
Accelerating Nash Equilibrium Convergence in Monte
Carlo Settings Through Counterfactual Value Based

Fictitious Play

Ju Qi1,2,†, Hei Falin1,2, Feng Ting1,2, Yi Dengbing1,2, Fang Zhemei1,2,†, Luo Yunfeng1,2

1. School of Artificial Intelligence and Automation, Huazhong University of Science and Technology
2. National Key Laboratory of Science and Technology on Multispectral Information Processing

{juqi, heifalin, fenting, yidengbing, zmfang2018, yfluo}@hust.edu.cn
† Corresponding author.

Abstract

Counterfactual Regret Minimization (CFR) and its variants are widely recognized
as effective algorithms for solving extensive-form imperfect information games.
Recently, many improvements have been focused on enhancing the convergence
speed of the CFR algorithm. However, most of these variants are not applicable
under Monte Carlo (MC) conditions, making them unsuitable for training in large-
scale games. We introduce a new MC-based algorithm for solving extensive-form
imperfect information games, called MCCFVFP (Monte Carlo Counterfactual
Value-Based Fictitious Play). MCCFVFP combines CFR’s counterfactual value
calculations with fictitious play’s best response strategy, leveraging the strengths of
fictitious play to gain significant advantages in games with a high proportion of
dominated strategies. Experimental results show that MCCFVFP achieved conver-
gence speeds approximately 20%∼50% faster than the most advanced MCCFR
variants in games like poker and other test games.

1 Introduction

Game theory investigates mathematical models of strategic interactions among rational agents,
aiming to identify a Nash Equilibrium (NE) where no participant can gain by deviating from the
established strategy. For complete information games, it is possible to segment the game into smaller
sub-games and apply backward induction to determine the equilibrium. In contrast, in incomplete
information games, the inability to directly apply sub-game payoffs in the backward induction
algorithm significantly increases the complexity of finding an equilibrium.

The Counterfactual Regret Minimization (CFR) algorithm Zinkevich et al. [2007] is crucial for
solving extensive-form games with incomplete information. CFR has numerous variants, such as
CFR+ Tammelin [2014], Lazy CFR Zhou et al. [2018], PCFR Farina et al. [2021], DCFR Brown and
Sandholm [2019a], and PDCFR Xu et al. [2024]. Nevertheless, these variants typically require a full
traversal of the entire game tree, which is impractical for real-world applications. In contrast, games
like no-limit Texas hold’em, DouDizhu, and Mahjong have 10162 Moravík et al. [2017], 1083 Zha et
al. [2021], and 10121 Li et al. [2020] information sets, respectively, making full traversal infeasible.

To address this, Lanctot et al. Lanctot et al. [2010] proposed Monte Carlo CFR (MCCFR), which
reduces the number of game tree nodes visited in each iteration through sampling. This makes
MCCFR the preferred algorithm for training large-scale games. However, most CFR variants cannot
improve the convergence speed in the case of MCCFR. Only a few variants, such as Discount
MCCFR Brown and Sandholm [2019a] and VR-MCCFR Schmid et al. [2019], are currently suitable

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

for MCCFR. Therefore, it is crucial to study the characteristics of large-scale games and how to
leverage these characteristics to accelerate the convergence of MC-based game learning algorithms.

We believe that the Fictitious Play (FP) algorithm is highly suitable for addressing large-scale
incomplete information games, due to the characteristics of using the best response (BR) strategy. FP
was first introduced in Brown’s 1951 article Berger [2007]; Brown [1951]. The treatise The Theory of
Learning in Games Fudenberg and Levine [1998] consolidated prior research, setting a standardized
framework for FP . Generalized Weakened Fictitious Play (GWFP) Leslie and Collins [2006] further
established that under specific perturbations and errors, convergence to NE is attainable in a manner
consistent with FP . Hendon et al. Hendon et al. [1996] expanded FP to the domain of extensive-form
games. The development of the Full-Width Extensive-Form Fictitious Play (XFP) algorithm Heinrich
et al. [2015], predicated on GWFP, has facilitated faster convergence in these games.

Our algorithm, Monte Carlo Counterfactual Value-Based Fictitious Play (MCCFVFP), optimizes FP
in extensive-form games by incorporating counterfactual value into the BR strategy calculations. We
have theoretically proven that MCCFVFP can converge to a NE, and experimentally demonstrated
that in large-scale games, MCCFVFP fully leverages the high proportion of dominated strategies to
achieve faster convergence speeds than MCCFR. Our code can be found at GitHub.

2 Notation and Preliminaries

2.1 Game Theory

2.1.1 Normal-Form Game

The normal-form game serves as the foundational model in Game Theory. Let N = 1, 2, . . . , i, . . .
represent the set of players, where each player i has a finite action set Ai. Player i’s strategy,
denoted σi, is a probability distribution over Ai and is represented by a (|Ai| − 1)-dimensional
simplex. Here, | · | indicates the cardinality of the set, and σi(a′) denotes the probability with
which player i selects action a′. Let Σi denote the strategy set for player i, such that σi ∈ Σi.
A strategy profile, σ =

∏
i∈N σi, represents the collection of strategies for all players, while

σ−i = (σ1, . . . , σi−1, σi+1, . . .) includes all strategies in σ except for that of player i. The entire
set of strategy profiles is denoted by Σ =

∏
i∈N Σi, where σ ∈ Σ. The payoff function for player i,

defined as ui : Σ → R, is finite. The notation ui(σi, σ−i) indicates the expected payoff to player i
when they select the pure strategy σi and all other players follow the strategy profile σ−i. Finally,
define the payoff interval of the game as L = maxσ∈Σ,i∈N ui(σ)−minσ∈Σ,i∈N ui(σ).

2.1.2 Extensive-Form Games

In extensive-form games, typically represented as game trees, the player set is N = 1, 2, Each
node s represents a possible state in the game, forming a set S, with terminal states represented by
leaf nodes z ∈ Z . At each state s ∈ S, the action set A(s) includes all possible actions available to
a player or chance. The player function P : S → N ∪ c assigns each state an acting party, with c
indicating a chance event. Information sets I ∈ Ii group states that player i cannot distinguish among,
reflecting their uncertainty. The payoff function R : Z → R|N | maps each terminal state to a payoff
vector for the players. For each information set I ∈ Ii, the behavioral strategy σi(I) ∈ R|A(I)|

defines a probability distribution over available actions.

2.1.3 Nash Equilibrium

The BR strategy of player i to their opponents’ strategies σ−i is

bi(σ−i) = argmaxai∈Aiui(ai, σ−i), (1)

although a mixed strategy may also become a BR strategy, it is much easier to find a pure BR strategy
than a mixed BR strategy in engineering implementation, so the BR strategies discussed in this article
are all pure BR strategies. If there are multiple BR strategies at the same time, one of them will be
returned randomly. Define the exploitability ϵi of player i in strategy profile σ as:

ϵi = ui(bi(σ−i), σ−i)− ui(σ), (2)

and total exploitability as ϵ =
∑

i∈N ϵi. A Nash equilibrium is a strategy profile σ such that ϵ = 0.

2

https://github.com/Zealoter/CFVFP

During iterations, if the strategy’s exploitability satisfies ϵ ∝ T− 1
2 , the convergence rate of the

algorithm is O
(
T− 1

2

)
. Additionally, the time complexity within one iteration is a critical factor

affecting the convergence rate. We use O(·) to describe the time complexity needed for one iteration.

2.1.4 Dominated Strategy and Clear Games

In game theory, strategic dominance occurs when one action (or strategy) is better than another action
(or strategy) for one player, regardless of the opponents’ actions. A classic example is the Prisoner’s
Dilemma, where choosing to testify always yields a higher payoff than staying silent, regardless of
the opponent’s decision. Here, staying silent is a dominated strategy. Formally, For player i, if there
is a pure strategy ai∗ and a strategy σi∗ ∈ Σi satisfies:

ui(ai∗, σ−i) ≤ ui(σi∗, σ−i),∀σ−i ∈ Σ−i, (3)
then the pure strategy ai∗ is a dominated strategy of player i. Rational players will invariably avoid
choosing a dominated strategy, allowing the elimination of dominated strategy from the action set Ai

without impacting the game’s NE Samuelson [1992].

In our analysis, the proportion of dominated strategies in a game is crucial, significantly impacting
the convergence speed of various algorithms. We categorize games into two distinct types based on
this factor. Games where the number of dominated strategies is less than

√
|A| are classified as clear

games. This term captures a strategic landscape where the preferable choices are evident, owing to
the relatively few dominated strategies. On the other hand, tangled games are defined by having a
number of dominated strategies greater than

√
|A|, reflecting a more complex and nuanced strategic

environment with less obvious choices. The reason for defining these categories in this way can be
found in Appendix B.3. Such classification aids in comprehending a game’s nature and assessing the
effectiveness of different algorithmic approaches.

2.2 Regret Matching and Counterfactual Regret Minimization

In normal-form games, let σi
t be the strategy used by player i on round t. The regret of player i’s

action ai at time T is:

Ri
T (a

i) =

T∑
t=1

ui
(
ai, σ−i

t

)
− ui (σt) . (4)

The new strategy is produced by:

σi
T+1(a

i) =

Ri,+

T (a)∑
a∈Ai Ri,+

T (a)
if
∑

a∈Ai R
i,+
T (a) > 0

1
|Ai| otherwise,

(5)

where Ri,+
T (a) = max

(
Ri

T (a), 0
)
. Since the probability of selecting action σi

t+1(a) is proportional
to the non-negative regret value Ri,+

T (a) for this action, this algorithm is referred to as the regret
matching algorithm. Define the average strategy as σ̄T = 1

T

∑T
t=1 σt, which converges to the NE

as T → ∞, with a convergence rate of O
(
L
√
|A|/T

)
. In each iteration, RM requires a matrix

multiplication operation, resulting in an iteration time complexity of O
(
|A|2

)
.

CFR is a variant of RM specifically adapted for extensive-form games. The counterfactual value
u(I, σ) is defined as the expected payoff assuming that information set I is reached and all players
follow strategy σ, with the exception that player i acts specifically to reach I . For each action
a ∈ Ai(I), let σ|I→a represent a strategy profile identical to σ except that player i consistently
chooses action a within information set I . The counterfactual regret is then given by:

Ri
T (I, a) =

T∑
t=1

π−i
σt
(I)
(
ui (I, σt|I→a)− ui (I, σt)

)
, (6)

where π−i
σt
(I) is the probability of information set I occurring if all players (including chance, except

i) choose actions according to σt. Let Ri,+
T (I, a) = max

(
Ri

T (I, a), 0
)
, the strategy at time T + 1 is:

σi
T+1(I, a) =

Ri,+

T (I,a)∑
a∈A(I) R

i,+
T (I,a)

if
∑

a∈Ai R
i,+
T (I, a) > 0

1
|A(I)| otherwise.

(7)

3

The average strategy σ̄i
T for an information set I on iteration T is:

σ̄i
T (I) =

∑T
t=1 π

i
σt
(I)σi

t(I)∑T
t=1 π

i
σt
(I)

. (8)

Eventually, σ̄T will converge to NE with T → ∞, the convergence rate of CFR is O
(
L|I|

√
|A|/T

)
and the time complexity of one iteration of the CFR algorithm is O (|A||I|).
There are many forms of sampling MCCFR, but the most common is external sampling MCCFR
(ES-MCCFR) Brown [2020] because of its simplicity and powerful performance. In ES-MCCFR,
some players are designated as traversers and others are samplers during an iteration. Traversers
follow the CFR algorithm to update the regret and the average strategy of the experienced information
set. On the rest of the sampler’s nodes and the chance node, only one action is explored (sampled
according to the player’s strategy for that iteration on the information set), and the regret and the
average strategy are not updated.

2.3 Fictitious Play

FP assuming all players start with random strategy profile σ̄t=1, the strategy profile is updated
following the iterative function:

σ̄t+1 = (1− αt) σ̄t + αtσt+1, (9)

where in vanilla FP αt = 1/(t+1), σt+1 = b(σ̄t). The convergence rate of vanilla FP in a two-player
zero-sum game may be O

(√
T
)

Daskalakis and Pan [2014], and the time complexity of one iteration

of the vanilla FP algorithm is O
(
|A|2

)
. To speed up iteration, define the average Q-value of player

i’s action ai at time T as:

Q̄i
T (a

i) =
1

T

T∑
t=1

ui
(
ai, σ−i

t

)
. (10)

If the game is a two-player game, or if ui is an affine function (e.g., in a potential game), we have:

Q̄i
T

(
ai
)
=

1

T

T∑
t=1

ui
(
ai, σ−i

t

)
= u

(
ai,

1

T

T∑
t=1

σ−i
t

)
= ui

(
ai, σ̄−i

t

)
,

(11)

therefore, we can conclude that
bi(σ−i) = max

ai∈Ai
Q̄i

T

(
ai
)
. (12)

In 2.1.3, it is noted that BR strategy σi
t in FP is a pure strategy. As a result, calculating ui(ai, σ−i

t)
involves simply selecting a row (or column) from the payoff matrix, eliminating the need for matrix
multiplication as required in RM. Consequently, the time complexity of each iteration in the FP
algorithm decreases to O(|A|), representing a significant improvement over the O(|A|2) complexity
in RM.

3 Motivation of CFVFP

Currently, the mainstream approach for large-scale games is a combination of “pre-trained blueprint
strategy + real-time search.” For example, Pluribus initially employs the MCCFR algorithm to
establish a blueprint strategy, which it applies in the early stages of the game, and then transitions to
real-time search as the game progresses Brown and Sandholm [2019b]. Similarly, in the game of Go,
AlphaGo primarily used reinforcement learning to train its policy and value networks, incorporating a
limited number of MCTS rollouts during training. However, in actual matches against human experts,
AlphaGo significantly increased the number of MCTS rollouts to enhance its real-time decision-
making Silver et al. [2016, 2017]. This phenomenon can be understood from two perspectives:

4

1. The complexity of real-world games is so high that it is impossible for any single strategy
(even with deep networks) to perfectly handle all game scenarios. Due to this extreme
complexity, only sampling-based training methods are feasible. Many current improvements
to CFR, such as CFR+ and Predictive CFR, are designed for full traversal of the game
tree. While these methods accelerate convergence, they are unsuitable for sampling-based
approaches because the inexact payoffs introduced by sampling significantly disrupt the
convergence direction of each strategy update.

2. Training a blueprint strategy usually starts with sampling from the initial nodes, resulting in
a higher probability of exploring early game nodes compared to leaf nodes. Consequently,
while the blueprint strategy might be less effective in the later stages of the game, it
often rapidly converges towards the optimal solution in the early stages due to thorough
exploration.

After clarifying the specific ideas for training large-scale game AI. Next, we need to think about the
characteristics of large-scale games and how to design corresponding MC-type solving algorithms
based on these characteristics.

One prominent characteristic of large-scale games is that the majority of strategies are dominated.
For instance, in chess and Go, top AI systems and human experts often opt for fixed openings.
Similarly, professional poker players tend to fold most hands in the early rounds. Theoretically,
DeepMind likens game strategies to a spinning top Czarnecki et al. [2020], implying that only a
limited subset of strategies can be considered non-dominated. MCCFR experiments show that up to
96% of strategies can be pruned in certain games Lanctot et al. [2010]. Likewise, the supplementary
materials of Pluribus Brown and Sandholm [2019c] reveal that around 50% of information sets are
never encountered during training (indicating that unplayed strategies are almost certainly dominated,
with many traversed ones also being dominated). In other words, while it cannot be proven with
absolute certainty, the choices of professional players and the experimental outcomes from current
advanced AIs suggest that the larger the game, the higher the likelihood that it can be classified as a
“clear game.”

Additionally, our toy experiment clearly demonstrates that the FP algorithm is more effective for
clear games compared to the RM algorithm 1. We attribute this advantage to the fact that FP employs
the BR strategy rather than the RM strategy during iterations, which is why we aim to incorporate
this feature into the iterations of CFR.

Figure 1: The figure compares the convergence rates of the RM and FP algorithms in a 100× 100
random payoff matrix game generated from aN(0, 1) distribution. In right figure, the convergence for
a standard random payoff matrix is shown, while left figure illustrates the convergence in 100× 100
random payoff matrix where the payoffs for actions 1 to 10 are uniformly increased by 5 (causing
actions 11 to 100 to have a high probability of being dominated strategies). It can be observed
that in this setting, the convergence rate of the FP is very close to that of RM. Considering that the
complexity of one FP iteration is only O(|A|) compared to the complexity of RM, which is O(|A|2),
in a clear game, the overall convergence rate of FP can actually surpass that of RM. Each scenario
tested an average of 30 rounds. The shaded areas represent the 90% confidence intervals for these
trials. The experiments in Appendix A can also confirm our view from another perspective.

5

4 CFVFP Method

4.1 Counterfactual Value Fictitious Play Implementation

Our method can be easily adapted from CFR. First, there is no need to compute the counterfactual
regret; instead, we define the counterfactual value:

Qi
t(I, a) = Qi

t−1(I, a) + π−i
σt
(I)ui (I, σt|I→a) . (13)

Second, the strategy in the next iteration is a BR strategy rather than RM strategy:

σi
t+1 = argmaxa∈Ai(I)Q

i
t(I, a). (14)

The main distinction between Qi
t and Ri

t is that Qi
t omits the average payoff term ui (I, σt), as this

term does not affect identifying the maximum value of Qi
t. This omission leads to a significant

reduction in computation time. Since argmax selects the action with the highest counterfactual value,
the resulting strategy in each iteration is a pure strategy, similar to the FP algorithm. Thus, we refer
to this algorithm as Counterfactual Value-Based Fictitious Play. Additionally, the time complexity of
calculating the BR strategy is notably lower than that required for computing the RM strategy.

Finally, since the update σi
t+1 is a pure strategy, π−i

σt
(I) is either 0 or 1. This significantly increases the

likelihood of triggering naive pruning. From equation 6, we see that if π−i
σt
(I) = 0, it is unnecessary

to enter the sub-game tree to calculate Qi
t(I, a). Similarly, equation 8 shows that if πi

σt
(I) = 0, it

is unnecessary to update the average strategy σ̄i
t(I). This pruning greatly enhances the algorithm’s

efficiency.

CFVFP employs a simple yet effective approach by using BR strategy instead of regret-matching
strategy for next iteration. The convergence of CFVFP can be easily proven. First, FP’s convergence
to a NE classifies it as a regret minimizer Abernethy et al. [2011], which also implies that FP satisfies
Blackwell approachability Blackwell [1956]. The CFR framework shows that if an algorithm satisfies
Blackwell approachability, its counterfactual regrets will converge to zero Zinkevich et al. [2007].
Therefore, CFVFP inherently adheres to Blackwell approachability.

Moreover, we can directly begin with the definition of Blackwell approachability and prove that FP
fulfills this criterion. The convergence rate is O

(
L|A|T− 1

2

)
, and the detailed proof can be found

in B.1. The pseudocode for the CFVFP algorithm is provided in Appendix C.1.

Since CFVFP follows Blackwell approachability, it is fully compatible with various CFR variants,
including MCCFR, CFR+, and different averaging schemes Brown and Sandholm [2019a], resulting
in a range of CFVFP variants. Consequently, we conducted a series of experiments to examine
the convergence rates of these CFVFP variants. As detailed in Appendix B, the vanilla-weighted
MCCFVFP, a combination of MCCFR and CFVFP, shows the fastest convergence among the variants.
The pseudocode for the MCCFVFP algorithm is provided in Appendix C.2.

4.2 Theoretical Analysis of MCCFVFP Algorithm

We discuss the advantages of the MCCFVFP algorithm in terms of the computing resources required
per information set and the algorithm’s pruning efficiency.

The MCCFVFP algorithm is highly efficient in conserving computing resources. For example, if
an information set has |A(I)| = x possible actions, MCCFVFP only requires 2x + 1 additions to
process this information set, whereas MCCFR needs 6x − 2 additions and 3x multiplications to
complete the same calculation. This means that, for a single information set, MCCFVFP requires
only about 2/9 of the computational time compared to MCCFR. Considering that a Blueprint training
typically traverses at least 1 billion nodes, MCCFVFP offers significant advantages over MCCFR in
terms of engineering implementation. For a detailed proof, refer to Appendix E.1.

Additionally, CFVFP is highly efficient in game tree pruning. Pruning is a common optimization
technique used in all tree search algorithms. For instance, the Alpha-Beta algorithm in complete-
information extensive-form games is a pruned version of the Min-Max algorithm, and it was a key
factor in Deep Blue’s success Hsu [2002]. Naive pruning is the simplest pruning method in CFR.
In naive pruning, if no player has a probability of reaching the current state s (∀i, π−i

σt
(s) = 0), the

entire subtree at that state can be pruned for the current iteration without affecting regret calculations.

6

By analyzing the frequency of different node types in the game tree, we theoretically prove that
CFVFP can significantly reduce the number of nodes that need to be processed. Compared to CFR,
which must traverse all O (|S|) nodes, CFVFP only needs to traverse O

(
|N|
√

|S|
)

nodes. This is
especially beneficial in multiplayer games, where it greatly improves the efficiency of algorithm
iterations. For detailed proof, please refer to Appendix E.2.

5 Experiments

5.1 Description of the Game and Experimental Settings

We employed various game models, such as Kuhn-extension poker, Leduc-extension poker, the
princess and monster game Lanctot et al. [2010], and Texas Hold’em, to evaluate the performance
of different algorithms. These games are widely used benchmarks for comparing algorithmic
convergence rates. Kuhn-extension poker, an expanded version of the classic Kuhn poker Kuhn
[1950], features an increased card count of x, a broader range of betting actions with y options, and
up to z raising opportunities. Similarly, Leduc-extension poker is an advanced version of the original
Leduc poker Shi and Littman [2002], allowing for flexible scaling. The princess and monster game
represents a classic pursuit-evasion problem. Texas Hold’em, one of the most popular poker games in
the world, was also included in our analysis.

In Kuhn, Leduc, and princess and monster games, we use a random distribution as the initial strategy
to initialize all algorithms. In each iteration, the strategies and regrets of all players are updated
simultaneously. In MCCFR, when Ri,max

t = 0, the next stage strategy is set to a random pure
strategy. In addition, the settings in our comparison experiment are consistent with those in previous
groundbreaking works, including MCCFR Lanctot et al. [2010], DCFR+ Brown and Sandholm
[2019a], and PCFR Farina et al. [2021]. For engineering implementation, any node with a probability
less than 10−20 during iteration will be pruned. Our Texas Hold’em experiments employed a variant
of the multivalued state technique Brown et al. [2018], with an experimental setup closely mirroring
that of Pluribus Brown and Sandholm [2019b]. The Texas Hold’em experiments were run on a
32-core, 128GB memory server, while the other experiments were conducted on a single core. It is
important to note that all times mentioned below have been converted to reflect execution on a single
CPU core.

For a comprehensive exposition of these games and additional experimental findings, please refer
to Appendix F. In Appendix G, we compare time, number of iterations, and nodes touched as an
indicator. Finally, we use nodes touched and time as an indicator.

5.2 Experimental results

As shown in the Figure 2, we can demonstrate the core findings of our paper:

• In small-scale problems like vanilla Kuhn, algorithms such as DCFR, PCFR, and CFR+ may
outperform MCCFR and MCCFVFP. However, as the game scale increases, the convergence
speed of sampling-based algorithms (MCCFR/MCCFVFP) gradually surpasses that of
full-traversal algorithms (DCFR/PCFR/CFR+).

• In our experiments, MCCFVFP consistently converged faster than MCCFR. While theoreti-
cally, our algorithm might be less effective than MCCFR in tangled games, the acceleration
in its implementation and the tendency of large-scale games to be clear games have led to
MCCFVFP outperforming MCCFR in all tested scenarios.

Specifically, when using the number of nodes touched as a metric, MCCFVFP demonstrates a slightly
faster convergence rate compared to ES-MCCFR. However, in terms of processing the same number
of nodes, MCCFVFP’s computation time is only about 2/9 of MCCFR’s (the underlying reasons
are discussed in Section E.1). As a result, when factoring in the time required for game simulation,
MCCFVFP achieves approximately 50% time savings compared to ES-MCCFR for similar levels of
exploitability in these games.

As previously noted, algorithms such as CFR+, PCFR, and DCFR are not well-suited for large-scale
games due to their reliance on full traversal, which is impractical in complex settings like Texas

7

Figure 2: Convergence rates in Kuhn-extension, Leduc-extension, and princess-and-monster games
are shown. In the first two rows, time is measured in milliseconds (ms). The last two rows reflect
the same running time but with the horizontal axis representing the number of nodes touched during
iteration. All experiments tested over an average of 30 rounds. The shaded areas indicate 90%
confidence intervals for the trials.

Hold’em. Therefore, in our Texas Hold’em experiments, we focused on comparing the performance
of our algorithm specifically against the traditional MCCFR method, excluding these full-traversal
algorithms from testing.

In our experiments, we used 2, 3, and 6-player Texas Hold’em game setups, where each player started
with 25 Big Blinds (BB) in chips. We assumed that all players would check from the start of the
game through to the river stage, simulating a conservative gameplay scenario to examine strategic
strengths under limited betting dynamics.

In the two-player Texas Hold’em game, convergence speed can be directly measured using exploitabil-
ity. The results are shown in Table 1. The public cards in the experiment were 5d2s9d2c7c, and after
abstracting the hands, there were 69 hand strength ranks. This sub-game contains approximately
89k information sets, with exploitability measured in BB/100. Compared to MCCFR, MCCFVFP
achieved a 20–30% faster convergence speed within the same time frame in the two-player Texas
Hold’em game.

8

Table 1: The convergence rates in two-player Texas Hold’em

Table 2: The results of different AIs competing against each other in multiplayer games

In multiplayer situations, the exploitability cannot be directly calculated. Therefore, we use the
method of mutual battles to measure the strength of different algorithms. As shown in Table 2, in the
competition 1, MCCFVFP AI is randomly set as player i, and all other players except player i are set
as MCCFR AI. Define r1 as the rewards of the MCCFVFP AI player at competition 1. The second
setting is exactly the opposite. Player i is randomly set as MCCFR AI, and the remaining players
are set as MCCFVFP AI. Define r2 as the rewards of the MCCFR AI player at competition 2. By
comparing r1 and r2, we can roughly compare the convergence speeds of different algorithms.

In these scenarios, the MCCFVFP AI, trained for the same duration, significantly outperforms the
MCCFR algorithm across all aspects. The 30 to 40 seconds training experiment is particularly
important, as it closely mirrors the setup of the Pluribus experiment. In the 6-player Pluribus
experiment, the AI trained with MCCFR gained an average of 3.2 BB/100 per game, with a standard
error of 1.5 BB/100. In our experiment, using community cards KsQsJs3h2h, MCCFVFP gained an
average of 0.932 BB/100 compared to MCCFR—a substantial improvement, especially considering
Pluribus gained 3.2 BB/100 against human players.

6 Conclusion

This paper introduces a novel method for solving large-scale incomplete information zero-sum
games: Monte Carlo Counterfactual Value-Based Fictitious Play (MCCFVFP). By implementing
the BR strategy in place of the regret-matching strategy, MCCFVFP achieved convergence speeds
approximately 20% to 50% faster than the most advanced MCCFR variants.

In future research, we aim to evaluate the scalability of our method and its compatibility with different
CFR variants, including those incorporating deep networks Brown et al. [2019]. Furthermore, given
MCCFVFP’s efficacy in clear games, we envision developing a warm start algorithm. This approach
would initially use MCCFVFP to eliminate dominated strategies and then switch to algorithms that
can further accelerate convergence in the later stages of training.

9

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.
62103158). We would also like to extend our gratitude to Thomas Tellier for his invaluable as-
sistance with our Texas Hold’em experiment. For more information, he can be reached via email at
thomas@gtoking.com or through his website at gtoking.com.

References
Jacob Abernethy, Peter Bartlett, and Elad Hazan. Blackwell approachability and no-regret learning

are equivalent. 2011.

Ulrich Berger. Brown’s original fictitious play. Journal of Economic Theory, 135(1):572–578, 2007.

David Blackwell. An analog of the minmax theorem for vector payoffs. Pacific Journal of Mathemat-
ics, 65(1):1–8, 1956.

Noam Brown and Tuomas Sandholm. Solving imperfect-information games via discounted regret
minimization. Proceedings of the AAAI Conference on Artificial Intelligence, 33:1829–1836, 2019.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):885–
890, 2019.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science,
365(6456):eaay2400, 2019.

Noam Brown, Tuomas Sandholm, and Brandon Amos. Depth-limited solving for imperfect-
information games. Advances in Neural Information Processing Systems (NeurIPS), 31, 2018.

Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. Deep counterfactual regret mini-
mization. In International conference on machine learning, pages 793–802. PMLR, 2019.

G. W. Brown. Iterative solution of games by fictitious play. activity analysis of production and
allocation, 1951.

Noam Brown. Equilibrium finding for large adversarial imperfect-information games. PhD thesis,
2020.

Wojciech M Czarnecki, Gauthier Gidel, Brendan Tracey, Karl Tuyls, Shayegan Omidshafiei, David
Balduzzi, and Max Jaderberg. Real world games look like spinning tops. Advances in Neural
Information Processing Systems, 33:17443–17454, 2020.

Constantinos Daskalakis and Qinxuan Pan. A counter-example to karlin’s strong conjecture for
fictitious play. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages
11–20. IEEE, 2014.

Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Faster game solving via predictive blackwell
approachability: Connecting regret matching and mirror descent. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 5363–5371, 2021.

Drew Fudenberg and David K. Levine. The theory of learning in games. MIT Press Books, 1, 1998.

Johannes Heinrich, Marc Lanctot, and David Silver. Fictitious self-play in extensive-form games. In
International Conference on Machine Learning, 2015.

Ebbe Hendon, Hans Jørgen Jacobsen, and Birgitte Sloth. Fictitious play in extensive form games.
Games and Economic Behavior, 15(2):177–202, 1996.

Hoane Feng Hsiung Hsu. Deep blue. Artificial Intelligence, 2002.

H. W Kuhn. Simplified two-person poker. Contributions to the Theory of Games, 1950.

Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael H. Bowling. Monte carlo sampling for
regret minimization in extensive games. In Advances in Neural Information Processing Systems
22, 2010.

10

https://gtoking.com

David S. Leslie and E. J. Collins. Generalised weakened fictitious play. Games and Economic
Behavior, 56(2):285–298, 2006.

Junjie Li, Sotetsu Koyamada, Qiwei Ye, Guoqing Liu, and Hsiao Wuen Hon. Suphx: Mastering
mahjong with deep reinforcement learning. 2020.

Matej Moravík, Martin Schmid, Neil Burch, Viliam Lis, and Michael Bowling. Deepstack: Expert-
level artificial intelligence in no-limit poker. Science, 356(6337):508, 2017.

Larry Samuelson. Dominated strategies and common knowledge. Games and Economic Behavior,
4(2):284–313, 1992.

Martin Schmid, Neil Burch, Marc Lanctot, Matej Moravcik, Rudolf Kadlec, and Michael Bowling.
Variance reduction in monte carlo counterfactual regret minimization (vr-mccfr) for extensive
form games using baselines. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 2157–2164, 2019.

Jiefu Shi and Michael L. Littman. Abstraction methods for game theoretic poker. In International
Conference on Computers and Games, 2002.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, L. Sifre, George van den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with
deep neural networks and tree search. Nature, 529:484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, and Demis Hassabis.
Mastering the game of go without human knowledge. Nature, 550(7676):354–359, 2017.

Oskari Tammelin. Solving large imperfect information games using cfr+. Eprint Arxiv, 2014.

Hang Xu, Kai Li, Bingyun Liu, Haobo Fu, Qiang Fu, Junliang Xing, and Jian Cheng. Mini-
mizing weighted counterfactual regret with optimistic online mirror descent. arXiv preprint
arXiv:2404.13891, 2024.

Daochen Zha, Jingru Xie, Wenye Ma, Sheng Zhang, and Ji Liu. Douzero: Mastering doudizhu with
self-play deep reinforcement learning, 2021.

Yichi Zhou, Tongzheng Ren, Jialian Li, Dong Yan, and Jun Zhu. Lazy-cfr: fast and near optimal
regret minimization for extensive games with imperfect information. 2018.

M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione. Regret minimization in games with
incomplete information. Oldbooks.nips.cc, 20:1729–1736, 2007.

11

A A Toy Example of RM not Performing Well in Clear Game

In training, RM and its variants do not perform well in the clear games, which we attribute to excessive
exploration of dominated strategies by RM. For instance, consider the rock-paper-scissors (RPS)
game, where an additional action, Leaky Rock (LR), is introduced for player 1. Set the payoff of
action LR to be 0.1 less than that of action Rock (R) (making LR a dominated strategy that no rational
player would choose): [

0 −1 1
1 0 −1
−1 1 0

]
add action LR−−−−−−−→

 0 −1 1
1 0 −1
−1 1 0
−0.1 −1.1 0.9

 (15)

Assuming that player 1 starts with an average strategy and player2 takes scissors in the first round,
player 1’s payoff is u1 = 0.225. The regret value is R1(R) = 1 − 0.225 = 0.775, R1(S) =
0 − 0.225 = −0.225, R1(P) = −1 − 0.225 = −1.225, R1(LR) = 0.9 − 0.225 = 0.675, Under
the RM algorithm, the probability of selecting Rock in the next iteration becomes: σ1(R) ≈ 0.534,
and for the Leaky Rock action: σ1(LR) ≈ 0.466. Despite LR being a dominated strategy, RM
still assigns it nearly half the selection probability, arguably wasting nearly half the computational
resources. However, in Fictitious Play (FP), the LR action would never be chosen.

B Convergence of CFVFP

B.1 Blackwell Approachability Game

Definition 1 A Blackwell approachability game in normal-form two-player games can be described
as a tuple (Σ, u, S1, S2), where Σ is a strategy profile, u is the payoff function, and Si = R|Ai|

≤0 is a

closed convex target cone. The Player i’s regret vector of the strategy profile σ is Ri(σ) ∈ R|Ai|, for
each component Ri(σ)(ax) = ui

(
ax, σ

−i
)
− ui (σ) , ax ∈ Ai the average regret vector for players

i to take actions at T time a is R̄i
T

R̄i
T =

1

T

T∑
t=1

Ri(σt) (16)

At each time t, the two players interact in this order:

• Player 1 chooses a strategy σ1
t ∈ Σ1;

• Player 2 chooses an action σ2
t ∈ Σ2 , which can depend adversarially on all the σt output

so far;

• Player 1 gets the vector value payoff R1(σt) ∈ Rl1 .

The goal of Player 1 is to select actions σ1
1 , σ

1
2 , . . . ∈ Σ1 such that no matter what actions

σ2
1 , σ

2
2 , . . . ∈ Σ2 played by Player 2, the average payoff vector converges to the target set S1.

min
ŝ∈S1

∥∥ŝ− R̄1
T

∥∥
2
→ 0 as T → ∞ (17)

Before explaining how to choose the action σt to ensure this goal achieve, we first need to define the
forceable half-space:

Definition 2 Let H ⊆ Rd as half-space, that is, for some a ∈ Rd, b ∈ R, H ={
x ∈ Rd : a⊤x ≤ b

}
. In Blackwell approachability games, the halfspace H is said to be force-

able if there exists a strategy σi∗ ∈ Σi of Player i that guarantees that the regret vector Ri(σ) is in
H no matter the strategy played by Player −i, such that

Ri
(
σi∗, σ̂−i

)
∈ H ∀σ̂−i ∈ Σ−i (18)

And σi∗ is forcing action for H.

Blackwell’s approachability theorem states the following.

12

Figure 3: The difference between RM and FP (CFVFP in normal-form game) in a two-dimensional
plane

Theorem 1 Goal 17 can be attained if and only if every halfspace Ht ⊇ S is forceable.

The relationship between Blackwell approachability and no-regret learning is:

Theorem 2 Any strategy (algorithm) that achieves Blackwell approachability can be converted into
an algorithm that achieves no-regret, and vice versa Abernethy et al. [2011]

Let σ̄i
T be the average strategy of player i:

σ̄i
T (a) =

∑T
t=1 σ

i
t(a)

T
(19)

In a two-player zero-sum game, the exploitability of the average strategy σ̄i
T at time T of player

i is ϵiT = maxa′∈Ai R̄i
T (a

′) Brown [2020]. Obviously, the regret value is always greater than the
exploitability:

lim
T→∞

ϵT = lim
T→∞

∑
i∈N

ϵiT ≤ lim
T→∞

∑
i∈N

min
ŝ∈Si

∥∥ŝ−Ri
T

∥∥
2
= 0 (20)

So, if the algorithm achieves Blackwell approachability, the average strategy σ̄i
T will converge to

equilibrium with T → ∞. The rate of convergence is ϵiT ≤ R̄i
T ≤ L

√
|A|/

√
T .

B.2 Fictitious Play achieves Blackwell Approachability

We first prove that FP achieves Blackwell approachability in a two-player zero-sum game. Define
R̄i,max

t be the maximum portion of vector R̄i,+
t . If R̄i,max

t ̸= 0, we find the point ψt = R̄i
t − R̄i,max

t

in R|Ai| and let R̄i
t−ψt

|R̄i
t−ψt| be the normal vector, then we can determine half-space by R̄i

t−ψt

|R̄i
t−ψt| and ψt:

HP
t =

{
z ∈ Rl−i

: (R̄i
t −ψt)

⊤z ≤ (R̄i
t −ψt)

⊤ψt

}
(21)

Because R̄i
t −ψt = R̄i,max

t , (R̄i
t −ψt)

⊤ψt = 0, therefore:

HP
t =

{
z ∈ Rl−i

:
〈
R̄i,max

t , z
〉
≤ 0
}

(22)

For any point s′ ∈ Si there is
〈
R̄i,max

t , s′
〉

≤ 0. Then we need to prove that a forcing action

for HP
t indeed exists. According to Definition 2, we need to find a σi∗

t+1 ∈ Σi that achieves
Ri
(
σi∗
t+1, σ̂

−i
t+1

)
∈ Hi,P

t+1 for any σ̂−i
t+1 ∈ Σ−i. For simplicity, let ℓ = [ui

(
a1, σ

−i
)
, . . .]⊤ ∈ R|Ai|,

13

we rewrite the regret vector as Ri
(
σi∗
t+1, σ̂

−i
t+1

)
= ℓ−

〈
ℓ, σi∗

t+1

〉
1, we are looking for a σi∗

t+1 ∈ Σi

such that:

Ri
(
σi∗
t+1, σ̂

−i
t+1

)
∈ HP

t

⇐⇒
〈
R̄i,max

t , ℓ−
〈
ℓ, σi∗

t+1

〉
1
〉
≤ 0

⇐⇒
〈
R̄i,max

t , ℓ
〉
−
〈
ℓ, σi∗

t+1

〉 〈
R̄i,max

t ,1
〉
≤ 0

⇐⇒
〈
R̄i,max

t , ℓ
〉
−
〈
ℓ, σi∗

t+1

〉 ∥∥∥R̄i,max
t

∥∥∥
1
≤ 0

⇐⇒

〈
ℓ,

R̄i,max
t∥∥∥R̄i,max
t

∥∥∥
1

〉
−
〈
ℓ, σi∗

t+1

〉
≤ 0

⇐⇒

〈
ℓ,

[
R̄i

t

]max∥∥[R̄i
t

]max∥∥
1

− σi∗
t+1

〉
≤ 0

(23)

We obtain the strategy σi∗
t+1 =

R̄i,max
t

∥R̄i,max
t ∥

1

that guarantees HP
t+1 to be forceable half space. And

the action with the highest regret value is actually the BR strategy Brown [2020], so FP achieves
Blackwell approachability. Figure 3 shows the difference in forceable half spaces for BR and RM
strategies in the two-dimensional plane. According to 2, BR strategy is also a regret minimizer in
normal-form game. Therefore, replacing the RM strategy with the BR strategy in CFR does not affect
the convergence of the algorithm.

B.3 The convergence speed of FP and clear games

However, it is important to note that the convergence point of FP differs from that of RM . Specifically,
the convergence point for FP is ψt = R̄i

t− R̄
i,max
t , while for RM it is ψRM

t = R̄i
t− R̄

i,+
t = R̄−i

t . The
relationship between these two points can be expressed as ∥ψRM

t ∥2 ≤ ∥ψt∥2
√
|A|. The convergence

rate of RM is O
(
L
√
|A|/T

)
. Consequently, the overall convergence rate for FP is O

(
L|A|/

√
T
)

.

In Section 3, we have analyzed that the RM strategy may select a dominated strategy, whereas FP
will not. Therefore, representing the complexity of the problem using |A| for FP is inaccurate. If an
action a′ is a dominated strategy, then it cannot be the best response, i.e., b(σ) ̸= a′. Hence, in FP,
we can replace |A| with And, where Ai

nd ⊆ Ai is the set of non-dominated strategies in the game.

This adjustment leads to the FP convergence rate being O
(
L|And|/

√
T
)

.

We now define a “clear game” as follows: when the number of non-dominated strategies in a game
satisfies |And| ≤

√
|A|, the game is considered a clear game. In Figure 1, the square root of 100 is

10, aligning with theoretical expectations. In clear games, even when the number of iterations is used
as a measure, the convergence speed of FP will outperform that of RM.

C Pseudocode

C.1 CFVFP

The pseudocode 1 here does not join the rest of the variants, nor does it consider cases other than
two-player zero-sum.

C.2 MCCFVFP

Since MCCFVFP will directly sample actions on opportunity nodes, the efficiency of the MCCFVFP
algorithm will be higher than CFVFP. The pseudocode of MCCFVFP is shown in pseudocode 2.

14

Algorithm 1 CFVFP(s, π, πc)
1: if π1 = π2 = 0 or πc = 0 then
2: return [0, 0]
3: end if
4: if s ∈ Z then
5: return

[
u1(s)π2πc, u2(s)π1πc

]
6: end if
7: Define I as the information set to which s belongs
8: r = [0, 0]
9: if P (s) = c then

10: for a ∈ A(s) do
11: r′ =PCFR(s+ a, π, πcσc(s)(a))
12: r = r + r′(ps)
13: end for
14: return r
15: else
16: if P (s) = p1 then
17: πs, πo = π1, π2

18: ps, po = p1, p2
19: else
20: πs, πo = π2, π1

21: ps, po = p2, p1
22: end if
23: if πo = 0 then
24: r′ = CFVFP(s+ σt(I), π, π

c)
25: r(po) = r′(po)
26: σ̄ps

t (I) = ((t− 1)σ̄ps

t−1(I) + σps

t (I))/t
27: else if πs = 0 then
28: for a ∈ A(I) do
29: r′ = CFVFP(s+ a, π, πc)
30: Qps

t (I, a) = Qps

t−1(I, a) + r′(ps)
31: if a = σps(I) then
32: r(po) = r′(po)
33: end if
34: end for
35: σps

t+1(I) = maxa∈Σi
P(I)

Qps

t (I, a)
36: else
37: for a ∈ A(I) do
38: πps = σps

t (I, a)
39: r′ = CFVFP(s+ a, π, πc)
40: Qps

t (I, a) = Qps

t−1(I, a) + r′(ps)
41: r(po) = r(po) + r′(po)
42: r(ps) = r(ps) + r′(ps)σ

ps

t (I, a)
43: end for
44: σ̄ps

t (I) = ((t− 1)σ̄ps

t−1(I) + σps

t (I))/t
45: σps

t+1(I) = maxa∈Σi
P(I)(I)

Qps

t (I, a)
46: end if
47: end if
48: return r

D Comparison between variants of CFVFP

D.1 CFVFP variants

We integrated CFVFP with RM+ and MC variants, resulting in four distinct combinations: CFVFP,
CFVFP+, MCCFVFP, and MCCFVFP+. Figure 4 clearly illustrates that MCCFVFP and MCCFVFP+
consistently outperform CFVFP and CFVFP+ in terms of results. However, the performance of

15

Algorithm 2 MCCFVFP(s, π)
1: if π1 = π2 = 0 then
2: return [0, 0]
3: end if
4: if s ∈ Z then
5: return

[
u1(s)π2, u2(s)π1

]
6: end if
7: Define I as the information set to which s belongs
8: r = [0, 0]
9: if P (s) = c then

10: a ∼ σc(s)
11: r =PMCCFR(s+ a, π)
12: return r
13: else
14: if P (s) = p1 then
15: πs, πo = π1, π2

16: ps, po = p1, p2
17: else
18: πs, πo = π2, π1

19: ps, po = p2, p1
20: end if
21: if πo = 0 then
22: r′ = MCCFVFP(s+ σt(I), π)
23: r(po) = r′(po)
24: σ̄ps

t (I) = ((t− 1)σ̄ps

t−1(I) + σps

t (I))/t
25: else if πs = 0 then
26: for a ∈ A(I) do
27: r′ = MCCFVFP(s+ a, π)
28: Qps

t (I, a) = Qps

t−1(I, a) + r′(ps)
29: if a = σps(I) then
30: r(po) = r′(po)
31: end if
32: end for
33: σps

t+1(I) = maxaP∈ΣP(I)Q
ps

t (I, a)
34: else
35: for a ∈ A(I) do
36: πps = σps

t (I, a)
37: r′ = MCCFVFP(s+ a, π)
38: Qps

t (I, a) = Qps

t−1(I, a) + r′(ps)
39: r(po) = r(po) + r′(po)
40: r(ps) = r(ps) + r′(ps)σ

ps

t (I, a)
41: end for
42: σ̄ps

t (I) = ((t− 1)σ̄ps

t−1(I) + σps

t (I))/t
43: σps

t+1(I) = argmaxaP∈ΣP(I)Q
ps

t (I, a)
44: end if
45: end if
46: return r

MCCFVFP and MCCFVFP+ varies across different problem sets. Based on these observations, we
ultimately selected the more conservative MCCFVFP method.

D.2 Weighted Averaging Schemes for CFVFP

Different weights of CFVFP will also have a significant impact on the results. The weight wt is
introduced into Qi

t(I):

Qi
t(I) =

{
Qi

t−1(I) + wtu
i(I, σt) if π−i

σt
(I) = 1

Qi
t−1(I) otherwise.

(24)

16

Figure 4: Convergence rate of MCCFVFP variants in different games

Common wt values are wt = 1, wt = log t, wt = t, wt = t2. The Figures 5 show the experimental
results with different weights. In the comparison of four common wt, convergence is faster when

Figure 5: Convergence rate of different weighted average schemes for CFVFP

wt = 1.

E Proof of conclusion in theoretical analysis of CFVFP algorithm

E.1 Time Complexity of CFR and CFVFP in an Information Set

Due to its significantly streamlined calculation process, CFVFP requires far less computation per
information set compared to CFR . Consider an information set I with x possible actions, denoted as
A(I) = a1, a2, . . . , ax. If the counterfactual payoff u(I, a) for each action is known, then:

The calculations required for CFVFP in one information set are:

17

Figure 6: Game tree when each node has h = 4 levels and g = 3 actions. The number (π1(s), π2(s))
in each node represents the probability of player1 and player2 reaching this node respectively.

1. Add the counterfactual payoff ui (I, σt|I→a) to the counterfactual value Qi
T (I, a), this step

requires x additions;

2. Find the maximum value of Qi
T (I) (get BR strategy), this step requires x comparisons;

3. Update the BR strategy to the average strategy, this step requires 1 addition;

A total of 2x+ 1 additions.

The calculations required for CFR in one information set are:

1. Get average counterfactual payoff ui(I) from ui (I, σt|I→a) and strategy σt(I), this step
needs x multiplications and x− 1 additions;

2. Get regret value R(I, a), this step needs x additions;

3. Multiply the regret value R(I, a) by π−i
σt
(I) and add it to the average regret value R̄T (I, a),

this step needs x additions and x multiplications;

4. Compared Regret value with 0, this step needs x comparisons;

5. Add up the positive regret values, this step needs x− 1 additions;

6. Get regret matching strategy, this step x multiplications;

7. Update the RM strategy to the average strategy, this step needs x additions;

A total of 6x− 2 additions and 3x multiplications. It can be seen that in one information set, CFVFP
only takes 2/9 of the time of CFR .

E.2 Number of nodes touched in one iteration

In a deterministic game tree with h levels and g actions per node (no chance nodes), such as
a g = 3, h = 4 scenario depicted in Figure 6, nodes are categorized into four distinct types
(sall = (sr, sg, sb, sy)).

• The probability of all players reaching this node is 1 (red node sr);

• The probability of all players reaching this node is 0 (green node sg), and these nodes can
be pruned;

• The probability of the current player reaching this node is 1, and the probability of other
players is 0 (blue node sb);

• The probability that the current player reaches this node is 0, and the probability of other
players is 1 (yellow node sy);

We define the nodes that must be touched as spass=(sr,sb,sy). The figure shows that each level has a
single red node, with yellow and green nodes following a blue node, which is derived from red and

18

yellow nodes. The function Fh(sx) quantifies the count of each node type across layers 1 to h.

Fh (sr) = 1

Fh (sg) = gFh−1 (sg) + (g − 1)Fh−1 (sb)

Fh (sb) = (g − 1)Fh−1 (sr) + gFh−1 (sy)

Fh (sy) = Fh−1 (sb)

(25)

the general term formula for blue node sb in the h layer is:

Fh (sb) = (g − 1)Fh−1 (sr) + gFh−1 (sy)

= (g − 1)1 + gFh−2 (sb)

= (g − 1) + g ((g − 1) + gFh−4 (sb))

= . . .

(26)

after simplification:

Fh≥2(sb) = (g − 1)

⌊(h−2)/2⌋∑
i=0

gi. (27)

The number of nodes that need to be touched spass in the h level game tree is:

Fh (spass) = Fh (sr) + Fh (sb) + Fh (sy)

= 1 + Fh (sb) + Fh−1 (sb)
(28)

Fh≥3(spass) = 1 + (g − 1)

⌊(h−2)/2⌋∑
i=0

gi + (g − 1)

⌊(h−3)/2⌋∑
i=0

gi. (29)

The number of node sall of the entire h level game tree is:

Fh(sall) =

h∑
i=0

gi =
1− gh

1− g
. (30)

In a two-player game, it can be approximately considered that Fh(sall) ∝
√
Fh(spass), so CFVFP

only needs to touch O
(√

|S|
)

nodes in one iteration. Extending the results to multi-player games,

CFVFP only needs to touch O
(

|N|
√
|S|
)

nodes. At the same time, CFR must traverse all O (|S|)
nodes.

F Experiment Supplementary Notes

F.1 Description of the game

F.1.1 Kuhn-extension/Leduc-extension poker

We have made improvements to Kuhn and Leduc Poker:

1. The original Leduc and Kuhn poker types are 3 cards, and in the improved game the types
are x ≥ 3 cards;

2. The original Leduc and Kuhn can only raise one fixed chip, but in the improved game it is
allowed to raise y ≥ 1 chips of various sizes. The Bet Action raise size here adopts an equal
proportional sequence in multiples of 2. For example, when the blind bet is 1 and y = 4, the
allowed raise action is [1, 2, 4, 8];

3. The original Leduc and Kuhn can only raise once in a round. After one player raises, the rest
of the players can only choose to call or fold, and cannot raise a larger bet. In the improved
game, it can be raised up to z times.

19

F.1.2 Princess and Monster

Princess and monster (PAM) is a game in which two players chase and escape in a dungeon with
obstacles (a 4-connected grid diagram of m× n). The game rule is:

• The two players are monster and princess, and each player knows the structure of the
dungeon and which rooms can be accessed.

• They can only exist in one particular dungeon at a time, and they all know the number of
their current dungeon (grid).

• The monster’s goal is to find and capture the princess as soon as possible.
• The princess’s goal is to escape the monster as much as possible.

The actions they can choose are:

• In the initial stage, monster and princess can choose any birth room to start the game;
• In the following process, monster and princess can choose to move one space per step in

four directions, up, down, left and right, or stay in place. When moving, they cannot exceed
the dungeon boundary or enter impassable rooms.

Result of the game:

• At the same time, if the monster and princess appear in the same dungeon, the game ends.
The princess survives the n round and gets n utilities, and the corresponding monster gets
−n utilities.

• If the monster does not capture the princess within a certain number of steps (such as N
move), the game ends directly. The princess earns N utilities and the monster earns −N
utilities.

Figure 7: The structure of the dungeon.

As shown in Figure 7, we set the dungeon to a 3×3 grid, with inaccessible rooms in the upper left
and right corners.

F.2 The Rest of the Experimental Results

We measured the number of information sets and the number of nodes in different games in Table 3,
and there are rest of the experimental results in Figure 8.

G The difference between time, nodes touched and iterations as indicator

In previous papers, many convergence analyses were performed based on the number of iterations T ,
which is obviously unfair to the sampling CFR/CFVFP algorithm. For sampling algorithms, many
studies have used the number of nodes to analyze the convergence of the algorithm, but these studies
have ignored the inconsistent calculation time of different nodes and the inconsistent number of
information sets that have passed through the same node. The cost of an iteration in CFR/CFVFP is
divided into two parts: the game tree traversal cost and the RM/BR strategy cost calculated on the
information set:

• On each information set: It is necessary to calculate the RM/BR strategy and update
the average strategy for the passed information set. These costs have been detailed in
Section E.1.

20

Game name Information set Number of nodes

RPS 2 13
3 C 1 P 1 L Kuhn 12 55
15 C 1 P 1 L Kuhn 60 1891
50 C 1 P 1 L Kuhn 200 22051
3 C 3 P 3 L Kuhn 48 271
7 C 3 P 3 L Kuhn 112 1891
7 C 5 P 3 L Kuhn 364 6427
15 C 5 P 3 L Kuhn 780 32131
15 C 7 P 3 L Kuhn 1920 80011
3 C Leduc 288 1945
7 C Leduc 1512 25985
15 C Leduc 6480 255601
25 C Leduc 18900 1180001
3 C 3 P Leduc 1680 12529
7 C 3 P Leduc 9016 172313
15 C 3 P Leduc 41160 1712521
3 C 5 P Leduc 6399 49384
7 C 5 P Leduc 34587 685280
15 C 5 P Leduc 158355 6831856
4 round PAM 224 68815
5 round PAM 794 715655
6 round PAM 2804 7447021

Table 3: Information sets and node number record for different games

Figure 8: Convergence rate in Leduc-extension, Kuhn-extension, Here Action and Len are both 1.

• There are three types of nodes on each game tree node, all of which need to get the
counterfactual utility of each player. The difference is:

– On the player node, the counterfactual utility needs to be obtained on this type of node
ui (s, σt|I→a) and multiplied by the strategy return.

– On opportunity nodes, in this type of node need to get virtual utility ui (I, σt|I→a) and
multiplied by opportunity node probability.

– On the end point node, it is necessary to solve the final income according to the node
on this type of node.

When passing through the same number of nodes, different algorithms do not pass through the same
number of information sets. For example, when using the CFR algorithm to train vanilla Kuhn poker
(assuming no pruning), one iteration passes through 55 nodes (24 player nodes, 1 random node, 30

21

leaf nodes), and calculate regret matching strategies on 12 information sets, at this time, the ratio
of information set calculation and node calculation is 12:55. While using MCCFR the calculation
passes through 10 nodes (4 player nodes, 1 random node, 5 leaf nodes), and calculate regret matching
strategies on 4 information sets, the ratio of information set calculation and node calculation is 4:10.
And the computing time is different at different decision, opportunity, and end point nodes. Therefore,
measuring the performance of the algorithm by the number of nodes passed does not objectively
reflect the ability of the algorithm.

22

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: I believe that the abstract and introduction accurately reflect the contribution
and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: At the end of the paper we pointed out that our algorithm needs larger-scale
experiments and is combined with more CFR variants.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

23

Answer: [NA]
Justification: I think the theory about CFVFP has been well proven, but it is just a conjecture
that the large game is a clear game. The correctness of this conjecture needs to be verified in
more problems.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have made our code available for inspection and reproduction
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

24

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The code we provide can ensure that the results of this paper are reproduced,
but this paper relies on the assumption that large-scale games are a clear game, which is not
necessarily 100% certain in large-scale games.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [No]

Justification: Our Texas Hold’em experiments were conducted using a commercial solver,
so we are unable to share this part of the code. However, the experiments on smaller-scale
games have been made publicly available.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All our experiments are labeled with confidence intervals.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide a detailed account of the resources required for all experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We believe that our research complies with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work is very theoretical and there is no need to discuss social implications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

26

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our research does not cover this aspect.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

27

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: together in the submitted code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Notation and Preliminaries
	Game Theory
	Normal-Form Game
	Extensive-Form Games
	Nash Equilibrium
	Dominated Strategy and Clear Games

	Regret Matching and Counterfactual Regret Minimization
	Fictitious Play

	Motivation of CFVFP
	CFVFP Method
	Counterfactual Value Fictitious Play Implementation
	Theoretical Analysis of MCCFVFP Algorithm

	Experiments
	Description of the Game and Experimental Settings
	Experimental results

	Conclusion
	A Toy Example of RM not Performing Well in Clear Game
	Convergence of CFVFP
	Blackwell Approachability Game
	Fictitious Play achieves Blackwell Approachability
	The convergence speed of FP and clear games

	Pseudocode
	CFVFP
	MCCFVFP

	Comparison between variants of CFVFP
	CFVFP variants
	Weighted Averaging Schemes for CFVFP

	Proof of conclusion in theoretical analysis of CFVFP algorithm
	Time Complexity of CFR and CFVFP in an Information Set
	Number of nodes touched in one iteration

	Experiment Supplementary Notes
	Description of the game
	Kuhn-extension/Leduc-extension poker
	Princess and Monster

	The Rest of the Experimental Results

	The difference between time, nodes touched and iterations as indicator

