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ABSTRACT

With the broad applications of deep learning, such as image classification, it is be-
coming increasingly essential to tackle the vulnerability of neural networks when
facing adversarial attacks, which have been widely studied recently. In the coop-
erative multi-agent reinforcement learning field, which has also shown potential
in real-life domains, little work focuses on the problem of adversarial attacks.
However, adversarial attacks on observations that can undermine the coordination
among agents are likely to occur in actual deployment. This paper proposes a
training framework that progressively generates adversarial attacks on agents’ ob-
servations to help agents learn a robust cooperative policy. One attacker makes
decisions on a hybrid action space that it first chooses an agent to attack and
then outputs the perturbation vector. The victim policy is then trained against
the attackers. Experimental results show that our generated adversarial attacks are
diverse enough to improve the agents’ robustness against possible disturbances.

1 INTRODUCTION

The target of reinforcement learning (RL) is to learn the policies in complex environments to get
long-term rewards. The technique of MARL is introduced to adapt RL algorithms to multi-agent
systems. In recent years, Multi-Agent Reinforcement Learning (MARL) has attracted widespread
attention (Du & Ding, 2021) and has been applied in numerous domains, including sensor net-
works (Zhang & Lesser, 2011), autonomous vehicle teams (Zhou et al., 2020), and traffic signal
control (Du et al., 2021). However, neural networks are proven to be vulnerable to adversarial per-
turbations (Huang et al., 2017), and some small perturbations may cause the deep RL policy to fail.
Therefore, it is of great significance to train a robust policy to help deploy current RL algorithms to
real-life applications.

In single-agent reinforcement learning, some research studies enhance policy robustness by using
adversarial learning and achieve good results. Pinto et al. (2017) propose a method that jointly
trains a pair of agents, including a protagonist and an adversary, and the protagonist learns to fulfill
the original task goals while being robust to the disruptions generated by its adversary. Pattanaik
et al. (2018) show that deep RL can be fooled easily and train an RL agent under naive attacks to
improve its robustness. Zhang et al. (2021) propose a framework of alternating training with learned
adversaries, which trains an adversary online with the agent using a policy gradient following the
optimal adversarial attack framework. However, such studies are rare in cooperative MARL, and
current works mainly focus on the setting where teammates may betray or agents’ actions may be
maliciously modified (Li et al., 2019; Phan et al., 2021; 2020; Hu & Zhang, 2022). However, in
real-life applications of cooperative MARL, the most vulnerable parts of the agents are the sensors
that can be disturbed by noise or jamming attacks. Agents are closely related to each other when
cooperating to accomplish tasks, and even a small perturbation on one agent’s observation from
the sensors can make it deflect from coordination and cause the whole multi-agent system to fail.
Therefore, how to design an algorithm that can obtain a policy that is robust on observations in
cooperative MARL is noteworthy.

This paper proposes a robust MARL training framework for observation perturbations, RObust
Multi-agent reinforcement learning against Adversaries on Observation (ROMAO). Our contribu-
tions can be summarized as follows:
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• We propose a hybrid action attacker that attacks based on the global state. Its output con-
sists of a discrete action and a continuous action. The discrete action refers to which agent
to disturb, and the continuous action refers to the disturbance added to the observation of
that agent.

• We propose a robust training framework that generates attackers gradually and helps the
victim team learn a robust cooperative policy that is resistant to perturbations on observa-
tions.

• We additionally propose an optional defense module that can further enhance agents’ ability
to defend against attacks on observations.

• Experimental results show that the proposed attacker can pinpoint the weakness of the
cooperative policies, and our robust training framework along with the defense module can
effectively improve the robustness of the policies against possible attacks.

2 RELATED WORK

2.1 COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING

Cooperative MARL has made prominent progress these years. Research on it aims to help agents
learn policies to coordinate and complete cooperative tasks. Many methods have emerged under the
CTDE paradigm, most of which can be roughly divided into policy-based and value-based methods.
MADDPG (Lowe et al., 2017), COMA (Foerster et al., 2018), and MAAC (Iqbal & Sha, 2019) are
typical policy gradient-based methods that explore the optimization of multi-agent policy gradient
methods, while MADDPG can also be employed in competitive scenarios. Another category of co-
operative MARL approaches, value-based methods, mainly focus on factorizing the value function.
VDN (Sunehag et al., 2018) aims to decompose the team value function into agent-wise value func-
tions by a simple additive factorization. Following the Individual-Global-Max (IGM) principle (Son
et al., 2019), QMIX (Rashid et al., 2018) improves the way of value function decomposition by
learning a mixing network, which approximates a monotonic function value decomposition.

2.2 ADVERSARIAL ATTACK

The adversarial attack has been explored in many areas. In image classification, the adversarial
attack means generating adversarial examples. The adversarial example is a deceptive input to a
model that is purposely designed to cause a model to make a mistake in its predictions but makes
no difference to humans. Goodfellow et al. (2015) propose a simple and fast gradient-based method
that is used to generate adversarial examples to make the model classify incorrectly while minimiz-
ing the amount of perturbation added to the pixels of the image. Loison et al. (2020) use feature
selection to minimize the number of features modified while causing the wrong classification, and
flat perturbations are added to features iteratively according to saliency value by decreasing order.

2.3 ADVERSARIAL ROBUSTNESS OF RL AGENTS

Based on the effectiveness of adversarial attacks on images, Huang et al. (2017) propose a method
to inject adversarial perturbation into the input to confuse the RL policy. Some researchers (Gleave
et al., 2019; Zhao et al., 2020) focus on black box attacks in RL, which are more challenging be-
cause of the lack of information about the parameters of the target model. Adversarial training is
empirically shown to improve agents’ robustness to make the policies experience possible adversar-
ial attacks. Pinto et al. (2017) propose a method to train an agent in the presence of disturbance
and obtain more robust policies. Zhang et al. (2021) propose a method that involves the concurrent
training of an attacker and the victim agent using policy gradient following the optimal adversarial
attack framework. Sun et al. (2021) decouple the problem of finding state perturbations into finding
the best policy perturbation directions and crafting correspondent state perturbations.

2.4 ADVERSARIAL ATTACKS IN COOPERATIVE MARL

There could be various types of adversarial attacks in cooperative multi-agent systems. Some re-
searchers focus on the setting where some teammates may betray and minimize their shared re-
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turn (Phan et al., 2021; 2020; Li et al., 2019). Meanwhile, some researchers prefer the setting where
components of a Markov Decision Process (MDP), such as states, actions, or observations, are per-
turbed. Hu & Zhang (2022) propose a sparse adversarial attack on actions of cooperative multi-agent
systems and can make the victim team perform poorly when only a few agents are attacked at a few
timesteps. Zhou & Liu (2022) propose a robust training framework for the state-of-the-art rein-
forcement learning method MFAC (Yang et al., 2018) when the state is perturbed. Lin et al. (2020)
propose a method to attack one agent’s observation in a team. It is achieved by an indirect way that
the attacker first tries to find a wrong action it should encourage the victim agent to take. Then, the
attacker uses adversarial examples to mislead the victim into choosing the action. This work is most
relevant to our work because it considers the indirect attacks on observations, and the attacker only
chooses one agent to attack. While in our work, we consider the setting that every agent is at risk
of attack, and we cannot access the parameters of the Q functions of the victims. We focus on black
box attacks on observations and how to defend against them, which is more reasonable and realistic.

3 PROBLEM FORMULATION

This paper considers a fully cooperative multi-agent task where agents only have access to partial
observations for the victim side. When the attacker’s policy is fixed, the model is defined as M =
⟨N ,S, {Ai}ni=1, P, {Oi}ni=1,Ω, R, γ⟩, where N = {1, . . . , n} is the set of agents, s ∈ S is the
true global state from which agent can get local observation oi ∈ Oi. In order to relieve the partial
observability problem, we add an RNN module, GRU (Cho et al., 2014), called agent trajectory
encoder, to encode the history (oi1, a

i
1, . . . , o

i
t−1, a

i
t−1, o

i
t) into τ i, with ait ∈ Ai, oit ∈ Oi stand

for the action and observation of agent i at time t. At each timestep, each agent selects an action
ait ∈ Ai, forming a joint action a ∈ A =

∏n
i=1 A

i, leading to the next state st+1 ∼ P (·|st,a) and
getting a shared reward R(st,a). The formal objective for the multi-agent policy (the victim side)
is to find a joint policy π(τ ,a) to maximize the global value function:

Qπ
tot(τ ,a) = Eτ ,a

[ ∞∑
t=0

γtR(st,at) | s0 = s,a0 = a,π

]
, (1)

where γ indicates the discount factor. Perturbations are integrated into {Oi}ni=1 and the agents
cannot access the oracle information about whether they are under attack. Meanwhile, when the
victim team’s policy is fixed, the Markov Decision Process for the attacker is defined as M̂ =

⟨S, Â, P̂ , R̂, γ⟩. The attacker shares the same state space with the victim team and Â : N×{Oi}ni=1,
which means that the attacker first chooses one agent and then generates a perturbation with the same
dimension as the agent’s observation. The transition function is defined as P̂ : S × Â×{Ai}ni=1 →
S. Since π is fixed when training the attackers, a ∈ A is only determined by the state s ∈ S . The
reward function is R̂ = −R and the objective of the attacker’s policy π̂ is to reduce the return of the
victim team which is equivalent to maximizing the following objective (ât ∈ Â):

J(π̂) = Eπ̂

[
−

∞∑
t=0

γtR(st,at) | st+1 ∼ P̂ (·|st, ât,at) , ât ∼ π̂ (st, ·)

]
. (2)

Attacks on multi-agent systems may be diverse. In some scenarios, random noise can be seen
as a potential implicit attacker. While in others, the attacker can add perturbations to a specific
observation dimension of a specific agent, which is small enough and will not make a difference to
people but can seriously degrade the performance of multi-agent systems. We mainly consider the
following kinds of possible attacks on multi-agent in our work:

• Attacking a random agent with random noise: The observation of each agent in a multi-
agent system may contain random noise, which may be physically caused (e.g., sensor
errors). We assume that the noise in each observation dimension of each agent is indepen-
dently and identically distributed.

• Attacking a specific agent with random noise: In some scenarios, only one specific agent
will contain random noise. We also assume the noise is independently and identically
distributed in this attack setting.

• Attacking a specific observation dimension of a specific agent: In some scenarios, a specific
observation dimension of a specific agent may be under attack (e.g., in soccer, a player
injures one eye resulting in inaccurate observations of himself).
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Figure 1: Structure of our robust training framework RAMAO. The attackers’ pool stores history
attacker models π̂j , j = 1, 2, ...,m, where m is a hyperparameter we set about the maximum number
of models the pool can store.

To be more consistent with the real-life problem setting, we assume that the ℓ1 norm of all attacks
is less than or equal to a constant C. In general, the performance of a policy falls off a cliff when
the policy is exposed to the above attacks. We want to obtain a robust policy that can prevent the
performance from dropping too much under attacks with modes including but not limited to the
above three.

4 METHOD

The overall structure of our proposed framework is shown in Figure 1, and we train the attacker
and the defender (the victim team) alternatively. When training the attackers, we fix the defender
and maintain the attackers’ pool to store all the history attackers have trained so far. Every time the
attacker starts a turn for training, it stores its last attack model π̂j in the pool and resets its exploration
and replay buffer to eliminate the bias introduced by previous attacks. During interactions, the
HyAR attacker receives the global state, chooses an action in a latent space, and decodes the latent
action to perturb the observation of a specific agent (Details are listed in Section 4.1). When training
the defender, as stated in Section 4.3, we randomly sample an attacker from the attackers’ pool and
train the defender against it with only access to the perturbed observations. The defense module is
optional because it needs communication and will be introduced in detail in Section 4.4.

4.1 HYBRID ACTION SPACE

In our method, the attacker first selects an agent to attack, then gives the offset for each dimension
of the observation, which can be considered a hybrid action space problem because selecting an
agent is a discrete action and giving the offset for each dimension of the observation is a continuous
action. We will consider a Parameterized Action MDP (PAMDP) ⟨S,H, P,R, γ, T ⟩ (Masson &
Konidaris, 2015), which is an extension of MDP to consider the discrete-continuous hybrid action
space H = {(k, xk) | xk ∈ Xk,∀k ∈ K}, where K = {1, · · · ,K} is the set of the discrete action
and Xk is the continuous parameter set for each k ∈ K (Li et al., 2021).

Typical policy representations like Gaussian distribution and Multinomial distribution also cannot
model the heterogeneous components of the hybrid action space. A naive approach to solving the
hybrid action problem is to convert the hybrid action space into a discrete action space by discretizing
the continuous action space. However, this ignores the implicit connection between continuous and
discrete actions. Meanwhile, it reduces scalability and brings approximation difficulties.
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Li et al. (2021) propose a novel method named HyAR for solving hybrid action space. HyAR con-
structs a unified and decodable latent representation space (Rd1+d2 , d1 is the latent space dimension
for discrete action k and d2 is for continuous action xk) for original hybrid actions, and the agent
learns a latent policy. Then, with the decoder, we can map the selected latent action back to the
original hybrid action space to interact with the environment. In more detail, HyAR establishes an
embedding table Eζ ∈ RK×d1 to represent the K discrete actions. Each row eζ,k = Eζ(k) is a d1-
dimensional embedding vector for the discrete action k. Then, with state s, HyAR uses an encoder
qϕ(z | xk, s, eζ,k) parameterized by ϕ to map xk to the latent vector zx ∈ Rd2 . RL algorithms for
continuous actions like DDPG (Lillicrap et al., 2016) or TD3 (Fujimoto et al., 2018) can then be
applied to train on this latent action space. For inference, each time HyAR policy receives a state s,
it will output latent actions e, zx, then use the decoder and embedding table to reconstruct the latent
actions back to the origin hybrid actions k, xk.

HyAR takes full advantage of environmental dynamics and considers the connection between dis-
crete and continuous actions. In our work, we employ HyAR to help the attacker learn the hybrid
action to inflict perturbations on agents’ observations. Practically, we employ TD3 as the policy to
decide on the latent space. Based on state st at time t, our attacker policy first outputs a discrete
action kt to indicate the agent’s ID that we will attack. Then the attacker policy outputs a continuous
action xkt

which has the same dimension as okt
. The victim agent does not have oracle informa-

tion about whether it is under attack and would make decisions based on the perturbed observation
okt

+ xkt
.

4.2 ATTACKER OPTIMIZATION METHOD

The goal of the adversarial attacker is to minimize the victim team’s expected return by perturbing
the observations of a certain agent in a multi-agent system. We do not introduce any other intuitive
rewards that are possible to influence the possible attack modes. During the alternative training
between the attacker and the victim team, we reset the exploration of the attacker to reduce the bias
from the last round of attack learning. While for the victim team, we save the attacker’s model every
round, and the victim team can train their cooperation policy against all historical attackers, which
would further enhance the robustness of our victim policy.

4.3 ROBUST TRAINING

As formulated above, the attacker can inflict perturbations of amount C in terms of the ℓ1 norm
on one agent’s observation. However, we do not assume what kind of attacker pattern the attacker
uses. In practice, an attacker may apply a random noise to attack the observation, while others can
also concentrate on specific dimensions of the observation based on the current situation. The attack
may even have a long-term effect that we should not only focus on one timestep when the agent’s
observation is perturbed. To discover the weakness of the victim team’s policy and make agents
get used to different kinds of perturbations, we employ the above attackers and alternate training
between the attackers and the victim team. The advantage of alternate training is that when the
defender has a high win rate, it forces the attacker to find some tricky attacks, and the defender
can learn to deal with these tricky attacks, thus greatly increasing the ability to defend against both
general attacks or certain extreme attacks. During the training of the victim team, we sample an
attacker for an episode from a history pool of all attackers trained so far so that the victim team can
defend against not only the current version of the attacker but also all the history attackers to improve
its general robustness. Besides, our training framework is agnostic to specific MARL methods and
can be applied to improve any MARL method’s robustness.

4.4 DEFENSE MODULE

Apart from the adversarial training, we propose a multi-agent system defense module to defend
against the above perturbations. In multi-agent scenarios, agents interact in the same environment,
so agents close to each other may share part of their observations. Inspired by this fact, we came up
with a defense module that an agent can reconstruct its observations based on the observations of
its teammates in its field of view. However, an agent cannot access the information about whether
it is perturbed or not, so we need to train a perturbation detector to judge whether an agent is under
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attack. The mentioned training can be achieved during the centralized training phase since both the
original and the perturbed observations are available.

5 EXPERIMENTS

In this section, we first display the scenarios involved in our experiments in Section 5.1, including
StarCraft II unit micromanagement benchmark (SMAC) (Samvelyan et al., 2019) and predator-prey
(PP) (Boehmer et al., 2020). We show the main results and the effectiveness of our robust training
framework in Section 5.2. Then we present part of our training curve on QMIX and employ Principal
Component Analysis (PCA) (Pearson, 1901) to illustrate the diversity of our generated attackers in
Section 5.3. Furthermore, we demonstrate the effects of our defense module in Section 5.4 and the
generality of our trained robust cooperative policy.

We choose QMIX (Rashid et al., 2018), which is a popular baseline in cooperative MARL methods
and approximates a monotonic function value decomposition for joint value function, as our victim
team policy, while our robust training framework ROMAO is agnostic to specific MARL algorithms
or attacker policies. ROMAO is a general framework that can be employed to improve the robust-
ness of any given MARL method against perturbations on observations. More details about our
experiments would be listed in the appendix.

5.1 ENVIRONMENTS

Improper
Ceasefire

Improper
Wandering

(a) Improper Wandering

Improper
Ceasefire

Improper
Wandering

(b) Improper Ceasefire

Figure 2: Agents’ improper behavior patterns caused by observation perturbations.

We evaluate our robust training framework in environments including StarCraft II unit microman-
agement benchmark (SMAC) and predator-prey (PP). More detailed descriptions of these environ-
ments can be found in the appendix.

5.1.1 STARCRAFT II MICROMANAGEMENT BENCHMARK (SMAC)

SMAC (Figure 5.1) is a popularly used combat scenario of StarCraft II unit micromanagement tasks,
where we train the ally units to beat enemy units controlled by the built-in AI with an unknown
strategy. At each timestep, agents can move or attack any enemies and get a global reward equal
to the total damage done to enemy units. Figure 5.1 shows the map of 5m vs 6m in SMAC which
indicates that we control 5 marines to defeat 6 enemy marines. It is a hard map in SMAC that the
marines we control must work closely to win the battle but if one of the teammates is perturbed and
does not cooperate normally as shown in Figure 2(a)&2(b), the other agents would be short of fire
and in great danger.

5.1.2 PREDATOR PREY (PP)

PP (Boehmer et al., 2020) is a partially observable grid-world task where m predators (agents) are
trained to capture n moving preys. Agents get rewards only when there are no empty grids around
the prey and at least two predators adjacent to it execute “catch” action concurrently. Miscatching
would lead to a punishment of −2, this punishment makes it a challenging benchmark for current
MARL methods.
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Methods
Maps 2s3z 3m 3s vs 5z 5m vs 6m

Attack Mode 1

Vanilla QMIX 95.3±3.4 91.1±1.5 81.2±4.4 58.3±3.7
Random QMIX 98.9±0.9 97.2±0.9 97.6±0.9 65.4±1.6

One-agent QMIX 81.4±2.3 86.0±1.8 77.9±3.0 59.2±6.8
ROMAO 99.0±0.7 93.9±1.7 98.1±0.8 68.8±2.3

Attack Mode 2

Vanilla QMIX 92.7±2.9 91.7±3.2 77.6±1.5 57.3±3.2
Random QMIX 99.0±0.7 97.9±1.0 98.1±1.0 67.8±4.0

One-agent QMIX 82.9±2.7 86.1±3.5 82.2±2.7 60.1±2.7
ROMAO 96.3±1.0 94.9±2.1 97.8±0.7 66.0±2.3

Attack Mode 3

Vanilla QMIX 72.6±5.9 5.73±2.0 45.8±4.1 13.5±0.7
Random QMIX 83.1±2.3 90.8±2.0 56.0±3.5 3.1±2.4

One-agent QMIX 69.3±4.2 92.9±1.8 54.6±4.8 13.6±2.3
ROMAO 94.6±2.8 94.4±1.9 75.3±2.6 23.3±3.1

Table 1: Average test win rates of different methods under various attack modes with limited per-
turbation range of amount 5 in terms of the ℓ1 norm. We consider three different and general attack
modes. Vanilla QMIX means the QMIX policy trained without perturbations. Random QMIX means
the policy trained under random perturbations similar to Attack Mode 2. One-agent QMIX means
the policy trained with only agent 0 is under attack and the attack is trained with TD3. ROMAO
means the QMIX policy enhanced with our robust training framework.

5.2 RESULTS AND ANALYSIS

Table 1 shows the main results of our experiments about the average test win rates and correspondent
standard deviations of different methods under various attack modes with a limited perturbation
range of amount 5 in terms of the ℓ1 norm. We use perturbation range 5 for testing to evaluate the
policies’ generality trained under perturbations of range 10. Attack mode 1 denotes the attack that at
every timestep, the attacker randomly chooses an agent and generates random perturbations. Attack
mode 2 denotes the attack that at the start of an episode, the attacker randomly chooses an agent and
generates random perturbations on that agent’s observation throughout the entire episode. Attack
mode 3 denotes the attack that, at the start of an episode, the attacker randomly chooses an agent
and generates perturbations on only one random dimension of the agent’s observation, which means
an offset of 5 is added to a random dimension of the observation. Vanilla QMIX denotes the QMIX
policies trained without perturbations. Random QMIX denotes the QMIX policies trained under the
attack that randomly chooses an agent at each timestep and inflict random perturbations of amount
C in terms of the ℓ1 norm on the agent’s observation. One-agent QMIX denotes the QMIX policies
trained under the attack that always chooses agent 0 and inflict random perturbations of amount C.
In practice, we set C = 10. All the means and standard deviations are the results of five random
seeds for each method.

As shown in Table 1, after training with ROMAO, the ROMAO-trained QMIX policy is robust
enough to defend against possible attacks and has a good and stable performance compared with
QMIX policies that are trained in other ways. Generally, the vanilla QMIX performs worst since it
has not seen any attack patterns before the evaluation, but it is still robust to some extent. It may be
attributed to the fact that in a multi-agent system, even if one agent shuts down, other agents can still
complete some simple tasks that are not demanding coordination. Training the MARL algorithms
under random perturbations can also improve the policies’ robustness, but they cannot deal with all
possible situations. Random QMIX is trained under random perturbations like Attack Mode 2 so
that it performs best on it, but it cannot generalize to other attacks and there is a significant drop in
performance in Attack Mode 3, which is an extreme type of attack, while RAMAO-trained policy
performs well on all these attacks. Attacking only one agent is also insufficient to generate all possi-
ble situations under attack because the attacking target can be switched among different agents. Due
to the alternate training of ROMAO, it can cover more types of attacks and has better performance
for extreme attacks like Attack Mode 3. The results demonstrate the necessity to employ a hybrid
action space to generate diverse and influential attackers and the effectiveness of our proposed robust
training framework.
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5.2.1 RESULTS ON PP
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Figure 3: Results on Predator-
Prey.

We also carry out some experiments on Predator-Prey (PP). RO-
MAO denotes the QMIX policy after the robust training in our pro-
posed framework where attackers generate perturbations of amount
C in terms of the ℓ1 norm. RanPert denotes the QMIX policy
trained under random perturbations of amount C. QMIX denotes
the QMIX policy that is trained without any perturbations. The
policies are evaluated under perturbations of a different range. In
practice, we set C = 10 for training and C = 5 for this evaluation.
As illustrated in Figure 3, ROMAO policies perform best, showing
our proposed framework’s effectiveness. During the training phase
of our robust training framework, attackers generate diverse attack
modes that can uncover different weaknesses of the current policy,
while random perturbation cannot cover all the possible situations.

5.3 TRAINING PROCEDURE VISUALIZATION
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Figure 4: (a) The alternating training curve of the victim policy’s performance. (b) The distribution
of the representations of the attackers’ policies. The darker the color of the dot, the earlier the
attacker policy is generated.

Figure 4(a) shows the alternating training curve for QMIX on the map of 5m vs 6m in SMAC under
our framework ROMAO. We first train QMIX on 5m vs 6m for 2M timesteps and get an average win
rate of around 80%, and then load the trained model into the ROMAO framework to start alternating
training. The curve shows the win rate of the current QMIX policy under the attack of the current
attackers when testing. The attacker is trained in the first turn so that the win rate gets reduced first
and fluctuates during the alternating training. Finally, the robust policy can maintain a win rate of
over 60% however the attacker attacks.

We also illustrate the diversity of attacker policies in Figure 4(b). As stated in Section 4, we maintain
an attackers’ pool to store the previously trained attackers. As the defender will learn to adapt to
the attackers’ perturbations, the current attack mode may expire, and the attacker must seek a new
attack mode to perturb the victim team’s observations. In practice, we reset the attacker’s exploration
and replay buffer to eliminate the bias introduced by previous attacks. In order to achieve high
rewards, the attackers should spontaneously find diverse attack modes to perturb the observations of
the constantly updated victim agents.

Inspired by the recent success of transformers in deep learning (Vaswani et al., 2017), we utilize
a transformer to encode a perturbed trajectory to represent an attack policy. We first sample n
trajectories of states {st}Tt=0 (T is the episode length) when the trained QMIX interacts with the
environment under random perturbations. With the instinctive ability of a transformer to deal with
variable-length input sequences, we concurrently train a transformer encoder that inputs a trajectory
{st}T−1

t=0 and outputs an embedding h and a Multilayer Perceptron (MLP) decoder to reconstruct sT
from h. After training, we fix the transformer encoder and get an attacker’s policy embedding by first
sampling 16 trajectories of vanilla QMIX under the attack of this attacker and then calculating the
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mean of the outcomes after feeding the trajectories into the encoder. Finally, we use PCA to project
the policies’ embeddings on a 2-dimensional plane. As illustrated in Figure 4(b), we show the
embeddings of the first 25 attacker policies. The darker the color, the earlier the policy is generated.
We can see that the attackers can generate diverse attack policies spontaneously without explicit
encouragement like intrinsic rewards to continuously lower the victim team’s win rate.
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Figure 5: (a) Policies’ performance without and with the defense module. (b) Policies’ performance
under different perturbation ranges. ROMAO denotes the QMIX policy enhanced by our proposed
framework. RanPert denotes the policy trained under random perturbations of amount C in terms of
the ℓ1 norm. QMIX denotes the QMIX policy that is trained with no perturbations.

5.4 DEFENSE MODULE

Figure 5(a) shows the effectiveness of our proposed defense module on QMIX in the map of
5m vs 6m in Section 4.4. The win rate in the figure is tested under the random perturbation of
amount 10 in terms of the ℓ1 norm, and the left three bars show the win rates of the trained policies
without the defense module, and the right three show the improved performance with the defense
module. RanPert achieves the best performance among the three policies because, in practice, we
train RanPert under random perturbations of amount C = 10. It means that the training and testing
environments are the same for RanPert so that it can achieve excellent performance. However, in
reality, we cannot know in priority what kinds of perturbations in store our policies would be facing.
The performances of all these policies are improved with the defense module without any further
learning, demonstrating the effectiveness of our proposed defense module.

5.5 POLICY GENERALITY

As illustrated in Figure 5(b), we show the performances of different policies under different ranges
of random perturbations in the map of 5m vs 6m. ROMAO, RanPert, and QMIX are trained in
the same ways as in Section 5.4. We can see that QMIX and Ranpert perform best as the testing
settings are the same as their training settings (perturbations of amount 0 and 10). Under other
circumstances, ROMAO, the QMIX policy after the training of our robust framework, achieves the
best performance even under the perturbations of 100.

6 CONCLUSION

This paper proposes a new robust MARL training framework, RAMAO, for observation perturba-
tions, which any MARL algorithm can employ to improve its robustness against possible attacks on
agents’ observations. The experimental results show that the attacker can generate diverse attack
patterns to excavate the weaknesses of the victim MARL policy. After training, the MARL policy
can defend against various kinds of perturbations, and the defense can be further enhanced with our
proposed defense module. Future work can concentrate on how to deal with concurrent attacks on
multiple agents efficiently as the combination blast cannot be avoided to attack multiple agents in
ROMAO when the number of agents increases.
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A APPENDIX

A.1 MORE RELATED WORK

A.1.1 COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING

We introduce more about the value function factorization methods like QMIX in MARL here.
VDN (Sunehag et al., 2018) and QMIX (Rashid et al., 2018) are two value-based factorization meth-
ods in cooperative MARL and follow the Individual-Global-Max (IGM) (Son et al., 2019) principle,
which asserts the consistency between joint and local greedy action selections by the joint value
function Qtot(τ ,a) and individual value functions

[
Qi(τ i, ai)

]n
i=1

:

∀τ ∈ T , argmax
a∈A

Qtot(τ ,a) =(
argmax

a1∈A
Q1

(
τ1, a1

)
, . . . , argmax

an∈A
Qn (τ

n, an)

)
.

(3)

VDN (Sunehag et al., 2018) factorizes the global value function QVDN
tot (τ ,a) as the sum of all the

agents’ local value funtions
[
Qi(τ i, ai)

]n
i=1

:

QVDN
tot (τ ,a) =

n∑
i=1

Qi

(
τ i, ai

)
. (4)

QMIX (Rashid et al., 2018) extends VDN by factorizing the global value function QQMIX
tot (τ ,a) as

a monotonic combination of the agents’ local value funtions
[
Qi(τ i, ai)

]n
i=1

:

∀i ∈ N ,
∂QQMIX

tot (τ ,a)

∂Qi (τ i, ai)
> 0. (5)

We mainly test our framework ROMAO on QMIX for its proven performance in various papers.
QMIX uses a hyper-net conditioned on the global state to generate the weights and biases of the
local Q-values and uses the absolute value operation to keep the weights positive to guarantee mono-
tonicity.

A.1.2 ADVERSARIAL ATTACKS IN COOPERATIVE MARL

Some researchers focus on the setting where some teammates may betray and minimize their shared
return. Phan et al. (2021) and Phan et al. (2020) propose to train competing teams of protagonist
and antagonist agents of varying sizes to improve resilience against arbitrary agent changes. Li et al.
(2019) extend MADDPG with a minimax objective to make the learned policy robust and behave
well even with strategies not seen during training. Agents update policies considering a worst-case
scenario: assuming that all other agents act adversarially.

A.2 ENVIRONMENTS

A.2.1 STARCREFT II MICROMANAGEMENT BENCHMARK (SMAC)

SMAC (Samvelyan et al., 2019) is a combat scenario of StarCraft II unit micromanagement tasks.
We consider a partial observation setting, where an agent can only see a circular area around it with a
radius equal to the sight range, which is set to 9. We train the ally units with reinforcement learning
algorithms to beat enemy units controlled by the built-in AI. At the beginning of each episode,
allies and enemies are generated at specific regions on the map. Every agent takes action from the
discrete action space at each timestep, including the following actions: no-op, move [direction],
attack [enemy id], and stop. Under the control of these actions, agents can move and attack in
continuous maps. MARL agents will get a global reward equal to the total damage done to enemy
units at each timestep. Killing each enemy unit and winning the combat (killing all the enemies)
will bring additional bonuses of 10 and 200, respectively. After training, the agents need to learn a
feasible policy to win the battle even when there is an imbalance between the allies and the enemies.
For example, in map 5m vs 6m, agents need to learn to focus fire, i.e., jointly attack and kill enemy
units one after another, to reduce the enemy force as soon as possible.
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A.2.2 PREDATOR-PREY (PP)

At the beginning of each episode, predators and prey spawn at random positions in a grid world.
Agents can move in one of the four compass directions, remain immobile, or try to catch any adjacent
prey. The prey can move and can be caught only if there are no empty grids around the prey and
at least two predators adjacent to it execute the “catch” action concurrently. Once some agents
successfully capture prey, the agents will receive a reward of 10, and both the agents and the prey
will be removed from the grid. However, if an agent executes “catch” action and no prey is captured,
all agents would receive a punishment of −2. These features further complicate the overall task that
the agents are required to complete. In this paper, eight predators and eight prey are generated at
random positions in a 10 × 10 grid world at the start of an episode. We consider all agents have a
restricted field of vision with a range of 2 (5× 5 grids around the agent).

A.3 MORE EXPERIMENTAL RESULTS

Methods
Maps 2s3z 3m 3s vs 5z 5m vs 6m

Attack Mode 1

Vanilla QMIX 97.7±0.3 97.9±0.2 89.5±2.0 68.5±1.8
Random QMIX 99.2±0.8 98.3±0.7 98.3±0.7 73.1±5.4

One-agent QMIX 84.2±2.8 92.9±1.7 96.3±0.9 65.0±4.1
ROMAO 98.1±0.5 96.8±0.3 98.6±0.7 75.6±3.1

Attack Mode 2

Vanilla QMIX 95.3±1.8 98.3±0.5 88.8±2.1 72.9±7.8
Random QMIX 98.8±0.9 98.9±0.6 99.2±0.7 72.6±4.3

One-agent QMIX 83.3±2.2 94.3±1.4 95.0±1.6 67.4±5.2
ROMAO 97.9±9.8 95.3±2.1 99.3±1.3 77.1±2.1

Attack Mode 3

Vanilla QMIX 95.4±1.3 0.0±0.0 39.3±3.0 21.2±2.2
Random QMIX 98.1±0.8 98.9±0.9 77.5±2.9 63.1±3.4

One-agent QMIX 75.6±2.5 96.9±0.7 91.8±1.5 55.6±3.5
ROMAO 98.6±0.6 98.5±0.8 92.4±1.6 63.7±1.6

Table 2: Average test win rates of different methods under various attack modes with limited pertur-
bation range of amount 2 in terms of the ℓ1 norm.

Methods
Maps 2s3z 3m 3s vs 5z 5m vs 6m

Attack Mode 1

Vanilla QMIX 89.1±1.1 76.7±1.3 21.1±3.8 20.8±1.8
Random QMIX 96.9±0.6 96.5±1.5 96.7±0.7 12.2±0.8

One-agent QMIX 80.8±2.4 92.3±2.3 28.3±3.6 14.4±2.4
ROMAO 97.1±1.2 91.8±1.7 81.2±2.3 41.7±1.9

Attack Mode 2

Vanilla QMIX 91.7±1.4 76.7±1.8 20.3±2.8 26.2±2.3
Random QMIX 98.8±1.0 98.3±0.9 97.6±0.7 65.1±4.3

One-agent QMIX 80.1±3.3 92.4±2.7 29.6±3.8 28.3±5.0
ROMAO 96.8±1.3 93.3±1.7 80.6±2.2 51.1±3.4

Attack Mode 3

Vanilla QMIX 1.4±1.0 0.3±0.2 48.0±3.4 0.0±0.0
Random QMIX 12.2±1.2 91.2±2.5 44.0±2.0 0.0±0.0

One-agent QMIX 32.5±4.1 88.7±2.6 83.5±4.0 0.0±0.0
ROMAO 79.6±2.3 87.0±1.5 86.0±4.0 4.2±1.2

Table 3: Average test win rates of different methods under various attack modes with limited pertur-
bation range of amount 10 in terms of the ℓ1 norm.

Table 2 shows the results of our experiments about the average test win rates and correspondent
standard deviations of different methods under various attack modes with a limited perturbation
range of amount 2 in terms of the ℓ1 norm. As the perturbation is relatively subtle, our ROMAO-
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Methods
Maps 2s3z 3m 3s vs 5z 5m vs 6m

Attack Mode 1

Vanilla QMIX 73.6±2.4 57.7±0.5 0.1±0.2 0.8±0.8
Random QMIX 86.8±2.6 95.3±0.8 90.0±1.5 9.7±2.7

One-agent QMIX 71.0±2.3 62.2±3.2 0.1±0.3 0.8±0.8
ROMAO 93.8±2.0 84.4±1.3 73.3±1.2 26.7±3.9

Attack Mode 2

Vanilla QMIX 83.1±0.7 59.6±1.9 0.0±0.0 3.8±0.5
Random QMIX 95.8±1.3 96.3±0.9 90.4±2.7 55.6±3.7

One-agent QMIX 76.7±4.4 62.6±2.8 0.0±0.0 11.3±1.8
ROMAO 95.6±2.6 83.3±1.7 76.4±3.0 29.7±1.8

Attack Mode 3

Vanilla QMIX 0.5±0.2 0.0±0.0 40.5±3.2 0.0±0.0
Random QMIX 0.4±0.3 90.4±1.9 24.0±2.9 0.0±0.0

One-agent QMIX 0.0±0.3 47.2±3.0 76.4±3.6 0.0±0.0
ROMAO 29.2±3.8 89.2±1.0 61.1±2.7 3.1±1.1

Table 4: Average test win rates of different methods under various attack modes with limited pertur-
bation range of amount 20 in terms of the ℓ1 norm.

trained policy does not show a great advantage over other methods while still dominating in most
scenarios.

Tables 3 and 4 show the results of our experiments about the average test win rates and correspondent
standard deviations of different methods under various attack modes with a limited perturbation
range of amount 10 and 20 in terms of the ℓ1 norm. From the experimental results, we can see
that ROMAO can defend against different attacks. Although Random QMIX and One-agent QMIX
perform better than ROMAO in some environments (e.g., 3s vs 5z), they all experience a significant
drop in performance in some other environments(e.g., 5m vs 6m). On the contrary, the performance
of ROMAO is relatively stable.

A.4 SOFTWARE

We use the following software versions:

• Python 3.8
• SMAC 1.0 (Samvelyan et al., 2019)
• PyTorch 1.12.1 (Paszke et al., 2019)

A.5 HARDWARE

We use the following hardware:

• NVIDIA RTX A4000
• 12th Gen Intel(R) Core(TM) i9-12900K

A.6 IMPLEMENTATION AND HYPER-PARAMETERS

We implement ROMAO based on the author-provided implementation of HyAR (Li et al., 2021)
and QMIX (Rashid et al., 2018). We list the hyper-parameters of the attacker’s network, HyAR (Li
et al., 2021) and ROMAO in table 5, the other parameters remain the same as the default for the
pymarl framework (Samvelyan et al., 2019).
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Hyper-parameters Value

Attacker’s Network

Actor learning rate 3× 10−4

Critic learning rate 3× 10−4

Batch size 256
Optimizer Adam
Q-network 3 layers ReLU activated MLPs with 256 units

Policy Network 3 layers ReLU activated MLPs with 256 units

HyAR

VAE training steps 104

VAE batch size 128
HyAR batch size 256

Discrete action dim 8
Parameter action dim 64

ROMAO

Number of iterations 3× 107

Test interval 105

Test episodes 20
Perturbation C 10

Buffer size 5000
Target update interval 200

Table 5: The hyper-parameter setting of ROMAO.
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