
Place Cells as Multi-Scale Position Embeddings:
Random Walk Transition Kernels for Path Planning

Minglu Zhao1⋆, Dehong Xu1⋆, Deqian Kong1⋆, Wen-Hao Zhang2,Ying Nian Wu1

1UCLA 2UT Southwestern Medical Center

Abstract

The hippocampus supports spatial navigation by encoding cognitive maps through
collective place cell activity. We model the place cell population as non-negative
spatial embeddings derived from the spectral decomposition of multi-step random
walk transition kernels. In this framework, inner product or equivalently Euclidean
distance between embeddings encode similarity between locations in terms of their
transition probability across multiple scales, forming a cognitive map of adjacency.
The combination of non-negativity and inner-product structure naturally induces
sparsity, providing a principled explanation for the localized firing fields of place
cells without imposing explicit constraints. The temporal parameter that defines the
diffusion scale also determines field size, aligning with the hippocampal dorsoven-
tral hierarchy. Our approach constructs global representations efficiently through
recursive composition of local transitions, enabling smooth, trap-free navigation
and preplay-like trajectory generation. Moreover, theta phase arises intrinsically
as the angular relation between embeddings, linking spatial and temporal coding
within a single representational geometry.

1 Introduction

Place cells in the hippocampus are central to spatial cognition, firing selectively at specific locations
as animals navigate their environment [1, 2]. Rather than modeling individual place fields, we
propose viewing place cell populations as non-negative position embeddings derived from spectral
decomposition of multi-step transition kernels that collectively encode spatial relationships. This
population-level approach captures the hippocampus’s role in forming cognitive maps, integrating
metric and topological properties for flexible navigation [3].

Hippocampal place cells exhibit dynamic behaviors, adapting firing fields to environmental changes
[4], scaling along the dorsoventral axis [5], and engaging in preplay before exploration [6]. These
properties suggest a multi-scale, adaptive representation that supports navigation across diverse
contexts—from narrow passages to open terrains. The hippocampus’s ability to predict novel paths,
as in preplay, and maintain robust navigation under environmental deformations further underscores
its computational sophistication [7–9].

We formalize these insights by modeling place cell population as vector embeddings derived from a
multi-step symmetric random walk. The transition matrix admits spectral decomposition, enabling
construction of non-negative embeddings h(x, τ) such that the inner product between embeddings
approximates the normalized transition probability: ⟨h(x, τ), h(y, τ)⟩ = q(y|x, τ), where h(x, τ) is
the embedding at location x, and q(y|x, τ) is the symmetric transition probability over time step τ .
Remarkably, combining this inner product structure with non-negativity and orthogonality constraints
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induces emergent sparsity—the embeddings naturally develop disjoint support sets, explaining why
place cells exhibit localized firing fields without explicit regularization. The time parameter

√
τ

defines a spatial scale hierarchy, mirroring hippocampal dorsoventral scaling [5]. q(y|x, τ) defines
spatial adjacency between x and y at scale or resolution

√
τ , and the pairwise adjacency relationships

(q(y|x, τ),∀x, y) are reduced into individual embeddings (h(x, τ),∀x) that collectively form a multi-
scale, Euclideanized, and sparsified cognitive map of the environment. The Euclideanization emerges
from inner product expansion of the transition kernel, the sparsification arises naturally from non-
negativity of the place cell responses and the orthogonality between embeddings with zero inner
product, and the multi-scale hierarchy enables adaptive navigation across spatial resolutions. Efficient
matrix squaring (P2τ = P 2

τ ) computes global transitions from local ones (P1) without past trajectory
memorization, enabling preplay-like shortcut detection [10, 7].

Our framework uses gradient ascent on q(y|x, τ) = ⟨h(x, τ), h(y, τ)⟩ with adaptive scale selection,
choosing the time scale maximizing the gradient for trap-free, smooth trajectories. This produces
robust navigation with properties like boundary avoidance, diffraction-like passage guidance, aligning
with hippocampal navigation [11, 9, 3]. Continuous interpolation ensures smooth gradient fields,
supporting natural paths. Due to the Euclideanization, path planning amounts to gradient descent on
Euclidean distance at the selected scale, enabling what can be called “straight forward” path planning.

Beyond spatial coding, we propose a novel theoretical framework where theta phase naturally emerges
from the population embedding structure, unifying spatial representation with temporal dynamics
and offering a principled account of theta phase precession.

Appendix A provides an extensive review of related work.

Our contributions include: (1) reconceptualizing place cells as non-negative embeddings from spectral
decomposition encoding transition probabilities at multiple scales; (2) demonstrating emergent
sparsity explaining localized place fields; (3) modeling multi-scale, Euclideanized, and sparsified
cognitive maps via time scale parameter

√
τ for transition probabilities; (4) employing efficient matrix

squaring to build up multi-scale spatial relationships; (5) introducing adaptive gradient ascent for
Euclideanized path planning at selected scale; (6) proposing theta phase formulation from population
embeddings; and (7) demonstrating biological plausibility through properties like preplay. Bridging
connectionist models [12, 13] and cognitive map theories [2, 9], our framework offers a scalable,
biologically inspired model of hippocampal spatial navigation.

2 Method

2.1 Multi-Step Random Walk Transition Kernel

The foundation of our approach is a symmetric random walk on a discrete lattice over the environment
(e.g., a 40× 40 lattice), with a subset of lattice points belonging to the obstacles. This random walk
serves as a mapping policy rather than a goal-reaching policy. Remarkably, this purely random
exploration policy leads to optimal path planning without explicit policy optimization. We use τ to
denote the time step of this random walk mapping policy, to avoid confusion with the time t of the
planned trajectory. τ plays the role of scale, which is adaptively selected during path planning.

For a location x = (i, j) on a 2D lattice, let N(x) be the set of its unobstructed neighbors, i.e.,
neighbors that do not belong to obstacles (e.g., 4 nearest neighbors), we define the one-step transition
probabilities as:

• For each unobstructed neighbor y of x: p(y|x, τ = 1) = pmove (e.g., 1/4 in the case of 4
nearest neighbors)

• For self-transition: p(x|x, τ = 1) = 1− |N(x)| · pmove

where |N(x)| is the number of unobstructed neighbors of x. A critical property of this formulation
is that the transition probabilities are symmetric, meaning p(y|x, τ = 1) = p(x|y, τ = 1) for all
locations x and y. This symmetry ensures that the random walk process preserves the bidirectional
nature of spatial relationships, which is essential for creating a well-defined proximity metric.

The above random walk defines τ -step symmetric transition kernel p(y|x, τ) over time step τ , which
measures the spatial adjacency between x and y at a spatial scale or resolution captured by τ .
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2.2 Heat Diffusion, Geodesic Distance and Topological Connectivity

Our discrete random walk model establishes a connection to the continuous heat equation. For small
spatial discretization dx and temporal discretization dt with dx =

√
dt, our discrete random walk

converges to the heat diffusion equation with reflecting boundary conditions as dx → 0 [14, 15]:
∂p(y|x, τ)

∂τ
= α∇2p(y|x, τ) on Ω \ Ωobstacles (1)

∂p(y|x, τ)
∂n

= 0 on ∂Ωobstacles (2)

where Ω is the whole region, Ωobstacles is the region of obstacles, and ∂Ωobstacles is its boundary. α is
the diffusion coefficient (different one-step transition p(y|x, τ = 1) in discrete case leads to different
α, e.g., α = 1/4 for 4-nearest neighbor random walk).

A fundamental result from heat diffusion theory relates the short-time behavior of the heat kernel to
geodesic distance. For small values of τ , the heat kernel has the asymptotic form [16, 17]:

p(y|x, τ) ≈ 1

4πατ
exp

(
−
d2g(x, y)

4ατ

)
(3)

where dg(x, y) is the geodesic distance. For open domains, dg(x, y) becomes Euclidean distance,
and p(y|x, τ) ∼ N (x, 2ατ), a Gaussian distribution with variance 2ατ or standard deviation

√
2ατ ,

demonstrating that
√
τ correspond to the spatial scale. We take square root of τ to emphasize this

scaling relationship between time and space.

This result demonstrates that dt(x, y) = −τ log q(y|x, τ) approximates the squared geodesic distance
for small values of τ , providing a fundamental connection between random walks and geodesic
distances in complex environments.

As τ increases, the transition probability incorporates additional information about path multiplicity
and global connectivity, creating a multi-scale representation of spatial relationships. In particular, for
large τ , the transition probability is dominated by eigenvalues that are close to 1, whose eigenvectors
depend on topological connectedness rather than local geometry.

Appendix D provides detailed background on heat equation. Appendix G explains topological
properties for large τ .

2.3 Place Cells as Non-negative Spectral Embeddings

We formalize place cell population as vector embedding h(x, τ) ∈ Rn, where n is the number of
place cells (e.g., n = 500). The inner product between embeddings approximates the normalized
transition probability kernel:

⟨h(x, τ), h(y, τ)⟩ ≈ q(y|x, τ) (4)
where q(y|x, τ) = p(y|x, τ)/

√
p(x|x, τ) · p(y|y, τ) is the normalized transition probability, so that

∥h(x, τ)∥ = 1 due to normalization. For each cell i, hi(x, τ) ≥ 0 for biological plausibility, and
hi(x, τ) is the response map or profile of cell i at spatial scale

√
τ .

The above formulation can be derived through spectral decomposition of the transition matrix. Since
the one-step transition matrix P1 is symmetric by construction, its powers Pτ = P τ

1 admit an eigen-
decomposition [18]: Pτ = QΛτQT , where Q is orthogonal (QTQ = I) and Λ = diag(λ1, . . . , λn)
contains eigenvalues 0 ≤ λi ≤ 1 (assuming the random walk is irreducible and aperiodic).

From this spectral decomposition, we can construct a spectral embedding by defining: Hi(x, τ) =

λ
τ/2
i Qi(x) where Qi is the i-th column of Q. This yields an exact representation of the transition

probability through inner products:

p(y|x, τ) =
∑
i

Hi(x, τ)Hi(y, τ) = ⟨H(x, τ), H(y, τ)⟩ (5)

where Hi(x, τ) is the i-th element of the vector H(x, τ). For the normalized transition probability
q(y|x, τ), we define normalized embeddings:

hspec(x, τ) =
H(x, τ)

∥H(x, τ)∥
=

H(x, τ)√
p(x|x, τ)

(6)
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which satisfy:

⟨hspec(x, τ), hspec(y, τ)⟩ =
p(y|x, τ)√

p(x|x, τ) · p(y|y, τ)
= q(y|x, τ) (7)

p(x|x, τ) is constant in the open field and is smooth in general, so q is essentially a scaled version of
p.

However, these spectral embeddings may contain negative components, conflicting with the biological
constraint that neural firing rates must be non-negative. Horn’s theorem [19, 20], which is built
upon the above spectral decomposition, guarantees the existence of a non-negative h(x, τ), such that
⟨h(x, τ), h(y, τ)⟩ = q(y|x, τ) for non-negative matrix factorization.

This formulation represents a fundamental shift from modeling individual place cells to modeling the
place cell population as distributed position embedding. The embedding vector h(x, τ) represents the
firing rates of all place cells at location x for spatial scale

√
τ , capturing the idea that it is the pattern

across the population—not the activity of any single cell—that encodes location.

The time parameter
√
τ serves as a fundamental unit of spatial resolution or scale, with larger values

producing broader, more diffuse representations, and smaller values producing more localized repre-
sentations. This naturally mirrors the variation in place field sizes observed along the dorsoventral
axis of the hippocampus [5, 21].

See Appendix C for more details on spectral analysis. Appendix E provides analytical results for
open field, where q(y|x, τ) is Gaussian, and elements of h(x, τ) exhibit Gaussian profiles over x.

2.4 Matrix Squaring, Learning, and Continuation

Let P1 be the one-step transition matrix for the random walk on a discrete lattice. P1 depends on
obstacles in the environment and amounts to local one-step exploration, as detailed in subsection 2.1.

We calculate Pτ for a discrete set of τ , T = {τ = 2k, k = 1, ...,K}, via P2τ = P 2
τ . The matrix

squaring is very efficient for calculating Pτ for τ ∈ T , and these Pτ correspond to explorations of
different spatial scales

√
τ , where the adjacent spatial scales in T have a ratio

√
2, mirroring grid cell

module scaling (∼1.4–1.7) [22]. In addition to matrix squaring, one can design any discrete sequence
T = {tk, k = 1, . . . ,K}, and calculate Pτ for τ ∈ T using matrix multiplication.

We learn a separate population of place cells h(x, τ) for each τ ∈ T , by minimizing the least squares
error:

L =
∑
x,y

[q(y|x, τ)− ⟨h(x, τ), h(y, τ)⟩]2 (8)

We learn h(x, τ) over the discrete lattice, where
∑

x,y in (8) is over all pairs of points on the lattice.
We optimize this objective using the AdamW optimizer [23], where after each iteration, for each x,
we set the negative elements of h(x, τ) to 0, and then normalize h(x, τ) so that ∥h(x, τ)∥ = 1.

The learning reduces pairwise adjacency relationships (q(y|x, τ),∀x, y) into individual embeddings
(h(x, τ),∀x), which collectively form a map of the environment.

After learning, we can use bi-linear interpolation to make h(x, τ) a continuous map over x. As a
result, q(y|x, τ) = ⟨h(x, τ), h(y, τ)⟩ also becomes continuous, approximating the transition kernel
of the continuous heat equation. The continuous q(y|x, τ) can then elegantly guide path planning in
continuous space instead of discrete lattice.

2.5 Euclideanized Cognitive Map

Geometrically, ⟨h(x, τ), h(y, τ)⟩ is the cosine of the angle between the normalized vectors h(x, τ)
and h(y, τ). Moreover, we have

1

2
∥h(x, τ)− h(y, τ)∥2 = 1− ⟨h(x, τ), h(y, τ)⟩ = 1− q(y|x, τ) (9)

That is, the angle or the Euclidean distance between h(x, τ) and h(y, τ) encodes proximity or
adjacency between x and y. Thus, our method geometrizes transition probability.
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(h(x, τ),∀x) is a 2D manifold in the high-dimensional embedding space. This 2D manifold is an
embedding of the 2D physical space. Because of the flexibility endowed by the high-dimensional
embedding space, the path between x and y on the manifold is essentially “Euclideanized” even
though the physical path is far from being Euclidean.

2.6 Emergent Sparsity from Non-negativity and Orthogonality

The conjunction of non-negativity and orthogonality induces emergent sparsity in the representa-
tional code. Let h(x, τ) ∈ Rn

+ denote the representation at position x and scale
√
τ , such that

⟨h(x, τ), h(y, τ)⟩ = q(y|x, τ), where q(y|x, τ) measures spatial adjacency at scale
√
τ . If two

positions x and y are non-adjacent (q(y|x, τ) = 0), the corresponding vectors must be orthogonal.
Because all components of h(x, τ) are non-negative, orthogonality implies disjoint support—no com-
ponent can be active in both representations. Consequently, the joint requirement of non-negativity
and orthogonality forces most components to be zero, yielding sparse, localized activity patterns. As
a result, each place cell fires at a localized place, and the population of place cells collectively tile
the environment. The symbolic representation thus emerges automatically from population-based
representation.

The scale parameter τ modulates this sparsity: for small τ , most position pairs are orthogonal,
producing highly localized “place fields”; for large τ , overlaps increase and place fields broaden.
Thus, the locality of place-cell activation follows directly from the geometry of non-negative, inner-
product spectral embeddings. Appendix F provides technical details.

2.7 Straight Forward Path Planning with Adaptive Scale Selection

We use adaptive gradient following for goal-directed navigation. When navigating from a current
position x to a target location y, we select the next position xnext from the neighborhood ∂(x) where
∂(x) = {z : z = x+∆r(cos θ, sin θ)}, ∆r is the step size, and θ is discretized into equally spaced
direction in [0, 2π). We use ∂(x) for continuous x for path planning to differentiate from N(x) in
the discrete lattice for random walk.

The path planning algorithm is as follows:

• Compute the gradient of the normalized transition probability for each neighbor z ∈ ∂(x)
and each scale τ :

∆(z, τ) = q(y|z, τ)− q(y|x, τ) = ⟨h(y, τ), h(z, τ)⟩ − ⟨h(y, τ), h(x, τ)⟩ (10)

• Select the scale τ∗ that provides the strongest directional signal:

τ∗ = argmax
τ∈T

max
z∈∂(x)

∆(z, τ) (11)

• Choose the next position that maximizes the gradient at the selected scale:

xnext = argmax
z∈∂(x)

∆(z, τ∗) (12)

Note that in the above algorithm, x and z are continuous, because h(x, τ) is made continuous in x
with bi-linear interpolation after learning on discrete lattice.

∆(z, τ) measures the reduction in the angle or squared Euclidean distance. The path planning seeks
maximal reduction in angle or Euclidean distance. Therefore we call it the straight forward path
planning in the Euclideanized embedding space, where the vector h(x, τ) rotates straightly to h(y, τ)
on the path.

This approach selects the scale τ∗ that provides the clearest guidance for the current navigation step.
Intuitively, larger scales provide better guidance for distant goals, while smaller scales offer more
precise navigation for nearby goals. The adaptive scale selection mechanism automatically finds
this optimal scale at each step, similar to choosing the most appropriate “ruler” for measuring at the
current distance.

Now consider the idealized continuous limit where ∆r → 0, θ is continuous, and τ is con-
tinuous. The path planning algorithm follows the gradient ∇xq(y|x, τ) = ∇xq(x|y, τ) where
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q(y|x, τ) = q(x|y, τ) due to symmetry. The planed trajectory is the gradient ascent flow: dx(t)/dt =
∇xq(x(t)|y, τ(t)), where t is the time on the planed trajectory, τ(t) = argmaxτ ∥∇xq(x(t)|y, τ)∥
is the optimal scale at time t with the maximal gradient.

The gradient-based navigation framework has the following key properties that ensure computational
efficiency and biological plausibility:

1. Adaptive scale selection dynamically adjusts
√
τ∗ ∝ d(x, y) for precise navigation in the open

environment, mirroring hippocampal spatial tuning [11].
2. The unimodal smooth gradient field ∇xq(x|y, τ), with a unique maximum at the goal, ensures

trap-free paths, aligning with hippocampal navigation [11, 9].
3. Planned paths match the shortest path for small τ , but prioritize topological connectivity for large

τ , reflecting cognitive map robustness [9, 3].
4. Near obstacles, ∇xq(x|y, τ) flows parallel to boundaries, preventing collisions, akin to hippocam-

pal obstacle avoidance [11].
5. Diffraction-like patterns guide trajectories through passages, resembling hippocampal maze

navigation [11, 9].
6. Topological invariance maintains navigation under environmental deformations, mirroring hip-

pocampal place cell encoding [3, 9].
7. Matrix squaring from local transitions predicts shortcuts, embodying hippocampal preplay [7, 8].

These properties, detailed in Appendix G, underpin the framework’s alignment with neural mecha-
nisms.

2.8 Theta-Phase Procession Based on Angle-Phase Duality

The hippocampus not only encodes spatial relationships but also organizes temporal dynamics
through theta phase precession, where place cells fire at specific phases of the theta rhythm as an
animal traverses their fields [24, 25]. We extend our population embedding framework to model this
phenomenon.

As explained above, the non-negativity and inner product structure of the position embeddings induces
localized sparse patterns, i.e., each place cell only fires at a localized field around a place, and together
the place fields of all the place cells tile the environment. Let µi = argmaxx hi(x, τ), i.e., the center
of the place field for cell i. The theta phase of cell i can be defined in terms of the angle between
h(x, τ) and h(µi, τ). As x approaches µi, the angle changes from π/2 to 0, and as x moves away
from µi, the angle changes from 0 to π/2. Appendix H provides details.

2.9 Integrating Grid Cells

For scientific reductionism, we focus on place cells without incorporating grid cells. A natural
extension would explore the relationship h(x, τ) = W (τ)g(x), where g(x) represents the vector of
grid cell activations and W (τ) is a learned transformation matrix, potentially unifying our framework
with the complementary roles of place and grid cells in spatial representation [9]. Appendix I provides
the formulation.

3 Experiments

We design experiments to evaluate both the biological plausibility of our position embedding frame-
work and its functional capabilities in path planning. All experiments are conducted in a simulated
environment. We first examine the positional representation and population density profiles in an
open field. Then we create more complex environments by adding obstacles. For implementation
details, see Appendix J; For additional experiment visualizations, see Appendix K.

3.1 Place Cell Representations in Open Field

We begin our numerical experiments in a simple open field environment to demonstrate fundamental
properties. The environment consists of a 40 × 40 lattice grid. For the transition kernel, we
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Figure 1: Place Cell Representations and Navigation in Open Field Environment. (A) Goal-directed
path planning trajectories with adaptive scale selection (selected scale is color coded, red for big
scale and blue for small scale). (B) Normalized transition probability kernels q(y|x, τ) at multiple
scales with gradient vector fields. y is fixed at the center of the environment. (C) Learned activation
patterns of h(x, τ) at different scales across randomly chosen cells, exhibiting Gaussian-like firing
fields centered at specific locations within the open environment.

employ a 3 × 3 neighborhood, meaning each position has at most 8 neighboring points, with
transition probability pmove = 1/9 distributed uniformly among neighbors as well as self. Within this
environment, we learn h(x, τ) embeddings across all lattice points. For hyperparameters, the total
number of place cells is set to 500. The temporal dynamics are captured across multiple scales using
the time parameter τ = 2k, where k = 1, 2, ..., 11, allowing us to analyze system behavior across
spatial scales.

3.1.1 Multi-Scale Transitions

To evaluate the normalized transition probability kernel q(y|x, τ), we visualize the learned Gaussian-
like patterns across multiple temporal scales in Figure 1 (B). Each panel depicts the transition
probability distribution for time scales τ = 16, 64, 256 with position y fixed at the environment
center.

The gradient fields reveal a critical temporal dependency: as τ increases, gradient magnitudes
intensify for locations distant from the center, while maintaining directional integrity toward the
target. This multi-scale property is particularly significant for path planning applications, as it enables
a multi-resolution navigational framework.

3.1.2 Spatial Activation Patterns

Our model is trained by minimizing Equation 8. The optimization results demonstrate remarkable
fidelity in approximating normalized transition probabilities through inner products of population
embedding vectors with correlation coefficients above 0.9 for all scales. Figure 1 (C) illustrates the
learned activation patterns of h(x, τ) at scales τ = 4, 16, 64, 256 for randomly chosen cells. The
spatial receptive fields of individual units emerge naturally from our training process, exhibiting the
characteristic Gaussian-like firing fields centered at specific locations within the open environment.
This spatial tuning closely resembles the well-documented properties of hippocampal place cells
observed in rodent navigation studies [1, 2].
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3.1.3 Path Planning and Adaptive Scale Selection

To evaluate the navigational capabilities of our model, we implemented the gradient-based path
planning. We randomly selected start and target locations within the open field environment. At
each step, the agent evaluates potential next positions by sampling orientation θ from 36 equally
spaced directions within [0, 2π) and a fixed radius ∆r of one grid unit. Even though our model is
learned in a 40× 40 discrete lattice, in path planning, we can reach continuous positions x, where the
representation of its location h(x, τ) is calculated by linear interpolation of the 4 closest neighbors.
Movement direction is determined by maximizing the gradient q(y|z, τ)− q(y|x, τ) where y is the
target location, x is the current position, and z represents each candidate next position. And for each
step, we choose the z with the largest gradient. Our results in Figure 1 (A) demonstrate that the
learned model consistently generates near-optimal trajectories.

A key feature of our position embedding model is the adaptive scale selection mechanism, where τ∗ is
selected with maximal gradient. The mechanism is illustrated in Figure 1 (A), where different colors
represent the selected time scale τ∗ at each navigational step. This reveals a systematic progression
from coarse to fine scales as the agent approaches its goal. This pattern emerges naturally from the
gradient fields associated with different scales.

When navigating to distant goals, larger scales (τ ≥ 128) are selected, which provides clearer
guidance for long-range planning. As the agent reaches medium distances from the goal, the selected
scales transition to intermediate values (τ = 16 to τ = 64), balancing directional guidance with
increasing spatial resolution. In the final approach phase, the system converges on the smallest
available scales (τ = 2 to τ = 8), which offered the most precise local guidance.

This adaptive scale selection mirrors the progressive engagement of different regions along the
dorsoventral axis of the hippocampus during navigation, as observed in rodent studies [5, 21].

3.2 Place Cells in Complex Environments

To investigate the robustness and adaptability of our method, we extend our analysis to complex
environmental geometries that more closely resemble naturalistic navigation scenarios. These envi-
ronments incorporate obstacles and boundaries that fundamentally alter the adjacency relationships
between locations, requiring the model to learn representations that respect environmental constraints
rather than simple Euclidean distances.

3.2.1 Environment and Experiment Setup

To evaluate performance across different environments, we implement three distinct mazes. Detailed
visualization is shown in Figure 2.

• U-shaped Maze: A corridor structure with a single 180-degree turn, creating a simple
non-convex navigation challenge.

• S-shaped Maze: A serpentine corridor with multiple turns, requiring longer detour paths
around obstacles.

• Four-room Maze: A compartmentalized environment with four chambers connected by
narrow doorways, representing a hierarchically structured space.

To accommodate environmental complexity, we modify our random walk dynamics to incorpo-
rate spatial constraints imposed by obstacles and boundaries. For any location x, transitions to
neighboring locations y that are prohibited by the obstacles setting p(y|x, τ = 1) = 0 for these for-
bidden transitions. Consequently, the self-transition probability is adjusted to maintain normalization
p(x|x, τ = 1) = 1− |N(x)| · pmove. The key difference between open field and obstacle-containing
environments lies in the value of N(x). In open fields, N(x) consistently includes all 8 neighboring
locations (except at boundaries). With obstacles, N(x) represents only the subset of accessible neigh-
boring locations from position x, which could be smaller than 8. We maintain pmove = 1/9 across all
environments for consistency. Despite these modifications to the underlying transition dynamics, our
learning approach remains consistent. We compute the normalized transition probabilities q(y|x, τ)
based on these constraint-respecting dynamics and train our model to learn the embedding function
h(x, τ) using the same objective function as in the open field.
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Figure 2: Place Cells in Complex Maze Environments. (A) Path planning through obstacle-containing
environments. (B) Topologically-informed transition kernels q(y|x, τ) with gradient fields. Target y
is marked as a red point. (C) Randomly sampled place cell profiles at multiple spatial scales. (D)
Remapping with environmental modification.

3.2.2 Navigation Efficiency

We evaluated our model’s navigation capabilities across multiple environments, conducting 50 trials
per environment with randomly sampled start and goal positions from non-obstacle areas. Our model
achieved 100% success rate across all tested environments.

We compare against the Bug algorithm [26] as a baseline since it prioritizes finding feasible paths
rather than strictly optimizing for the shortest path. The Bug algorithm moves directly toward the
goal until encountering an obstacle, then follows the obstacle’s boundary until it can resume its direct
path. We implement the oracle-enhanced version [27] that knows which boundary-following direction
yields the shortest path for each obstacle, establishing an upper bound on performance.

Table 1: Path planning results.

Environment Success SPL (↑)

Open field 100% 0.991± 0.04
U-shape 100% 0.919± 0.25
S-shape 100% 1.392± 0.98

Four-room 100% 1.519± 1.17

To quantify efficiency, we use Success weighted
by inverse Path Length (SPL) [28], where val-
ues near 1.0 indicate near-optimal paths and val-
ues exceeding 1.0 suggest our method found
shortcuts the Bug algorithm missed. Details of
SPL calculation appear in Appendix J. In sim-
pler environments (U-shape), our method per-
forms comparably to the oracle-enhanced Bug
algorithm. However, in complex environments
(S-shape and Four-room), our approach signif-
icantly outperforms the baseline, discovering more efficient paths that the Bug algorithm fails to
identify even with oracle assistance.

Table 2: Path planning in Four-Room environment.
Metrics Bug (w/ Oracle) Bug (w/o Oracle) A* Search Random Walk Our Method

Success (%) 100% 14% 100% 2% 100%
SPL (↑) 0.66± 0.51 0.15± 0.00 1.08± 0.50 0.01± 0.00 1.00
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We also compared our method with several different baselines in the Four-Room environment, with
each trial limited to 50,000 steps. The results in Table 2 show that baseline approaches like the Bug
algorithm (without oracle guidance) and Random Walk fail to solve most of the challenging scenarios.

3.2.3 Transition and Learned Profile in Complex Environments

To evaluate the adaptive capabilities of our approach, we examine the transition kernel q(y|x, τ) and
the resulting place cell activation profiles h(x, τ) in environments containing complex obstacles.
Figure 2 (B) presents the normalized transition probability distributions q(y|x, τ) for strategically
selected locations, with a large scale to reveal long-range spatial relationships. The diffraction-like
patterns, where probability flow encounters obstacles, reveal how spatial information propagates
through available pathways while respecting environmental constraints.

The gradient fields illustrate navigation potential, showing how an agent could efficiently pass
obstacles. Importantly, these transition probabilities capture the true topological structure of complex
environments rather than simple Euclidean distances, a critical property for realistic navigation where
direct paths are often blocked. The emergent probability gradients provide a natural mechanism for
guiding optimal path planning that automatically adapts to environmental geometry.

We visualized place cell profiles at multiple spatial scales across complex maze environments in
Figure 2 (C). Each panel displays a small subset of non-overlapping place cells at different scales
τ , emphasizing the emergent sparsity and localized nature of individual receptive fields. Despite
increased environmental complexity, the learned place cell population maintains comprehensive
spatial coverage throughout accessible regions. At smaller scales, place fields are tightly localized;
at larger scales, fields broaden while maintaining their localized tiling structure. This multi-scale
coverage property demonstrates the model’s robust ability to develop effective spatial representations
regardless of environmental geometry, a critical feature for reliable navigation in diverse settings.

3.2.4 Remapping Properties

We evaluated our model’s ability to adapt to environmental modifications, analogous to the remapping
phenomenon observed in rodent place cells. Previous neurobiological studies have shown that
hippocampal place fields reorganize in geometry-dependent ways when familiar environments are
altered through elongation or restructuring.

We conducted a two-phase experiment with the environment shown in the upper panel of Figure 2 (D).
After training our model to convergence (2000 iterations) on this initial configuration, we modified
the arena by removing several obstacles to introduce a novel shortcut path, as shown in the lower
panel of Figure 2 (D). The intervention created a minimal physical alteration but significantly changed
the environment’s topological structure.

We then fine-tuned our pre-trained model on this modified environment with just 50 iterations at
a reduced learning rate (5e-4), allowing the position embeddings to adapt efficiently to the new
spatial configuration. When testing path planning to identical target locations, the fine-tuned model
successfully identified and utilized the newly available shortcuts at critical decision points where
pathways diverged.

4 Conclusion

This paper reconceptualizes hippocampal place cells as population embeddings approximating multi-
step random walk transition kernels, where ⟨h(x, τ), h(y, τ)⟩ = q(y|x, τ), offering a biologically
plausible model of spatial navigation [29, 30]. The time parameter

√
τ defines a multi-scale represen-

tation, mirroring dorsoventral place field scaling [5], adaptability [4], and remapping [31]. Gradient
ascent on q(y|x, τ) with adaptive scale selection produces trap-free trajectories, guided by boundary
avoidance, diffraction-like passage navigation, aligning with hippocampal cognitive maps [11, 9, 3].
Efficient matrix squaring (P2τ = P 2

τ ) computes global transitions from local ones (P1) without past
trajectory memorization, enabling preplay-like shortcut detection [10, 7, 8]. Bridging connectionist
models [12, 13] and cognitive map theories [2, 9], our framework captures hippocampal navigation’s
dynamic properties, providing a scalable, computationally efficient model for complex environments.
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Sections and subsections that contain mostly background materials are so marked in the titles. The
remaining sections and subsections contain novel developments.

A Related Work

A.1 Place Cell Models and Representations

The study of hippocampal place cells has a rich history since their discovery by [1]. Computational
models of place cells have evolved from simple Gaussian tuning curves [29] to more sophisticated
approaches. Several models have explored population-level representations of place cells, including
manifold embeddings [32] and latent space models [33]. However, these approaches typically treat
place cells as separate entities encoding specific locations rather than as collective embeddings
encoding transition probabilities.

Matrix factorization approaches to neural population activity have been applied to various brain
regions [34, 35], though rarely with the specific mathematical connection to random walk processes
proposed in our work. Recent work by [13] proposed a successor representation framework for place
cells, which shares some conceptual similarities with our transition probability approach but differs
in the specific mathematical formulation and implementation.

Hidden Markov Models (HMMs) have also been applied to model hippocampal spatial coding. The
Clone-Structured Causal Graph model (CSCG) [36] treats space as a latent sequence and uses a
structured graph with cloned nodes to disambiguate aliased sensory observations in different contexts.
Related work [37] further develops sequence-based models of hippocampal function.

A.2 Multi-scale Spatial Representations

The variation in place field sizes along the dorsoventral axis of the hippocampus has been extensively
documented [5, 21, 22], but computational models that explicitly address this multi-scale organiza-
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tion remain limited. Models incorporating scale in place cell representations include hierarchical
approaches [38], wavelet-like representations [39], and scale-space theories [40] borrowed from
computer vision.

Our approach differs by deriving the multi-scale representation directly from the time parameter of a
random walk process, providing a principled connection between scale and exploration time that has
not been previously exploited in place cell models.

A.3 Navigation and Path Planning

Biologically-inspired navigation algorithms have drawn on various hippocampal properties. Vector-
based navigation models [41, 42] and successor representation approaches [38, 43, 44] have demon-
strated effective navigation capabilities. Diffusion-based path planning algorithms [45, 46] share
mathematical similarities with our heat equation formulation but lack the direct connection to neural
representations.

Recent work by [47] and [48] has emphasized the role of population coding in navigation but without
the specific inner product relationship and transition probability framework we propose.

A.4 Successor Representation

Our work is closely related to the Successor Representation (SR) [49, 50], as both frameworks build
upon powers of a transition matrix to construct a representation of space. The SR is typically defined
as a discounted sum, M =

∑∞
k=0(γT )

k, which yields the expected discounted future occupancy of
all states from any given starting state, and the discount factor γ implicitly sets a single, predictive
temporal horizon. In contrast, our approach utilizes the discrete powers of the transition matrix
directly, Pτ = P τ , to explicitly model the transition probabilities at multiple, distinct time horizons,
where the parameter τ corresponds directly to the time scale of a random walk. This multi-scale
representation aligns more closely with the observed functional gradient of place field sizes along the
hippocampal dorsoventral axis.

The primary novelty of our framework lies in learning a biologically-constrained, non-negative matrix
factorization of these transition kernels, where vector embeddings h(x, τ) are learned such that
their inner product reconstructs the transition probability, ⟨h(x, τ), h(y, τ)⟩ = q(y|x, τ). A crucial
theoretical insight is that the combination of this inner product objective with non-negativity and
orthogonality constraints for distant locations gives rise to emergent sparsity; the embeddings are
forced to have disjoint support sets, providing a geometric explanation for the localized firing fields of
place cells without explicit regularization. This multi-scale architecture confers significant functional
advantages, enabling an adaptive gradient-ascent-based navigation policy that selects the optimal
scale τ∗ at each step to generate smooth, trap-free trajectories. This approach is not only more
scalable, but also offers a more direct navigation mechanism that bypasses the need for explicit value
function computation common in SR-based reinforcement learning agents.

A.5 Inner Product Spaces in Neural Representation

Inner product spaces as a basis for neural computation have been explored by several researchers
[51, 52]. More recently, [53] proposed that neural populations represent probability distributions
through their activation patterns, with some conceptual overlap with our approach.

Navigational planning in inner product spaces has connections to kernel methods in machine learning
[54] and information geometry [55], though these connections have been underexplored in neu-
roscience. Our work bridges these fields by explicitly relating inner products between place cell
populations to transition probabilities derived from random walk processes.

A.6 Heat Equation and Diffusion Models in Neuroscience

The connection between neural dynamics and diffusion processes has been explored in various
contexts [56]. The specific relationship between heat kernels and geodesic distances, which forms a
foundation for our approach, has strong connections to manifold learning [57] and dimensionality
reduction techniques [58].
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Our work builds upon these ideas by applying them specifically to place cell populations and
spatial navigation, providing a novel bridge between diffusion processes, neural representations, and
navigational behavior.

B Limitations

B.1 Lack of Sensory Integration

Our current model does not incorporate sensory inputs for spatial navigation[11, 2]. Real hippocampal
place cells integrate multimodal sensory information including visual landmarks, self-motion cues
from path integration, and boundary detection. This sensory integration is fundamental to how place
cells form their spatial receptive fields and anchor representations to environmental features.

Without sensory processing, our model cannot explain how place fields emerge during initial exposure
to novel environments. In our framework, position embeddings h(x, τ) are learned from pre-defined
transition probabilities that already encode environmental structure, rather than being built up through
sensory experience. We also cannot model perceptual anchoring, where place cells maintain stable
firing relative to visual landmarks, or how sensory conflicts (such as navigation in darkness) affect
place cell stability. Future extensions incorporating vision-based inputs, self-motion integration, and
boundary vector cell signals would significantly enhance biological plausibility.

B.2 Limited to 2D Static Environments

Our experiments and analyses are restricted to two-dimensional static environments, whereas biologi-
cal spatial navigation operates in three-dimensional space and continuously changing contexts[5, 59].
Studies in flying bats have revealed volumetric place cells encoding 3D positions, and terrestrial
animals navigating multi-level structures require three-dimensional representations. Extension to 3D
introduces complications our framework does not address: vertical movements and gravity-dependent
asymmetries, different place field scaling across dimensions, and substantially increased computa-
tional complexity. Dynamic environments would require time-varying transition probabilities and
continuous updating mechanisms our framework does not provide.

B.3 Online Sequential Learning

Another limitation is our lack of online learning over sequential experiences to model temporal
dynamics and memory consolidation[7, 8]. Our batch optimization learns h(x, τ) across all spatial
locations simultaneously, fundamentally differing from how biological place cells develop through
experience. Biological place cell formation is incremental: initial weak or unstable spatial tuning
gradually sharpens through repeated exploration via activity-dependent synaptic plasticity. Our
framework does not capture this gradual emergence from unstructured initial conditions. Our matrix
squaring P2τ = P 2

τ achieves global integration instantaneously based on environmental structure,
not through iterative learning over sleep-wake cycles analogous to biological replay.

Despite these limitations, our framework offers valuable theoretical insights into computational
principles underlying hippocampal spatial navigation, particularly the role of multi-scale transition
probabilities, emergence of sparsity from geometric constraints, and the connection between random
walk dynamics and cognitive maps.

C Spectral Analysis of Multi-Step Random Walk

This appendix provides a detailed spectral analysis of the multi-step random walk transition kernel,
establishing connections between our random walk model and position embeddings.

C.1 Eigendecomposition of the Transition Matrix (Background)

Since the one-step transition matrix P1 is symmetric by construction, it admits an eigendecomposition:

P1 = QΛQT , (13)
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with orthogonal Q (QTQ = I) and diagonal Λ = diag(λ1, . . . , λn), where 0 ≤ λi ≤ 1, where we
assume the random walk is irreducible and aperiodic. The multi-step transition matrix is:

P τ
1 = QΛτQT (14)

The eigenvalues are typically ordered as 1 = λ1 > λ2 ≥ λ3 ≥ ..., with the first eigenvalue
corresponding to the stationary distribution and subsequent eigenvalues capturing spatial patterns at
increasing levels of detail.

C.2 Position Embeddings from Spectral Decomposition

The spectral decomposition provides a natural position embedding. If we define:

Hi(x, τ) = λ
τ/2
i Qi(x) (15)

in the discrete case where Qi(x) is the i-th column of Q, or:

Hi(x, τ) = eλiτ/2ϕi(x) (16)
in the continuous case (where λi and ϕi are respectively eigenvalues and eigenfunctions of the
Laplacian), then the transition probability can be expressed as:

p(y|x, τ) =
∑
i

Hi(x, τ)Hi(y, τ) = ⟨H(x, τ), H(y, τ)⟩ (17)

This provides a closed-form expression for position embeddings that exactly reproduce the transition
probabilities through inner products.

C.3 Normalization and Non-Negative Embeddings

To obtain normalized embeddings, we define:

hspec(x, τ) =
H(x, τ)

∥H(x, τ)∥
=

H(x, τ)√
p(x|x, τ)

(18)

This normalized embedding satisfies:

⟨hspec(x, τ), hspec(y, τ)⟩ =
p(y|x, τ)√

p(x|x, τ) · p(y|y, τ)
= q(y|x, τ) (19)

However, hspec(x, τ) may contain negative components, which conflicts with the biological constraint
that neural firing rates must be non-negative. This is where Horn’s theorem becomes relevant.

C.4 Non-Negative Matrix Factorization (Background)

Horn’s theorem [19] provides the theoretical foundation for obtaining non-negative embeddings from
our transition matrices: If A is a symmetric matrix with non-negative entries, then there exists a
non-negative matrix B such that A = BBT .

We provide a sketch of the proof:

Proof sketch of Horn’s theorem. Given a symmetric non-negative matrix A, consider its spectral
decomposition A = UΣUT . Let A =

∑
i σiuiu

T
i , where σi are eigenvalues and ui are eigenvectors.

For each outer product uiu
T
i (which may have negative entries), we can express it as a linear

combination of non-negative rank-1 matrices: uiu
T
i =

∑
j cjvjv

T
j , where vj are non-negative

vectors and cj are coefficients.

By appropriate selection of vj (e.g., using vertices of the hypercube defined by the signs of ui), we
can ensure that cj ≥ 0 when σi > 0. This allows us to express A as a sum of non-negative rank-1
matrices, which can be arranged as A = BBT where B has non-negative entries.

For our normalized transition matrix Qτ = [q(y|x, τ)], which is symmetric with non-negative entries,
Horn’s theorem guarantees the existence of a non-negative matrix Hτ such that Qτ = HτH

T
τ . The

rows of Hτ provide our desired non-negative position embeddings h(x, τ).
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D Heat Diffusion with Reflecting Boundaries (Background)

This appendix provides a detailed mathematical derivation of the connection between our discrete
random walk model and the continuous heat equation, establishing the relationship between transition
probabilities and geodesic distances.

D.1 From Discrete Random Walk to Reflecting Heat Equation

We begin with a discrete random walk on a two-dimensional integer grid. For simplicity, we assume
the one-step transition p(y|x, τ = 1) of the random walk is to move to one of 4 nearest neighbors
with pmove = 1/4. We assume this simplest p(y|x, τ = 1) in our theoretical derivations in all the
relevant sections in the Appendix. Similar results can be obtained for more general p(y|x, τ = 1),
with a different diffusion coefficient α.

Let (i, j) ∈ Z2 denote discrete spatial coordinates, and k ∈ Z≥0 denote discrete time steps. To
connect with continuous diffusion, we introduce spatial and temporal units:

x = i · dx, y = j · dx, τ = k · dt (20)

where dx is the spacing between adjacent grid points and dt is the time step. Following standard
diffusion scaling, we set dx =

√
dt, which ensures convergence to a well-defined limit as dx → 0

[14].

The discrete random walk has the following transition probabilities:

p((i′, j′)|(i, j), k = 1) = pmove =
1

4
for each unobstructed neighbor (i′, j′) of (i, j) (21)

p((i, j)|(i, j), k = 1) = 1−N(i, j) · pmove = 1− N(i, j)

4
(22)

where N(i, j) is the number of unobstructed neighbors of location (i, j) (maximum 4 in a 2D grid
with 4-connectivity).

D.2 Derivation of the Heat Equation

To derive the continuous limit, for interior points (those not adjacent to obstacles), the discrete update
rule is:

p(i, j, k + 1) = p(i, j, k)(1− 4pmove) + pmove[p(i+ 1, j, k) + p(i− 1, j, k) + p(i, j + 1, k) + p(i, j − 1, k)]

= p(i, j, k) + pmove[p(i+ 1, j, k) + p(i− 1, j, k) + p(i, j + 1, k) + p(i, j − 1, k)− 4p(i, j, k)]
(23)

Dividing both sides by dt and using pmove = 1/4:

p(i, j, k + 1)− p(i, j, k)

dt
=

1

4
· 1

dt
[p(i+ 1, j, k) + p(i− 1, j, k) + p(i, j + 1, k) + p(i, j − 1, k)− 4p(i, j, k)]

(24)

Using the standard finite difference approximation for the Laplacian [60]:

∇2p(i, j, k) ≈ 1

dx2
[p(i+ 1, j, k) + p(i− 1, j, k) + p(i, j + 1, k) + p(i, j − 1, k)− 4p(i, j, k)]

(25)

Substituting dx2 = dt and taking the limit as dt → 0:

lim
dt→0

p(i, j, k + 1)− p(i, j, k)

dt
=

1

4
∇2p(x, y, t) (26)

This yields the heat equation with diffusion coefficient α = 1/4:

∂p(x, y, τ)

∂τ
= α∇2p(x, y, τ) (27)
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D.3 Reflecting Boundary Conditions

Our discrete random walk enforces reflecting boundary conditions, preventing probability flow into
obstacles, mirroring hippocampal obstacle avoidance [11]. Consider a boundary point (i, j) with an
obstacle at (i+ 1, j), so the number of valid neighbors is N(i, j) = 3 (points (i− 1, j), (i, j + 1),
(i, j − 1)). The self-transition probability is pstay = 1− N(i,j)

4 = 1
4 , redistributing probability that

would flow to the obstacle back to (i, j).

The probability update for (i, j) at time step k + 1 is:

p(i, j, k + 1) =
1

4
p(i, j, k) +

1

4
[p(i− 1, j, k) + p(i, j + 1, k) + p(i, j − 1, k)] (28)

This can be rewritten as:

p(i, j, k + 1) = p(i, j, k) +
1

4
[p(i− 1, j, k) + p(i, j + 1, k) + p(i, j − 1, k)− 3p(i, j, k)] (29)

In finite difference methods, the reflecting condition ∂p
∂n

∣∣∣
(i+1,j)

= 0 is enforced using a ghost point

at (i+ 1, j), setting p(i+ 1, j, k) = p(i, j, k) to ensure zero normal flux [60]. Substituting into the
interior Laplacian update (equation 30):

p(i, j, k+1) = p(i, j, k)+
1

4
[p(i− 1, j, k) + p(i+ 1, j, k) + p(i, j + 1, k) + p(i, j − 1, k)− 4p(i, j, k)]

(30)

yields equation (29), as p(i+1, j, k) = p(i, j, k) reduces the neighbor terms to three. This substitution
ensures the boundary update aligns with the random walk’s mechanism, where pstay = 1

4 assigns
zero probability to obstacle transitions, maintaining probability conservation and enabling smooth
navigation around obstacles, as observed in hippocampal place cell activity [11].

D.4 Connection to Geodesic Distance

Varadhan’s formula [16] establishes a deep relationship between the heat kernel and geodesic distance.
For a complete Riemannian manifold M with heat kernel p(x, y, τ), Varadhan proved that:

lim
τ→0

−4τ log p(x, y, τ) = d2g(x, y) (31)

where dg(x, y) is the geodesic distance between points x and y.

While Varadhan’s original large deviation principle [16] applies to smooth manifolds without bound-
aries, extensions to domains with reflecting boundaries [61] ensure that the short-time behavior of the
heat kernel p(y, τ |x, 0) reflects the geodesic distance dg(x, y), the shortest path within Ω avoiding
obstacles. For our normalized transition probability: a similar asymptotic relationship holds:

lim
τ→0

−τ log q(y|x, τ) =
d2g(x, y)

4α
, (32)

where α = 1/4 is the diffusion coefficient. This follows because p(x|x, τ) and p(y|y, τ), influenced
by boundary reflections, have asymptotic forms that cancel in the logarithm as τ → 0, leaving the
geodesic term dominant.

As τ increases, our distance metric transitions from approximating geodesic distance to incorporating
more global aspects of the domain’s connectivity, creating a multi-scale representation that seamlessly
integrates local metric information with global connectivity structure. Section G explains eigen
analysis of connectivity.

E Open-Field Environment

In unbounded, obstacle-free environments (open fields), the symmetric random walk simplifies to an
isotropic diffusion process, offering a theoretical justification for the Gaussian tuning of place cells
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observed in such settings [1, 29]. As the grid discretization refines (dx → 0, dt → 0, dx =
√
dt),

the transition probability p(y|x, τ) converges to the heat equation’s fundamental solution in 2D free
space:

p(y|x, τ) = 1

4πατ
exp

(
−∥y − x∥2

4ατ

)
(33)

where α = 1/4 is the diffusion coefficient, and ∥y − x∥2 is the squared Euclidean distance. Since
p(x|x, τ) = 1

4πατ is position-independent, the normalized transition probability becomes:

q(y|x, τ) = p(y|x, τ)√
p(x|x, τ)p(y|y, τ)

= exp

(
−∥y − x∥2

4ατ

)
= exp

(
−∥y − x∥2

τ

)
(34)

This Gaussian kernel, with variance σ2 = 2ατ = τ/2, reflects the diffusive spread of the random walk
and mirrors the approximately Gaussian firing fields of hippocampal place cells in open environments.
Given q(y|x, τ) = ⟨h(x, τ), h(y, τ)⟩, the position embeddings h(x, τ) must reproduce this Gaussian
decay. We construct h(x, τ) with Gaussian components, providing a mathematical basis for why
place cell population activity exhibits Gaussian profiles in open fields.
Theorem 1 (Gaussian Embeddings in Open Fields). In an unbounded 2D open field, where
q(y|x, τ) = exp

(
−∥y−x∥2

τ

)
, there exists a position embedding h(x, τ) ∈ Rn with non-negative

components such that ⟨h(x, τ), h(y, τ)⟩ = q(y|x, τ), and each component hi(x, τ) is a Gaussian
function of x with variance τ/2 per dimension.

Proof. The transition kernel q(y|x, τ) = exp
(
−∥y−x∥2

τ

)
is a positive definite Gaussian kernel with

variance τ/2 (since 4ατ = τ for α = 1/4), consistent with the Gaussian tuning of place cells in open
fields. We construct h(x, τ) ∈ Rn directly as:

hi(x, τ) = ci exp

(
−∥x− µi∥2

τ

)
(35)

where µi ∈ R2 are fixed anchor points (e.g., a uniform grid), ci > 0 are constants, and the variance
per dimension is τ/2. The inner product is:

⟨h(x, τ), h(y, τ)⟩ =
n∑

i=1

hi(x, τ)hi(y, τ) =

n∑
i=1

c2i exp

(
−∥x− µi∥2 + ∥y − µi∥2

τ

)
(36)

Rewrite the exponent:

∥x− µi∥2 + ∥y − µi∥2 = ∥x− y∥2 + 2

∥∥∥∥x+ y

2
− µi

∥∥∥∥2 (37)

so:

⟨h(x, τ), h(y, τ)⟩ = exp

(
−∥x− y∥2

τ

) n∑
i=1

c2i exp

(
−
2
∥∥x+y

2 − µi

∥∥2
τ

)
(38)

For a dense set of µi (e.g., a grid with spacing ≪
√
τ ), the sum approximates a constant over a local

region around (x + y)/2, as the terms exp

(
− 2∥ x+y

2 −µi∥2

τ

)
form a kernel density estimate. Set

c2i = 1
n ; as n → ∞, the sum converges to a constant C (proportional to the density of µi), yielding:

⟨h(x, τ), h(y, τ)⟩ ≈ C exp

(
−∥x− y∥2

τ

)
(39)

Adjust C = 1 by scaling ci (e.g., ci =
√

1
Cn ), ensuring ⟨h(x, τ), h(y, τ)⟩ = q(y|x, τ). Each hi(x, τ)

is Gaussian with variance τ/2 per dimension, and hi(x, τ) ≥ 0, satisfying the theorem.

This open-field case not only validates our model against biological data but also serves as a baseline to
explore how environmental structure (e.g., obstacles) perturbs these Gaussian properties, as observed
in constrained settings [62, 63].
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F Emergent Sparsity from Non-negativity and Orthogonality

Let h(x, τ) ∈ Rn
+ denote the non-negative representation of position x ∈ X at scale

√
τ , and let

⟨h(x, τ), h(y, τ)⟩ = q(y | x, τ) (40)

where q(· | ·, τ) ≥ 0 is a symmetric multi-step transition kernel (adjacency at scale
√
τ ). Define the

(undirected) transition graph Gτ = (X , Eτ ) by

(x, y) ∈ Eτ ⇐⇒ q(y | x, τ) > 0 (41)

Note that this transition graph is for τ steps instead of one step. Write supp(v) = {i ∈ [n] : vi > 0}
for the support of a non-negative vector v ∈ Rn

+, and put

Si(τ) = {x ∈ X : hi(x, τ) > 0} (the active set of coordinate i at scale τ ) (42)

Let degτ (x) denote the degree of x in Gτ , ∆(τ) = maxx degτ (x) the maximum degree, and

ρ(τ) =
1

|X |
∑
x∈X

degτ (x) (43)

the mean neighborhood size.

Lemma 2 (Non-negativity + orthogonality ⇒ disjoint support). If h(x, τ), h(y, τ) ∈ Rn
+ and

⟨h(x, τ), h(y, τ)⟩ = 0, then

supp
(
h(x, τ)

)
∩ supp

(
h(y, τ)

)
= ∅ (44)

Proof. By non-negativity,

0 = ⟨h(x, τ), h(y, τ)⟩ =
n∑

i=1

hi(x, τ)hi(y, τ) (45)

is a sum of non-negative terms. Hence each term vanishes: hi(x, τ)hi(y, τ) = 0 for all i ∈ [n], and
thus no coordinate is simultaneously positive in both vectors.

Proposition 3 (Clique structure and sparsity bound). Assume (40) and that

q(y | x, τ) = 0 whenever (x, y) /∈ Eτ (46)

Then for each coordinate i ∈ [n]:

(i) Si(τ) induces a clique in Gτ ; i.e., every pair x, y ∈ Si(τ) is adjacent in Gτ

(ii) Consequently,
|Si(τ)| ≤ 1 + min

x∈Si(τ)
degτ (x) ≤ 1 + ∆(τ) (47)

(iii) The average number of active coordinates per position obeys

1

|X |
∑
x∈X

∥h(x, τ)∥0 =
1

|X |

n∑
i=1

|Si(τ)| ≤ n (1 + ∆(τ))

|X |
(48)

Moreover, since ∆(τ) = maxx degτ (x) and ρ(τ) is the mean degree, any a priori bound of
the form ∆(τ) ≤ C ρ(τ) (with graph-dependent constant C ≥ 1) yields

1

|X |
∑
x

∥h(x, τ)∥0 ≤ n [1 + C ρ(τ)]

|X |
(49)

Proof. (i) Take any x, y ∈ Si(τ) with x ̸= y. Then hi(x, τ) > 0 and hi(y, τ) > 0, so by Lemma 2
they cannot be orthogonal. By the hypothesis q(y | x, τ) = ⟨h(x, τ), h(y, τ)⟩, orthogonality occurs
exactly when (x, y) /∈ Eτ . Therefore (x, y) ∈ Eτ . Since the choice of x, y was arbitrary, Si(τ)
induces a clique.
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(ii) Fix any x∗ ∈ Si(τ). By (i), every y ∈ Si(τ) \ {x∗} must be adjacent to x∗, so Si(τ) ⊆
{x∗}∪Nτ (x

∗), where Nτ (x
∗) is the neighborhood of x∗. Thus |Si(τ)| ≤ 1+degτ (x

∗). Minimizing
over x∗ ∈ Si(τ) gives the first inequality; the second follows from degτ (x

∗) ≤ ∆(τ).

(iii) The identity ∑
x∈X

∥h(x, τ)∥0 =

n∑
i=1

|Si(τ)| (50)

is a double-counting equality (both sides count the number of pairs (x, i) with hi(x, τ) > 0). Using
(ii) and summing over i yields

∑
i |Si(τ)| ≤ n [1+∆(τ)], and dividing by |X | establishes (48). If an

a priori comparison ∆(τ) ≤ C ρ(τ) holds for the graph family under consideration, the final bound
follows immediately.

Geometric specialization. If X ⊂ Rm is η-separated (minimum inter-point distance ≥ η > 0) and
Gτ is a geometric threshold graph

(x, y) ∈ Eτ ⇐⇒ ∥x− y∥ ≤
√
τ (51)

then each closed neighborhood fits inside a ball B(x,
√
τ) of radius

√
τ . A standard packing argument

implies

degτ (x) + 1 ≤ Cm

(√
τ
η

)m
(52)

for a constant Cm depending only on the ambient dimension m. Consequently,

|Si(τ)| ≤ Cm

(√
τ
η

)m 1

|X |
∑
x

∥h(x, τ)∥0, ≤
dCm

|X |

(√
τ
η

)m
(53)

Thus, as τ increases, the allowable clique size (hence the bound on average support) grows polyno-
mially with the geometric volume of the

√
τ -ball, quantitatively linking scale to reduced sparsity

(broader fields).

Corollary 4 (Scale-dependent localization). Assume τ 7→ Gτ is monotone in the sense that τ1 < τ2
implies Eτ1 ⊆ Eτ2 . Then ∆(τ) and ρ(τ) are non-decreasing in τ , and the upper bounds in
Proposition 3 are non-decreasing in τ , i.e., expected sparsity decreases with scale, corresponding to
larger place fields.

Proof. Monotonicity Eτ1 ⊆ Eτ2 implies degτ1(x) ≤ degτ2(x) for all x, hence ∆(τ1) ≤ ∆(τ2) and
ρ(τ1) ≤ ρ(τ2). Apply Proposition 3 (iii).

Interpretation. Lemma 2 enforces disjoint supports for non-adjacent locations; Proposition 3
shows that each coordinate i can only support a clique of mutually adjacent positions and bounds
the size of that clique by local neighborhood size. In geometric environments, the bound scales with
the volume of a

√
τ -ball, making the τ–field-size relationship explicit. Corollary 4 then formalizes

the empirical trend: smaller τ ⇒ higher sparsity (smaller fields); larger τ ⇒ lower sparsity (larger
fields).

G Path Planning Properties

This appendix elaborates on the properties of the gradient-based navigation framework introduced in
Section 2.7.

G.1 Scale Transition Dynamics

The optimal scale τ∗ = argmaxt ∥∇xq(x|y, τ)∥ adapts dynamically to the agent’s distance from the
goal, ensuring efficient navigation. In an open field, we formalize this selection with the following
theorem.
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Theorem 5 (Optimal Scale Selection in an Open Field). In an open field with a Gaussian transition
kernel p(x|y, τ) = 1

4πατ exp
(
−∥x−y∥2

4ατ

)
, where α = 1/4, the optimal time scale τ∗ that maximizes

the gradient magnitude ∥∇xq(x|y, τ)∥, with q(x|y, τ) = p(x|y, τ)/
√

p(x|x, τ) · p(y|y, τ), is:

τ∗ =
d2(x, y)

4α
= d2(x, y) (54)

where d(x, y) = ∥x− y∥ is the Euclidean distance.

Proof. The transition kernel is:

p(x|y, τ) = 1

4πατ
exp

(
− d2

4ατ

)
, d = d(x, y) (55)

Normalization gives:

p(x|x, τ) = p(y|y, τ) = 1

4πατ
,
√

p(x|x, τ) · p(y|y, τ) = 1

4πατ
(56)

Thus:

q(x|y, τ) = p(x|y, τ)
1

4πατ

= exp

(
− d2

4ατ

)
(57)

The gradient is:

∇xq(x|y, τ) = exp

(
− d2

4ατ

)
·
(
−2(x− y)

4ατ

)
= −x− y

2ατ
exp

(
− d2

4ατ

)
(58)

The magnitude is:

∥∇xq(x|y, τ)∥ =
d

2ατ
exp

(
− d2

4ατ

)
(59)

Maximize f(τ) = d
2ατ exp

(
− d2

4ατ

)
. Compute:

ln f(τ) = ln

(
d

2α

)
− ln τ − d2

4ατ
(60)

Differentiate:
∂ ln f

∂τ
= −1

τ
+

d2

4ατ2
= 0 =⇒ τ =

d2

4α
(61)

For α = 1/4, τ∗ = d2. The second derivative at τ∗:

∂2 ln f

∂τ2
=

1

τ2
− d2

2ατ3
, at τ =

d2

4α
,

d2

2ατ
= 2,

∂2 ln f

∂τ2
= − 1

τ2
< 0 (62)

confirms a maximum.

In an open field, τ∗ ∝ d2(x, y), so τ∗ decreases as the agent approaches the goal, focusing on finer
spatial scales for precision.

G.2 Properties of the Gradient Field

The gradient field ∇xq(x|y, τ) drives navigation. We highlight three properties ensuring a smooth,
trap-free path to the goal y.

First, p(x|y, τ) satisfies the heat equation with reflecting boundary conditions:

∂p(x|y, τ)
∂τ

= α∇2p(x|y, τ), α = 1/4,
∂p(x|y, τ)

∂n
= 0 on ∂Ωobstacles. (63)
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For fixed y and τ , p(x|y, τ) is smooth in x, as the heat kernel (e.g., p(x|y, τ) = 1
4πατ exp

(
−∥x−y∥2

4ατ

)
in an open field) is infinitely differentiable [15]. It has a unique maximum at x = y.

Second, p(x|x, τ) is smooth in x for fixed τ . In an open field, p(x|x, τ) = 1
4πατ is constant, while in

general, p(x|x, τ) varies smoothly due to the heat kernel’s differentiability, reflecting the domain’s
geometry near obstacles.

Third, since the random walk is symmetric, ∇xq(x|y, τ) = ∇xq(y|x, τ). The gradient field of
q(y|x, τ) is smooth, as q(y|x, τ) = q(x|y, τ) inherits the smoothness of p(x|y, τ), and has a unique
maximum at x = y.

These properties ensure that ∇xq(y|x, τ) forms a smooth field with a unique maximum at the goal,
producing a continuous, trap-free path toward y. This mirrors the hippocampus’s efficient navigation,
where place cells encode smooth, goal-directed trajectories [11].

G.3 Planned Path vs. Shortest Path

The planned path follows the gradient ∇xq(x|y, τ), and p(x|y, τ) satisfies the heat equation with
reflecting boundary conditions. We compare this path to the shortest (geodesic) path from x to the
goal y.

In an open field, the planned path is a straight line. The transition kernel is:

p(x|y, τ) = 1

4πατ
exp

(
−∥x− y∥2

4ατ

)
, α = 1/4 (64)

Since p(x|x, τ) = p(y|y, τ) = 1
4πατ , the normalization gives:

q(x|y, τ) = exp

(
−∥x− y∥2

4ατ

)
(65)

The gradient is:

∇xq(x|y, τ) = −x− y

2ατ
exp

(
−∥x− y∥2

4ατ

)
∝ −(x− y) (66)

Thus, dx(t)
dt = ∇xq(x|y, τ) follows a straight line from x to y, matching the Euclidean shortest path

[64].

For small τ , q(x|y, τ) aligns with the geodesic distance:

p(x|y, τ) ∼ 1

(4πατ)d/2
exp

(
−
d2g(x, y)

4ατ

)
(67)

where dg(x, y) is the geodesic distance [16]. Since q(x|y, τ) ∝ p(x|y, τ) in an open field,
∇xq(x|y, τ) ∝ −∇xd

2
g(x, y), ensuring the planned path follows the shortest route, even around

obstacles.

For large τ , q(x|y, τ) emphasizes global topological connectivity over local geometric details, often
producing paths superior to the shortest. The transition matrix Pτ = P τ

1 has spectral decomposition:

Pτ = QΛτQT (68)

where Q is orthogonal, and Λ = diag(λ1, . . . , λn) contains eigenvalues 0 ≤ λi ≤ 1 [57]. For large
τ , dominant eigenvalues (λi ≈ 1) amplify global connectivity:

p(x|y, τ) = [Pτ ]xy ≈
∑

i:λi≈1

λτ
i Qi(x)Qi(y) (69)

The eigenvectors Qi corresponding to λi ≈ 1 encode topological features, such as major pathways
and passage connectivity, invariant to deformations like stretching [57]. Thus, ∇xq(x|y, τ) prioritizes
routes with high connectivity (e.g., wider corridors or multiple paths), potentially deviating from the
shortest path to favor robust, flexible trajectories [10]. For example, in a maze, the planned path may
choose a longer but more reliable route through a well-connected passage, avoiding narrow or risky
shortcuts.
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This topological focus aligns with neuroscience observations, where hippocampal place cells encode
abstract connectivity (e.g., room layouts) over precise metrics, enabling robust navigation in complex
environments [11, 9, 3]. Paths driven by topology are often “better” than the shortest, as they prioritize
accessibility and adaptability, reflecting cognitive strategies in spatial tasks.

The planned path’s alignment with the shortest path for small τ and its topological robustness for
large τ mirror the hippocampus’s ability to balance precision and global structure, ensuring efficient
navigation across diverse environments.

G.4 Boundary Layer Effects

Near obstacles, the gradient field ∇xq(x|y, τ) aligns parallel to boundaries, preventing collisions.
This behavior arises from the reflecting boundary condition of the heat equation governing p(x|y, τ),
with ∂p(x|y, τ)/∂n = 0 on ∂Ωobstacles. The condition ensures the normal component of ∇xp(x|y, τ)
vanishes at boundaries, creating a flow parallel to obstacles, with strength modulated by the goal’s
position and time scale τ .

G.5 Diffraction-Like Patterns

Diffraction, in the context of our navigation framework, refers to the bending of the gradient field
∇xq(x|y, τ) around obstacles, such as corners or narrow passages, analogous to how waves bend
around edges in optics or acoustics. This phenomenon arises because the transition probability
p(x|y, τ), governed by the heat equation, diffuses probability mass through available paths, concen-
trating gradients toward openings like passages or around corners. These diffraction-like patterns
guide trajectories through high-gradient regions, ensuring efficient navigation in complex environ-
ments.

The recursive nature of the random walk generates diffraction-like patterns:

p(x|y, τ + 1) =
∑
z

p(x|z, τ) p(z|y, 1) (70)

This convolution reflects the diffusion of probability from y to x through intermediate points z,
allowing p(x|y, τ) to “bend” around obstacles by accumulating contributions from multiple paths
[15]. Near a corner or passage, the heat kernel explores paths that wrap around the obstacle, creating
a gradient field that converges toward navigable routes.

For a narrow passage of width w, the transition probability approximates the geodesic distance
dg(x, y) through the passage. For small to moderate τ :

q(x|y, τ) ≈ exp

(
−
d2g(x, y)

4ατ

)
(71)

The gradient is:

∇xq(x|y, τ) ≈ − 1

2ατ
exp

(
−
d2g(x, y)

4ατ

)
∇xd

2
g(x, y) (72)

Since ∇xd
2
g(x, y) points along the geodesic path through the passage, ∇xq(x|y, τ) converges toward

the opening, creating a funneling effect. The width of this convergence region scales with
√
τ , as the

heat kernel’s diffusion spreads over a distance proportional to
√
4ατ . For small τ , the gradient tightly

focuses on the passage, ensuring precise navigation. For large τ , the broader diffusion enables early
detection of passages from greater distances, smoothing trajectories by integrating multiple nearby
paths.

At sharp corners, diffraction-like patterns emerge similarly. The heat kernel accumulates probability
along paths bending around the corner, creating a curved gradient field that guides the agent past
the obstacle. Unlike passages, corners lack a single geodesic path, so the gradient field spreads,
resembling optical diffraction patterns where intensity peaks near edges. This spreading is more
pronounced for large τ , as the heat kernel explores longer, circuitous routes.

These patterns ensure robust navigation in complex environments. The funneling effect through
passages and curved trajectories around corners mirror hippocampal navigation, where place cells
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encode paths that navigate mazes or avoid obstacles [11, 9]. The τ -dependent scaling reflects the
hippocampus’s ability to adjust focus, balancing precision for small τ with global awareness for large
τ , enhancing adaptability in varied spatial contexts [16].

G.6 Topological Invariance

Topological invariance ensures that navigation behavior, driven by the gradient field ∇xq(x|y, τ),
remains consistent under continuous deformations (e.g., stretching, bending) that preserve the
environment’s connectivity, such as the number of passages or loops. This robustness mirrors the
hippocampus’s cognitive maps, which encode abstract spatial relationships invariant to physical
distortions [3].

The transition probability p(x|y, τ) arises from a random walk on a discrete grid, with one-step
transition matrix P1. For time τ , the transition matrix is:

Pτ = P τ
1 (73)

with spectral decomposition:
Pτ = QΛτQT (74)

where Q is orthogonal (QTQ = I), and Λ = diag(λ1, . . . , λn) contains eigenvalues 0 ≤ λi ≤ 1 [57].
The eigenvectors Qi and eigenvalues λi encode topological features, such as connectivity (number
of connected components), bottlenecks (e.g., passages), and cycles. The second eigenvalue (λ2)
quantifies global connectivity, with higher values indicating tighter bottlenecks, while eigenvectors
capture local structures like loops [15].

For large τ , dominant eigenvalues (λi ≈ 1) amplify global topological features:

Pτ ≈
∑

i:λi≈1

λτ
i QiQ

T
i (75)

emphasizing coarse connectivity (e.g., major pathways between regions). The eigenvectors corre-
sponding to λi ≈ 1 represent low-frequency modes that partition the environment into connected
regions, invariant to metric distortions like stretching a corridor. This is because Qi depends on the
graph’s adjacency structure, not precise distances, ensuring stability under deformations that preserve
connectivity [57]. For example, stretching a corridor adjusts transition probabilities proportionally,
but the eigenvectors Qi retain the same connectivity patterns, as they reflect the graph’s topology.

The gradient field is ∇xq(x|y, τ), where p(x|y, τ) = [Pτ ]xy. Since Pτ ’s eigenvectors are topolog-
ically invariant, ∇xq(x|y, τ) preserves navigation paths (e.g., through passages) across equivalent
environments. For large τ , the dominance of λi ≈ 1 ensures that ∇xq(x|y, τ) prioritizes global
connectivity, guiding trajectories along major routes regardless of local geometry.

This invariance aligns with hippocampal navigation, where place cells encode connectivity (e.g.,
room layouts) over precise metrics, enabling robust path planning under environmental changes [9].
The focus on topology for large τ , driven by eigenvectors tied to λi ≈ 1, reflects cognitive maps that
emphasize structural relationships, as observed in rodent navigation [11, 3].

G.7 Hippocampal Preplay and Shortcut Detection

Our path planning framework discovers novel shortcuts using only local exploration, mirroring
hippocampal preplay, where neural sequences predict unexplored paths [7, 8]. This process relies on
efficient computation of transition probabilities and adaptive scale selection, without memorizing
past successful paths.

The one-step transition matrix P1 defines probabilities of moving between adjacent grid points.
Multi-step transition matrices Pτ = P τ

1 for scales τ = 2k (k = 1, 2, . . . ,K) are computed via matrix
squaring:

P2 = P 2
1 , P4 = P 2

2 , P8 = P 2
4 , . . . , P2k = P 2

2k−1 (76)

requiring log2 τ operations.

The path planning algorithm adaptively selects τ∗ = argmaxt ∥∇xq(x|y, τ)∥, guiding trajectories
via ∇xq(x|y, τ∗). For regions A and B connected by an unexplored passage, local exploration
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defines P1. Matrix squaring yields Pτ , and adaptive τ -selection ensures q(a|b, τ∗) > 0, discovering
the shortcut without prior traversal.

This process—matrix squaring to compute Pτ and adaptive τ -selection—embodies hippocampal
preplay, predicting connectivity from local data, akin to place cell sequence pre-activation. The
framework’s efficiency and reliance on P1 enhance its biological plausibility, supporting robust
navigation.

H Theta Phase Modeling

We propose a local definition of theta phase that embeds spatial adjacency within the phase angle,
capturing the observed precession range of 270° to 90° while enabling navigation across a tessellated
environment. This formulation leverages an external 8 Hz theta rhythm for temporal pacing, where
t denotes real time during navigation, distinct from the random walk time scale τ , and aligns with
distributed hippocampal computation without requiring individual cells to explicitly encode spatial
centers.

H.1 From Inner Product Angle to Theta Phase

The emergent sparsity from non-negativity and orthogonality constraints endows each cell in h(x, τ)
a localized place field, so that each cell i has a place field centered at µi. The place fields of all the
cells tile the whole environment. At the current position x(t) at real time t, the adjacency between
x(t) and each µi is measured by the angle between h(x(t), τ) and h(µi, τ), and this angle can then
be embedded as the theta phase.

Specifically, define the adjacency of the current position x(t) to the field center of the i-th place cell
at scale τ :

ai(t) = ⟨h(x(t), τ), h(µi, τ)⟩ (77)
where h(x(t), τ) ∈ Rn is the population embedding (firing rates of n place cells) at position x(t),
and h(µi, τ) represents the embedding at the center µi, where

hi(µi, τ) = max
x∈X

hi(x, τ) (78)

We interpret h(µi, τ) = [w1i, w2i, . . . , wni] as the recurrent connection weights from the population
to neuron i, such that:

ai(t) =

n∑
j=1

hj(x(t), τ)wji (79)

representing the net recurrent input to neuron i. This corresponds to the normalized transition
probability q(x(t)|µi, τ), and in open fields (Appendix E), it follows a Gaussian profile:

ai(t) = exp

(
−∥x(t)− µi∥2

τ

)
(80)

The theta phase is defined as:

ϕi(x(t), τ) = π + sgn
(
dai(t)

dt

)
·
(π
2
− arccos(ai(t))

)
(81)

where: dai(t)
dt =

∑n
j=1

dhj(x(t),τ)
dt wji is the temporal rate of change of this recurrent input, reflecting

movement toward (> 0) or away (< 0) from µi as encoded by the weights. arccos(ai(t)) ∈ [0, π/2]
is the angle between h(x(t), τ) and h(µi, τ), and this angle is embedded into the phase, possibly by
sinusoidal inhibitory mechanism [65, 66].

The phase progresses as:

1. At field entry (ai → 0, dai

dt > 0): ϕi =
3π
2 (270°), late phase.

2. At field center (ai = 1, dai

dt = 0): ϕi = π (180°), mid-phase.

3. At field exit (ai → 0, dai

dt < 0): ϕi =
π
2 (90°), early phase.
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This does not require neuron i to encode µi explicitly; rather, h(µi, τ) emerges as a distributed
representation within recurrent connectivity, learned through experience and computed collectively,
with ϕi storing ai(t) as an angular signal.

H.2 Implications for Navigation

This phase also enables navigation by tessellating the environment with {µi}. Each µi anchors a
tile, and ϕi signals adjacency: 180° indicates proximity to µi, while 270° and 90° mark entry and
exit. For a goal at µg, navigating toward ϕg = π (max ag) guides movement, with {ϕi} identifying
intermediate µi to approach µg . This discretizes continuous navigation into a phase-driven sequence
over {µi}, complementing our gradient-based approach with a recurrently-driven strategy. During
rest, iterating ϕi at 8 Hz drives replay, with dai

dt reflecting virtual transitions, unifying coding and
navigation.

By tessellating the environment with {µi} and guiding navigation via {ϕi}, this approach unifies
spatial representation, temporal coding, and path planning within the embedding framework, offering
an elegant, biologically plausible mechanism rooted in recurrent connectivity and the random walk
model.

I Grid Cells Integration

I.1 Grid Cells as a Conformal, Multi-Scale Basis

While place cells form the primary focus of our model, we establish a connection to grid cells in the
medial entorhinal cortex. Grid cells exhibit hexagonal firing patterns across multiple scales [67, 9]
and are thought to provide a universal metric that feeds into the more adaptive place cell system.

Let g(x) be the vector formed by the firing rates of the population of grid cells at position x. The high
dimensional g(x) forms an embedding of 2D position x. The grid cell representation g(x) provides
an effective basis for learning the transformation matrix W (τ) to produce place cell embeddings
h(x, τ) = W (τ)g(x) that approximate q(y|x, τ). Its effectiveness stems from conformal, isotropic,
and multi-scale properties of grid cells, aligning with the hippocampus’s multi-resolution encoding
[22].

While place cell representation h(x, τ) preserves the proximity within the environment, g(x) pre-
serves the local distance and has the property of conformal isometry.

Conformal isometry [68–71] is defined as:

∥g(x+ dx)− g(x)∥ = s∥dx∥+ o(∥dx∥) (82)

where s is a scaling factor, and o(∥dx∥) denotes higher-order terms vanishing as ∥dx∥ → 0, ensuring
local distance and angle preservation and isotropic scaling.

s plays the role of metric. Grid cell population consists of multiple modules, with each module
corresponding to a metric s, mirroring the multi-scale property of place cells.

I.2 Implementation of Grid-to-Place Transformation

The place cell embedding is modeled as h(x, τ) = W (τ)g(x), or more generally h(x, τ) =
Norm(ReLU(W (τ)g(x) + b(τ))) where the transformation matrix W (τ) is learned to optimize
the proximity-preserving property:

⟨W (τ)g(x),W (τ)g(y)⟩ ≈ q(y|x, τ) (83)

The matrix W (τ) serves a dual purpose: (1) it captures the appropriate spatial scale by weighting the
contribution of each grid cell module to match the place cell scale τ , and (2) it adjusts for deviations
from isotropy and isometry in grid cells. g(x) facilitates fast adaptation to the environment in that
learning W (τ) may be more efficient than learning h(x, τ) directly.

To further enhance adaptability, we can backpropagate gradients to g(x). This allows the grid cell
representation to deform in response to environmental constraints, simulating the dynamic remapping
observed in biological grid cells [72].

29



This formulation provides a computational account of how place field embeddings adapt to environ-
mental constraints based on a flexible metric provided by grid cells. The transformation matrix W (τ),
combined with the learnable parameters of g(x), effectively functions as a computational cognitive
map, translating the multi-scale grid metric into place representations that reflect both the appropriate
spatial scale and deviations from isometry and isotropy.

J Implementation Details

All the models were trained on a single NVIDIA A6000 GPU for 2,000 iterations with a learning rate
of 0.001. For fine-tuning, we use 50 iterations with a 0.0005 learning rate. All models contain 500
cells. For batch size, we learn all combinations of different locations in the field for each iteration.
The training time is less than 5 minutes.

We evaluate planning using two metrics: (1) Success, whether the agent reaches within 1 unit of the
goal, and (2) Success weighted by inverse Path Length (SPL) [28]. For an agent’s path [x1, . . . , xT ]
with initial geodesic distance di for episode i (as computed by baseline algorithms), we compute:

li =

T∑
τ=2

∥xτ − xτ−1∥2 (84)

Then SPL for episode i is defined as:

SPLi = Successi ·
di
li

(85)

We report SPL as the average of SPLi across all episodes. In Table 1, we treat Bug algorithm with
oracle as the baseline and in Table 2, our method serves as the baseline.

K Additional Experiment Results

K.1 Additional Path Planning Results in Four-Room Environment

Figure 3: Successful navigation across eight randomly sampled start-goal configurations in the
four-room environment.

To further demonstrate the robustness of our path planning framework, here we provide additional
navigation trials in the four-room environment with randomly sampled start and goal locations.
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Figure 3 shows eight scenarios spanning diverse spatial configurations. In all cases, our gradient-
based path planning with adaptive scale selection successfully generated smooth, obstacle-avoiding
trajectories that reached the goal. These results, combined with the quantitative evaluation in Table 1
showing 100% success rate across 50 random trials, demonstrate that our model achieves reliable
navigation across diverse start-goal configurations even in complex multi-room environments.

K.2 Remapping

We evaluated our model’s ability to adapt to bidirectional environmental modifications in the four-
room environment (our most complex tested scenario). In addition to the obstacle removal experiment
shown in Figure 2 (D), we conducted the complementary scenario: initially, rooms were connected
allowing direct northward navigation; we then added an obstacle blocking this direct pathway and
fine-tuned the model with 100 iterations at learning rate 0.01. The agent successfully adapted,
discovering alternative routes through adjacent rooms to reach the target (see Figure 4). Together,
these experiments demonstrate topology-dependent remapping – a well-documented phenomenon
where place fields reorganize in response to changes in spatial connectivity. By both removing
obstacles (creating novel shortcuts) and adding obstacles (blocking direct paths), we show that
minimal fine-tuning enables the position embeddings to adapt to environmental changes that alter
topological connectivity, whether exploiting new connections or navigating around new barriers. This
bidirectional adaptability aligns with hippocampal responses to environmental modifications.

Figure 4: Remapping and path adaptation in response to added obstacles in the four-room environ-
ment.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction (Section 1) reflect the contributions
and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: We explicitly discuss limitations of our approach in Appendix B.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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used reliably to provide closed captions for online lectures because it fails to handle
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and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide the full set of assumptions and complete proofs for our theoretical
results in the Appendix.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 3 specifies all training and evaluation details. We also include link to
our experiment code to ensure reproduceability.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code is publicly available at https://github.com/mingluzhao/
Place_Cell.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 3 specifies all training and evaluation details.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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Appendix J.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research fully conforms to the NeurIPS Code of Ethics. We conduct purely
algorithmic simulations with no human data or private information.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work presents a computational algorithm with no high-risk data or models;
safeguards are not applicable.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our paper does not use existing assets.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not propose new datasets or pretrained models; our work focuses on an
algorithmic method.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects or crowdsourced data were involved in this research.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
Justification: No human subjects research was conducted.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: No large language models were used as a component of the core methodology
of this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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