
Parallel Decoding via Hidden Transfer for
Lossless Large Language Model Acceleration

Anonymous ACL submission

Abstract
Large language models (LLMs) have recently001
shown remarkable performance across a wide002
range of tasks. However, the substantial num-003
ber of parameters in LLMs contributes to sig-004
nificant latency during model inference. This is005
particularly evident when utilizing autoregres-006
sive decoding methods, which generate one007
token in a single forward process, thereby not008
fully capitalizing on the parallel computing ca-009
pabilities of GPUs. In this paper, we propose010
a novel parallel decoding approach, namely011
hidden transfer, which decodes multiple suc-012
cessive tokens simultaneously in a single for-013
ward pass. The idea is to transfer the interme-014
diate hidden states of the previous context to015
the pseudo hidden states of the future tokens016
to be generated, and then the pseudo hidden017
states will pass the following transformer layers018
thereby assimilating more semantic informa-019
tion and achieving superior predictive accuracy020
of the future tokens.021

Besides, we use the novel tree attention mech-022
anism to simultaneously generate and verify023
multiple candidates of output sequences, which024
ensure the lossless generation and further im-025
proves the generation efficiency of our method.026
Experiments demonstrate the effectiveness of027
our method. We conduct a lot of analytic ex-028
periments to prove our motivation. In terms029
of acceleration metrics, we outperform all the030
single-model acceleration techniques, includ-031
ing Medusa and Self-Speculative decoding.032

1 Introduction033

Recent developments in Transformer-based large034

language models (Vaswani et al., 2017; Radford035

et al., 2018, 2019; Brown et al., 2020; Zeng036

et al., 2022; Zhang et al., 2022; Touvron et al.,037

2023a,b; Roziere et al., 2023) have demonstrated038

remarkable performance across a broad spectrum039

of tasks. However, these models grapple with ex-040

cessive inference latency due to the inherently se-041

rial process of generating one token per forward042

Figure 1: A single forward time consumption for vari-
ous LLMs with different size under different KV cache
length and different number of input tokens, each data is
the average of randomly 100 samples. The result shows
that under the setting of KV cache, increasing the length
of input sequence in a certain range will not increase
the time of forward propagation, and then prove that the
traditional autoregressive decoding has a waste in GPU
utilization efficiency

pass, the inference process is typically memory 043

bandwidth-bound, which means most of the time 044

model inference is spent loading billion parameters 045

from memory rather than computing, resulting in 046

the waste of the parallel computational power of 047

GPUs (Shazeer, 2019). In our experiments, We 048

find that due to the parallelism of GPU comput- 049

ing, the time for multiple tokens to propagate in 050

parallel is nearly the same as the time for one to- 051

ken to propagate(as shown in Table 1). Therefore, 052

the low efficiency of the inference stage becomes 053

the biggest bottleneck to broaden the application 054

scenarios of LLMs. 055

To address this bottleneck, contemporary work 056

1

proposes speculative decoding (Leviathan et al.,057

2023; Chen et al., 2023a; Zhang et al., 2023), which058

utilizes a small language model to draft a few to-059

kens ahead. then the LLM verifies the drafted060

tokens and accepts the correct ones. While this061

acceleration technique achieves promising perfor-062

mance, it has its limitations: speculative decoding063

requires another model to do the draft thing. It is064

inconvenient to cooperate with an extra model in065

some scenarios as it requires more sophisticated066

scheduling and the draft model might consume067

extra GPU and memory resources. Thus, some068

researchers have been investigating single-model069

acceleration. That is, to speed up the inference of070

LLMs without auxiliary models. Self-speculative071

decoding (Zhang et al., 2023) and Medusa (Cai072

et al., 2023) are typical methods within this line of073

research. Medusa predicts not only the next token074

within a single forward propagation but also a few075

tokens ahead of the next token. These extra tokens076

are predicted based on the last hidden states of the077

input tokens through the trainable Medusa heads.078

Our method aligns with the line of single-model079

acceleration. We design a novel method called Hid-080

den Transfer, to predict the pseudo hidden states081

of future tokens in the intermediate layers. We use082

a trainable linear projection to transfer the hidden083

states of input tokens to the pseudo hidden states084

of future tokens in a certain intermediate layer, and085

the synthesized pseudo hidden states pass the sub-086

sequent layers and interact with hidden states of the087

whole sequence as normal, in the last layer, we use088

the original lm-head and decode the draft tokens089

of the future positions. In this way, we can predict090

more than merely the next token but also a few to-091

kens ahead in a single forward propagation. In the092

training stage we employ KL-divergence as the su-093

pervised signal, which minimizes the distribution094

between tokens predicted by the pseudo hidden095

states and the real ones. In addition to the novel096

design of Hidden Transfer, we also use the tree097

attention mechanism (Cai et al., 2023; Miao et al.,098

2023; Spector and Re, 2023) to simultaneously per-099

form the token prediction and token verification to100

ensure the lossless generation of our method.101

The motivation for hidden transfer is that the102

synthesized pseudo hidden states will interact with103

themselves and previous hidden states of the con-104

text during the forward propagation in which gain105

more semantic information to boost the success rate106

of predicting future tokens. Our experiments show107

that this motivation is fulfilled, and our method can108

achieve the best draft token prediction accuracy and 109

inference acceleration ratio compared with other 110

methods under a single-model setting. 111

Our key contributions are: (1) To our best knowl- 112

edge, we are the first to study the prediction of 113

pseudo hidden states of the future tokens in LLMs, 114

our experiments prove that intermediate hidden 115

states could be predicted directly and refined in 116

the forward propagation. (2) We propose Hidden 117

Transfer, a novel single-model lossless accelera- 118

tion method for improving the inference efficiency 119

of LLMs. Our method predicts multiple draft to- 120

kens with synthetic pseudo hidden states. (3) We 121

conduct various experiments to prove the effec- 122

tiveness of our method, including some analytic 123

experiments to prove our motivation. 124

2 Related Work 125

To solve the problem of inference latency in LLMs, 126

the existing works can be divided into the following 127

two categories: we call the first category Model 128

Compression, including model distillation (Sanh 129

et al., 2019), model pruning (Frantar and Alis- 130

tarh, 2023; Wang et al., 2021) and model quan- 131

tization (Liu et al., 2023a), aiming to replace the 132

original large language model with a small model 133

which have the similar but not identical outputs 134

in certain field. We refer the second category of 135

methods as Speculative Decoding, the key idea of 136

is to reduce the number of forward propagation of 137

the LLMs under the condition that the generated 138

results remain unchanged. 139

2.1 Model Compression 140

There are plenty of works focus on the model 141

lightweight, including model quantization (Han 142

et al., 2015; Zhao et al., 2019; Jacob et al., 2018; 143

Yao et al., 2022; Frantar et al., 2022; Liu et al., 144

2023a), knowledge distillation (Hinton et al., 2015; 145

Cho and Hariharan, 2019; Hsieh et al., 2023), 146

model pruning (Xia et al., 2023; Guo et al., 2023; 147

Chen et al., 2023b) and model sparsification (Hoe- 148

fler et al., 2021; Liu et al., 2023b). Model quantiza- 149

tion is to convert the model parameters to floating- 150

point numbers with lower precision or integers; 151

Model pruning and sparsification removes redun- 152

dant components in the LLMs; Knowledge dis- 153

tillation works by transferring knowledge from a 154

teacher model to a student model (small model). 155

These model compression methods have a wide 156

range of applications, but they do not guarantee 157

2

that the output is strictly consistent with the origi-158

nal LLMs.159

2.2 Speculative Decoding160

This series of methods aim to quickly generate161

some draft tokens and use the LLMs to verify them162

in parallel to keep lossless generation theoretically.163

We can divide this class of methods into two types164

based on the number of deployed models, single165

model and multiple models. The single models’ ap-166

proach is represented by Medusa (Cai et al., 2023),167

and Self-speculative decoding method (Zhang et al.,168

2023), Medusa and train extra multiple heads to169

predict subsequent tokens based on the last hid-170

den state of the input tokens after a single forward171

propagation. Self-speculative methods use a sub-172

set of intermediate layers of the whole LLM as173

the draft model to generate draft tokens The multi-174

ple models’ approach is represented by traditional175

speculative decoding (Leviathan et al., 2023; Chen176

et al., 2023a), which uses a small language mod-177

els (SLMs) as the draft model to generate draft178

tokens, the LLMs verify the tokens in parallel.179

3 Methodology180

In this section, we first define the problem formula-181

tion, including the overview of traditional autore-182

gressive decoding algorithm and parallel decoding183

algorithm, then we provide a detailed description184

of the training and testing process of our hidden185

transfer method.186

3.1 Problem Formulation187

Transformer-based auto-regressive language mod-188

els aim to construct the the (n+ 1)th token’s dis-189

tribution given the prefix n tokens, denoted as190

P (xn+1|x1, x2, . . . , xn) These models are capable191

of processing entire sequences in parallel during the192

training stage. However, during inference stage, the193

generation process becomes serial naturally. This194

is due to the requirement of the preceding n to-195

kens’ semantic information to predict the probabil-196

ity distribution of the (n+ 1)th token. Traditional197

autoregressive generation techniques, whereby a198

single token is produced per model forward pro-199

cess, fail to capitalize on the parallel processing200

capabilities of GPUs, consequently impacting the201

response efficiency of various AI systems. The202

essence of parallel decoding algorithms, exempli-203

fied by speculative decoding, lies in their ambition204

to increase the expected number of tokens gener-205

ated in one single forward propagation of the LLMs206

while maintain the generation consistency. Thus, 207

the optimization goal of this class of methods can 208

be written to find a maximum positive integer k 209

that satisfies the following conditions: 210

P̃ (Xn+k+1 . . . Xn+1|X≤n) = P (Xn+k+1 . . . Xn+1|X≤n) 211

Where P and P̃ represent the token distribution 212

given by the original language model and parallel 213

decoding algorithm respectively. For most parallel 214

decoding algorithms, P̃ is obtained by a draft and 215

verify process, tree attention is wildly adopted to 216

verify multiple candidate sequences simultaneous, 217

so a lot of works focus on how to generate better 218

candidates in the draft stage, the process can be 219

described as the following formula: 220

Xn+k+1, . . . , Xn+1 = M(X≤n) 221

In some speculative decoding algorithms, M rep- 222

resents small language models, or part of the origi- 223

nal LLMs (Zhang et al., 2023), in the block-wise 224

series of methods (represented by Medusa (Cai 225

et al., 2023)), M can be viewed as the extra heads 226

in the last layer of LLMs, In our method, M can be 227

viewed as the hidden transfer linear projection in 228

some intermediate layers, in the following section, 229

we concisely introduce our method, including the 230

training and inference stages. 231

3.2 Hidden Transfer 232

The core idea of our hidden transfer is to predict 233

the future k + 1 tokens(including k draft tokens 234

and the next token generated correctly by language 235

model) by one step of LLM forward propagation 236

without the deployment of SLMs, existing works 237

under this setting either use earlying exiting method 238

to directly predict the token distribution (Bae et al., 239

2023) or train extra k lm-heads to predict the k 240

draft tokens in the last layer, we believe that the 241

first method will lose a lot of information at higher 242

layers, assuming that we use Xn to represent the 243

nth token of the input sequence, and hjn represents 244

the jth layer’s hidden state of the nth token, the first 245

method trains an early lm-head to predict Xn+1 in 246

advance, but once the Xn+1 is predicted, it should 247

be used as the input in the next round of forward 248

propagation, the previous forward propagation will 249

stop in the middle layer, as a result the higher lay- 250

ers’ hidden state of Xn will be lost(i.e. hj+1
n , hj+2

n 251

. . .), although there’re some works claim that they 252

can simply use copy mechanism to simulate the 253

3

Figure 2: Overview of our method. The upper-left is the training process of hidden transfer, N and M represent the
numbers of transformer layers. The upper-right and the bottom of the figure are the inference process of Hidden
transfer and Medusa respectively, assuming that the generation of both methods starts from the same context and
their inputs are the candidate token sequences generated in the last round, Medusa and Hidden transfer both verify
the candidate token sequences to find the last accepted token position(i.e the fourth token of the input) and generate
the next token and new draft tokens at the same time(for simplicity we only consider 2 transfer steps/medusa heads),
the next token and draft tokens construct to a tree structure and are then flatted into a sequence to be verified with
tree attention, after the verification stage, result shows Hidden transfer has more prediction accuracy and more draft
tokens accepted

higher layers’ hidden state (Elbayad et al., 2019),254

but other experiments still show that the copy mech-255

anism performs badly in some cases (Bae et al.,256

2023). The second method which use extra lm-257

heads to predict the future k draft tokens is very258

simple and effective, but we believe this method259

lacks the interaction of the k draft tokens and the260

previous tokens because the draft tokens do not261

interact with the previous tokens through the atten-262

tion mechanism, for example it only use the last263

hidden states of Xn to predict the Xn+2 without264

using the Xn+1’s information, but some times the265

Xn+2 depends on the Xn+1, so our method choose266

to train multiple transfer functions (simple linear267

projections) to predict the future k draft token’s268

hidden states in some intermediate layers by map-269

ping the hjn to hjn+1 ... hjn+k, so we can continue270

the forward propagation with n + k intermediate271

hidden states, During the following transformer272

layers, the last k hidden states will pass the original273

lm-head to predict the token distribution normally,274

the whole training and inference process compared275

with Hidden transfer and Medusa is shown in Fig-276

ure2. 277

3.3 Training stage 278

At the training stage, it is required to train multiple 279

linear projections in multiple fixed layers, where 280

the locations of the corresponding transfer layers 281

and the number of transfer step are considered as 282

hyperparameters. The number of transfer step is 283

equal to the number of pseudo hidden states pre- 284

dicted in a single forward process for one token; 285

hence, we denote this number as k. Because we 286

train k linear projections separately so we need 287

to conduct the training process k times(we train 288

one linear projection for one transfer step in a cer- 289

tain layer). For simplicity we discuss the training 290

process of the ith transfer step, we denote the in- 291

dex of transfer layer for step i as ti. so we can 292

use W i
ti ∈ Rd×d (1 ≤ i ≤ k) to denote the train- 293

able linear projection for the ith step(d represent 294

the hidden dimension of the LLMs). Assume we 295

have original token sequences X1, X2, ..., Xn, we 296

first do the forward process to the ti layer to get 297

their corresponding hidden state hti1 , hti2 , ..., htin , 298

then we transfer all of the n hidden states into their 299

4

corresponding pseudo hidden states, which can be300

formulated as below:301

h̃tin , h̃
ti
n−1, . . . , h̃

ti
1 = W i

ti · (h
ti
n , h

ti
n−1, ..., h

ti
1)302

After transferring the htij into h̃tij (1 ≤ j ≤303

n), we concat the original hidden states and304

the pseudo hidden states into a new sequence305

(ie.hti1 , ..., h
ti
n−1, h

ti
n , h̃

ti
1 , . . . , h̃

ti
n−1, h̃

ti
n). It’s easy306

to show that the h̃tij is the pseudo hidden state of307

hij+1, so in the self-attention layers it can only view308

the hidden states from hti1 to htij+i−1 and itself in309

the sequence, we design attention mask to achieve310

the goal. In order to ensure the consistency be-311

tween the training stage and inference stage, we set312

the position id j + i to h̃tij to construct the position313

embedding.314

We then continue to forward the new se-315

quence, and get the final representations of the316

last layer (i.e., hl1, . . . , h
l
n−1, h

l
n, h̃

l
1, . . . , h̃

l
n−1, h̃

l
n,317

where l denotes the number of layers of the318

LLMs). We then pass the hidden states se-319

quence through the original lm-head and fi-320

nally get the token distribution of each position321

(P l
1, . . . , P

l
n−1, P

l
n, P̃

l
1, . . . , P̃

l
n−1, P̃

l
n). We use the322

KL-divergence between token distributions given323

by the pseudo hidden states and the original hidden324

states as the supervised signal. The loss can be325

formulated as below:326

Lossdistll =

n−i−1∑
q=1

KL− divergence(P̃ l
n+q, P

l
q+i)327

3.4 Inference stage328

In the inference stage, the process is to first gener-329

ate some sequence candidates and then verify them,330

the purpose of the verification stage is to ensure331

the tokens consistency with the auto-regressive de-332

coding, We construct multiple sequence candidates333

into a tree structure by merging their common an-334

cestors, then we flat the tree into a sequence and335

construct attention mask correctly to keep their or-336

ders, finally we send the whole sequence into the337

LLMs to verify the candidates and generate the338

new candidates at the same time. Figure2 shows339

the inference stage of both Hidden transfer and340

Medusa.341

3.4.1 Tree attention342

When predicting the draft tokens for the following343

several steps, it becomes clear that the draft to-344

kens belonging to different steps form a tree struc- 345

ture according to their order. The tree attention 346

mechanism transforms this hierarchical tree into a 347

linear sequence while preserving the original posi- 348

tional indices of each token. Moreover, it employs 349

a specialized attention mask to ensure that a to- 350

ken only attends to its ancestors within the tree 351

structure, thereby upholding the causal language 352

model’s properties. During inference, a pre-defined 353

tree structure and parser facilitate the rapid trans- 354

formation of token candidates between the tree and 355

sequence representations, obviating the need for 356

additional computations. 357

4 Experiment 358

4.1 Setup 359

We evaluate the our method on two different series 360

of models with different size, including LLaMA- 361

2-CHAT-13B (Touvron et al., 2023b), LLaMA- 362

2-CHAT-7B (Touvron et al., 2023b) and Vicuna- 363

13B (Chiang et al., 2023), Vicuna-7B (Chiang et al., 364

2023). We use greedy sampling strategy for the 365

LLMs and the tokens generated using our method 366

are identical to those generated by standard auto- 367

regressive decoding theoretically. We divide the 368

experiments into main experiments subsection, an- 369

alytical and ablation study. The main experiments 370

are conducted on all models and the analytical and 371

ablation study only conducted on 7B model for 372

simplicity. 373

In the main experiments subsection, we com- 374

pare our end-to-end time acceleration ratio with 375

Medusa (Cai et al., 2023) and Self-speculative de- 376

coding (Zhang et al., 2023) to show the effective- 377

ness of our method(more details in Appendix), Be- 378

cause the self-speculative decoding method (Zhang 379

et al., 2023) need to carefully select the transformer 380

layers skipped for each model, and it doesn’t of- 381

fer the initial skip layers of 7B model in its open 382

source code for their optimizer algorithm, so we 383

only compare with them on LLaMA-2-Chat-13B 384

and vicuna-13B, we use the acceleration ratio re- 385

ported in their paper of LLaMA-2-Chat-13B for 386

the Xsum dataset, and run its open source code to 387

evaluate their effectiveness on the Gsm8K dataset 388

and vicuna-13B. we use the same Tree structure 389

and predict the next three draft tokens (exclude the 390

next token generated by the original lm-head) for 391

Medusa and our method, and we do hidden transfer 392

for our method on the 25 30 35 layers respectively. 393

Analytical experiments subsection and ablation 394

5

Model Decoding Algorithm XSum Gsm8k

LLaMA-2-Chat-13B

Auto-regressive 1.000× 1.000×
Self-speculative (Zhang et al., 2023) 1.241× 1.216×

Medusa (Cai et al., 2023) 1.325× 1.976×
Ours 1.532× 2.275×

Vicuna-13B

Auto-regressive 1.000× 1.000×
Self-speculative (Zhang et al., 2023) 1.125× 1.118×

Medusa (Cai et al., 2023) 1.247× 1.869×
Ours 1.419× 2.150×

LlaMA-2-Chat-7B
Auto-regressive 1.000× 1.000×

Medusa (Cai et al., 2023) 1.465× 1.762×
Ours 1.816× 2.135×

Vicuna-7B
Auto-regressive 1.000× 1.000×

Medusa (Cai et al., 2023) 1.388× 1.732×
Ours 1.786× 2.219×

Table 1: The acceleration ratio for both forward times and end-to-end time

study aim to verify our motivation, So we first com-395

pare the draft tokens prediction accuracy between396

our method and two baselines (e.g. Medusa heads397

and Early existing on different intermediate layers),398

result shows that we have the best prediction accu-399

racy for the future draft tokens in a single forward400

propagation; To verify our motivation, we also ana-401

lyze how the hidden states similarity between the402

pseudo hidden states predicted and the original hid-403

den states changing along with the forward prop-404

agation and prove the refinement of transformer405

layers, finally we train multiple transfer projections406

on different layers for different transfer steps to407

explore how to select the transfer layers. Finally408

we also compare the transfer prediction accuracy of409

the second transfer step between the setting of first410

pseudo hidden states masked or not in the ablation411

study412

All experiments are conducted on a single413

NVIDIA A100-80GB GPU and all implementa-414

tions are based on PyTorch using HuggingFace’s415

architecture (Wolf et al., 2020; Lhoest et al., 2021)416

4.2 Datasets417

We use ShareGPT dataset as our training dataset418

for all models, and we use the test split of Ex-419

treme Sum marization (XSum) (Narayan et al.,420

2018), Gsm8k (Cobbe et al., 2021) as our test421

dataset. ShareGPT is a multi-round conversations422

dataset comprises nearly 70,000 samples, We train423

one epoch for all the models. XSum (Narayan424

et al., 2018) is a dataset for evaluation of abstract425

single-document summary systems, it’s test split426

has 11,334 samples. we only sample 1000 sen- 427

tences followed (Zhang et al., 2023). The Gsm8k 428

dataset (Cobbe et al., 2021) encompasses a col- 429

lection of 8,500 linguistically varied, high-quality 430

math word problems for grade school students, all 431

of which were meticulously crafted by human au- 432

thors, we use its whole test split with 1000 samples. 433

All the two datasets are evaluated under 1-shot set- 434

ting followed (Zhang et al., 2023). 435

4.3 Main Results 436

Table 1 shows that the acceleration ratio of our 437

method is significantly better than other baselines 438

in end-to-end time for all the test dataset(more de- 439

tails in appendix), it has at most 1.28x acceleration 440

ratio compared with Medusa, which is similar to 441

our method. Using hidden transfer to predict the 442

pseudo hidden states in the intermediate layer gain 443

more benefit in the overall performance than us- 444

ing Medusa head to predict the token distribution 445

directly, this improvement is more obvious in 7B 446

models, and we find that the acceleration ratio on 447

Gsm8k is higher because the answer in Gsm8k is 448

more logical and predictable with more mathemati- 449

cal symbols. 450

4.4 Analytical Study 451

In this subsection, we conduct some analytical ex- 452

periments to further verify the effectiveness and 453

motivation of our method, the key idea of our 454

method is to predict draft tokens more correctly 455

in a single forward propagation by predicting the 456

pseudo hidden states in intermediate layers. So we 457

6

Figure 3: TopK tokens’ prediction accuracy using three prediction methods on LLaMA-2-Chat-13B model including
directly train different lm-heads on some intermediate layers (denoted as Early exit in the figure), Medusa method
and our hidden transfer method (We transfer the pseudo intermediate hidden states of the next 3 tokens on the 25th,
30th and 35th layers respectively), The N in the figure is the prediction step (N=2 means we predict the first draft
token). It’s clear that our method achieve the best prediction accuracy

first compare our method with Medusa and early458

exiting to show that we have better draft tokens pre-459

diction accuracy; then we analyze how the hidden460

states change during the forward propagation to461

verify the refinement we proposed. We also verify462

the draft tokens prediction dependency and show463

how to select the transfer layers.464

Draft tokens prediction accuracy In a single465

forward propagation (given the token sequence X1,466

... Xn and model need to predict the future K draft467

tokens X̃n+2, ... X̃n+k+1), so we first compare468

the draft tokens’ prediction accuracy on three dif-469

ferent methods: early exiting in the intermediate470

layers, using medusa heads and our hidden transfer471

method. Early exiting method trains independent472

lm-heads in several intermediate transformer lay-473

ers to directly predict the draft tokens(for example474

train a lm-head and use it to map hjn to X̃n+2),475

We use the LLaMA-2-Chat-13B as the base model476

for this experiment, three different methods are477

trained on ShareGPT dataset for one epoch and478

we set K as 3. We random sample 100 sequences479

from the test split of XSum and Gsm8K dataset re-480

spectively, for each sequence, we random split 50481

points at its output part, and for each split-point, we482

use the token sequence before as the prompt input483

and predict K draft tokens using different methods484

and compare with the tokens generated greedily by485

the original model in the following K steps.(We486

choose five random seeds and average the results487

to better eliminate random errors) Figure 3 shows488

that our hidden transfer method achieve the best489

prediction accuracy among them.490

Pseudo hidden states refinement we conduct an-491

other experiment to prove that the forward propaga-492

Figure 4: Hidden states similarity between the virtual
hidden states predicted and the original hidden states.

tion in transformer layers can refine the predicted 493

hidden states by given more semantic information 494

using self-attention mechanism. We compare the 495

cosine similarity of the pseudo hidden states pre- 496

dicted with the original hidden states, and trace 497

how the cosine similarity changes with the forward 498

process (for example, we denote the prompt se- 499

quence as X1, ... Xn and we calculate the cosine 500

similarity between pseudo hidden states h̃tn+1 and 501

real htn+1, htn+1 is the hidden state of Xn+1 on 502

the tth layer and Xn+1 is the greedy decoding out- 503

put token given the n prefix context). We random 504

sample 100 sequences for two datasets and random 505

split 50 times for each sequence as well. Figure 4 506

shows the cosine similarity get closer along with 507

the forward process, which proves that with the 508

forward process, the hidden states can be refined 509

by the transformer layers. 510

How to choose transfer layers In the inference 511

stage of our method, we need to choose which layer 512

to transfer and generate the pseudo hidden states, 513

there’s a trade-off between accuracy and efficient: 514

if we transfer on the lower layers, the pseudo hid- 515

7

Figure 5: The first transfer step prediction accuracy on
different layers for Vicuna-7b and LlaMa-2-Chat-7b.
TopK means the topk tokens predicted by the transfer
step include

Figure 6: The second transfer step prediction accuracy
on different layers for Vicuna-7b and LlaMa-2-Chat-7b
with the fixed transfer step 15. TopK means the topk
tokens predicted by the transfer step include

den states will pass more subsequent layers and516

take more computing resource but gain more se-517

mantic information by interacting with the hidden518

states of context; if we transfer on higher layers,519

the pseudo hidden states will take less computing520

resource with less semantic information. So we521

train the first and second transfer step on different522

layers of a fixed LLM to study the impact of the523

transfer layer selection. We choose Vicuna-7B and524

LlaMa-2-7b-chat model. For the first transfer step,525

we train different transfer structure on the 5th, 10th,526

15th, 20th, 25th layers seperately, and report the527

token prediction accuracy in figure 5, we found528

that from the lower layer to the middle layer, the529

prediction accuracy is basically unchanged, and530

from the middle layer to the high layer, the pre-531

diction accuracy drops rapidly, which proves that532

the middle layer to do tranfer is an optimal choice533

for both accuracy and computational efficiency, so534

we choose the 15th layer to conduct the first trans-535

fer step. After fixed the first transfer layer, we536

also train different transfer structures on the layers537

higher than it as our second transfer layer. Fig-538

ure 6 shows that the second transfer step have the539

same rule, starting from the 15th layer, the accu-540

racy rate remains unchanged within a range, and541

then rapidly decline, so we choose 20th layer to542

conduct the second transfer step.543

Figure 7: The second transfer step prediction accuracy
under masked and no masked setting, we transfer the
hidden states on 15th and 20th respectively

4.5 Ablation study 544

It’s clear that Medusa (Cai et al., 2023) predict the 545

draft tokens in parallel which means the genera- 546

tion between different draft tokens is independent. 547

Our motivation is that serialized generation of draft 548

tokens will gain better performance and we use 549

experiment to prove it. We compare the predic- 550

tion accuracy of the second transfer step under two 551

setting: Masked and No masked, Masked means 552

the second pseudo hidden state can not see the 553

first pseudo hidden state in the forward process, 554

and No masked is the normal self-attention mech- 555

anism. Figure 4 shows that in all the models and 556

datasets, Masked performs worse which prove that 557

the semantic information of the first draft token 558

is important to the generation of the second draft 559

token. 560

5 Conclusion 561

In this paper, we introduce a novel parallel decod- 562

ing approach, named hidden transfer, designed for 563

accelerating inference in large language models. 564

By training a linear transformation projection in the 565

intermediate layers, our model is capable of predict- 566

ing the pseudo hidden states of multiple subsequent 567

tokens in a single forward propagation. These pre- 568

dicted hidden states obtain additional semantic in- 569

formation through subsequent transformer layers, 570

resulting in enhanced prediction accuracy. Through 571

analytical experiments, we have proved that the 572

hidden states predicted by the intermediary layers 573

are progressively refined, gaining increased seman- 574

tic information in the subsequent transformer lay- 575

ers by interacting with context. Our experiments 576

demonstrate that our method outperforms existing 577

approaches in terms of predictive precision within 578

a single forward iteration and also achieves sub- 579

stantial gains in generation velocity. 580

8

Limitation581

In the verification stage of our method, we simply582

utilized vanilla tree attention without specific opti-583

mization. However, the structural choices of tree584

attention significantly impact the generation speed.585

Therefore, future work will focus on optimizing586

it. Furthermore, we aim to conduct a more exten-587

sive set of analytical experiments to elucidate the588

underlying mechanisms of hidden transfer better589

and design improved training methodologies to en-590

hance the quality of draft token generation. Our591

approach necessitates the expansion of the input592

sequence during both training and inference, which593

may lead to an increase in computational resource594

requirements. This issue will be addressed in the595

future research.596

References597

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-598
Young Yun. 2023. Fast and robust early-exiting599
framework for autoregressive language models with600
synchronized parallel decoding. arXiv preprint601
arXiv:2310.05424.602

Tom Brown, Benjamin Mann, Nick Ryder, Melanie603
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind604
Neelakantan, Pranav Shyam, Girish Sastry, Amanda605
Askell, et al. 2020. Language models are few-shot606
learners. Advances in neural information processing607
systems, 33:1877–1901.608

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,609
and Tri Dao. 2023. Medusa: Simple framework for610
accelerating llm generation with multiple decoding611
heads. https://github.com/FasterDecoding/612
Medusa.613

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,614
Jean-Baptiste Lespiau, Laurent Sifre, and John615
Jumper. 2023a. Accelerating large language model616
decoding with speculative sampling. arXiv preprint617
arXiv:2302.01318.618

Tianyi Chen, Tianyu Ding, Badal Yadav, Ilya Zharkov,619
and Luming Liang. 2023b. Lorashear: Efficient large620
language model structured pruning and knowledge621
recovery. arXiv preprint arXiv:2310.18356.622

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,623
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan624
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion625
Stoica, and Eric P. Xing. 2023. Vicuna: An open-626
source chatbot impressing gpt-4 with 90%* chatgpt627
quality.628

Jang Hyun Cho and Bharath Hariharan. 2019. On the629
efficacy of knowledge distillation. In Proceedings of630
the IEEE/CVF international conference on computer631
vision, pages 4794–4802.632

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 633
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 634
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 635
Nakano, et al. 2021. Training verifiers to solve math 636
word problems. arXiv preprint arXiv:2110.14168. 637

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael 638
Auli. 2019. Depth-adaptive transformer. arXiv 639
preprint arXiv:1910.10073. 640

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas- 641
sive language models can be accurately pruned in 642
one-shot. In International Conference on Machine 643
Learning, pages 10323–10337. PMLR. 644

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and 645
Dan Alistarh. 2022. Gptq: Accurate post-training 646
quantization for generative pre-trained transformers. 647
arXiv preprint arXiv:2210.17323. 648

Song Guo, Jiahang Xu, Li Lyna Zhang, and Mao Yang. 649
2023. Compresso: Structured pruning with collabora- 650
tive prompting learns compact large language models. 651
arXiv preprint arXiv:2310.05015. 652

Song Han, Huizi Mao, and William J Dally. 2015. Deep 653
compression: Compressing deep neural networks 654
with pruning, trained quantization and huffman cod- 655
ing. arXiv preprint arXiv:1510.00149. 656

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. 657
Distilling the knowledge in a neural network. arXiv 658
preprint arXiv:1503.02531. 659

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dry- 660
den, and Alexandra Peste. 2021. Sparsity in deep 661
learning: Pruning and growth for efficient inference 662
and training in neural networks. The Journal of Ma- 663
chine Learning Research, 22(1):10882–11005. 664

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, 665
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner, 666
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. 667
2023. Distilling step-by-step! outperforming larger 668
language models with less training data and smaller 669
model sizes. arXiv preprint arXiv:2305.02301. 670

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng- 671
long Zhu, Matthew Tang, Andrew Howard, Hartwig 672
Adam, and Dmitry Kalenichenko. 2018. Quanti- 673
zation and training of neural networks for efficient 674
integer-arithmetic-only inference. In Proceedings of 675
the IEEE conference on computer vision and pattern 676
recognition, pages 2704–2713. 677

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 678
2023. Fast inference from transformers via spec- 679
ulative decoding. In International Conference on 680
Machine Learning, pages 19274–19286. PMLR. 681

Quentin Lhoest, Albert Villanova del Moral, Yacine 682
Jernite, Abhishek Thakur, Patrick von Platen, Suraj 683
Patil, Julien Chaumond, Mariama Drame, Julien Plu, 684
Lewis Tunstall, et al. 2021. Datasets: A commu- 685
nity library for natural language processing. arXiv 686
preprint arXiv:2109.02846. 687

9

https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie688
Chang, Pierre Stock, Yashar Mehdad, Yangyang689
Shi, Raghuraman Krishnamoorthi, and Vikas Chan-690
dra. 2023a. Llm-qat: Data-free quantization aware691
training for large language models. arXiv preprint692
arXiv:2305.17888.693

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang694
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,695
Yuandong Tian, Christopher Re, et al. 2023b. Deja696
vu: Contextual sparsity for efficient llms at infer-697
ence time. In International Conference on Machine698
Learning, pages 22137–22176. PMLR.699

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao700
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuom-701
ing Chen, Daiyaan Arfeen, Reyna Abhyankar, and702
Zhihao Jia. 2023. Specinfer: Accelerating generative703
llm serving with speculative inference and token tree704
verification. arXiv preprint arXiv:2305.09781.705

Shashi Narayan, Shay B Cohen, and Mirella Lap-706
ata. 2018. Don’t give me the details, just the707
summary! topic-aware convolutional neural net-708
works for extreme summarization. arXiv preprint709
arXiv:1808.08745.710

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya711
Sutskever, et al. 2018. Improving language under-712
standing by generative pre-training.713

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,714
Dario Amodei, Ilya Sutskever, et al. 2019. Language715
models are unsupervised multitask learners. OpenAI716
blog, 1(8):9.717

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten718
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,719
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.720
Code llama: Open foundation models for code. arXiv721
preprint arXiv:2308.12950.722

Victor Sanh, Lysandre Debut, Julien Chaumond, and723
Thomas Wolf. 2019. Distilbert, a distilled version724
of bert: smaller, faster, cheaper and lighter. arXiv725
preprint arXiv:1910.01108.726

Noam Shazeer. 2019. Fast transformer decoding:727
One write-head is all you need. arXiv preprint728
arXiv:1911.02150.729

Benjamin Spector and Chris Re. 2023. Accelerating llm730
inference with staged speculative decoding. arXiv731
preprint arXiv:2308.04623.732

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier733
Martinet, Marie-Anne Lachaux, Timothée Lacroix,734
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal735
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard736
Grave, and Guillaume Lample. 2023a. Llama: Open737
and efficient foundation language models.738

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-739
bert, Amjad Almahairi, Yasmine Babaei, Nikolay740
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti741
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton742

Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 743
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 744
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 745
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 746
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 747
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 748
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 749
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 750
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 751
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 752
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 753
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 754
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 755
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 756
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 757
Melanie Kambadur, Sharan Narang, Aurelien Ro- 758
driguez, Robert Stojnic, Sergey Edunov, and Thomas 759
Scialom. 2023b. Llama 2: Open foundation and 760
fine-tuned chat models. 761

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 762
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 763
Kaiser, and Illia Polosukhin. 2017. Attention is all 764
you need. Advances in neural information processing 765
systems, 30. 766

Hanrui Wang, Zhekai Zhang, and Song Han. 2021. Spat- 767
ten: Efficient sparse attention architecture with cas- 768
cade token and head pruning. In 2021 IEEE Interna- 769
tional Symposium on High-Performance Computer 770
Architecture (HPCA), pages 97–110. IEEE. 771

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 772
Chaumond, Clement Delangue, Anthony Moi, Pier- 773
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 774
et al. 2020. Transformers: State-of-the-art natural 775
language processing. In Proceedings of the 2020 con- 776
ference on empirical methods in natural language 777
processing: system demonstrations, pages 38–45. 778

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi 779
Chen. 2023. Sheared llama: Accelerating language 780
model pre-training via structured pruning. arXiv 781
preprint arXiv:2310.06694. 782

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, 783
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022. 784
Zeroquant: Efficient and affordable post-training 785
quantization for large-scale transformers. Advances 786
in Neural Information Processing Systems, 35:27168– 787
27183. 788

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, 789
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, 790
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b: 791
An open bilingual pre-trained model. arXiv preprint 792
arXiv:2210.02414. 793

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, 794
Gang Chen, and Sharad Mehrotra. 2023. Draft 795
& verify: Lossless large language model accelera- 796
tion via self-speculative decoding. arXiv preprint 797
arXiv:2309.08168. 798

10

http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288

Susan Zhang, Stephen Roller, Naman Goyal, Mikel799
Artetxe, Moya Chen, Shuohui Chen, Christopher De-800
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.801
Opt: Open pre-trained transformer language models.802
arXiv preprint arXiv:2205.01068.803

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa,804
and Zhiru Zhang. 2019. Improving neural network805
quantization without retraining using outlier channel806
splitting. In International conference on machine807
learning, pages 7543–7552. PMLR.808

11

A Appendix809

12

Decoding Algorithm XSum 1000 sentences
tokens forward tokens/forward forward acc rate time time/tokens time acc rate

Auto-regressive 456830 456830 1.000 1.000 15016 0.0328s/token 1.000

Medusa 456107 259730 1.756 1.756 12039 0.0263s/token 1.247

Hidden transfer 456177 223535 2.040 2.040 10547 0.0231s/token 1.419

Gsm8k 1000 sentences
tokens forward tokens/forward forward acc rate time time/tokens time acc rate

Auto-regressive 233040 233040 1.000 1.000 7687 0.0329s/token 1.000

Medusa 231708 111028 2.086 2.086 4096 0.0176s/token 1.869

Hidden transfer 231763 95537 2.425 2.425 3551 0.0153s/token 2.150

Table 2: The concise acceleration ratio including the time and forward times for Auto-regressive decoding, medusa
decoding and hidden transfer decoding for vicuna-13b on Xsum and Gsm8k

Decoding Algorithm XSum 1000 sentences
tokens forward tokens/forward forward acc rate time time/tokens time acc rate

Auto-regressive 420006 420006 1.000 1.000 14047 0.0334s/token 1.000

Medusa 420323 224678 1.870 1.870 10614 0.0252s/token 1.325

Hidden transfer 419289 190557 2.200 2.200 9171 0.0218s/token 1.532

Gsm8k 1000 sentences
tokens forward tokens/forward forward acc rate time time/tokens time acc rate

Auto-regressive 153820 153820 1.000 1.000 5080 0.0330s/token 1.000

Medusa 152968 68649 2.228 2.228 2567 0.0167s/token 1.976

Hidden transfer 153031 59190 2.585 2.585 2228 0.0145s/token 2.275

Table 3: The concise acceleration ratio including the time and forward times for Auto-regressive decoding, medusa
decoding and hidden transfer decoding for llama2-chat-13b on Xsum and Gsm8k

Decoding Algorithm XSum 1000 sentences
tokens forward tokens/forward forward acc rate time time/tokens time acc rate

Auto-regressive 134806 134806 1.000 1.000 3621 0.0268s/token 1.000

Medusa 133757 79803 1.676 1.676 2585 0.0193s/token 1.388

Hidden transfer 134798 59753 2.255 2.255 2033 0.0150s/token 1.786

Gsm8k 1000 sentences
tokens forward tokens/forward forward acc rate time time/tokens time acc rate

Auto-regressive 152012 152012 1.000 1.000 3853 0.0253s/token 1.000

Medusa 152903 76511 2.022 2.022 2235 0.0146s/token 1.732

Hidden transfer 153651 59616 2.577 2.577 1764 0.0114s/token 2.219

Table 4: The concise acceleration ratio including the time and forward times for Auto-regressive decoding, medusa
decoding and hidden transfer decoding for vicuna-7b on Xsum and Gsm8k

13

Decoding Algorithm XSum 1000 sentences
tokens forward tokens/forward forward acc rate time time/tokens time acc rate

Auto-regressive 327433 327433 1.000 1.000 8471 0.0258s/token 1.000

Medusa 327488 186063 1.760 1.760 5785 0.0176s/token 1.465

Hidden transfer 328083 145149 2.260 2.260 4683 0.0142s/token 1.816

Gsm8k 1000 sentences
tokens forward tokens/forward forward acc rate time time/tokens time acc rate

Auto-regressive 176339 176339 1.000 1.000 4460 0.0252s/token 1.000

Medusa 174551 85251 2.047 2.047 2507 0.0143s/token 1.762

Hidden transfer 175219 70813 2.473 2.473 2073 0.0118s/token 2.135

Table 5: The concise acceleration ratio including the time and forward times for Auto-regressive decoding, medusa
decoding and hidden transfer decoding for llama-2-chat-7b on Xsum and Gsm8k

14

	Introduction
	Related Work
	Model Compression
	Speculative Decoding

	Methodology
	Problem Formulation
	Hidden Transfer
	Training stage
	Inference stage
	Tree attention

	Experiment
	Setup
	Datasets
	Main Results
	Analytical Study
	Ablation study

	Conclusion
	Appendix

