(x− bi) Kernel-based estimator
Nearest-Neighbor ψ(n)− ψ(k) + log(cd) +

d
n

∑M
i=1 log ϵi Distance-based estimation

Vasicek − 1
M

∑M
i=1 log

{
n
2m

(
xi+1 − xi

)}
Sorted sample spacing

Variational Inference −Eq(x)[log q(x)] Surrogate distribution
MINE supθ

(
Epx,y [Tθ(x, y)]− logEpx·py [e

Tθ(x,y)]
)

Calculate it via Informtion
CADEE =

∑d
i=1H(yi) +Hcopula Marginal via copula

LOO 1
M

∑M
i=1H(x−i) Data driven approach

Table 3: Summary of Differential Entropy Approximations

6.2. Variational Inference

Variational Inference (VI) [28] approximates a target distribution p(x) = p̄(x)/Z, known up to
the normalizing constant Z, via a simpler-to-sample-from distribution q∗(x) from a predefined
family Q= {q}, by maximizing the KL-divergence i.e., q∗=argmaxq∈QDKL(p∥q). The choice
of Q significantly impacts performance; more expressive families yield better approximations. At
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convergence, the target entropy can be estimated as H(p)=−Eq∗ [log q
∗]. While VI is scalable, it

may not achieve the optimal q∗ due to, either the limited expressivity of Q, i.e., easy to sample from
distributions are usually over-simplistic (e.g., Gaussians), or optimization challenges (e.g., mode
collapse in Normalizing Flows [64]).

6.3. Sampling-based Variational Inference.

Bridging the gap between parametric variational inference (VI) and Markov Chain Monte Carlo
(MCMC) has been a key research focus to achieve both expressivity and scalability in inference. A
central challenge is deriving an analytical expression for the marginal distribution of the last sample
in an MCMC chain, which is often intractable. To address this, prior work [29, 75] introduced
auxiliary variables to construct augmented variational distributions that include all samples from the
chain. However, this approach requires optimizing a looser ELBO and estimating the reverse Markov
kernel, which introduces additional parameters and complex design choices. Several extensions have
been proposed to avoid estimating the reverse kernel: (i) Hoffman [37] optimize ELBO with respect
to the initial distribution and only uses the MCMC steps to produce “better” samples to the target
distribution. However, this method lacks direct feedback between the final marginal distribution and
variational parameters, limiting full unification of VI and MCMC, (ii) Caterini et al. [14] propose a
deterministic Hamiltonian MCMC by removing resampling and the accept-reject step. However, this
sacrifices MCMC guarantees, (iii) Thin et al. [86] introduce MetFlow, a Metropolis-Hastings method
that models the proposal distribution as a normalizing flow, removing the need for inverse kernel
estimation. MET-SVGD has several advantages compared with the aforementioned approaches: It
computes the exact loglikelihood, i.e., via using the change of variable formula (Sec. 5.2). Hence,
there is no need in the variational approximation on the joint distribution of the samples of the
Markov chain, to estimate the reverse dynamics. Besides, it leverages knowledge of the unormalized
density unlike classical flow models. This makes our approach very easy to integrate in modern day
deep learning pipelines. The idea of approximating log-likelihoods for distributions known up to a
normalization constant using MCMC and the change-of-variable formula was first explored by [21],
applying it to Hamiltonian Monte Carlo (HMC) and Langevin Dynamics (LD). Since, they augment
the input with noise or velocity variable for LD and HMC, respectively, the derived log-likelihood of
the sampling distribution turns out to be –counter-intuitively– independent of the sampler’s dynamics
and equal to the initial distribution, which is then parameterized using a normalizing flow model [47].
Our derived log-likelihood is more intuitive as it depends on the SVGD dynamics.

6.4. Normalizing Flows, Residual Flows and Neural ODEs

We review Normalizing Flows in general and focus on residual flows as MET-SVGD is one. We
also draw the connection to neural ODEs. Normalizing Flows are generative models that produce
tractable distributions where both sampling and density evaluation can be efficient and exact. This
is achieved by transforming a simple probability distribution (e.g., a standard normal) into a more
complex distribution by a sequence of invertible and differentiable mappings. The density of a sample
can be evaluated by transforming it back to the original simple distribution and then computing the
product of the density of the inverse-transformed sample under this distribution and the associated
change in volume induced by the sequence of inverse transformations. The change in volume is
the product of the absolute values of the determinants of the Jacobians for each transformation, as
required by the change of variables formula (See App.5.2). Formally, Let x = (x1, x2, · · · , xd) ∈ Rd
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be a random variable with a known and tractable probability density function px : Rd → R. Let g be
an invertible function and x=F (z). Then using the change of variables formula, one can compute
the probability density function of the random variable y:

px(x) = pz(F
−1(x))

∣∣∣det∇xg
−1(x)

∣∣∣ (7)

Intuitively, if the transformation F can be arbitrarily complex, one can generate any distribution px
from any base distribution pz under reasonable assumptions on the two distributions. This has been
formally proven [11]. However, constructing arbitrarily complicated non-linear invertible functions
can be difficult. Additionally, F should be sufficiently expressive to model the distribution of interest
and computationally efficient, both in terms of computing F , its inverse and the determinant of the
Jacobian ∇xF

−1(x).
Different types of flows have been constructed: (1) Elementwise Flows, (2) Linear Flows, (3)

Planar Flows, (4) Radial Flows, (5) Coupling Flows, (6) Autoregressive Flows, and (7) Residual
Flows, which we focus on due to relevance to MET-SVGD.

Residual Flows are compositions of the function of the form g(x) = x + ϕ(x). The first
attempts to build a reversible network architecture based on residual connections was motivated by
saving memory (each layer activation can be reconstructed from the previous layer) [30, 40] and was
achieved via partitioning units in each layer into two groups and defining coupling functions as:

yA = xA + F (xB)yB = xB +G(yA), (8)

where x = (xA, xB) and y = (yA, yB) are respectively the input and output activations, F :
RD−d → Rd and G : Rd → RD−d are residual blocks. The Jacobian of such a transformation
is, however inefficient to compute and constrains the architecture. To address this, to enable
unconstrained architectures for each residual block, Behrmann et al. [7] proved the following
statement:

Proposition 8 A residual connection is invertible if the Lipschitz constant of the residual block is
Lip(ϕ) < 1, where Lip(ϕ) = supx̸=y

|ϕ(x)−ϕ(y)|
|x−y| . By the mean value theorem 5.6, if ϕ is differentiable

∀x, then Lip(ϕ) = supx ∥∇xϕ(x)∥2 with ∥ · ∥ being the spectral norm.

The detailed proof is in (App. 7.1) . Controlling the Lipschitz constant of a neural network is
not trivial. Note, that regularizing the spectral norm of the Jacobian of ϕ [82] only reduces it locally
and does not guarantee the above condition. Instead, Jacobsen et al. [40] proposes constraining the
spectral radius of each convolutional layer in this network to be less than one.

In residual flows, the density is also derived using the change of variable formula (App. 5.2). A
different approach is proposed to approximate the log-det term:

log |det(I +∇xϕ(x)|
(i)
= Tr(log(I +∇xϕ(x)))

(ii)
=

inf∑
k=1

(−1)k+1Tr(∇xϕ(x))
k

k

Where (i) is obtained using the matrix identity result log det(A) = Tr(log(A)) for non-singular
A ∈ Rd×d [93] and (ii) follows from replacing the trace of the matrix by its power series. By
truncating this series one can calculate an approximation to the log Jacobian determinant. To
efficiently compute each member of the truncated series, the Hutchinson trick is used. However, this
resulted in a biased estimate of the log Jacobian determinant. An unbiased stochastic estimator was
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proposed by [16]. In a model they called a Residual flow [16], the authors used a Russian roulette
estimator instead of truncation. Informally, the next term is added to the partial sum while calculating
the series, one flips a coin to decide if the calculation should be continued or stopped.

Neural ODEs. Due to the similarity of ResNets and Euler discretizations, there are many
connections between the i-ResNet and ODEs. Residual connections can be viewed as discretizations
of a first order ordinary differential equation (ODE) [34]:

d

dt
x(t) = F (x(t), θ(t)), (9)

where F : RD ×Θ→ RD is a function which determines the dynamic (the evolution function), Θ is
a set of parameters and θ : R→ Θ is a parameterization. The discretization of this equation (Euler’s
method) is

xn+1 − xn = εF (xn, θn), (10)

and this is equivalent to a residual connection with a residual block εF (·, θn).

6.5. Stein Variational Gradient Descent

In the following, we provide an explanation of SVGD, the RBF kernel variance and its effect on the
SVGD dynamics, followed by the formal derivation of SVGD and related work on its convergence
rate.

Stein Variational Gradient Descent (SVGD) [56] is a sampling algorithm with update rule
given by Eq. 1. Traditionally, an RBF kernel is used, with its bandwidth σ set via the median heuristic:
σmed=median{∥xli−xlj∥}Mi,j=1/logM . Bandwidth σ determines the influence of neighboring particles
{xlj} on the update of each particle xli: larger values lead to broader neighborhoods, while setting
σ=0 decouples the particles, making their updates independent (Fig. 8 in App. 6.5). SVGD has
several advantages compared to other approximate inference approaches: unlike classical variational
inference (VI) methods, SVGD can sample from arbitrary complex distributions under smoothness
assumptions [90]. Compared to Markov Chain Monte Carlo (MCMC) methods [18], SVGD is more
particle efficient and its convergence can be easily checked using the Stein Identity [44]. However,
SVGD convergence is only proved under certain conditions, such as sub-Gaussian targets [79] or
infinite particles [57, 74]. Additionally, SVGD suffers from poor scalability in high-dimensional
spaces due to diminishing repulsive forces [99]. To address this, existing solutions are based on
dimensionality reduction via projections into low-dimensional manifolds [32, 60], this however
leads to inflated variance (e.g., S-SVGD [32]) or impractical hyperparameters (e.g., GSVGD [60]).
Alternatively, [98, 99] propose using local kernels based on the Markov blanket, but this requires
prior knowledge of the target’s probabilistic graphical model. In this paper, we extend [61] work on
deriving a closed-form expression of ql enabling better scalability.
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Figure 8: (a) Regions of similarity/dissimilarity for an RBF κ(x1, x2) evaluated at x1 = 0. (b)
Repulsion term in the SVGD update as a function of σ.

RBF Kernel Variance Interpretation. RBF kernels are the most generalized form of kernel-
ization and is one of the most widely used kernels due to its similarity to the Gaussian distribution.
The RBF kernel function for two points x1 and x2 computes the similarity or how close they are to
each other. This kernel can be mathematically represented as follows: κ(x1, x2) = exp(−∥x1−x2∥2

σ2 ),
where σ is the kernel variance and ∥x1 − x2∥ is the L2 distance between x1 and x2. The maximum
value that the RBF kernel can reach is 1 when x1 = x2. When a large distance separates the points,
the kernel value is less than 1 and close to 0 indicating dissimilarity between x1 and x2. This also
means that the particles are independent, i.e., : they follow their own gradients (the expectation in the
SVGD update is reduced to one term corresponding to xi = xj). The width of the region of similarity
is controlled by σ, i.e., a larger sigma results in a larger region of similarity with κ(x1, x2) ̸= 0
(Fig. 8 which also means that the particle update is impacted by its neighbors’ gradients (b)).

Setting σ in the SVGD update rule;

xl+1 = xl + ϵExl
j

[
κ(xl, xlj)∇xl

j
log p(xlj)︸ ︷︷ ︸

drift term

+
(xl − xlj)

σ2
κ(xl, xlj)︸ ︷︷ ︸

repulsion term

]
(11)

is not obvious. σ in the drift term determines the neighboring samples xlj that will contribute with their
scores to the update. A larger σ implies, more influence from the neighbors. For the repulsion term,
both a very small or a very large σ value can result in setting the repulsion term to 0 as shown in Fig. 8
(a). Classically, the median trick is used to set the σ, i.e., σmed =median{∥xli−xlj∥}Mi,j=1/ logM
with M being the number of particles. In our experiments, we show that this is suboptimal and that
that a more optimal σ can be learnt end-to-end via minimizing the KL-divergence (Eq. 2.2).

SVGD Derivation. [56] The goal is to approximate a target via a variational distribution q ∈ Q
i.e., :

q∗ = argmin
q∈Q

DKL(q||p).

Q is obtained by transforming a reference density q0 via an invertible map F : X → X , where for
any particle x ∼ q0, we define y = F (x). The distributions of y and x are related by CVF (App. 5.2):

q[F ](y) = q(F−1(y)) · | det(∇yF
−1(y))|
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In this setup, F (x) is chosen to have a specific form: F (x) = x+ ϵϕ(x), where ϵ is a stepsize and ϕ
is a perturbation direction chosen to maximally decrease the KL divergence:

ϕ∗ = argmax
ϕ
{DKL(q||p)−DKL(q[F ]||p)}} = argmax

ϕ∈F
∇ϵDKL(q[F ]||p)

This maximization has a closed form expression if we constrain the space of perturbations F to be a
reproducing kernel Hilbert space (RKHS) with a positive kernel κ(·, ·), and ∥ϕ∥F ≤ 1. In this case
argmaxϕ∈F ∇ϵDKL(q[F ]||p) = Eq[Tr(Apϕ)]. The optimal perturbation direction ϕ∗ is, hence, the
one that maximizes the Stein Discrepancy [58]:

S(q, p) = max
ϕ∈F
{Eq[Tr(Apϕ)] s.t ∥ϕ∥F ≤ 1}

and given by:
ϕ∗p,q(.) = Eq

[
κ(x, .)∇x log p+∇xκ(x, .)

]
.

SVGD Convergence Rate. SVGD is difficult to analyze theoretically because it involves a system
of particles that interact with each other in a complex way. In the infinite particles case, [55] proved
that SVGD converges (weakly) to p in KSD. [48, 74, 85] refined these results with path-independent
constants, weaker smoothness conditions, and explicit rates of convergence. [26] provides conditions
for exponential convergence. For the finite particles case, [55] shows that finite particles SVGD
converges to infinite particles SVGD in bounded-Lipschitz distance but only under boundedness
assumptions violated by most applications of SVGD. [48] explicitly bounded the expected squared
Wasserstein distance between n-particle and continuous SVGD but only under the assumption
of bounded log p. Also they do not provide convergence rates.[59] show that SVGD with finite
particles achieves linear convergence in KL divergence under a very limited setting where the target
distribution is Gaussian. [80] shows that SVGD convergence rate is O(1/

√
log logn) under the

assumption that the target is sub-Gaussian with a Lipschitz score.

6.6. Parametrized-SVGD

Parametrized SVGD (P-SVGD) [61] is a VI approach for entropy estimation from unnormalized
densities. Under invertibility assumption of the SVGD update rule (Eq. 1), it computes the density of
the SVGD particles qL(xL) by sequentially applying the Change of Variable formula (CVF) [23]
over L steps under an invertibility condition derived from the implicit function theorem (App. 5.3):
log ql+1(xl+1)= log ql(xl)−log | det(I+ϵ∇xlϕ(xl))|. To avoid computing the full Jacobian, two
approximations are used: (1) If ϵ∥∇xlϕ(xl)∥∞≪1, the Jacobian determinant is reduced to its trace
following Jacobi’s formula (App. 5.4) and leading to Eq. 3.

6.7. Metropolis–Hastings

The Metropolis–Hastings algorithm’s goal is to generate a Markov Chain {x(l)}∞l=0 that simulates
samples from a given probability distribution p [69]. The chain starts with samples from an initial
distribution q(0) and updates its state by leveraging a proposal distribution q(x̃|x(l)) as

x(l+1)|x(l) =

{
x̃, if αl ≤ p(x̃)q(x(l)|x̃)

p(x(l))q(x̃|x(l))

x(l), otherwise
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where α(l) ∼ U(0, 1).
Importantly, because the update only involves ratios of p, its normalization constant is not

required. Furthermore, by construction, a chain that is constructed using the Metropolis-Hastings
algorithm is reversible [87], which means that if x(0) ∼ p, then xl ∼ p for all iterations l.

As an example, the Metropolis-Adjusted Langevin Algorithm employs the following proposal
distribution

q(x̃(l+1)|x(l)) = Nd

(
x(l) + ϵ∇ log p(x(l)), 2ϵId

)
6.8. Convergence of Metropolis Hastings

Under relatively weak conditions, generating samples from an MCMC algorithm such as Metropolis-
Hastings asymptotically draws samples from the target distribution [70]. The finite number of steps
required for the marginal distribution of the Markov chain to reach the target under a discrepancy
measure, has been heavily studied for both the total variation and Wasserstein distances [13, 42, 72,
90]. A popular approach is to show geometric ergodicity and provide an exponential convergence
rate to the target distribution from any point of initialization in total variation. Explicit convergence
rates have been rare with the exception of some Metropolis-Hastings independence samplers [87].
To quantify said convergence, discrepancy measures are used. Notably, the total variation distance
between two densities p and q defined as: dTV(p, q) =

1
2

∫
X |p(x)− q(x)|dx.

An upper bound on the convergence rate can be computed as:

dTV(q
L, p) ≤

(
1− 1

β

)L

with β = sup
x∈X

p(x)

q(x)

A lower bound can be computed as:

dTV(q
l, p) ≥ (1− α(x))l with α(x) = E

[
min

(
p(x̃)q(x | x̃)
p(x)q(x̃ | x)

, 1

)]
In our case computing the lower bounds for MET-SVGD is possible as we have a closed-form

expression for the acceptance probability.
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Notation: We start by introducing the notation for this section. We compute the first and second
order derivatives of the kernel as follows:

∀i, j ∈ {1..M}2 γ =
1

2σ2
and δi,j = (xli − xlj) hence we express κ,∇xiκ,∇xi∇xjκ as follows:

κ(xli, x
l
j) = exp(−γ∥xli − xlj∥2),

∇xl
j
κ(xli, x

l
j) = 2γδi,jκ(x

l
i, x

l
j)

∇xl
i
κ(xli, x

l
j) = −2γδi,jκ(xli, xlj) = −∇xl

j
κ(xli, x

l
j)

∇xl
i
∇xl

j
κ(xli, x

l
j) = ∇xl

i

(
2γδi,jκ(x

l
i, x

l
j)
)
= 2γ

(
I − 2γδi,jδ

T
i,j

)
κ(xli, x

l
j)

7. SVGD Density Derivation

Theorem 9 Let F : Rn → Rn be an invertible transformation of the form F (x) = x+ ϵϕ(x). We
denote by qL(xL) the distribution obtained from repeatedly (L times) applying F to a set of action
samples (called “particles”) {x0}Mi=1 from an initial distribution q0(x0), i.e., xL = F ◦F ◦· · ·◦F (x0).
Under the condition ϵ < ϵlUB = 1/ supx

√
Tr(∇ϕl(x)∇ϕl,T (x),, ∀l ∈ [0..L], the closed-form

expression of log qL(xL) is:

log qL(xL) = log q0(x0)− ϵ
L−1∑
l=0

Tr(∇xlϕ(xl)) +O(ϵ2) (12)

Proof Based on the change of variable formula (5.2), when for every iteration l ∈ [1, L], the
transformation xl = F (xl−1) is invertible and we have:

ql(xl) = ql−1(xl−1)
∣∣∣det∇xlϕ(xl)

∣∣∣−1
, ∀l ∈ [1, L].

By induction, we derive the probability distribution of sample xL:

qL(xL) = q0(x0)
L−1∏
l=0

∣∣∣det (I + ϵ∇xlϕ(xl)
)∣∣∣−1

By taking the log for both sides, we obtain:

log qL(xL) = log q0(x0)−
L−1∑
l=0

log
∣∣∣det (I + ϵ∇xlϕ(xl)

)∣∣∣ .
This, however, requires computing the Jacobian ∇xlϕ(xl). Next, we show that log

∣∣∣ det (I +
ϵ∇xlϕ(xl)

)∣∣∣ can be approximated efficiently via ϵTr(∇xlϕ(xl)) + O(ϵ2) under an assumption on
the learning rate in section 7.3, that’s satisfied by the invertibility assumption (Sec.7.1) and derive the
expression of Tr(∇ϕ) for the RBF, Bilinear and DKEF Kernels (Sec 7.5).
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7.1. Sufficient Condition For x+ ϵϕ(x) Invertibility (Prop. 1)

Proposition 3.1 (Sufficient condition for invertible SVGD).
Let f : Rd→Rd with f=(f1◦· · ·◦fL) denote a sequence of SVGD updates with f l=I+ϵϕl. We

denote by Lip
(
ϕl
)

the Lipschitz constant of the velocity ϕl at step l. f is invertible if ϵ Lip
(
ϕl
)
< 1,

for all l ∈ [0, L− 1].
Proof Given xl+1, the goal is to find xl. We denote by c xl+1 resulting in xl+1 = c− ϵϕ(xl). Hence,
we are interested in the invertibility of the function g(x) = c− ϵϕ(x). for this, we show that g is a
contractive mapping:

d(g(x), g(x̃)) = d(c− ϵϕ(x), c− ϵϕ(x̃))
(i)
= d(−ϵϕ(x),−ϵϕ(x̃))
(ii)
= |ϵ|d(ϕ(x), ϕ(x̃))
(iii)

≤ |ϵ|K · d(x, x̃), with |ϵ|K < 1

(i) The distance is translation invariant.

(ii) The distance is absolutely homogeneous.

(iii) ϵϕ is a contractive mapping, i.e., , d(ϵϕ(x), ϵϕ(x̃)) ≤ ϵKd(x, x̃) with ϵK ≤ 1. Note that
Lip(ϵϕ) = supx

d(ϵϕ(x),ϵϕ(x̃))
d(x,x̃) = ϵK

Therefore, g(x) is a contractive mapping, and by the Banach fixed point theorem 2, it has a
unique fixed point. This implies that the inverse of the mapping xl+1 = xl + ϵϕ(xl) exists and is
unique.

Hence, we demonstrate that f l = I + ϵϕl is invertible if ϵLip
(
ϕl
)
< 1. Since f is a composition

of f l (l ∈ [1 · · ·L[), we conclude that f is invertible.

7.2. A sufficient condition for invertibility check - an upper bound (Corr. 3)

Corollary 3.3. The distribution induced by the SVGD update (Eq. 1) using an RBF kernel is given
by Eq. 3 if ϵ < ϵlUB = 1/ supx

√
Tr(∇ϕl(x)∇ϕl,T (x)) ∀l ∈ [0, L− 1]

Proof xl+1 = xl + ϵϕ(xl) is invertible if Lip (ϕ(x)) < 1 as we demonstrate in (App. 7.1)
We compute the Lipschitz constant:

Lip(ϕ) = sup
x

∥ϕ(x)− ϕ(y)∥
∥x− y∥

(i)
= sup

x
∥∇xϕ(x)∥2

(ii)
= sup

x
σmax{∇xϕ(x)}

(i) We consider the ℓ2 norm in computing the operator norm.

(ii) Using the definition of the Lipschitz constant via Jacobian norm: ∥ϕ(x)−ϕ(y)∥ ≤ supx ∥∇xϕ(x)∥·
∥x− y∥.

The following always holds: λmax{∇ϕ} is upper bounded by ∥∇ϕ∥2 ≤
√
Tr(∇ϕ∇ϕT ).
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7.3. A sufficient condition for log-det approximation (Prop. 2)

Proposition 3.2(Condition for log-det Approximation) Let ϕl :Rd→Rd, log |det(I + ϵ∇ϕl)|=
ϵTr(∇ϕl) if ϵ |λmax

(
∇ϕl

)
|< 1 for all l∈ [0, L − 1], with λmax being the largest eigenvalue value

and ∇ is the gradient operator w.r.t the input.
Proof

We discuss two approaches leveraging the corollary of Jacobi’s formula and the bounds on the
eigenvalues of ∇xlϕ(xl):

Method 1 (P-SVGD): Leveraging the Corollary of the Jacobi’s formula. Let A = I +
ϵ∇xlϕ(xl), under the assumption ϵ||∇xiϕ(xi)||∞ ≪ 1, i.e., ||A− I||∞ ≪ 1, we apply the collorary
of Jacobi’s formula (App. 5.4) and get

log qL(xL) = log q0(x0)−
L−1∑
l=0

Tr
(
log(I + ϵ∇xlϕ(xl))

)
+O(ϵ2)

= log q0(x0)− ϵ
L−1∑
l=0

Tr
(
(I + ϵ∇xlϕ(xl)− I)

)
+O(ϵ2)

= log q0(x0)− ϵ
L−1∑
l=0

Tr
(
∇xlϕ(xl)

)
+O(ϵ2)

In practice, since this bound is informal, [61] recommend choosing a small enough learning rate.
Method 2 (MET-SVGD): Leveraging bounds on the eigenvalues of∇xlϕ(xl). In the following

we denote by λi{A} the eigenvalue of matrix A

∣∣∣det (I + ϵ∇xlϕ(xl)
)∣∣∣ (i)= ∣∣∣∣∣

d∏
i=1

λi{I + ϵ∇xlϕ(xl)}

∣∣∣∣∣ =
d∏

i=1

∣∣∣λi{I + ϵ∇xlϕ(xl)}
∣∣∣

(ii)
=

d∏
j=1

∣∣∣1 + ϵλj{∇xlϕ(xl)}
∣∣∣ = exp

( d∑
j=1

ln
∣∣∣1 + ϵλj{∇xlϕ(xl)}

∣∣∣ )

= exp
( d∑

j=1

ln
(
1 + ϵλj{∇xlϕ(xl)}

))
if λj{∇xlϕ(xl)} >

−1
ϵ

(iii)
= exp

( d∑
j=1

ϵλj{∇xlϕ(xl)}+O(ϵ2)
)

= exp
(
ϵTr(∇xlϕ(xl)) +O(ϵ2)

)
(i) By definition of the determinant.

(ii) Let λi be the eigenvalue of {I + ϵ∇xlϕ(xl)} associated with the eigenvector vi. We show that
λi − 1 is the eigenvalue associated with ϵ∇xlϕ(xl):

⇔ (I + ϵ∇xlϕ(xl))vi = λivi

⇒ ϵ∇xlϕ(xl)vi = (λi − 1)vi

⇒ λj = (λi − 1) is an eigenvalue of ϵ∇xlϕ(xl)
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(iii) We use Taylor expansion of ln(1 + ϵa) =
∑

i
(−1)i−1(ϵa)i

i = ϵa+O(ϵ2) around ϵa→ 0.

Hence, under the condition λi{∇xlϕ(xl)} > −1
ϵ , the approximation log

∣∣det (I + ϵ∇xlϕ(xl)
)∣∣ =

ϵTr(∇xlϕ(xl)) holds exactly.

λi{∇xlϕ(xl)} >
−1
ϵ
∀i ∈ [1..d]

⇔
∣∣∣λiϵ∣∣∣ < 1

⇔
∣∣∣λiϵ∣∣∣ < ∣∣∣λmaxϵ

∣∣∣ < 1 s.t ∀i λi < λmax

⇔ ϵ <
1

|λmax|︸ ︷︷ ︸
ϵUB

Even though the condition ϵ < α
|λmax| is more exact than the one derived by [61], it’s still

impractical as it requires computing the Jaccobian.

7.4. Unifying the sufficient conditions for invertibility and log |det(I + ϵA) = ϵTr(A) +O(ϵ2)

Corollary 10 Following [94], Let A be an d× d complex matrix, and let A∗ be the Hermitian of A:

|λi| ≤ σi ≤ (Tr(A∗A))1/2 ∀i ∈ [1..d]

Where σi is the i-th singular value of A.

Proof In our setup A = ∇xl
i
ϕ(xli), which we can easily compute as illustrated in the following:

∇xl
i
ϕ(xli) =

1

M

M∑
j=1,j ̸=i

∇xl
i
κ(xli, x

l
j)sp(x

l
j)

T +∇xl
i
∇xl

j
κ(xli, x

l
j)︸ ︷︷ ︸

Ai

+
1

M
κ(xli, x

l
i)︸ ︷︷ ︸

=1

∇xl
i
sp(x

l
i)
T

︸ ︷︷ ︸
Bi

Next we compute Tr(∇xl
i
ϕ(xli)). We denote by Ai and Bi the two terms of ∇xl

i
ϕ(xli):

Tr
(
(∇xl

i
ϕ(xli))

T∇xl
i
ϕ(xli)

)
= Tr(ATA) = Tr

(
(Ai +Bi)

T (Ai +Bi)
)

= Tr
(
AT

i Ai +BT
i Bi +AT

i Bi +AiB
T
i

)
= Tr(AT

i Ai) + Tr(BT
i Bi) + 2Tr(AiB

T
i )

= Tr(AT
i Ai)︸ ︷︷ ︸

(1)

+Tr(BT
i Bi)︸ ︷︷ ︸

(2)

+2Tr(BT
i Ai)︸ ︷︷ ︸

(3)

For a term by term breakdown:

Term (1) = Tr(AT
i Ai)
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= Tr

(( 1

M

M∑
j=1
j ̸=i

Ci,j︷ ︸︸ ︷
∇xl

i
κ(xli, x

l
j)sp(x

l
j)

T +

Di,j︷ ︸︸ ︷
∇xl

i
∇xl

j
κ(xli, x

l
j)
)T( 1

M

M∑
r=1
r ̸=i

∇xl
i
κ(xli, x

l
r)sp(x

l
r)

T︸ ︷︷ ︸
Ci,r

+∇xl
i
∇xl

r
κ(xli, x

l
r)︸ ︷︷ ︸

Di,r

))

= Tr

(
1

M2

M∑
j=1
j ̸=i

M∑
r=1
r ̸=i

(
Ci,j

T +Di,j
T
)(
Ci,r +Di,r

))

=
1

M2

M∑
j=1
j ̸=i

M∑
r=1
r ̸=i

Tr(CT
i,jCi,r +DT

i,jCi,r)︸ ︷︷ ︸
(1a)

+Tr(DT
i,jDi,r + CT

i,jDi,r)︸ ︷︷ ︸
(1b)

Term (1a) = Tr(CT
i,rCi,j +DT

i,rCi,j)

= Tr
(
(∇xl

i
κ(xli, x

l
r)sp(x

l
r)

T )T (∇xl
i
κ(xli, x

l
j)sp(x

l
j)

T ) + (∇xl
i
∇xl

r
κ(xli, x

l
r))

T (∇xl
i
κ(xli, x

l
j)sp(x

l
j)

T )
)

= Tr
(
sp(x

l
r)∇xl

i
κ(xli, x

l
r)

T∇xl
i
κ(xli, x

l
j)sp(x

l
j)

T + (∇xl
i
∇xl

r
κ(xli, x

l
r))

T (∇xl
i
κ(xli, x

l
j)sp(x

l
j)

T )
)

= Tr
(
4γ2κ(xli, x

l
r)κ(x

l
i, x

l
j)sp(x

l
r)δ

T
i,rδi,jsp(x

l
j)

T − 4γ2κ(xli, x
l
r)κ(x

l
i, x

l
j)
(
I − 2γδi,rδ

T
i,r

)
δi,jsp(x

l
j)

T
)

= Tr
(
4γ2κ(xli, x

l
r)κ(x

l
i, x

l
j)
(
sp(x

l
r)δ

T
i,r − I + 2γδi,rδ

T
i,r

)
δi,jsp(x

l
j)

T
)

= 4γ2κ(xli, x
l
r)κ(x

l
i, x

l
j)
(
δTi,rsp(x

l
r)− d+ 2γ∥δi,r∥2

)
sp(x

l
j)

T δi,j

Term (1b) = Tr(DT
i,rDi,j + CT

i,rDi,j)

= Tr
(
(∇xl

i
∇xl

r
κ(xli, x

l
r))

T (∇xl
i
∇xl

j
κ(xli, x

l
j)) + (∇xl

i
κ(xli, x

l
r)sp(x

l
r)

T )T (∇xl
i
∇xl

j
κ(xli, x

l
j))
)

= Tr

(
4γ2κ(xli, x

l
r)κ(x

l
i, x

l
j)
(
I − 2γδi,rδ

T
i,r

)(
I − 2γδi,jδ

T
i,j

)
− 4γ2κ(xli, x

l
r)κ(x

l
i, x

l
j)sp(x

l
r)δ

T
i,r

(
I − 2γδi,jδ

T
i,j

))

= Tr

(
4γ2κ(xli, x

l
r)κ(x

l
i, x

l
j)
(
I − 2γδi,rδ

T
i,r − sp(xlr)δTi,r

)(
I − 2γδi,jδ

T
i,j

))
= 4γ2κ(xli, x

l
r)κ(x

l
i, x

l
j)
(
d− δTi,rsp(xlr)− 2γ|δi,r|2

)(
d− 2γ|δi,j |2

)
Adding these sub-terms together

Term 1⃝ =
1

M2

M∑
j=1
j ̸=i

M∑
r=1
r ̸=i

4γ2κ(xli, x
l
r)κ(x

l
i, x

l
j)
(
δTi,rsp(x

l
r)− d+ 2γ∥δi,r∥2

)
sp(x

l
j)

T δi,j

+ 4γ2κ(xli, x
l
r)κ(x

l
i, x

l
j)
(
d− δTi,rsp(xlr)− 2γ∥δi,r∥2

)(
d− 2γ∥δi,j∥2

)
=

1

M2

M∑
j=1
j ̸=i

M∑
r=1
r ̸=i

4γ2κ(xli, x
l
r)κ(x

l
i, x

l
j)
(
δTi,rsp(x

l
r)− d+ 2γ∥δi,r∥2

)(
sp(x

l
j)

T δi,j − d+ 2γ∥δi,j∥2
)

Term 2⃝ = Tr(BT
i Bi)
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= Tr

(
1

M2
∇xl

i
sp(x

l
i)
(
∇xl

i
sp(x

l
i)
)T)

=
1

VM2

V∑
t=1

vTt ∇xl
i
sp(x

l
i)
(
∇xl

i
sp(x

l
i)
)T
vt

=
1

VM2

V∑
t=1

∣∣∣∣∣∣∇xl
i

(
vTt sp(x

l
i)
)∣∣∣∣∣∣2

Term 3⃝ = Tr(BT
i Ai)

≈ 1

V

V∑
t=1

vTt

(
1

M2

M∑
j=1
j ̸=i

[
−2γ∇xl

i
sp(x

l
i)δi,jsp(x

l
j)

T︸ ︷︷ ︸
Ei,j

+2γ∇xl
i
sp(x

l
i)(I − 2γδi,jδ

T
i,j)︸ ︷︷ ︸

Fi,j

]
κ(xli, x

l
j)

)
vt

Using Hutchinson Trace Estimation [39]

≈ 1

V

V∑
t=1

1

M2

M∑
j=1
j ̸=i

κ(xli, x
l
j)
[
vTt Ei,jvt + vTt Fi,jvt

]

≈ 1

VM2

V∑
t=1

M∑
j=1
j ̸=i

κ(xli, x
l
j)
[
− 2γ(vTt ∇xl

i
sp(x

l
i))(δ

T
i,jvt)sp(x

l
j)

T + 2γ(vTt ∇xl
i
sp(x

l
i))(vt − 2γ(δTi,jvt)δi,j)

]

By combining Terms 1⃝, 2⃝ and 3⃝, we obtain:

(1) + (2) + (3) =
1

M2

M∑
j=1 j ̸=i

M∑
r=1 r ̸=i

4γ2κ(xli, x
l
r)κ(x

l
i, x

l
j)
(
δTi,rsp(x

l
r)− d+ 2γ|δi,r|2

)(
sp(x

l
j)

T δi,j − d+ 2γ|δi,j |2
)

+
2

M2
|∇xl

i
sp(x

l
i)|2

+
1

VM2

V∑
t=1

M∑
j=1 j ̸=i

κ(xli, x
l
j)
[
− 2γ(vTt ∇xl

i
sp(x

l
i))(δ

T
i,jvt)sp(x

l
j)

T + 2γ(vTt ∇xl
i
sp(x

l
i))(vt − 2γ(δTi,jvt)δi,j)

]

7.5. Computing Tr(∇xlϕ(xl)) with RBF kernel

We show that the closed-form estimate of the log-likelihood log qL(xL) for the SVGD-based sampler
with an RBF kernel κ(·, ·) is

log qL(xL) ≈ log q0(x0)− ϵ

Mσ2

L−1∑
l=0

M∑
j=1

xl ̸=xl
j

(
κ(xlj , x

l)
(
−(xl − xlj)⊤∇xl

j
sp(x

l
j)−

α

σ2
∥xl − xlj∥2 + dα

))
− ϵ

M
Tr
(
∇2

xl
i
log p(xli)

)

Proof We explicitly compute Tr(∇xlϕ(xl)) as follows:
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log qL(aLi ) = log q0(x0i )−
ϵ

m

L−1∑
l=0

[
m−1∑
j=1

xl
i ̸=xl

j

[
Tr
(
∇xl

i
(κ(xli, x

l
j)∇xl

j
log p(xlj))

)
︸ ︷︷ ︸

1⃝

+Tr
(
∇xl

i
∇xl

j
κ(xli, x

l
j)
)

︸ ︷︷ ︸
2⃝

]

+Tr
(
∇2

xl
i
log p(xli)

)
︸ ︷︷ ︸

3⃝

]

Next we compute simplifications for all subterms 1⃝ and 2⃝ respectively. In the following, we
denote by ()(k) the k-th dimension of the vector.

Term 1⃝:

Tr
(
∇xl

i
(κ(xlj , x

l
j)∇xl

j
sp(x

l
j)

T )
)

= Tr
(
∇xl

i
κ(xlj , x

l
j)(∇xl

j
sp(x

l
j))

⊤ + κ(xlj , x
l
j)∇xl

i
∇xl

j
sp(x

l
j))
)

=
d∑

t=1

∂κ(xlj , x
l
j)

∂(xli)
(t)

∂sp(x
l
j)

∂(xli)
(t)

+ 0

= (∇xl
i
κ(xlj , x

l
j))

⊤∇xl
j
sp(x

l
j)

= − 1

2σ2
κ(xlj , x

l
j)(x

l
i − xlj)⊤∇xl

j
sp(x

l
j)

Term 2⃝:

Tr
(
∇xl

i
∇xl

j
κ(xli, x

l
j)
)

= Tr

(
∇xl

i

(
1

σ2
κ(xli, x

l
j)(x

l
i − xlj)

))
=

1

σ2

d∑
k=1

(
∂κ(xli, x

l
j)

∂(xli)
(k)

(xli − xlj)(k) + κ(xli, x
l
j)

)

=
1

σ2

(
∇xl

i
κ(xli, x

l
j)

⊤(xli − xlj) + d× κ(xli, xlj)
)

=
1

σ2

(
∇xl

i
κ(xli, x

l
j)

⊤(xli − xlj) + d× κ(xli, xlj)
)

= − 1

2σ4
× κ(xli, xlj)∥xli − xlj∥2 +

1

2σ2
× d× κ(xli, xlj)

= κ(xli, x
l
j)

(
− 1

2σ4
∥xli − xlj∥2 +

d

2σ2

)
Term 3⃝: Using Hutchinson Trace Estimation [39]

Tr
(
∇2

xl
i
log p(xli)

)
≈ 1

V

V∑
t=1

vTt ∇2
xl
i
log p(xli)vt

By combining Terms 1⃝, 2⃝ and 3⃝, we obtain:

log qL(xLi ) = log q0(x0i )−
ϵ

Mσ2

L−1∑
l=0

M∑
j=1

κ(xlj , x
l
j)
(
−(xli − xlj)⊤∇xl

j
sp(x

l
j)−

α

σ2
∥xli − xlj∥2+dα

)
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− ϵ

MV

V∑
t=1

vTt ∇2
xl
i
log p(xli)vt

Proof done if we take a generic action particle xi in place of x.

7.6. Computing Tr(∇xlϕ(xl)) with Bilinear kernel

[59] show that, for a Gaussian initial distribution, q0(x) = N (µ0,Σ0), and a target distribution

p(x) = N (b,Q) such that Q ∈ Rd×d. Applying SVGD with a Bilinear kernel κ(xi, xj) =
xT
j xi

C + 1
and explicitly showing log p(xl) = −V (xl) = −1

2(x
l−b)TQ−1(xl−b) produces a Gaussian density

ql at every step with mean µl and covariance matrix Σl, satisfying the following system of equations:

µ
l+1 = µl + ϵl

[(
I − (Σl + µlµl

T
)Q−1 + µlbTQ−1

)µl

C + (b− µl)TQ−1
]
,

Σl+1 = Σl + ϵl
[
2Σl

C −
Σl

C Q
−1(Σl + (µl − b)µlT )− (Σl + µl(µl − b)T )Q−1 Σl

C

]
.

(13)

We use this property to verify that the intermediate distributions ql with the bilinear kernel are also
Gaussian. We make use of the bilinear kernel’s expression in the proof

Proof For κ(xli, x
l
j) =

xl
j
T
xl
i

C + 1, ∇xl
j
κ(xli, x

l
j) =

xl
i

C , and ∇xl
i
∇xl

j
κ(xli, x

l
j) =

I
C we have

the following SVGD dynamics at every step:

(
xl+1
i − xli

)
/ϵl =

1

M

M∑
j=1

∇xjκ(x
l
i, x

l
j) +

1

M

M∑
j=1

κ(xli, x
l
j)∇xl log p(xl).

Hence, substituting these into the dynamics we obtain:

(
xl+1
i − xli

)
/ϵl =

1

M

M∑
j=1

xli
C
− 1

M

M∑
j=1

(
xlj

T
xli

C
+ 1

)
∇V (xlj)

=
xli
C
− 1

M

M∑
j=1

Q−1(xlj − b)

(
xlj

T
xli

C
+ 1

)

=
xli
C
− 1

M

M∑
j=1

Q−1(xlj − b)−
1

M

M∑
j=1

Q−1(xlj − b)
xlj

T

C
xli

=
xli
C
− Q−1

M

M∑
j=1

(xlj − b)−
Q−1

M

M∑
j=1

xlj
xlj

T

C
xli +

Q−1b

M

M∑
j=1

xlj
T

C
xli

=
xli
C
−Q−1(µl − b)− Q−1

C

(
Σl + µlµl

T
)
xli +

Q−1

C
bµl

T
xli

=

(
I

C
− Q−1

C

(
Σl + µlµl

T
)
+
Q−1

C
bµl

T

)
xli −Q−1(µl − b) (i)
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We substitute µl =
1

M

M∑
j=1

xlj and that Σl + µlµl
T
=

1

M

M∑
j=1

xljx
lT
j , and obtain

1

M

M∑
i=1

(
xl+1
i − xli

)
/ϵl =

(
I

C
− Q−1

C

(
Σl + µlµl

T
)
+
Q−1

C
bµl

T

)
µl −Q−1(µl − b)

=

(
I

C
− Q−1

C
Σl − Q−1

C

(
µl − b

)
µl

T

)
µl −Q−1(µl − b)

=
(
I −Q−1Σl

)µl
C
− Q−1

C

(
µl − b

)
µl

T
µl −Q−1(µl − b)

=
(
I −Q−1Σl

)µl
C
−Q−1

(
µl − b

)(µlTµl
C

+ 1
)

Hence (µl+1 − µl)/ϵl =
(
I −Q−1Σl

)µl
C
−Q−1

(
µl − b

)(µlTµl
C

+ 1
)

(ii)

Knowing that(
Σl+1 − Σl

)
/ϵl =

∂Σl

∂l

=
∂

∂l

1

M

M∑
j=1

xljx
lT
j − µlµl

T

Taking into consideration (i) and (ii)(
Σl+1 − Σl

)
/ϵl = 2

Σl

C
− Σl

C
Q−1

(
Σl + (µl − b)µl

)
−
(
Σl + µl(µl − b)T

)
Q−1Σ

l

C
(iii)

In Fig. 9, we empirically verify that SVGD intermediate distributions coincide with the derived
Gaussians.
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Figure 9: Bilinear kernel. qlθ coincides with theoretically derived intermediate distributions by Liu
et al. [59].

7.7. Computing Tr(∇xlϕ(xl)) with DKEF kernel

In the following, we show that using the deep exponential kernel (DKEF) κ(xli, x
l
j)=exp (−∥ψ(xli)− ψ(xlj)∥2)

where we denote by ψ(x) ∈ Rm an m dimensional vector, is computationally inefficient due to the
requirement of computing∇xψ(x) in our entropy derivation, i.e., terms 1 and 2 in the density below:

log qL(aLi ) = log q0(x0i )−
ϵ

m

L−1∑
l=0

[
m−1∑
j=1

xl
i ̸=xl

j

[
Tr
(
∇xl

i
(κ(xli, x

l
j)∇xl

j
log p(xlj))

)
︸ ︷︷ ︸

1⃝

+Tr
(
∇xl

i
∇xl

j
κ(xli, x

l
j)
)

︸ ︷︷ ︸
2⃝

]

+Tr
(
∇2

xl
i
log p(xli)

)
︸ ︷︷ ︸

3⃝

]

Proof Term 1⃝:

Tr
(
∇xl

i
(κ(xlj , x

l
j)∇xl

j
log p(xlj))

)
= Tr

(
∇xl

i
κ(xlj , x

l
j)(∇xl

j
log p(xlj))

⊤ + κ(xlj , x
l
j)∇xl

i
∇xl

j
log p(xlj))

)
=

d∑
t=1

∂κ(xlj , x
l
j)

∂(xli)
(t)

∂ log p(xlj)

∂(xli)
(t)

+ 0

= (∇xl
i
κ(xlj , x

l
j))

⊤∇xl
j
log p(xlj)

= − 1

σ2
κ(xlj , x

l
j)∇xiψ(xi)(ψ(x

l
i)− ψ(xlj))⊤∇xl

j
log p(xlj)

Term 2⃝:

Tr
(
∇xl

i
∇xl

j
κ(xli, x

l
j)
)

= Tr

(
∇xl

i

(
1

σ2
κ(xli, x

l
j)(ψ(x

l
i)− ψ(xlj))

))
=

1

σ2
Tr
(
∇xl

i
κ(xli, x

l
j)(ψ(x

l
i)− ψ(xlj))⊤ + κ(xli, x

l
j) · I

)
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=
1

σ2
Tr

(
− 1

σ2
κ(xli, x

l
j)∇xl

i
ψ(xli)(ψ(x

l
i)− ψ(xlj))(ψ(xli)− ψ(xlj))⊤ + κ(xli, x

l
j) · I

)

Term 3⃝:

Tr
(
∇2

xl
i
log p(xli)

)
≈ 1

V

V∑
t=1

vTt ∇2
xl
i
log p(xli)vt

∇xl
i
ψ(xli) ∈ Rm×d is required for both Term 1⃝ and Term 2⃝, which introduces significant

computational overhead and renders the density intractable.

7.8. Derivation of the LD density

Similarly to the derivation above the LD induced density can be derived as:
Proof

log ql+1(xl+1) = log ql(xl) + log
∣∣∣det∇xlϕ(xl)

∣∣∣−1
where ϕ(xl) = xl − ϵ∇xl log p(xl) +

√
2ϵξ

(i)
= log ql(xl)− ϵTr

(
∇xlϕ(xl)

)
, if λi{∇xlϕ(xl)} > −

1

ϵ
∀i

= log ql(xl)− ϵTr
(
∇2

xl log p(x
l)
)

(ii)
= log ql(xl)− ϵ

V

V∑
t=1

vTt ∇2
xl
i
log p(xli)vt

(i) Using CVF (Eq 5.2)

(ii) Using the Hutchinson Estimator, where pv is chosen such that E[vvT ]=I(eg. pv is Radamacher
distribution.)

In conclusion:

log qL(xL) = log q0(x0)− ϵ

V

L∑
l=0

V∑
t=1

vTt ∇2
xl
i
log p(xli)vt
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8. Metropolis Hastings augmented entropy

In the following, we provide derivations for (1) the acceptance probability (Sec.2.4), (2) convergence
check (Sec. 2.2) and (3) MH-augmented SVGD density (Sec. 8.4).

8.1. Acceptance Probability (Sec.2.4)

Proposition 3.4 Given a target p = p̄/Z, the log-likelihood of the MH acceptance probability for an
SVGD update of a particle xl−1 at step l is

logα(xl−1, x̃l) = min
[
0, log p̄(x̃l)− log p̄(xl−1) + ϵTr(∇xlϕ(xl))

]
.

Proof By leveraging Bayes’ rule, we compute:

ql(xl−1 | x̃l)
ql(x̃l | xl−1)

=
ql(xl−1, x̃l)

ql(x̃l, xl−1)
· q(x

l−1)

q(x̃l)

=
q(xl−1)

q(x̃l)

=
q(xl−1)

q(xl−1) |det(I + ϵ∇xl−1ϕ(xl−1))|−1

= |det(I + ϵ∇xl−1ϕ(xl−1))|

Thus, the Metropolis-Hastings ratio becomes:

p(xl)

p(xl−1)
· q

l(xl−1 | x̃l)
ql(x̃l | xl−1)

=
p(xl)

p(xl−1)
· | det(I + ϵ∇xl−1ϕ(xl−1))|

Taking logs:

log

(
p(xl)

p(xl−1)
· q

l(xl−1 | x̃l)
ql(x̃l | xl−1)

)
= log

(
p(xl)

p(xl−1)

)
+ log

∣∣∣det(I + ϵ∇xl−1ϕ(xl−1))
∣∣∣

Finally, using the first-order approximation log | det(I +A)| ≈ Tr(A) for small ϵ, we obtain:

= log

(
p(xl)

p(xl−1)

)
+ ϵTr(∇xl−1ϕ(xl−1))

8.2. Motivation: learning the SVGD learning rate (Sec. 2.2)

Learning the kernel bandwidth alone is generally insufficient to ensure convergence of the entropy
term. Specifically, the expectation Exl∼ql [ϵTr(∇xlϕ(xl))] does not necessarily vanish as l→∞. We
show, via a Taylor expansion around 0, that this cumulative trace term corresponds to a 8th-degree
polynomial whose convergence to zero requires the existence of at least one real root. However, the
coefficients of this polynomial depend on the particle positions and are not guaranteed to yield a real
root during training, making this condition both non-trivial and fragile.
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For conciseness, we introduce three new quantities:

κj = κ(xl, xlj), δj = xl − xlj , and sj = ∇xl
j
log p(xlj).

Proof According to Sec. 7.5, if κ is the RBF kernel, then:

Tr(∇xlϕ(xl)) =
1

M
Tr
(
∇2

xl log p(x
l)
)
+

1

Mσ2

M−1∑
j=0

xl
j ̸=xl

kj

(
d− δ⊤j sj −

1

σ2
||δj ||2

)

We approximate the RBF kernel using a Taylor expansion around 0:

exp

(
− 1

2σ2
||δj ||2

)
≈ 1− 1

2σ2
||δj ||2 +

1

8σ4
||δj ||4

Then, we substitute in the formula above and obtain:

Tr(∇xlϕ(xl)) =
1

M
Tr
(
∇2

xl log p(x
l)
)
+

1

Mσ2

M−1∑
j=0

xl
j ̸=xl

(
1− 1

2σ2
||δj ||2 +

1

8σ4
||δj ||4

)(
d− δ⊤j sj −

1

σ2
||δj ||2

)

Finally, we set Tr(∇xlϕ(xl)) = 0 and multiply by σ8:

1

M
σ8Tr

(
∇2

xl log p(x
l)
)
+

1

M

M−1∑
j=0

xl
j ̸=xl

(
σ4 − 1

2
σ2||δj ||2 +

1

8
||δj ||4

)(
σ2d− σ2δ⊤j sj − ||δj ||2

)
= 0

Since we have a polynomial of degree 8, we have 8 roots, not all of which are guaranteed to
be real for σ. Thus, for convergence, ϵ needs to be flexible enough to converge to 0, ensuring that
Exl∼ql [ϵTr(∇xlϕ(xl))] converges to 0 as l→∞.

8.3. Convergence Check (Sec. 2.2)

Figure 10: (a) SI shows the same convergence trend as other convergence metrics such as Fisher
Divergence (FD) and Kernelized Stein Discrepancy (KSD). With SI being the tractable and com-
putationally efficient metric. (b) SI can be used to check SVGD convergence across steps, for
MET-SVGD and P-SVGD(σmed, σ = 10−4).
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8.3.1. DERIVATION OF THE STEIN IDENTITY (SEC.2.2)

Proof The Stein Identity is the square of the Kernelized Stein Discrepancy [58]:

S(ql, p) = max
ϕ∈Hd

[
Exl

[
Tr(Apϕ(x

l))
]2
, s.t ∥ϕ∥Hd ≤ 1

]
The optimal perturbation ϕ is given by:

ϕ(xl) =
ϕ∗q,p(x

l)

∥ϕ∗q,p∥Hd

, with ϕ∗q,p(·) = Exl

[
Apk(x

l, ·)
]

and S(ql, p) = ∥ϕ∗q,p∥Hd

We compute:

∥ϕ∗q,p∥2Hd = ⟨ϕ∗q,p, ϕ∗q,p⟩Hd

= Exl
i
Exl

j

[(
k(xli, x

l
j)∇xl

j
log p(xlj) +∇xl

j
k(xli, x

l
j)
)
·
(
k(xlj , x

l
i)∇xl

i
log p(xli) +∇xl

i
k(xlj , x

l
i)
)]

And obtain

S(ql, p) = Exl∼ql

[
Tr

(
ϕ∗(xl)

∥ϕ∗∥
∇xl log p(xl)T +∇xl

ϕ∗(xl)

∥ϕ∗∥

)]
= Exl∼ql

[
ϕ(xl)T∇xl log p(xl) + Tr(∇xlϕ(xl))

∥ϕ∗∥

]

8.3.2. INTRACTABILITY OF KSD, FD

Even though Fisher Divergence F(ql, p) and Kernelized Stein Discrepancy S(ql, p) follow the same
trend with the Stein Identity, they cannot be used as convergence metrics as they require computing
∇xl log ql(xl) which will require computing a jacobian on ∇xl−1ϕ(xl−1).
Proof Note that ∀x, x′ being i.i.d. draws from ql, F(ql, p) = Exl [∇x log q

l(x) − ∇x log p(x)]

and S(ql, p) = Ex,x′∼ql

[(
∇x log q

l(x) − ∇x log p(x)
)T
k(x, x′)

(
∇x′ log ql(x′) − ∇x′ log p(x′)

)]
.

Computing either is possible thanks to the closed form expression of the log density 12, which
circumvents the intractability issue encountered due to the score of ql, ∀l ∈ [0 · · ·L[:

∇xl log ql(xl) =
∂ log ql(xl)

∂xl
=

(
∂xl

∂xl−1

)−1

· ∂ log q
l(xl)

∂xl−1
=
(
∇xl−1ϕ(xl−1)

)−1
· ∇xl−1 log ql(xl)

Such that log ql(xl) = log ql−1(xl−1)− ϵ log
∣∣∣ det∇xl−1ϕ(xl−1)

∣∣∣
So ∇xl log ql(xl) =

(
∇xl−1ϕ(xl−1)

)−1

︸ ︷︷ ︸
Intractable

·
(
∇xl−1 log ql−1(xl−1)− ϵ∇xl−1Tr(∇xl−1ϕ(xl−1))

)
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8.4. MH-augmented SVGD Density

Proposition 11 At step L, the particle distribution induced by MET-SVGD is given by:

qMH,L
θ (xL) = qLθ (x

L)

L−1∏
l=0

αl
θ +

∑
a0:L−1 ̸=1

qMH,L
θ (xL, a0:L−1). (14)

qLθ (x
L) is the non-augmented SVGD distribution (Eq. 1), al ∈ {0, 1} indicates acceptance (1) or

rejection (0) at step l, qMH,L
θ (xL, a0:L−1)=q

0(x0)
∏L

l=1(α
l
θ)

al(1−αl
θ)

1−al | det(I+ϵ∇xlϕθ(x
l))|−al .

Proof We prove the statement above by induction. We leverage:

qMH,l
θ = αl−1

θ qMH,l−1
θ (xl−1)

∣∣∣ det(I + ϵ∇xl−1ϕ(xl−1))
∣∣∣−1

+ (1− αl−1
θ )qMH,l−1

θ (15)


Case l = 0: qMH,0

θ = q0θ

Case l = 1: qMH,1
θ (x1) = α0

θq
0
θ(x

0)
∣∣∣ det(I + ϵ∇x0ϕ(x0))

∣∣∣+ (1− α0
θ)q

0
θ(x

0)

,with a0;L−1 = a0

On the other hand, evaluating qMH,1
θ (x1, a0) by marginalizing over a0 ∈ {0, 1}:

qMH,1
θ (x1, a0 = 0) = q0θ(x0)(1− α0

θ)

qMH,1
θ (x1, a0 = 1) = q0θ(x0)(α

0
θ)
∣∣∣ det(I + ϵ∇x0ϕ(x0))

∣∣∣
Therefore:

qMH,1
θ (x1) = q0θ(x0)α

0
θ

∣∣∣det(I + ϵ∇x0ϕ(x0))
∣∣∣+ q0θ(x0)(1− α0

θ)

Case l > 1: We assume

qMH,l
θ (xl) = qlθ(x

l)
l−1∏
k=0

αk
θ +

∑
a0:l−1 ̸=1

qMH,l
θ (xl, a0:l−1), ∀l ∈ [2, l] (16)

and show that it holds for qMH,l+1
θ .

We know that:

qMH,l+1
θ (xl+1) = αl

θq
MH,l
θ (xl)

∣∣∣ det(I + ϵ∇xlϕ(xl))
∣∣∣+ (1− αl)qMH,l

θ (xl) (17)

We plug Eq. 16 into Eq. 17:

qMH,l+1
θ (xl+1) = qMH,l

θ (xl)×
[
αl
θ

∣∣∣ det(I + ϵ∇xlϕ(xl))
∣∣∣+ (1− αl

θ)
]
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=

qlθ(xl) l−1∏
k=0

αk
θ +

∑
a0:l−1 ̸=1

qMH,l
θ (xl, a0:l−1)

× [αl
θ

∣∣∣ det(I + ϵ∇xlϕ(xl))
∣∣∣+ (1− αl

θ)
]

= qlθ(x
l)

l∏
k=0

αk
θ

∣∣∣ det(I + ϵ∇xlϕ(xl))
∣∣∣︸ ︷︷ ︸

ql+1
θ (xl+1)

∏l
k=0 α

k
θ

+ qlθ(x
l)

l−1∏
k=0

αk
θ(1− αl

θ)︸ ︷︷ ︸
qMH,l+1
θ (xl+1,a0..l−1=1,al=0)

+
∑

a0..l−1 ̸=1

qMH,l
θ (xl, a0:l−1)α

l
θ

∣∣∣det(I + ϵ∇xlϕ(xl))
∣∣∣

︸ ︷︷ ︸
qMH,l+1
θ (xl+1,a0:l−1 ̸=1,al=1)

+
∑

a0:l−1 ̸=1

qMH,l
θ (xl, a0:l−1)(1− αl

θ)︸ ︷︷ ︸
qMH,l+1
θ (xl+1,a0:l−1 ̸=1,al=0)
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9. Additional Results on Entropy Estimation

In the following, we provide implementation details and additional experiments for the toy experi-
ments.

9.1. Optimized SVGD parameters

9.1.1. KERNEL BANDWIDTH

Figure 11: (A) Entropy, (B) RBF kernel bandwidth, and (C) step-size across SVGD steps. Target is
the Gaussian target from Fig. 1A.

9.2. Gaussian Targets

Implementation Details for Fig. 1A are reported in Tab. 4.

Algorithm Parameter Value

LD
P-SVGD
MET-SVGD

Target p p = N ([−0.69, 0.8], [[1.13, 0.82], [0.82, 3.39]])
Number of Particles M M = 200
Number of Steps L L = 1500
Initial Distribution q0 N (0, 6I)

LD
Learning Rate ϵ ϵ = 0.1

P-SVGD
P-SVGD Kernel Bandwidth σ σ ∈ {1, 5, σmed}

MET-SVGD

Kernel Architecture
Architecture σθ2 = GNN({xli}Mi=1; θ2)
# Layers 3
Activation {ReLU, Exponential, Truncate}

Learning Rate Architecture
Architecture ϵlθ3 = min

(
ϵ0θ3 , ϵ

0
θ3
dl/sθ3

)
Initial Learning Rate ϵ0θ3 0.1

Decay Factor dθ3 5× 10−3

Decay Scale sθ3 L

Training Parameters
Optimizer Adam
Learning Rate 5 · 10−3

Epochs 300
Loss {KL Divergence}

Resources
GPU Tesla V100-SXM2-32GB
RAM 2 GB
Per-epoch runtime 2.6 seconds

Table 4: Experimental setup for Fig. 1A
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Implementation Details (Fig. 9) & (Fig. 10)

Parameter Figure 9 Figure 10
Target p p = N ([−0.69, 0.8], [[1.13, 0.82], [0.82, 3.39]])
Number of Particles M M = 500
Number of Steps L L = 1000 L = 500
Initial Distribution q0 N (0, 6I)

Kernel Architecture
Architecture Cθ2 = GNN({xli}Mi=1; θ2) σθ2 = GNN({xli}Mi=1; θ2)

Kernel Type Bilinear: xT
i xj

C2
θ2

+ 1 RBF: exp(−∥xi − xj∥2/2σ2)

Learning Rate Architecture
Architecture ϵlθ3 = min

(
ϵ0θ3 , ϵ

0
θ3
dl/sθ3

)
Initial Learning Rate
ϵ0θ3

ϵ0θ3 = 0.1

Decay Factor dθ3 dθ3 = 5× 10−3

Decay Scale
sθ3

sθ3 = L

Training Parameters
Optimizer Adam
Learning Rate 5 · 10−3

Epochs 300

Table 5: Experimental setup for Figs. 9 and 10.

Figure 12: MET-SVGD is less sensitive to the Tr
approximation than LD. Target is a slanted Gaussian
(details in App. 6).

Parameter LD MET-SVGD
Number of particles M = 100
Number of iterations L = 1000
Target distribution p = N (0, Id), d ∈ {2, 10, 50, 80, 100}
Initial distribution N (0, 6Id) (augmented)

Algorithm-Specific Learned Parameters
Learned parameter Gaussian noise Kernel variance σ

Learned LR ϵlθ3 = min
(
ϵ0θ3 , ϵ

0
θ3
dl/sθ3

)
Training Parameters

Optimizer Adam
Learning rate 5 · 10−3

Epochs 300

Table 6: Experimental setup for Fig. 12

Implementation Details (Fig. 12) Langevin Dynamics. In Fig. 12, we show that we can learn the
Langevin dynamics’ parameters θ = {ϵθ2 , µθ3} such that xl+1 = xl + ϵθ2∇xl log p(xl) +

√
2ϵθ2ξθ3

end-to-end by minimizing the reverse KL-Divergence:

θ∗ = argmin
θ

ExL∼qLθ
[log qLθ (x

L)− log p(xL)] s.t. ϵlθ3 ≤ ϵ
l
UB, ∀l ∈ [0, L− 1]

Here qL = q0 + ϵ
∑L−1

l=0 Tr(∇2
xlp(x

l)), where the trace is approximated via the Hutchinson
estimator (Eq. 7.5). We show SVGD is less sensitive to this approximation than LD in high
dimensions. Scalability. (a) Multivariate Gaussian. In Fig. 13, we visualize the learnt SVGD
learning rate for the setup in Fig. 8 in the main paper. The target is a d-dimensional multivariate
Gaussian p(x) = N (x; 0, Id). For each method, 100 particles are initialized from N (x; 21, 2Id),
where 1 ∈ Rd denotes the vector of ones. This is a standard benchmark illustrating the diminishing
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variance issue of SVGD. We show that MET-SVGD outperforms other baselines in high dimensional
spaces as measured by the entropy and the variance across dimensions (Fig. 13a,b). The SVGD
repulsive force is large during the first updates, preventing the particles from collapsing, unlike
other baselines (Fig. 13c). P-SVGD is not scalable due to a missing term in the entropy. This is
subsequently fixed in the MET-SVGD update.

Figure 13: Scalability Results: MET-SVGD achieves higher accuracy on both (a) Entropy Estimation
and (b) Variance across dimensions

Accelerating Convergence. In Fig. 14, we show that, for the setup of Fig. 10, convergence can
be accelerated either by (1) adding a regularization on the decay rate in the optimization objective
(see Sec.2.2) or (2) randomizing the maximum number of steps during training. We observe a quicker
drop in the kernel variance (particles are less correlated initially).

Figure 14: Accelerated convergence via regularization and number of SVGD steps randomization for
the same MET-SVGD setup in Tab.6

9.3. Gaussian Mixture Model

9.3.1. EXPERIMENT ON 2D GMM WITH MOVING COMPONENT

In the following, we provide implementation details and additional experiments for the toy experi-
ments where the target is a 2D GMM.
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Figure 15: MET-SVGD outperforms P-SVGD on GMM entropy estimation.

Implementation Details for (Fig. 15) are reported in Tab.7.

Parameter P-SVGD MET-SVGD
Distribution type GMM with 5 components
Fixed components µ1 = (0.0, 0.0),Σ1 = 0.16I2

µ2 = (3.0, 2.0),Σ2 = I2
µ3 = (1.0,−0.5),Σ3 = 0.5I2
µ4 = (2.5, 1.5),Σ4 = 0.5I2

Mobile component µ5 = (c, c),Σ5 = 0.5I2 where c ∈ [−3, 3]
Dimension d = 2
Number of particles M ∈ {50, 100, 500}
Number of iterations L = 1500

Initial Distribution Settings

Setting 1 N (0, I2)

Setting 2 GMM(K = 10) with µk
i.i.d.∼ U([−4, 4]2) and Σk = I2 ∀k

Algorithm-Specific Parameters
Kernel variance σ ∈ {1, 5,median} σ = GNN({xli}Mi=1; θ2)

Learning rate ϵ = 0.1 ϵlθ3 = min
(
ϵ0θ3 , ϵ

0
θ3
dl/sθ3

)
Base learning rate - ϵ0θ3 = 0.1

Decay factor - dθ3 = 5× 10−3

Decay scale - sθ3 = L

Training Parameters
Optimizer Adam
Learning rate 5.10−3

Epochs 300

Table 7: Experimental setup for Fig. 15
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Qualitative results for different c values, as well as the KL-divergence, entropy, kernel Band-
width and step-size are reported in Fig. 16. We observe that P-SVGD with σmed has poor convergence.
In facr, σθ2 shows a different trend entirely. Whereas ϵθ3 converges consistently across all configura-
tions.

Figure 16: Results on entropy estimation for different c configurations. (a) KLD, (b) Entropy, (c)
Learnt kernel bandwidth and (d) SVGD step-size.

Additionally, we show in Fig. 17 that the number of particles is key to an accurate, low variance
estimation. Adding more particles significantly helps improve the accuracy. P-SVGD performs
poorly. In fact, the estimation is worse than a trivial lower bound that we derive as follows:
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Figure 17: Entropy results on a 2D GMM with a moving component(Fig. 16). MET-SVGD
significantly outperforms P-SVGD. Increasing the number of particles reduces the variances. Results
are reported on 5 different seeds.

Next we explain the derivation of the Upper & Lower Bounds for a GMM target as seen in Fig. 17
as follows:

The pdf of A GMM with K components is given by the formula:

p(x) =

K∑
i=1

ωiN (x;µi, Ci),

where {ωi}Ki=1 are non-negative weighting coefficients such that
∑

i ωi = 1 and N (x;µi, Ci)
is a gaussian density with mean µi and covariance Ci. Note that the entropy generally cannot
be calculated in closed form for GMM due to the logarithm of a sum of exponential functions
(except for the special case of a single Gaussian density). We derive two trivial bounds to as-
sess the performance of the different baselines. We start by deriving the lower bound LB(x) =
−
∑K

i=1 ωi log(
∑K

j=1 ωjN (µi;µj , Ci + Cj)).
Proof

H(x) =−
K∑
i=1

ωi

∫
RN

N (x;µi, Ci) log p(x)dx

≥−
K∑
i=1

ωi log
[ ∫

RN

N (x;µi, Ci)p(x)dx
]

by Jensen inequality

≥−
K∑
i=1

ωi log
[ ∫

RN

N (x;µi, Ci)

K∑
j=1

ωjN (x;µj , Cj)dx
]
≥ −

K∑
i=1

ωi log
[ K∑
j=1

ωjN (µi;µj , Ci + Cj)
]

︸ ︷︷ ︸
LB(x)
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Upper-bound UB: We prove thatH(p(x)) ≤ UB by deriving the entropy of the Gaussian enveloping
the target:

UB = H(N (µG, CG)), with

{
µG =

∑L
i=1 ωiµi

CG =
∑L

i=1 ωi(Ci + µiµ
T
i )−

∑L
i=1

∑L
j=1 ωiωjµiµ

T
j

Proof Consider a Gaussian mixture model p(x) =
∑L

i=1 ωiN (x;µi, Ci). The mean is µ =

E[p(x)] =
∑L

i=1 ωiµi. The covariance can be computed as:

C = E[(x− µ)(x− µ)T ] = E[xxT ]− µµT =

∫
x

(
L∑
i=1

ωiN (x;µi, Ci)

)
xxTdx− µµT

=

L∑
i=1

ωi

∫
x
xxTN (x;µi, Ci)dx− µµT

For a single Gaussian component, Ci = E[(x − µi)(x − µi)T ] = E[xxT ] − µiµTi , which means
Ex∼N (x;µi,Ci)[xx

T ] = Ci + µiµ
T
i . Substituting this in the above:

C =
L∑
i=1

ωi(Ci + µiµ
T
i )− µµT

=
L∑
i=1

ωi(Ci + µiµ
T
i )−

(
L∑
i=1

ωiµi

) L∑
j=1

ωjµ
T
j

 =
L∑
i=1

ωi(Ci + µiµ
T
i )−

L∑
i,j=1

ωiωjµiµ
T
j = CG

Since a Gaussian distribution maximizes entropy among all distributions with the same mean
and covariance, we haveH(p(x)) ≤ H(N (µG, CG)) = UB(x).

9.3.2. TARGETS WITH DISTANT MODES

Implementation Details (Fig. 18) are reported in Tab.8. We show that the divergence control
heuristic based on eliminating particles further than 3 standard deviations of the initial distribution
mean exacerbates mode collapse is already an issue when using the reverse KL-divergence.

Qualitative results particles from the initial distribution are visualized in (i) a. We apply
the truncation heuristic to different setups (P-SVGD with 0 steps, ie with only a learnable initial
distribution and P-SVGD with L = 140 steps).

Effect of the Initial Distribution. In Fig. 19, we compare the results of using a Gaussian and a
GMM with 10 components. We show that when using a GMM, less steps and particles are needed
to learn the target. All experiments with a Gaussian initial distribution resulted in mode collapse.
Using a GMM mitigates the mode collapse issue when learning the parameters using the reverse
KL-divergence. In the future, we will explore training with the forward KLD while leveraging
importance sampling.

Implementation details are in Tab.9.
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Algorithm Parameter Value

No SVGD

P-SVGD

MET-SVGD

Target p GMM with 3 components

µ1 = (−4.0, 2.0),Σ1 = I2

µ2 = (4.0, 2.0),Σ2 = I2

µ3 = (0.0,−12.0),Σ3 = 2I2
Number
of Particles
M

M = 200

Number
of Steps
L

L = 1000

Initial
Distribution
q0

N (0, 6I)

P-SVGD
Learning
Rate ϵ

ϵ = 0.1

Kernel
Bandwidth σ

σ ∈ {1, 5,median}

MET-SVGD

Kernel Architecture

Architecture σθ2 = GNN({xli}Mi=1; θ2)

Learning Rate Architecture

Architecture ϵlθ3 = min
(
ϵ0θ3 , ϵ

0
θ3
dl/sθ3

)
Initial Learning
Rate ϵ0θ3

ϵ0θ3 = 0.1

Decay Factor
dθ3

dθ3 = 5× 10−3

Decay Scale
sθ3

sθ3 = L

Training Parameters

Optimizer Adam
Learning
Rate

5 · 10−3

Epochs 300

Activation
Functions

{Exponential(), Truncate(min, max)}

Table 8: Experimental setup for Fig. 18

Figure 18: P-SVGD struggles with
distributions with distant modes.

Figure 19: Effect of the initial distribution on a GMM setup.
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Algorithm Parameter Value

MET-SVGD

Target p GMM with 3 components (orange spots in figure)
Number of Particles M M ∈ {50, 100}
Number of Steps L L ∈ {10, 50}

Initial Distribution q0θ

Two settings:
GMM(1): Single component (left column)
GMM(10): 10 components (right column)

Kernel Architecture
Architecture σθ2 = GNN({xli}Mi=1; θ2)

Learning Rate Architecture
Architecture ϵlθ3 = min

(
ϵ0θ3 , ϵ

0
θ3
dl/sθ3

)
Initial Learning Rate ϵ0θ3 ϵ0θ3 = 0.1

Decay Factor dθ3 dθ3 = 5× 10−3

Decay Scale sθ3 sθ3 = L

Training Parameters
Optimizer Adam
Learning Rate 5 · 10−3

Epochs 300
Activation Functions {Exponential(), Truncate(min, max)}

Table 9: Experimental setup for Fig. 19

9.4. High Dimensional GMMs

The goal of this experiment is to further assess the scalability of MET-SVGD.
Implementation Details The target distribution is a mixture of 4 d-dimensional Gaussian

distributions p(x) =
∑4

k=1 0.25N (x, µk, Id) with uniform mixture ratios. The first two coordinates
of the mean vectors are equally spaced on a circle, while the other coordinates are set to 0 (Fig. 20.A-
D). Particles are initialized from cN(0, Id) and only the first two dimensions need to be learned. In
Fig. 20a, we show that MET-SVGD efficiently recovers the low-dimensional structure.
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Parameter Value
Target distribution p(x) =

∑4
k=1 0.25N (x, µk, Id)

Initial distribution q0 = N (0, I)

Default
SVGD

parameters

Learning rate ϵP−SVGD = 0.1
ϵMET−SVGD = nn.Parameter(0.1)

Number of steps L = 100
Number of particles M = 100

Kernel variance σP−SVGD =

√
med(||xi−xj ||2)

2 lnM

σMET−SVGD = nn.Parameter(1.0)

Training
Optimizer Adam

Learning rate 10−2

Epochs 500

Table 10: Experimental configuration for high-dimensional GMM results.

(a) Estimated entropy across dimensions. (b) P-SVGD

(c) MET-SVGD (w. MH) (d) MET-SVGD (wo. MH)

Figure 20: Scalability results. Target is a high-dimensional GMM. MET-SVGD successfully recovers
the entropy of the low-dimensional GMM.

10. Additional Results: Energy Based Models

EBMs [52, 96] are represented as Gibbs densities p(x) = exp(f(x)) , where f(x) ∈ R is an energy
function describing inter-variable dependencies and Z =

∫
exp(f(x)) is the partition function.
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Despite their expressiveness, EBMs are not tractable as the partition function requires integrating
over an exponential number of configurations. Markov Chain Monte Carlo (MCMC) methods
[88] (e.g., HMC [38], SGLD [92]) are frequently used to approximate the partition function via
sampling. There have been recent efforts to parameterize these samplers via deepnets [27, 31, 53]
to improve scalability. Similarly to these methods, we propose a parameterized variant of SVGD
[56] as an EBM sampler to enable scalability to high-dimensional action spaces. Beyond sampling,
we derive a closed-form expression of the sampling distribution as an estimate of the EBM. This
yields a tractable estimate of the entropy. This is opposed to previous methods for estimating EBM
entropy which mostly rely on heuristic approximation, lower bounds [20, 22], or neural estimators of
mutual information [50]. The idea of approximating the entropy of EBMs via MCMC sampling by
leveraging the change of variable formula was first proposed in [21]. The authors apply the formula
to HMC, which violates the invertibility requirement for the change of variable formula. To go
around this, they augment the EBM family with the velocity variable for HMC. But the derived
log-likelihood of the sampling distribution turns out to be –counter-intuitively– independent of the
sampler’s dynamics and equal to the initial distribution, which is then parameterized using a flow
model. By contrast, we show that SVGD is invertible under a step-size condition (Corr. 3), and hence
we sample from the original EBM, so that our derived entropy is more intuitive as it depends on the
SVGD dynamics.

Proposition 12 (Sec.3) Training EBMs pϕ(x) = p̄ϕ(x)/Z via maximum likelihood (Lebm(ϕ) =
−Ex∼pd [log pϕ(x)] )is intractable due to the partition function Z. When the sampler has a tractable
distribution qθ, a tight lower bound can be computed in return: LELBO(ϕ, θ)=Ex∼qθ [log p̄ϕ(x)]−
Ex∼pd [log p̄ϕ(x)] +H(qθ) with pd being the data distribution,

Proof Given:

Lebm(ϕ) = −Ex∼pd [log pϕ(x)] = −Ex∼pd [log p̄ϕ(x)] + logZ(ϕ).

We bound the partition function using the KL-divergence:

logZ(ϕ) ≥ logZ(ϕ)−DKL(qθ(x)∥pϕ(x))

≥ logZ(ϕ) +

∫
x
qθ(x) log

pϕ(x)

qθ(x)
dx

≥ logZ(ϕ) +

∫
x
qθ(x) log

p̄ϕ(x)
Z(ϕ)

qθ(x)
dx

≥ logZ(ϕ) +

∫
x
qθ(x) log p̄ϕ(x)dx−

∫
x
qθ(x) logZ(ϕ)dx−

∫
x
qθ(x) log qθ(x)dx

≥ logZ(ϕ) + Ex∼qθ [log p̄ϕ(x)]− logZ(ϕ) +H(qθ)

≥ Ex∼qθ [log p̄ϕ(x)] +H(qθ).

Substituting back into the MLE objective:

Lebm(ϕ) = −Ex∼pd [log p̄ϕ(x)] + logZ(ϕ)
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≥ −Ex∼pd [log p̄ϕ(x)] + Ex∼qθ [log p̄ϕ(x)] +H(qθ)
= LELBO(ϕ, θ).

10.1. Synthetic Experiment: Moon Distribution

We evaluate on the Moon dataset [68] with varying smoothness. Implementation Details (Fig. 21)
are described in Tab. 11. Performance: As smoothness decreases, MET-SVGD consistently

Parameter Value
Target distribution pθ(x) =

exp fθ(x)
Zθ

fθ(x) = MLPθ(128, Swish, 128, Swish, 128, Swish, 1)
Initial distribution q0 = N ([0, 0], 7I)

Default
SVGD

parameters

Learning rate ϵ = ϵlθ2 (l free learnable parameters)
Number of steps L = 100

Number of particles m = 129
Kernel variance σ = σlθ2 (l free learnable parameters)

Training
Optimizer Adam

θ Learning rate 10−3

ϕ Learning rate 10−2

Epochs 1250

Resources
GPU Tesla V100-SXM2-32GB
RAM 2 GB

Per-epoch runtime 2.6 seconds

Table 11: Experimental configuration for EBM results.

outperforms all baselines in terms of the MMD score [20], where MMD(p, q) = Ex,x′∼p [κ(x, x
′)] +

Ey,y′∼q [κ(y, y
′)]− 2Ex∼p,y∼q [κ(x, y)] , s.t κ(x, y) = exp

(
−∥x− y∥2/2σ2

)

Figure 21: EBM Results. MET-SVGD outperforms P-SVGD and LD on learning EBMs to fit
non-smooth data distributions.

10.2. Image generation

Implementation Details (Fig. 23) are reported in Tab. 12. All experiments were conducted on a
single NVIDIA A100 80GB with 8GB allocated memory; average runtime was around 6 seconds per
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Parameter Value
Target distribution pθ(x) =

exp fθ(x)
Zθ

fθ(x) is a WideResnet(28,10) network
Initial distribution q0 is a replay buffer initialized using a GMM whose

modes are based on the class-conditional means and
covariances

Default
SVGD

parameters

Learning rate ϵLD = ϵP−SVGD = 64 (this number is divided by m
in the SVGD update formula)
ϵMET−SVGD = GNN({xli}, {∇xl

i
log pθ(x

l
i)}; θ3)

Number of steps L = 5
Lc = 10

Number of particles M = 64
Kernel variance σLD = 0

σP−SVGD =

√
med(||xi−xj ||2)

2 lnM

σMET−SVGD = GNN({xli}; θ2)

Training
Optimizer SGD

θ Learning rate 10−1 with 1000 iterations warm-up and decay at
epochs 60, 120, and 180.

ϕ Learning rate 10−4

Epochs 200

Resources
GPU NVIDIA A100 80GB
RAM 8 GB

Per-iteration runtime 6 seconds

Table 12: Experimental configuration for EBM results.

iteration (processing one batch of data composed of 64 particles). Qualitative Results. In Fig. 23,
we visualize generated images sampled from the different models. FID and Inception Score In
Fig. 23, we report the FID and IS scores for baselines: (1) LD trained with contrastive divergence:

min
θ
LCD(θ) = min

θ
−Ex∼pd [fθ(x)] + Ex∼q [fθ(x)] , (18)

with q being the empirical distribution induced by the LD particles; (2) P-SVGD and MET-SVGD
variants trained adversarially by alternating between learning the sampler parameters

min
ϕ
−LELBO(ϕ) = max

ϕ
−Ex∼pd [fθ(x)] + Ex∼q [fθ(x)] +H(qϕ), (19)

and minimizing the contrastive divergence

min
θ
LCD(θ) = min

θ
Ex∼q[log p̄ϕ(x)]−Ex∼pd [log p̄ϕ(x)] (20)

in Fig. 23a and Fig. 23c. (3) MET-SVGD variants trained adversarially using the ELBO loss for
both learning the sampler and the energy:

min
θ

max
ϕ
LELBO(θ, ϕ) = min

θ
max
ϕ

Ex∼q[log p̄ϕ(x)]−Ex∼pd [log p̄ϕ(x)] +H(qϕ), (21)
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(a) MET-SVGD(σθ2 , ϵθ3 ,
w.Tr∇2, w.MH)

(b) MET-SVGD(σθ2 , ϵθ3 , wo.
Tr∇2)

(c) MET-SVGD(σθ2 , ϵθ3 , w.
Tr∇2,Adv.)

(d) MET-SVGD(σθ2 , ϵθ3 , Lc,
w. Tr∇2)

(e) P-SVGD (f ) LD

(g) MET-SVGD(σθ2 , w. Tr∇2) (h) MET-SVGD(σθ2 , ϵθ3 , w.
Tr∇2)

(i) MET-SVGD(σθ2 , ϵθ3 , w.
Tr∇2, q0=RB-PCA, Adv.)

Figure 22: Image generation using EBMs across different configurations.
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in Fig. 23b and Fig. 23d. The second setup (Fig. 23a, Fig. 23c) led to the best result. Performance:
The best FID (lowest) was obtained when both the kernel bandwidth and step-size are learnt. Com-
parative results with better scalability are obtained with an adaptive number of steps Lc. Removing
the trace led to early divergence showcasing the importance of this correction. Both LD and P-SVGD
resulted in early divergence. This was also the case for the setup with MH due to high rejection rates
and hence limited number of steps (constrained by the GPU memory) leading to poor convergence to
the target. In the future, we will explore optimizing the memory usage to afford more steps. Also,
we find that the performance improvement obtained from learning the step-size on top of the kernel
bandwidth, i.e., MET-SVGD(σθ2 , ϵθ3) vs. MET-SVGD(σθ2), is due to the learning the step-size
resulting in smoother energy landscapes (Fig. 24). The third setup (Fig. 23b, Fig. 23d), where both
the sampler and the energy are learnt using the ELBO (with the entropy term in learning the energy)
didn’t work as well. In Fig. 24, we show that this is due to the score exploding frequently leading
to almost zeo learning rates. We plan to address this by contraining the Lipschitz constant of the
deepnet in the future.

(a) FID score
(
LELBO(ϕ), LCD(θ)

)
(b) FID score

(
LELBO(ϕ, θ)

)

(c) IS score
(
LELBO(ϕ), LCD(θ)

)
(d) IS score

(
LELBO(ϕ, θ)

)
Figure 23: EBM Results. We report the FID and IS scores across training iterations for both (A-B)
the set-up where the sampler (ϕ) is trained using LELBO(ϕ) and energy (θ) using LCD(θ), and (B-C)
the setup where the sampler and the energy are learnt adversarially using LELBO(θ, ϕ). Tr∇2 stands
for including the trace of Hessian term and q0 = RB-PCA for initializing the replay buffer with
samples obtained via a linear combination of the principal components of the data samples.

Smoothness. In Fig. 24, we visualize the scores of the learn distribution ∇xfθ(x) across
training iterations. The setups with the lowest FID and highest IS score are associated with the
smoothest landscapes, i.e., lowest scores. This is the case of MET-SVGD(σθ2 , ϵθ3 , w. Tr∇2) and
MET-SVGD(σθ2 , ϵθ3 , Lc, w. Tr∇2). The diverging setups are associated with frequently exploding
scores.
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Figure 24: EBM results. The L2-norm of the learnt EBM score ∇xfθ(x).

Trainable SVGD Hyperparameters. In Fig. 25, we visualize the SVGD step-size and kernel-
bandwidth across training iterations. We observe that σmed is frequently higher that the learned ones.
The learned step-size is also higher than the P-SVGD one in setups that led to the best FID. In setups
with high FID, we observe that ϵθ3 is associated with high variance: it frequently becomes very small.
This is mostly driven by the score of the energy.

(a) Average SVGD step-size ϵlθ3 across training
iterations.

(b) SVGD kernel bandwidth σlθ2 across training
iterations.

Figure 25: EBM Results. Visualization of the learnt kernel bandwidth and step-size across training
iterations.
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11. Additional Results: MaxEntr RL

Figure 26: Return IQM for Walker2d-v2. MH variants yield the best returns.

Implementation Details for (Fig. 26) are reported in Tab. 13
Performance. In Fig. 27a and Fig. 27b, we report the Inter Quantile Mean (IQM) return values

averaged over 5 runs, where every run is the average of 10 evaluations of the policy. We refer
to the approach leveraging P-SVGD as proposed by [61] as S2AC, and our approach as S2AC+.
We follow the same convention form EBM experiments for naming the different methods: for the
different S2AC+ variants, we only include arguments that are different from the S2AC setup. The
default parameters for S2AC are (q0θ1 , ϵ = 1e−4, M = 10, L = 3), divergence control w. particles
truncation, wo. Tr∇2). In the Humanoid environment (Fig. 27a), adding the missing trace of Hessian
term resulted in faster convergence. Increasing the number of particles and incorporating MH for
divergence control led to improved performance: better exploration through more particles and
exploitation through the MH step.

In Walker environment (Fig. 27b), MH helped achieve higher return. We also see that S2AC(σθ2 , ϵθ3)
failed because the learning rate became very small for many iterations (Fig. 33a), which is visible in
the high variance of the score norm (Fig. 33b).
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Table 13: Hyperparameters

Hyperparameter Value

Training
Optimizer Adam

Actor and Critic Learning rate 10−4 for Humanoid and 10−3 for all
other environments

Batch size 100

Deepnet

Number of hidden layers 2 Critic and 3 Actor
Number of hidden units per layer 256

Nonlinearity ELU

RL

Target smoothing coefficient 0.005
Discount γ 0.99

Target update interval 1
Entropy weight α 0.2

Replay buffer size |D| 106

SVGD

Initial distribution q0 = N (µθ, diag(σθ))
Number of steps L = 3

Number of particles M = 10

Kernel variance σ2 =
∑

i,j ∥ai−aj∥2

4(2 logm+1)

σ =
GNN(st, {xli}, {∇xl

i
log p(xli)}; θ2)

Learning rate ϵ = 0.1
ϵ =
GNN(st, {xli}, {∇xl

i
log p(xli)}; θ3)

(a) Humanoid’s IQM Return. (b) Walker’s IQM Return.

Figure 27: IQM return scores across environments.
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(a) Humanoid’s Final IQM Return. (b) Walker’s Final IQM Return.

Figure 28: Final IQM return scores across environments.

(a) Humanoid’s IQM Return at step 0.2× 106. (b) Walker’s IQM Return at step 0.2× 106.

Figure 29: IQM return scores at step 0.2× 106 across environments.

Trainable SVGD Parameters (Humanoid Env) In Fig. 30, we visualize a histogram of the
mean of initial distribution q0θ1 across training iterations. We observe that the mean has several
components outside the [-1,1] range of valid actions. While the actions are truncated to satisfy the
constraints, this still limits the exploration as many particles would end-up having -1/1 as values.
This trend is exacerbated across S2AC+ variants, especially for the cases of learnable step-size ϵθ3 ,
adaptive number of steps Lc and larger number of particles M = 64. In the future, we will explore
mechanisms for constraining the support of the policy distribution to the valid range. This is not
a trivial problem as the obvious solution of truncating the mean leads to vanishing gradients and
modeling q0θ1 as a distribution with a limited support (e.g., beta distribution) is not obvious as such a
distribution is highly sensitive to parameters with big ranges. Also, enforcing the constraints in the
Q-value through reward is not trivial as it can lead to non-smooth hard-to-learn landscapes. This
poor exploration limits the effect of our contribution, as our approach helps explore better in the local
neighborhood of the modes identified through exploration.

In Fig. 33, we present a histogram of the learned kernel bandwidth across training iterations.
Note that in these experiments σθ2 ∈ Rd. We observe that for certain dimensions the bandwidth was
small indicating independant particles while for other states the particles were more interdependent
(large σθ2 values). Also, note that the kernel bandwidth values for S2AC are consistently large.

The SVGD step-size ϵlθ3 is visualized in Fig. 32.
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CAN WE ESTIMATE THE ENTROPY OF ARBITRARY DISTRIBUTIONS KNOWN UP TO A NORMALIZATION CONSTANT?

(a) SAC (b) S2AC (c) S2AC+(σθ2)

(d) S2AC+(σθ2 , ϵθ3) (e) S2AC+(σθ2 , ϵθ3 , Tr∇2) (f ) S2AC+(σθ2 , ϵθ3 , Tr∇2,
M = 64)

(g) S2AC+(σθ2 , ϵθ3 , Tr∇2,
M = 64, Lc)

(h) S2AC+(σθ2 , ϵθ3 , Tr∇2,
M = 64, Lc, w. MH)

(i) S2AC+(σθ2 , ϵθ3 , Tr∇2, Lc,
w. MH)

Figure 30: Histogram of the mean of q0 across training iterations (Humanoid env).

Figure 32: Learned step-size ϵlθ3 for Humanoid env.
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CAN WE ESTIMATE THE ENTROPY OF ARBITRARY DISTRIBUTIONS KNOWN UP TO A NORMALIZATION CONSTANT?

(a) S2AC+(σθ2) (b) S2AC+(σθ2 , ϵθ3) (c) S2AC+(σθ2 , ϵθ3 ,Tr∇2)

(d) S2AC+(σθ2 , ϵθ3 ,Tr∇2,
M = 64)

(e) S2AC+(σθ2 , ϵθ3 ,Tr∇2,
M = 64, Lc)

(f ) S2AC+(σθ2 , ϵθ3 ,Tr∇2, w.
MH)

(g) S2AC+(σθ2 , ϵθ3 ,Tr∇2,
M = 64, w. MH)

(h) S2AC

Figure 31: Histogram of the kernel bandwidth σlθ2

(a) Learnable step-size ϵl3 (Walker env.) (b) Scores (Walker env.)

Figure 33: Learned step-size and scores in Walker env.

Trainable SVGD Parameters (Walker Env). We visualize the scores and step-size in Fig. 33a
and Fig. 33b.
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