

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TASK-ADAPTIVE PARAMETER-EFFICIENT FINE-TUNING FOR WEATHER FOUNDATION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

While recent advances in machine learning have equipped Weather Foundation Models (WFMs) with substantial generalization capabilities across diverse downstream tasks, the escalating computational requirements associated with their expanding scale increasingly hinder practical deployment. Current Parameter-Efficient Fine-Tuning (PEFT) methods, designed for vision or language tasks, fail to address the unique challenges of weather downstream tasks, such as variable heterogeneity, resolution diversity, and spatiotemporal coverage variations, leading to suboptimal performance when applied to WFMs. To bridge this gap, we introduce WeatherPEFT, a novel PEFT framework for WFMs incorporating two synergistic innovations. First, during the forward pass, Task-Adaptive Dynamic Prompting (TADP) dynamically injects the embedding weights within the encoder to the input tokens of the pre-trained backbone via internal and external pattern extraction, enabling context-aware feature recalibration for specific downstream tasks. Furthermore, during backpropagation, Stochastic Fisher-Guided Adaptive Selection (SFAS) not only leverages Fisher information to identify and update the most task-critical parameters, thereby preserving invariant pre-trained knowledge, but also introduces randomness to stabilize the selection. We demonstrate the effectiveness and efficiency of WeatherPEFT on three downstream tasks, where existing PEFT methods show significant gaps versus Full-Tuning, and WeatherPEFT achieves performance parity with Full-Tuning using fewer trainable parameters. The code of this work is available at <https://anonymous.4open.science/r/WeatherPEFT-A068>.

1 INTRODUCTION

In an era marked by intensifying global climate change, the frequency and severity of extreme weather events, such as droughts (Fabian et al., 2023; Deng et al., 2023) and floods (Hirabayashi et al., 2013), have been steadily increasing. Consequently, developing accurate and timely weather modeling systems is crucial for enhancing our understanding of climate change (Beddington et al., 2011; Connor, 2015). For decades, physics-based models (Kimura, 2002; Lynch, 2008; Coiffier, 2011; Bauer et al., 2015; Ravindra et al., 2019) have served as cornerstones for weather research. However, their computational demands, stemming from resolving complex physical constraints, present significant challenges regarding efficiency and scalability (Ren et al., 2021). Over the last decade, the widespread adoption of machine learning models in weather research has led to significant advances in prediction accuracy and computational efficiency (Schultz et al., 2021; Chen et al., 2023c; Shi et al., 2025). Nevertheless, most of these models remain task-specific, requiring bespoke architectures and training protocols for distinct applications, limiting their generalizability.

This limitation has spurred interest in Weather Foundation Models (WFMs), large-scale pre-trained models that leverage massive data to acquire generalized representations of atmospheric processes (Nguyen et al., 2023a; Bodnar et al., 2025; Schmude et al., 2024; Zhao et al., 2024b). Fine-tuning is then applied to transfer the pre-trained model’s knowledge, enabling it to achieve promising performance on downstream tasks. Nevertheless, as the scale of these models increases (Bodnar et al., 2025; Schmude et al., 2024), so too does the challenge of fine-tuning them effectively and efficiently for downstream tasks. Full fine-tuning, which adjusts the entire model per task, is computationally prohibitive due to escalating resource demands. Furthermore, maintaining distinct parameter sets per task creates storage bottlenecks when scaling to large models with multi-task scenarios.

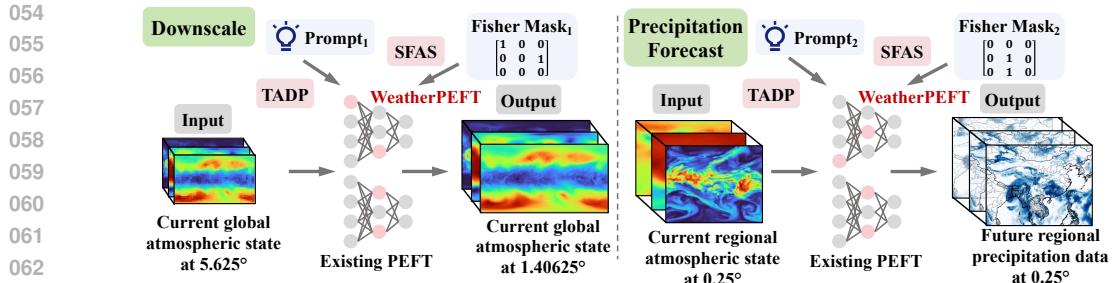


Figure 1: Unlike the uniform adaptation of existing PEFT methods, WeatherPEFT is adaptive to heterogeneous weather tasks like global downscaling (left) and regional precipitation forecasting (right) with Task-Adaptive Dynamic Prompting and Stochastic Fisher-Guided Adaptive Selection.

In light of these challenges, Parameter-Efficient Fine-Tuning (PEFT) techniques prevalent in natural language processing and computer vision have shown great promise (Hu et al., 2022; Jia et al., 2022; Zhang et al., 2025), which seeks to potentially match or even exceed the performance of full fine-tuning with a minimal number of trainable parameters updates. These methods not only facilitate more effective adaptation to novel tasks but also preserve the pre-existing knowledge within the foundation models. However, the weather downstream tasks are inherently diverse, encompassing a wide range of objectives. This diversity poses significant challenges when adapting pre-trained models to these tasks, as the varying characteristics of each task make it difficult to apply a one-size-fits-all approach. Unlike the standardized three-channel RGB inputs of vision models or the unified word embedding space of language models, meteorological data involve a wide variety of variables (e.g., temperature and humidity), resolutions (e.g., 1.40625° and 0.25°), and spatiotemporal coverage (e.g., global versus regional) across tasks. First, these variables are distinct physical quantities governed by fluid dynamics equations. Crucially, the correlations between these variables change depending on the task. Second, resolution in weather is not merely a spatial dimension but a physical regime. Changing resolution, e.g., from 5.625° to 0.25° , fundamentally alters the governing physics, transmitting from hydrostatic, large-scale dynamics to non-hydrostatic, convective-scale processes. Third, weather data is inherently spherical and multi-dimensional, often requiring simultaneous reasoning across vast spatiotemporal scales. Tasks at different spatiotemporal scales impose distinctly different demands on the model’s feature hierarchies.

These complexities require models to adapt to the varying characteristics inherent in each downstream task. Moreover, a critical limitation of most existing PEFT approaches is their tendency to apply the same set of trainable parameters across different downstream tasks (Figure 1), which uniformly updates the entire PEFT module across all inputs. These methods fail to account for the fact that different parameters may play varying roles in different tasks. For example, parameters relevant for regional precipitation forecasting may differ from those critical for meteorological downscaling. While task-specific selection methods exist in the broader PEFT literature, they primarily focus on reducing fine-tuning costs in general domains through static selection mechanisms (Xu et al., 2021; Fu et al., 2023; Zhao et al., 2024a). Consequently, as evidenced by the results of these methods in Table 3 and 13, they fail to dynamically recalibrate for the complex, variable-specific couplings and physical regime shifts that characterize meteorological data, leading to suboptimal performance.

To fill this gap, we propose WeatherPEFT, a novel PEFT framework for WFs comprising Task-Adaptive Dynamic Prompting (TADP), which adapts the model’s forward pass to task-specific characteristics, and Stochastic Fisher-Guided Adaptive Selection (SFAS), which governs the subsequent parameter updates during backpropagation. Since the encoder’s embedding layer captures the task-specific information about input variables, resolutions, and weather phenomena, **TADP** extracts and integrates this information by transforming its weights into the input token space of the pre-trained backbone. Specifically, TADP first employs three specialized adapters to model the internal patterns within the data dimension. Subsequently, it utilizes self-attention to capture the external patterns by modeling the coupling between physical variables and spatial resolution features, forming a cohesive representation. This dual approach effectively conditions the model on the specific characteristics of the current task. **SFAS** provides a principled approach to identify optimal task-specific parameter subsets, as the relevance and impact of specific parameters can vary significantly across different weather downstream tasks. SFAS utilizes the Fisher information matrix to quantify the sensitivity of parameters to the learning objective. It further integrates an annealed stochastic component to pri-

108 prioritize updates for task-critical parameters with higher possibilities while preserving foundational
 109 pre-trained knowledge. The injected randomness serves to stabilize the selection, mitigating the risk
 110 of prioritizing parameters influenced by initial noise. Our main contributions are summarized as:
 111

- 112 • This work pioneers in exploring generalizing WFM to downstream tasks. Particularly, we high-
 113 light the efficiency issues in tuning WFM, tackling the diverse demands of weather applications.
- 114 • We propose WeatherPEFT, a novel PEFT framework that integrates Task-Adaptive Dynamic
 115 Prompting (TADP) and Stochastic Fisher-guided Adaptive Selection (SFAS). TADP utilizes task-
 116 related soft prompts extracted from the encoder and SFAS filter task-adaptive parameters based
 117 on Fisher information, enabling efficient and adaptive adaptation to weather downstream tasks.
- 118 • We evaluate WeatherPEFT on three downstream tasks where existing PEFT methods exhibit a
 119 significant performance gap versus Full-Tuning. Our results demonstrate that WeatherPEFT closes
 120 this gap, achieving performance on par with Full-Tuning while using fewer trainable parameters.
 121 Remarkably, WeatherPEFT outperforms Full-Tuning on regional precipitation forecasting.

122 2 RELATED WORKS

123 2.1 WEATHER FOUNDATION MODELS

124 The increasing scale of available meteorological data has spurred the application of machine learning
 125 (ML) techniques in weather and climate modeling (Shi et al., 2025; Chen et al., 2023c; Schultz et al.,
 126 2021). Most notably, several models (Bi et al., 2023; Lam et al., 2023; Chen et al., 2023b;a; Price
 127 et al., 2023; Chen et al., 2023b) have demonstrated superior performance in medium-range weather
 128 forecasting, surpassing traditional NWPs in terms of accuracy and computational efficiency. Beyond
 129 forecasting, ML techniques show promise in various tasks, including bias correction (Gregory et al.,
 130 2024; Bretherton et al., 2022), downscaling (Mardani et al., 2024; 2023), data assimilation (Huang
 131 et al., 2024; Xiao et al., 2024), and post-processing (Ashkboos et al., 2022; Rasp & Lerch, 2018).
 132 Despite these successes, these models are typically designed for specific tasks and often trained on
 133 data in particular formats, lacking general-purpose utility for weather and climate modeling.
 134

135 Foundation Models (FMs) offer a promising solution due to their ability to learn extensive prior
 136 knowledge from pre-training on large datasets (Devlin et al., 2019; Brown et al., 2020; Chowdhery
 137 et al., 2023; Radford et al., 2021; Yuan et al., 2021; Wang et al., 2023b). Therefore, recent studies
 138 have begun exploring WFM (Bodnar et al., 2025; Nguyen et al., 2023a; Schmude et al., 2024; Zhao
 139 et al., 2024b). For instance, Aurora (Bodnar et al., 2025) is pretrained on ten sources of weather
 140 datasets and has demonstrated its adaptability to a range of tasks, capable of handling weather data
 141 at arbitrary pressure levels for an arbitrary set of variables. Furthermore, Prithvi WxC (Schmude
 142 et al., 2024), a 2.3 billion parameter foundation model developed using 160 variables, demonstrates
 143 its generalization abilities across a set of challenging downstream tasks. However, as size grows, of-
 144 ten encompassing billions of parameters, the computational and storage demands increase substan-
 145 tially. This makes the standard approach of Full-Tuning for each downstream task unsustainable.
 146 Therefore, more efficient and resource-saving fine-tuning solutions are urgently needed for WFM.
 147

148 2.2 PARAMETER-EFFICIENT FINE-TUNING

149 PEFT has emerged as a promising paradigm for adapting foundation models to novel downstream
 150 tasks while maintaining their intrinsic knowledge (Yu et al., 2022; Hu et al., 2022; Zhou et al., 2024;
 151 Han et al., 2024; Xin et al., 2024; Zhang et al., 2025; Li & Liang, 2021). Current PEFT can be
 152 broadly categorized into four principal classes: Selective, Additive, Prompt-based, and Reparameter-
 153 ization approaches. Selective PEFT strategically optimizes partial parameter subsets of founda-
 154 tion models (Xu et al., 2021; Zaken et al., 2022; Sung et al., 2021). Additive PEFT incorporates
 155 trainable modules into the backbone and only fine-tunes these additional networks (Chen et al.,
 156 2023d; Gao et al., 2023). For instance, AdaptFormer (Chen et al., 2022) incorporates a lightweight
 157 down-and-up module into the model’s backbone. Similarly, SSF (Lian et al., 2022) applies scaling
 158 and shifting to the features generated by each layer. Prompt-based PEFT involves learning soft
 159 constraints in the input token or the attention layer to adapt models to new tasks like VPT (Jia et al.,
 160 2022) and Aprompt (Wang et al., 2023a). Reparameterization PEFT transforms the initial parame-
 161 ters into a low-dimensional representation during training while seamlessly converting the weights
 back to their original form for inference. LoRA (Hu et al., 2022) is a widely recognized method

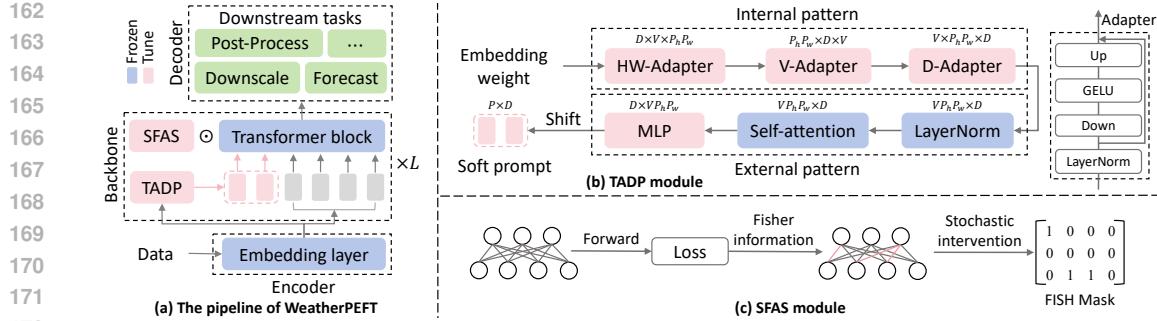


Figure 2: (a) Overview of WeatherPEFT, with TADP and SFAS applied to backbone. (b) TADP generates task-aware prompts by extracting internal and external patterns from the encoder. (c) SFAS uses Fisher information and a stochastic intervention to update task-critical parameters.

that decomposes the updated weight into two low-rank matrices, and DoRA (Liu et al., 2024) further advances the decomposition by separating them into a magnitude vector and a direction matrix. However, the inherent heterogeneity of weather downstream tasks, with their varied variables, resolutions, and spatiotemporal coverage, renders conventional homogeneous PEFT approaches sub-optimal. While task-specific selection methods exist (Xu et al., 2021; Fu et al., 2023; Zhao et al., 2024a), they primarily focus on reducing fine-tuning costs in general domains, often relying on static selection determined prior to training. These static mechanisms fail to dynamically recalibrate for complex, variable-specific couplings and physical regime shifts inherent in weather tasks. In contrast, WeatherPEFT introduces a dynamic, annealed selection mechanism (SFAS) combined with context-aware dynamic prompting (TADP) to explicitly address the meteorological challenges.

3 BACKGROUND AND PRELIMINARIES

Weather Downstream Tasks. This work focuses on gridded prediction tasks, which are formalized as spatiotemporal modeling to map input states (historical) to target states (future or derived quantities). Specifically, the input is denoted as a three-dimensional array $\mathbf{X} \in \mathbb{R}^{V \times H \times W}$, where V represents the number of physical variables, such as temperature and geopotential, and $H \times W$ denotes the spatial resolution, determined by how the globe is gridded. The target is to predict an output states $\hat{\mathbf{Y}} \in \mathbb{R}^{\hat{V} \times \hat{H} \times \hat{W}}$. Similarly, \hat{V} and $\hat{H} \times \hat{W}$ are the variables and spatial resolution of the task-dependent output. For example, a global downscaling task involves mapping the 5.625° low-resolution data (32×64 grid points) to 1.40625° high-resolution data (128×256 grid points).

Parameter-Efficient Fine-Tuning. The foundation model is first pre-trained on extensive source data and then is fine-tuned to perform a variety of downstream tasks $\mathcal{T} = \{\mathcal{T}^i\}_{i=1}^{|\mathcal{T}|}$, where $\mathcal{T}^i = \{(\mathbf{X}_j^i, \mathbf{Y}_j^i)\}_{j=1}^{|\mathcal{T}_i|}$ serves as input-label pairs of each downstream task. Let the pre-trained model M_θ be parametrized by θ , the goal of fine-tuning is to adapt θ to different downstream tasks. While the standard full fine-tuning need to update all parameters in θ to obtain θ^i for each downstream task \mathcal{T}^i , PEFT aims to introduce minimal parameter updates $\Delta\theta^i$ with $|\Delta\theta^i| \ll |\theta^i|$. For each task \mathcal{T}^i , the objective is to optimize the task-specific loss \mathcal{L}^i with output $\hat{\mathbf{Y}}_j^i$ from the model $M_{\theta+\Delta\theta^i}$:

$$\min_{\Delta\theta^i} \mathbb{E}_{(\mathbf{X}_j^i, \mathbf{Y}_j^i) \in \mathcal{T}^i} \mathcal{L}^i(M_{\theta+\Delta\theta^i}(\hat{\mathbf{Y}}_j^i | \mathbf{X}_j^i), \mathbf{Y}_j^i). \quad (1)$$

Since our method is applicable to all tasks, we omit task index superscript i hereafter for simplicity.

4 METHODS

Figure 2 presents an overview of the proposed WeatherPEFT, which integrates two synergistic innovations operating at distinct stages of the fine-tuning process. The Task-Adaptive Dynamic Prompting (TADP) makes the model task-aware on the forward pass, while Stochastic Fisher-Guided Adaptive Selection (SFAS) governs the resulting parameter updates during backpropagation.

216 4.1 TASK-ADAPTIVE DYNAMIC PROMPTING
217

218 The encoder embedding layer serves as a rich repository of task-specific knowledge, implicitly en-
219 coding the distinct characteristics of tasks. To explicitly extract and leverage this information, we
220 propose TADP. This method employs adapters that process the embedding weights to identify both
221 internal and external patterns. These patterns are subsequently used to generate task-aware prompts
222 that condition the forward pass, enabling the model to adapt to specific downstream applications.
223

224 **Internal Pattern Extraction.** The internal patterns within the encoder represent the intrinsic fea-
225 ture learned from data dimensions. The embedding weights $\mathbf{E} \in \mathbb{R}^{D \times V \times P_h \times P_w}$ capture these
226 relationships by mapping the input into tokens, with $P_h \times P_w$ the kernel size involving spatial and
227 resolution information, V the number of variables, D the hidden dimension revealing meteorologi-
228 cal characteristics. To harness the patterns, we sequentially extract features using three specialized
229 adapters arranged in a progressive, low-to-high-level hierarchy. Each adapter consists of a Layer-
230 Norm layer, a down-projection layer, a GELU activation, and an up-projection layer. Specifically,
231

- 232 • **HW-Adapter:** We first process the spatial and resolution information ($P_h \times P_w$) that governs lo-
233 calized interactions. The HW-adapter learns patterns from neighboring areas, thereby establishing
234 the fundamental context of how features behave and interact across spatial locations.
- 235 • **V-Adapter:** Building upon the spatially-refined features processed by the HW-Adapter, the V-
236 Adapter models the complex interdependencies and relationships among different physical input
237 variables (V) such as temperature and humidity, within the established spatial context.
- 238 • **D-Adapter:** The D-Adapter processes the abstract attributes represented by the weather char-
239 acteristics (D). It integrates the outputs from the previous spatial and physical processing stages to
240 capture high-level, universal patterns that holistically explain atmospheric response mechanisms.

241 Formally, we first flatten the spatial dimension of the embedding weights \mathbf{E} to $\hat{\mathbf{E}} \in \mathbb{R}^{D \times V \times P_h P_w}$.
242 Subsequently, $\hat{\mathbf{E}}$ is passed through the adapter sequence to extract the respective internal patterns:
243

$$\mathbf{E}_{HW} = (\text{Adapter}_{HW}(\hat{\mathbf{E}}))^\pi, \quad \mathbf{E}_V = (\text{Adapter}_V(\mathbf{E}_{HW}))^\pi, \quad \mathbf{E}_D = \text{Adapter}_D(\mathbf{E}_V), \quad (2)$$

244 where $\mathbf{E}_{HW} \in \mathbb{R}^{P_h P_w \times D \times V}$, $\mathbf{E}_V \in \mathbb{R}^{V \times P_h P_w \times D}$, and $\mathbf{E}_D \in \mathbb{R}^{V \times P_h P_w \times D}$ are the respective
245 outputs of adapters, and $^\pi$ denotes an operation that shifts the last dimension of a tensor to the first.
246

247 **External Pattern Integration.** The next step involves integrating the patterns to form a cohesive,
248 task-specific representation. To achieve this, we capture external patterns by establishing a coupling
249 analysis between the physical quantities (V) and spatial resolution features ($P_h P_w$). We first merge
250 the first two dimension of \mathbf{E}_D to $\hat{\mathbf{E}}_D \in \mathbb{R}^{V P_h P_w \times D}$ and then apply the self-attention operation
251 $\text{SA}(\cdot)$ to $\hat{\mathbf{E}}_D$, followed by a linear projection to generate the final soft prompt tokens \mathbf{E}_P :

$$\text{SA}(\cdot) = \text{Softmax}\left(\frac{\mathbf{E}_{query} \mathbf{E}_{key}}{\sqrt{D}}\right) \mathbf{E}_{value}, \quad \mathbf{E}_{SA} = (\text{SA}(\hat{\mathbf{E}}_D))^\pi, \quad \mathbf{E}_P = (\text{MLP}(\mathbf{E}_{SA}))^\pi, \quad (3)$$

252 where $\mathbf{E}_{SA} \in \mathbb{R}^{D \times V P_h P_w}$, $\mathbf{E}_P \in \mathbb{R}^{P \times D}$, P is the prompt length, and \mathbf{E}_{query} , \mathbf{E}_{key} , \mathbf{E}_{value} are the
253 query, key, and value, respectively. Specifically, the final step is to inject these task-adaptive prompt
254 tokens into the backbone. The input \mathbf{X} is first encoded into a sequence of M tokens $\mathbf{T} \in \mathbb{R}^{M \times D}$ by
255 the encoder. The generated soft prompt tokens \mathbf{E}_P are then concatenated with the input tokens \mathbf{T}
256 before being fed into each block of the pretrained backbone. This ensures that the model processes
257 the input data in the context of the task-specific information at every stage of computation.
258

259 4.2 STOCHASTIC FISHER-GUIDED ADAPTIVE SELECTION
260

261 The diversity of weather downstream tasks implies that parameters are not uniformly relevant across
262 all applications. Some parameters may encode chaotic patterns for precipitation forecasting, while
263 some focus on spatial relationships for downscaling. Consequently, we propose SFAS that adopts
264 the Fisher information (Kirkpatrick et al., 2017) as the metric to update the task-critical parameters.
265

266 A parameter’s significance can be determined by evaluating the extent to which altering the parame-
267 ter influences the output. Consider a model parameterized by $\theta \in \mathbb{R}^{|\theta|}$ that defines a predictive distri-
268 bution $P_\theta(\mathbf{Y}|\mathbf{X})$ with input \mathbf{X} . The sensitivity of this distribution to a small parameter perturbation
269

$\delta \in \mathbb{R}^{|\theta|}$ can be measured using the Kullback-Leibler divergence $D_{KL}(P_\theta(\mathbf{Y}|\mathbf{X}) \parallel P_{\theta+\delta}(\mathbf{Y}|\mathbf{X}))$. [Abbass et al. \(2022\)](#); [Sung et al. \(2021\)](#) shows that as $\delta \rightarrow 0$, the following relationship holds:

$$\mathbb{E}_{\mathbf{X}} [D_{KL}(P_\theta(\mathbf{Y}|\mathbf{X}) \parallel P_{\theta+\delta}(\mathbf{Y}|\mathbf{X}))] = \delta^T F_\theta \delta + O(\delta^3), \quad (4)$$

where $F_\theta \in \mathbb{R}^{|\theta| \times |\theta|}$ is the Fisher information matrix ([Fisher, 1922](#)), defined as:

$$F_\theta = \mathbb{E}_{\mathbf{X}} [\mathbb{E}_{\mathbf{Y} \sim P_\theta(\mathbf{Y}|\mathbf{X})} \nabla_\theta \log P_\theta(\mathbf{Y}|\mathbf{X}) \nabla_\theta \log P_\theta(\mathbf{Y}|\mathbf{X})^T]. \quad (5)$$

Evidently, the Fisher information matrix is intrinsically linked to the change in parameters induced by the small perturbation δ . Therefore, we leverage Fisher information to guide the adaptive parameter selection process. However, the $|\theta| \times |\theta|$ size of F_θ renders it computationally infeasible to compute the Fisher information matrix exactly in practice. Consequently, prior work often approximates F_θ with its diagonal matrix, or equivalently, as a vector in $\mathbb{R}^{|\theta|}$. Especially, when we sample N data $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_N$ from data distribution $P(\mathbf{X})$, Eq. 5 can be effectively approximated as:

$$\hat{F}_\theta = \frac{1}{N} \sum_{j=1}^N \mathbb{E}_{\mathbf{Y} \sim P_\theta(\mathbf{Y}|\mathbf{X}_j)} (\nabla_\theta \log P_\theta(\mathbf{Y}|\mathbf{X}_j))^2. \quad (6)$$

Here $\hat{F}_\theta \in \mathbb{R}^{|\theta|}$ and Eq. 6 demonstrates that a larger \hat{F}_θ corresponds to a more influential parameter. Furthermore, in a supervised learning framework, we have the data pairs $(\mathbf{X}_j, \mathbf{Y}_j)$ and can access the ground-truth label \mathbf{Y}_j for each \mathbf{X}_j . So we can approximate Eq. 6 as:

$$\hat{F}_\theta = \frac{1}{N} \sum_{j=1}^N (\nabla_\theta \log P_\theta(\mathbf{Y}_j|\mathbf{X}_j))^2. \quad (7)$$

This approximation improves computational efficiency and performance. However, due to the significant heterogeneity among weather downstream tasks, substantial noise exists during early fine-tuning, distorting Fisher information. For example, in the early epochs, parameters with high Fisher scores may capture transient noise artifacts rather than task-relevant features. To stabilize the training process, we introduce an annealed stochastic component with a linear decay factor:

$$\bar{F}_\theta = \gamma \times (1 - \frac{ns}{ts}) \odot M_{sc} + \hat{F}_\theta, \quad (8)$$

where γ is the initial factor, $M_{sc} \sim \text{Uniform}(0, 1)$ is the stochastic vector, and ns and ts are the current step and total step respectively. Each batch is treated as a step, and during training we select the Top- k parameters with the highest \bar{F}_θ for optimization. The hyperparameter k governs the sparsity of the Fish Mask. The Fish Mask entries for the Top- k parameters are set to one, while the rest are zero, thereby excluding less significant parameters and updating only the Top- k parameters.

5 EXPERIMENTS

We evaluate WeatherPEFT on downscaling, ensemble forecast post-processing, and regional precipitation prediction. These tasks are selected to span diverse weather challenges, including variable variations, resolution shifts, and spatiotemporal coverage heterogeneity. Additional ablation studies on hyperparameters and fine-grained comparisons are provided in Appendix B.1 and B.3.

Implementation Details. We mainly leverage Aurora ([Bodnar et al., 2025](#)), a 1.3B-parameter pre-trained foundation model with a 3D Swin Transformer U-Net backbone for the fine-tuning experiments. We also evaluate our method on another larger backbone, Prithvi-WxC ([Schmude et al., 2024](#)), provided in Appendix B.2. More experimental settings will be discussed in Appendix F.1.

Baselines. Generally, we adopt three types of baselines. **Firstly**, we include models trained from scratch from vision and weather domains, *i.e.*, U-Net ([Ronneberger et al., 2015](#)), ResNet ([He et al., 2016](#)), and ViT ([Dosovitskiy et al., 2020](#)), FourCastNet ([Pathak et al., 2022](#)), ClimaX ([Nguyen et al., 2023a](#)), and Aurora ([Bodnar et al., 2025](#)). This comparison helps to highlight the advantages of fine-tuning over training from the ground up. **Secondly**, to demonstrate the efficiency of PEFT, we select three conventional fine-tuning approaches, including Linear-Probing, Bias-Tuning, and Full-Tuning. **Thirdly**, we chose six state-of-the-art PEFT methods, including LoRA ([Hu et al., 2022](#)), DoRA ([Liu et al., 2024](#)), AdaptFormer ([Chen et al., 2022](#)), SSF ([Lian et al., 2022](#)), VPT ([Jia et al., 2022](#)), APrompt ([Wang et al., 2023a](#)). The architectural details are provided in the Appendix E.

324
 325 Table 1: The RMSE and Mean Bias on downscaling experiments from ERA5 (5.625°) to ERA5
 326 (1.40625°). We adopt the Aurora (Bodnar et al., 2025) as the foundation model and only count the
 327 trainable parameters in the backbone for all fine-tuning methods.

Method	Trainable Params (M)	T2m		U10		V10		T850		Z500	
		RMSE	Mean Bias	RMSE	Mean Bias						
Nearest	0.00	3.007	0.001	2.695	-0.039	2.717	0.038	2.010	0.007	295.493	-0.054
Bilinear	0.00	2.284	0.001	2.118	-0.038	2.176	0.038	1.439	0.007	149.662	-0.053
U-Net	20.10	1.915	-0.111	1.174	0.031	1.152	-0.033	1.773	-0.059	120.045	-11.118
ResNet	34.78	2.164	0.095	1.562	-0.087	1.513	0.013	1.513	-0.067	105.101	10.229
ViT	315.43	2.972	0.018	1.931	-0.024	1.837	0.006	2.143	-0.218	201.027	-27.900
FourCastNet	63.53	2.036	-0.016	1.535	-0.001	1.492	-0.003	1.494	-0.032	160.271	-4.184
ClimaX	116.65	2.512	-0.043	1.691	0.005	1.649	0.009	2.000	-0.102	163.806	-12.55
Aurora	1256.27	1.227	0.006	1.126	0.006	1.134	-0.012	1.192	0.002	99.764	-0.996
Linear-Probing	0.00	1.291	0.014	1.227	-0.002	1.198	0.003	1.078	0.002	58.085	0.598
Bias-Tuning	0.78	1.242	0.013	1.168	-0.003	1.148	0.000	1.026	0.004	53.049	0.108
LoRA	3.63	1.190	0.006	1.130	0.000	1.118	-0.002	0.998	-0.001	50.421	0.084
DoRA	3.75	1.228	0.010	1.140	0.001	1.120	-0.001	1.024	0.000	50.061	0.984
AdaptFormer	4.64	1.737	-0.065	1.505	-0.050	1.412	0.002	1.429	-0.083	106.667	-21.029
SSF	3.92	1.180	0.009	1.106	-0.001	1.094	-0.001	0.987	0.002	48.342	0.936
VPT	3.75	1.241	0.008	1.163	-0.002	1.144	0.001	1.031	0.005	52.453	0.998
APrompt	4.34	1.228	0.010	1.151	-0.002	1.132	0.000	1.025	0.008	51.587	1.099
TADP Only	2.22	1.183	0.005	1.118	0.000	1.105	-0.001	0.996	0.003	49.809	1.491
SFAS Only	1.26	1.161	0.010	1.090	-0.001	1.081	-0.002	0.973	0.002	47.000	0.848
WeatherPEFT	3.48	1.119	0.003	1.057	0.000	1.051	-0.001	0.950	0.004	44.922	0.413
Full-Tuning	1239.94	0.906	0.002	0.882	0.000	0.884	-0.001	0.836	0.000	35.821	0.314
LoRA	57.80	1.131	0.004	1.069	0.001	1.060	0.001	0.961	0.004	45.914	1.110
DoRA	57.92	1.236	0.009	1.147	-0.002	1.126	-0.001	1.030	-0.001	50.405	1.289
AdaptFormer	61.68	1.590	-0.007	1.376	-0.012	1.331	-0.003	1.282	0.006	81.465	1.739
WeatherPEFT	52.47	0.916	0.000	0.873	-0.001	0.875	-0.002	0.834	-0.002	35.076	0.504

345 5.1 DOWNSCALING

346
 347 Downscaling, the process of mapping coarse-resolution data to a higher resolution, is critical for
 348 analyzing local phenomena. In this experiment, we downscale 5.625° ERA5 data to 1.40625°
 349 ERA5 data (Hersbach et al., 2020) globally with WeatherBench dataset (Rasp et al., 2020). We
 350 simultaneously downscale the 68 atmospheric input variables to test the model’s ability to learn the
 351 cross-variable interactions required for accurate high-resolution outputs. Additionally, we compare
 352 WeatherPEFT with nearest and bilinear interpolation. We evaluate all methods on latitude-weighted
 353 Root Mean Squared Error (RMSE) and Mean Bias, which are common metrics in downscaling
 354 works (Nguyen et al., 2023b). We select 2-meter temperature ($T2m$), 10-meter zonal wind ($U10$),
 355 10-meter meridional wind ($V10$), 500 hPa geopotential ($Z500$), and 850 hPa temperature ($T850$) as
 356 the primary verification fields as they collectively ensure a holistic evaluation of model performance
 357 (Rasp et al., 2020). Details of the task configurations and metrics are in the Appendix F.2.

358 Visualizations are included in Appendix F.2.3. Table 1 shows downscaling results, indicating that

- 360 • Models trained from scratch generally exhibit poorer performance compared to fine-tuning ap-
 361 proaches. For example, Aurora achieves an RMSE of 1.227 for $T2m$, which is significantly worse
 362 than the 0.906 RMSE of Full-Tuning. This performance gap arises from the task’s nature, which
 363 necessitates simultaneous downscaling of 68 variables, posing significant challenges for models
 364 trained from scratch to effectively capture the complex interdependencies among these variables.
- 365 • While the PEFT methods significantly reduce trainable parameters, they incur a certain degree of
 366 accuracy degradation compared to Full-Tuning. For example, DoRA shows $\sim 36\%$ higher $T2m$
 367 RMSE compared to Full-Tuning with only 3.75M parameters (1.228 vs. 0.906). These results
 368 underscore the limitations of existing PEFT strategies in specialized scientific domains. Notably,
 369 WeatherPEFT effectively balances parameter efficiency and performance, outperforming existing
 370 PEFT baselines in terms of RMSE using the fewest parameters, with only 3.48M parameters,
 371 demonstrating its ability to adapt the foundation model to the task of downscaling.
- 372 • The ablation study provides further evidence of the effectiveness of our framework. TADP and
 373 SFAS individually perform well but slightly underperform versus the full WeatherPEFT, under-
 374 scoring the synergistic benefits of both modules during the forward and backpropagation passes.
- 375 • To ensure a comprehensive and fair comparison, we also evaluated the PEFT methods with an
 376 increased parameter budget ($\sim 4\%$). Even in this setting, existing PEFT methods like LoRA and
 377 DoRA still fail to approach the performance of Full-Tuning. Remarkably, WeatherPEFT nearly
 378 closes the gap, achieving results nearly on par with, and in some cases better than, the Full-Tuning.

378
 379 Table 2: The CRPS and EECRPS on ensemble weather forecast post-processing with ten ensemble
 380 members. We adopt the Aurora (Bodnar et al., 2025) as the foundation model.

Method	Trainable Params (M)	T2m		U10		V10		T850		Z500	
		CRPS	EECRPS	CRPS	EECRPS	CRPS	EECRPS	CRPS	EECRPS	CRPS	EECRPS
RAW	0.00	0.732	0.250	0.889	0.304	0.899	0.304	0.719	0.246	78.222	28.766
U-Net	19.88	0.661	0.226	0.859	0.292	0.872	0.292	0.672	0.230	74.158	27.260
ResNet	33.95	0.682	0.232	0.865	0.294	0.880	0.295	0.689	0.235	75.562	27.750
ViT	311.10	0.646	0.221	0.856	0.291	0.872	0.292	0.672	0.229	73.503	26.956
FourCastNet	73.56	0.679	0.231	0.859	0.291	0.872	0.292	0.687	0.234	74.552	27.342
ClimaX	114.55	0.636	0.217	0.854	0.290	0.870	0.292	0.669	0.229	72.916	26.751
Aurora	1256.46	0.619	0.211	0.847	0.287	0.863	0.288	0.662	0.226	80.852	29.616
Linear-Probing	0.00	0.649	0.222	0.850	0.288	0.866	0.290	0.662	0.226	73.151	26.847
Bias-Tuning	0.78	0.644	0.220	0.849	0.288	0.865	0.290	0.661	0.226	73.009	26.827
LoRA	3.63	0.637	0.218	0.849	0.288	0.865	0.289	0.661	0.226	72.798	26.719
DoRA	3.75	0.638	0.218	0.847	0.287	0.864	0.289	0.660	0.225	72.827	26.735
AdaptFormer	4.64	0.647	0.221	0.862	0.294	0.878	0.295	0.666	0.227	73.312	26.869
SSF	3.92	0.629	0.215	0.847	0.287	0.862	0.289	0.659	0.225	73.025	26.832
VPT	3.75	0.635	0.217	0.846	0.287	0.862	0.288	0.659	0.225	72.883	26.774
APrompt	4.34	0.632	0.216	0.846	0.287	0.862	0.288	0.660	0.225	73.022	26.820
TADP Only	1.92	0.632	0.216	0.848	0.288	0.863	0.289	0.659	0.226	72.715	26.731
SFAS Only	1.26	0.629	0.215	0.849	0.288	0.864	0.289	0.660	0.226	72.716	26.715
WeatherPEFT	3.18	0.618	0.211	0.844	0.286	0.860	0.287	0.657	0.224	72.701	26.665
Full-Tuning	1239.94	0.604	0.206	0.838	0.284	0.854	0.285	0.653	0.223	73.760	27.051
LoRA	57.80	0.630	0.215	0.847	0.287	0.862	0.288	0.66	0.225	72.805	26.710
DoRA	57.92	0.631	0.216	0.845	0.287	0.861	0.288	0.659	0.225	72.987	26.779
AdaptFormer	61.68	0.638	0.218	0.860	0.293	0.874	0.293	0.662	0.226	73.114	26.815
WeatherPEFT	52.18	0.601	0.205	0.838	0.284	0.854	0.286	0.650	0.222	72.745	26.683

398 5.2 ENSEMBLE WEATHER FORECAST POST-PROCESSING

400 Existing ensemble weather predictions have biases (Toth & Kalnay, 1993), prompting post-
 401 processing methods to improve forecast reliability by correcting prediction distributions. Our evalua-
 402 tion uses the ENS-10 benchmark (Ashkboos et al., 2022), which pairs 10-member ECMWF IFS
 403 (ECMWF, 2022) ensemble predictions with ERA5 targets at 0.5° resolution. The dataset includes
 404 25 surface and atmospheric variables. An additional baseline ('RAW') is included, which refers to
 405 using the raw ensemble mean and standard deviation. Performance is quantified using the Continu-
 406 ous Ranked Probability Score (CRPS) and Extreme Event Weighted Continuous Ranked Probability
 407 Score (EECRPS) (Ashkboos et al., 2022). We train the model to simultaneously correct the five
 408 same target variables as Section 5.1. Implementation specifics are included in the Appendix F.3.

409 Table 2 presents the results of post-processing across five target variables, indicating that

- 410 • Unlike the downscaling task, the performance gap between Full-Tuning and training-from-scratch
 411 baselines narrows in the post-processing task. For example, ClimaX achieves a Z500 CRPS of
 412 72.916, marginally better than Full-Tuning's 73.760. This might suggest a significant task shift
 413 between the pre-training objectives and the probabilistic correction required for post-processing,
 414 which could hinder the transfer of knowledge learned during the pre-training phase.
- 415 • While PEFT methods such as SSF demonstrate competitive results, they still lag behind Full-
 416 Tuning. Despite the challenging task shift, WeatherPEFT achieves near-Full-Tuning performance
 417 with only 3.18M parameters. Especially on Z500, WeatherPEFT outperforms Full-Tuning (72.701
 418 vs. 73.760 CRPS and 26.665 vs. 27.051 EECRPS). This result suggests that WeatherPEFT is
 419 capable of handling the specific challenges posed by this post-processing task, even when the
 420 pre-training knowledge does not directly align with the task's variable characteristics.
- 421 • Furthermore, the ablation study demonstrates the importance of combining both modules, which
 422 synergistically to adapt the foundation model's parameters to the specific task at hand.
- 423 • Similarly, the results in the increased parameter setting further underscore our method's su-
 424 periority. WeatherPEFT, with 52.18M parameters, not only exceeds the performance of its PEFT
 425 counterparts but also surpasses the 1.2B Full-Tuning method across most key metrics.

427 5.3 REGIONAL PRECIPITATION FORECASTING

428 Precipitation forecasting is vital for agriculture, water management, and disaster prevention. How-
 429 ever, global predictions are often unfeasible, especially with only regional data available. To address
 430 this, we formulate a regional precipitation forecasting task to predict the future six-hour accumula-
 431 tion of total precipitation (TP-6hr) based on the regional weather conditions. For this task, we intro-

432
 433 Table 3: The SEEPS, ACC, RMSE (1e-2) on regional precipitation forecasting, focusing on China
 434 region. We adopt the Aurora (Bodnar et al., 2025) as the foundation model and only count the
 435 trainable parameters in the backbone for all fine-tuning methods.

Method	Trainable Params (M)	12 Hours		24 Hours		36 Hours	
		SEEPS	ACC ↑	SEEPS	ACC ↑	SEEPS	ACC ↑
Persistence	0.00	0.695	0.265	0.371	0.168	0.387	0.855
U-Net	19.89	0.467	0.639	0.225	0.591	0.468	0.263
ResNet	33.99	0.551	0.499	0.259	0.664	0.342	0.283
ViT	311.30	0.560	0.499	0.257	0.646	0.389	0.276
FourCastNet	63.94	0.640	0.376	0.279	0.756	0.213	0.299
ClimaX	117.32	0.590	0.487	0.260	0.695	0.328	0.285
Aurora	1239.94	0.470	0.589	0.241	0.578	0.449	0.268
Linear-Probing	0.00	0.581	0.464	0.266	0.720	0.265	0.293
Bias-Tuning	0.78	0.573	0.474	0.265	0.715	0.271	0.292
LoRA	3.63	0.495	0.592	0.24	0.634	0.415	0.273
DoRA	3.75	0.513	0.574	0.244	0.662	0.372	0.279
AdaptFormer	4.62	0.499	0.577	0.243	0.643	0.378	0.278
SSF	3.92	0.459	0.631	0.231	0.588	0.474	0.264
VPT	3.75	0.522	0.550	0.25	0.666	0.356	0.281
APrompt	4.34	0.521	0.554	0.249	0.650	0.387	0.277
Covpass	4.92	0.485	0.606	0.237	0.615	0.439	0.269
Fact-TT	2.73	0.525	0.553	0.249	0.662	0.371	0.279
RepAdapter	3.75	0.534	0.532	0.254	0.675	0.340	0.283
SCT	3.94	0.481	0.607	0.237	0.616	0.439	0.269
Child-Tuning _D	3.39	0.407	0.694	0.214	0.565	0.500	0.259
MoA	8.62	0.515	0.563	0.246	0.665	0.354	0.281
HydraLoRA	5.77	0.510	0.571	0.245	0.650	0.393	0.276
VeRA	0.98	0.524	0.551	0.250	0.663	0.365	0.280
SAM	3.39	0.421	0.673	0.220	0.598	0.457	0.267
TADP Only	2.12	0.549	0.523	0.256	0.676	0.357	0.282
SFAS Only	1.26	0.459	0.634	0.231	0.612	0.443	0.269
WeatherPEFT	3.38	0.368	0.742	0.198	0.515	0.559	0.247
Full-Tuning	1246.77	0.304	0.797	0.178	0.452	0.586	0.241
LoRA	57.80	0.449	0.648	0.226	0.59	0.474	0.263
DoRA	57.92	0.512	0.576	0.244	0.659	0.383	0.277
AdaptFormer	61.68	0.458	0.623	0.232	0.599	0.438	0.269
WeatherPEFT	52.37	0.302	0.805	0.174	0.437	0.615	0.235
						0.526	0.518
							0.256

458
 459 duce a new dataset ERA5-CH from the ERA5 data at 0.25° , which includes five surface variables
 460 and five upper variables but focuses exclusively on the China region. Following WeatherBench2
 461 (Rasp et al., 2024), we employ the latitude-weighted Stable Equitable Error in Probability Space
 462 (SEEPS) (Rodwell et al., 2010), Anomaly Correlation Coefficient(ACC), and RMSE as the evalua-
 463 tion metrics. Specifically, we focus on short-term forecasting with lead times of 12, 24, and 36
 464 Hours. “Persistence” represents utilizing the input as the prediction. Complete experimental details
 465 are listed in Appendix F.4, and a case study on extreme precipitation is presented in Appendix B.4.

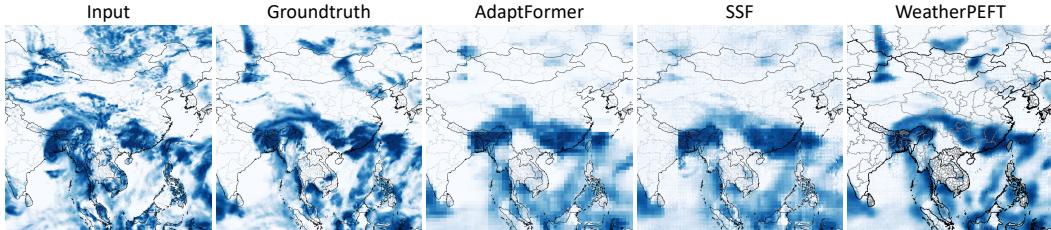
466 To rigorously evaluate WeatherPEFT, we include an expanded suite of PEFT baselines, including
 467 vision PEFTs (ConvPass (Jie et al., 2024), Fact (Jie & Deng, 2023), RepAdapter (Luo et al., 2023))
 468 and task-selective methods (SCT (Zhao et al., 2024a), Child-Tuning (Xu et al., 2021), SAM (Fu
 469 et al., 2023)), LoRA variants (HydraLoRA (Tian et al., 2024), VeRA (Kopczko et al., 2024)), and
 470 Mixture of Adapter (MoA). Table 3 presents the following results of precipitation forecasting:

- 471 • Full-Tuning significantly achieves superior performance over training-from-scratch models, con-
 472 firming that knowledge transfer from pre-training is highly effective for this task.
- 473 • Moreover, standard PEFT methods show significant gaps versus Full-Tuning. For example,
 474 LoRA’s 12h SEEPS is 62.8% higher than Full-Tuning, indicating poorer calibration of rainfall
 475 events. This underperformance is due to the unique challenges of precipitation, including its
 476 sparse nature and highly localized patterns, which conventional PEFT methods fail to adequately
 477 capture. In contrast, the WeatherPEFT significantly surpasses PEFT baselines, and significantly
 478 narrows the gap with Full-Tuning when constrained to a minimal parameter budget ($\sim 0.3\%$).
- 479 • Task-adaptive selection methods (SCT, SAM, Child-Tuning_D) consistently outperform other base-
 480 lines like LoRA. This validates the intuition that selecting task-relevant parameters is crucial for
 481 heterogeneous weather tasks. Despite these improvements, WeatherPEFT significantly surpasses
 482 all competitors. This confirms that adaptivity alone is insufficient and coupling it with the domain-
 483 specific context awareness provided by TADP is essential for meteorological adaptation.
- 484 • The ablation experiments provide insights into the effectiveness of the two components in WeatherPEFT, indicating that SFAS is more critical than prompting for precipitation’s sparse signals.

486
 487
 488
 489

- Despite the increased trainable parameters, PEFT baselines’ performance improves marginally but remains inferior to Full-Tuning. Notably, WeatherPEFT, with $\sim 4\%$ parameters, even surpasses the performance of Full-Tuning across all metrics. This demonstrates that our method is not only more efficient but also more effective at adapting the foundation model for this complex task.

490
 491
 492
 493
 494
 495
 496
 497



498
 499

Figure 3: Visualization of a 12-hour forecast for TP-6hr over China (2020-05-20 12 UTC).

500
 501
 502
 503
 504
 505
 506

Visualization We visualize the input, ground truth, and prediction of AdaptFormer, SSF, and WeatherPEFT in Figure 3 to provide an intuitive comparison. The complete visualization of PEFT methods is provided in the Appendix F.4.3. It distinctly reveals that deep learning approaches employing pixel-wise MAE loss exhibit over-smoothed characteristics in their precipitation predictions, which are particularly noticeable in their failure to preserve fine-grained spatial patterns. However, our proposed WeatherPEFT demonstrates superior alignment with the ground truth compared to other PEFT baselines, highlighting the importance of WeatherPEFT’s task-adaptive feature.

507
 508

5.4 DOMAIN SPECIFICITY ANALYSIS

509
 510
 511
 512
 513

Table 4: The mIoU (%) on Cityscapes to ACDC domain generalization benchmark for semantic segmentation. We adopt the DINOv2-L (Oquab et al., 2024) as the foundation model.

Methods	Trainable Params (M)	ACDC (Target)				Mean
		Night	Snow	Fog	Rain	
Full-Tuning	304.20	52.4	70.5	80.9	74.4	69.5
Linear-Probing	0.00	54.3	69.3	79.1	68.0	67.6
ConvPass	3.64	56.0	71.7	80.2	74.9	70.7
FacT-TT	2.85	56.1	71.3	81.0	72.9	70.3
MOA	6.39	53.2	70.6	80.3	72.8	69.3
LoRA	3.14	52.3	74.4	79.5	74.0	70.1
AdaptFormer	3.17	53.8	74.8	80.3	74.6	70.9
VPT	3.15	53.4	74.4	80.4	70.5	69.7
Ours	2.90	56.0	70.9	81.2	74.5	70.7

To verify that the performance gains of WeatherPEFT stem from addressing meteorological challenges, we evaluate it on a standard vision task. Specifically, we conduct experiments on the Cityscapes (Cordts et al., 2016) \rightarrow ACDC (Sakaridis et al., 2021) domain generalization benchmark for semantic segmentation, which encompasses the Night, Snow, Fog, and Rain as the target domains. We compare WeatherPEFT against established vision PEFT methods, including ConvPass, FacT, MoA, LoRA, AdaptFormer, and VPT. We utilize Dinov2-L (Oquab et al., 2024) as the backbone and report the mean Intersection over Union (mIoU).

522
 523
 524
 525
 526
 527
 528

The results indicate that while WeatherPEFT remains competitive in the vision domain (comparable to AdaptFormer), it does not demonstrate the dominant superiority observed in the weather tasks. This distinction is pivotal, verifying that WeatherPEFT functions not merely as an enhanced general adapter, but rather as a method specifically optimized for the unique physical semantics of weather data. Notably, the dynamic, annealed selection mechanism of SFAS, combined with context-aware dynamic prompting of TADP, provides distinct advantages in meteorological contexts.

529
 530

6 CONCLUSION

531
 532
 533
 534
 535
 536
 537
 538
 539

This paper proposes WeatherPEFT, the first exploration of efficient fine-tuning for weather foundation models. WeatherPEFT is a novel PEFT framework that integrates two synergistic modules, *i.e.*, Task-Adaptive Dynamic Prompting (TADP) and Stochastic Fisher-Guided Adaptive Selection (SFAS). In the forward pass, TADP dynamically encodes task-specific characteristics into contextual prompts, enabling feature recalibration tailored to diverse meteorological inputs without altering the core pre-trained knowledge. During backpropagation, SFAS integrates randomness with Fisher information to identify and update parameters sensitive to downstream objectives with higher possibilities, preserving invariant physical priors while optimizing task-critical weights. Experiment results on three downstream tasks demonstrate the effectiveness and efficiency of WeatherPEFT over existing PEFT methods, highlighting its adaptability to weather-related data.

540
541
ETHICS STATEMENT

542 The authors have read and adhered to the ICLR Code of Ethics. We believe this work presents no
 543 major ethical concerns and offers significant societal benefits. The primary goal of our research is to
 544 develop more efficient methods for fine-tuning Weather Foundation Models. This work contributes
 545 positively to human well-being by making advanced weather forecasting more accessible, which is
 546 critical for applications in disaster preparedness (e.g., flood and extreme weather warnings), agri-
 547 culture, and water resource management. Our research exclusively utilizes publicly available me-
 548 teorological datasets (e.g., ERA5 and WeatherBench), which do not contain personally identifiable
 549 or sensitive human data, thereby avoiding privacy and security issues. In line with our commitment
 550 to scientific transparency and reproducibility, we have provided our code and will make it publicly
 551 available. This work has been conducted in adherence to the ICLR Code of Ethics, with the goal of
 552 fostering responsible and beneficial scientific advancement.

553
554
REPRODUCIBILITY STATEMENT

555 We are committed to ensuring the reproducibility of our research. Source code and a README.md
 556 file with detailed instructions for environment setup, data preparation, and script execution are avail-
 557 able at <https://anonymous.4open.science/r/WeatherPEFT-A068> and also pro-
 558 vided in the supplementary material. The appendix offers comprehensive details to support our
 559 claims. Appendix E describes the implementation of our proposed WeatherPEFT and all baseline
 560 models. Appendix F details the setup for each downstream task, including data sources, problem
 561 settings, and formal definitions for all evaluation metrics. Furthermore, Appendix B presents ex-
 562 tensive hyperparameter ablation studies and a generalization study to justify our main experimental
 563 choices and demonstrate the robustness of our method.

564
565
REFERENCES

566 Kashif Abbass, Muhammad Zeeshan Qasim, Huaming Song, Muntasir Murshed, Haider Mahmood,
 567 and Ijaz Younis. A review of the global climate change impacts, adaptation, and sustainable
 568 mitigation measures. *Environmental science and pollution research*, 29(28):42539–42559, 2022.

569 Saleh Ashkboos, Langwen Huang, Nikoli Dryden, Tal Ben-Nun, Peter Dueben, Lukas Gianinazzi,
 570 Luca Kummer, and Torsten Hoefer. Ens-10: A dataset for post-processing ensemble weather
 571 forecasts. *Advances in Neural Information Processing Systems*, 35:21974–21987, 2022.

572 Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical weather prediction.
 573 *Nature*, 525(7567):47–55, 2015.

574 John Beddington, Mohammed Asaduzzaman Mohammed Asaduzzaman, Megan Clark, Adrian
 575 Fernández, Marion Guillou, Molly Jahn, Lin ErDa Lin ErDa, Tekalign Mamo Tekalign Mamo,
 576 Nguyen Van Bo Nguyen Van Bo, Carlos A Nobre, et al. Achieving food security in the face
 577 of climate change: summary for policy makers from the commission on sustainable agriculture
 578 and climate change. Technical report, Consultative Group on International Agricultural Research
 579 (CGIAR), 2011.

580 Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate medium-
 581 range global weather forecasting with 3d neural networks. *Nature*, 619(7970):533–538, 2023.

582 Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Anna Allen, Johannes Brandstetter,
 583 Patrick Garvan, Maik Riechert, Jonathan A Weyn, Haiyu Dong, et al. A foundation model for the
 584 earth system. *Nature*, pp. 1–8, 2025.

585 Christopher S Bretherton, Brian Henn, Anna Kwa, Noah D Brenowitz, Oliver Watt-Meyer, Jeremy
 586 McGibbon, W Andre Perkins, Spencer K Clark, and Lucas Harris. Correcting coarse-grid weather
 587 and climate models by machine learning from global storm-resolving simulations. *Journal of*
 588 *Advances in Modeling Earth Systems*, 14(2):e2021MS002794, 2022.

589 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 590 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 591 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

594 Kang Chen, Tao Han, Junchao Gong, Lei Bai, Fenghua Ling, Jing-Jia Luo, Xi Chen, Leiming
 595 Ma, Tianning Zhang, Rui Su, et al. Fengwu: Pushing the skillful global medium-range weather
 596 forecast beyond 10 days lead. *arXiv preprint arXiv:2304.02948*, 2023a.

597

598 Lei Chen, Xiaohui Zhong, Feng Zhang, Yuan Cheng, Yinghui Xu, Yuan Qi, and Hao Li. Fuxi: A
 599 cascade machine learning forecasting system for 15-day global weather forecast. *npj climate and*
 600 *atmospheric science*, 6(1):190, 2023b.

601 Shengchao Chen, Guodong Long, Jing Jiang, Dikai Liu, and Chengqi Zhang. Foundation mod-
 602 els for weather and climate data understanding: A comprehensive survey. *arXiv preprint*
 603 *arXiv:2312.03014*, 2023c.

604

605 Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
 606 Adaptformer: Adapting vision transformers for scalable visual recognition. *Advances in Neural*
 607 *Information Processing Systems*, 35:16664–16678, 2022.

608 Zhe Chen, Yuchen Duan, Wenhui Wang, Junjun He, Tong Lu, Jifeng Dai, and Yu Qiao. Vision
 609 transformer adapter for dense predictions. In *The Eleventh International Conference on Learning*
 610 *Representations*, 2023d.

611

612 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
 613 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
 614 Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):
 615 1–113, 2023.

616 Jean Coiffier. *Fundamentals of numerical weather prediction*. Cambridge University Press, 2011.

617 Richard Connor. *The United Nations world water development report 2015: water for a sustainable*
 618 *world*, volume 1. UNESCO publishing, 2015.

619

620 Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
 621 Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
 622 scene understanding. In *Proceedings of the IEEE conference on computer vision and pattern*
 623 *recognition*, pp. 3213–3223, 2016.

624

625 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 626 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 627 pp. 248–255. Ieee, 2009.

628

629 Ying Deng, Xuhui Wang, Tongping Lu, Haochun Du, Philippe Ciais, and Xin Lin. Divergent sea-
 630 *sonal responses of carbon fluxes to extreme droughts over china. Agricultural and Forest Meteor-
 631 rology*, 328:109253, 2023.

632

633 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 634 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
 635 *the North American chapter of the association for computational linguistics: human language*
 636 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

637

638 Yihui Ding, Yunyun Liu, and Zeng-Zhen Hu. The record-breaking mei-yu in 2020 and associated
 639 atmospheric circulation and tropical sst anomalies. *Advances in Atmospheric Sciences*, 38(12):
 640 1980–1993, 2021.

641

642 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 643 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 644 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
 645 *arXiv:2010.11929*, 2020.

646

647 ECMWF. Modeling and prediction. <https://www.ecmwf.int/en/research/modelling-and-prediction>,
 648 2022.

649

650 Pamela Sofia Fabian, Hyun-Han Kwon, Meththika Vithanage, and Joo-Heon Lee. Modeling, chal-
 651 lenges, and strategies for understanding impacts of climate extremes (droughts and floods) on
 652 water quality in asia: A review. *Environmental Research*, 225:115617, 2023.

648 Ronald A Fisher. On the mathematical foundations of theoretical statistics. *Philosophical transactions of the Royal Society of London. Series A, containing papers of a mathematical or physical character*, 222(594-604):309–368, 1922.

649

650

651

652 Lawrence R Frank, Vitaly L Galinsky, Zhenhai Zhang, and F Martin Ralph. Characterizing the dynamics of multi-scale global high impact weather events. *Scientific Reports*, 14(1):18942, 2024.

653

654

655 Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, and Nigel Collier. On the effectiveness of parameter-efficient fine-tuning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 12799–12807, 2023.

656

657

658 Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu, Conghui He, Xiangyu Yue, et al. Llama-adapter v2: Parameter-efficient visual instruction model. *arXiv preprint arXiv:2304.15010*, 2023.

659

660

661 William Gregory, Mitchell Bushuk, Yongfei Zhang, Alistair Adcroft, and Laure Zanna. Machine learning for online sea ice bias correction within global ice-ocean simulations. *Geophysical Research Letters*, 51(3):e2023GL106776, 2024.

662

663

664 Peter Grönquist, Chengyuan Yao, Tal Ben-Nun, Nikoli Dryden, Peter Dueben, Shigang Li, and Torsten Hoefer. Deep learning for post-processing ensemble weather forecasts. *Philosophical Transactions of the Royal Society A*, 379(2194):20200092, 2021.

665

666

667

668 John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catanzaro. Adaptive fourier neural operators: Efficient token mixers for transformers. *arXiv preprint arXiv:2111.13587*, 2021.

669

670

671 Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning for large models: A comprehensive survey. *arXiv preprint arXiv:2403.14608*, 2024.

672

673

674 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.

675

676

677 Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquín Muñoz-Sabater, Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, et al. The era5 global reanalysis. *Quarterly journal of the royal meteorological society*, 146(730):1999–2049, 2020.

678

679

680

681 Yukiko Hirabayashi, Roobavannan Mahendran, Sujan Koirala, Lisako Konoshima, Dai Yamazaki, Satoshi Watanabe, Hyungjun Kim, and Shinjiro Kanae. Global flood risk under climate change. *Nature climate change*, 3(9):816–821, 2013.

682

683

684 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

685

686

687 Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with stochastic depth. In *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14*, pp. 646–661. Springer, 2016.

688

689

690 Langwen Huang, Lukas Gianinazzi, Yuejiang Yu, Peter D Dueben, and Torsten Hoefer. Diffda: a diffusion model for weather-scale data assimilation. In *Proceedings of the 41st International Conference on Machine Learning*, pp. 19798–19815, 2024.

691

692

693

694 Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira. Perceiver: General perception with iterative attention. In *International conference on machine learning*, pp. 4651–4664. PMLR, 2021.

695

696

697 Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Visual prompt tuning. In *European conference on computer vision*, pp. 709–727. Springer, 2022.

698

699

700

701 Shibo Jie and Zhi-Hong Deng. Fact: Factor-tuning for lightweight adaptation on vision transformer. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 1060–1068, 2023.

702 Shibo Jie, Zhi-Hong Deng, Shixuan Chen, and Zhijuan Jin. Convolutional bypasses are better vision
 703 transformer adapters. In *ECAI*, 2024.

704

705 Ryuji Kimura. Numerical weather prediction. *Journal of Wind Engineering and Industrial Aerodynamics*, 90(12-15):1403–1414, 2002.

706

707 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
 708 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
 709 ing catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*,
 710 114(13):3521–3526, 2017.

711

712 Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random matrix
 713 adaptation. In *The Twelfth International Conference on Learning Representations*, 2024.

714

715 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
 716 tional neural networks. *Advances in neural information processing systems*, 25, 2012.

717 Francois Lalaurette. Early detection of abnormal weather conditions using a probabilistic extreme
 718 forecast index. *Quarterly Journal of the Royal Meteorological Society: A journal of the atmo-
 719 spheric sciences, applied meteorology and physical oceanography*, 129(594):3037–3057, 2003.

720

721 Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirsberger, Meire Fortunato, Fer-
 722 ran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Learning skillful
 723 medium-range global weather forecasting. *Science*, 382(6677):1416–1421, 2023.

724

725 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
 726 *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
 727 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*,
 728 pp. 4582–4597, 2021.

729

730 Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Scaling & shifting your features: A
 731 new baseline for efficient model tuning. *Advances in Neural Information Processing Systems*, 35:
 109–123, 2022.

732

733 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
 734 Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In *Forty-first
 735 International Conference on Machine Learning*, 2024.

736

737 Gen Luo, Minglang Huang, Yiyi Zhou, Xiaoshuai Sun, Guannan Jiang, Zhiyu Wang, and Ron-
 738 grong Ji. Towards efficient visual adaption via structural re-parameterization. *arXiv preprint
 arXiv:2302.08106*, 2023.

739

740 Peter Lynch. The origins of computer weather prediction and climate modeling. *Journal of compu-
 741 tational physics*, 227(7):3431–3444, 2008.

742

743 Morteza Mardani, Noah D Brenowitz, Yair Cohen, Jaideep Pathak, Chieh-Yu Chen, Cheng-Chin
 744 Liu, Arash Vahdat, Karthik Kashinath, Jan Kautz, and Mike Pritchard. Generative residual diffu-
 745 sion modeling for km-scale atmospheric downscaling. *CoRR*, 2023.

746

747 Morteza Mardani, Noah Brenowitz, Yair Cohen, Jaideep Pathak, Chieh-Yu Chen, Cheng-Chin
 748 Liu, Arash Vahdat, Karthik Kashinath, Jan Kautz, and Mike Pritchard. Residual dif-
 749 fusion modeling for km-scale atmospheric downscaling. *PREPRINT at Research Square
 [https://doi.org/10.21203/rs.3.rs-3673869/v1]*, 2024.

750

751 Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. Climax:
 752 A foundation model for weather and climate. In *International Conference on Machine Learning*,
 753 pp. 25904–25938. PMLR, 2023a.

754

755 Tung Nguyen, Jason Jewik, Hritik Bansal, Prakhar Sharma, and Aditya Grover. Climatelearn:
 756 Benchmarking machine learning for weather and climate modeling. *Advances in Neural Infor-
 757 mation Processing Systems*, 36:75009–75025, 2023b.

756 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V Vo, Marc Szafraniec, Vasil Khalidov,
 757 Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaeldin El-Nouby, et al. Dinov2: Learn-
 758 ing robust visual features without supervision. *Transactions on Machine Learning Research*,
 759 2024.

760 Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
 761 Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Four-
 762 castnet: A global data-driven high-resolution weather model using adaptive fourier neural op-
 763 erators. *arXiv preprint arXiv:2202.11214*, 2022.

764 Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R Andersson, Andrew El-Kadi, Do-
 765 minic Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, et al. Gen-
 766 cast: Diffusion-based ensemble forecasting for medium-range weather. *arXiv preprint*
 767 *arXiv:2312.15796*, 2023.

768 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 769 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 770 models from natural language supervision. In *International conference on machine learning*, pp.
 771 8748–8763. PMLR, 2021.

772 Stephan Rasp and Sebastian Lerch. Neural networks for postprocessing ensemble weather forecasts.
 773 *Monthly Weather Review*, 146(11):3885–3900, 2018.

774 Stephan Rasp, Peter D Dueben, Sebastian Scher, Jonathan A Weyn, Soukaina Mouatadid, and Nils
 775 Thuerey. Weatherbench: a benchmark data set for data-driven weather forecasting. *Journal of*
 776 *Advances in Modeling Earth Systems*, 12(11):e2020MS002203, 2020.

777 Stephan Rasp, Stephan Hoyer, Alexander Merose, Ian Langmore, Peter Battaglia, Tyler Russell,
 778 Alvaro Sanchez-Gonzalez, Vivian Yang, Rob Carver, Shreya Agrawal, et al. Weatherbench 2: A
 779 benchmark for the next generation of data-driven global weather models. *Journal of Advances in*
 780 *Modeling Earth Systems*, 16(6):e2023MS004019, 2024.

781 Khaiwal Ravindra, Preety Rattan, Suman Mor, and Ashutosh Nath Aggarwal. Generalized additive
 782 models: Building evidence of air pollution, climate change and human health. *Environment*
 783 *international*, 132:104987, 2019.

784 Xiaoli Ren, Xiaoyong Li, Kaijun Ren, Junqiang Song, Zichen Xu, Kefeng Deng, and Xiang Wang.
 785 Deep learning-based weather prediction: a survey. *Big Data Research*, 23:100178, 2021.

786 Mark J Rodwell, David S Richardson, Tim D Hewson, and Thomas Haiden. A new equitable score
 787 suitable for verifying precipitation in numerical weather prediction. *Quarterly Journal of the*
 788 *Royal Meteorological Society*, 136(650):1344–1363, 2010.

789 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 790 image segmentation. In *Medical image computing and computer-assisted intervention-MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18*, pp. 234–241. Springer, 2015.

791 Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Acdc: The adverse conditions dataset with
 792 correspondences for semantic driving scene understanding. In *Proceedings of the IEEE/CVF*
 793 *international conference on computer vision*, pp. 10765–10775, 2021.

794 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
 795 The graph neural network model. *IEEE transactions on neural networks*, 20(1):61–80, 2008.

796 Joseph T Schaefer. The critical success index as an indicator of warning skill. *Weather and fore-
 797 casting*, 5(4):570–575, 1990.

798 Johannes Schmude, Sujit Roy, Will Trojak, Johannes Jakubik, Daniel Salles Civitarese, Shraddha
 799 Singh, Julian Kuehnert, Kumar Ankur, Aman Gupta, Christopher E Phillips, et al. Prithvi wxc:
 800 Foundation model for weather and climate. *arXiv preprint arXiv:2409.13598*, 2024.

810 Martin G Schultz, Clara Betancourt, Bing Gong, Felix Kleinert, Michael Langguth, Lukas Hubert
 811 Leufen, Amirpasha Mozaffari, and Scarlet Stadtler. Can deep learning beat numerical weather
 812 prediction? *Philosophical Transactions of the Royal Society A*, 379(2194):20200097, 2021.

813

814 Jimeng Shi, Azam Shirali, Bowen Jin, Sizhe Zhou, Wei Hu, Rahul Rangaraj, Shaowen Wang,
 815 Jiawei Han, Zhaonan Wang, Upmanu Lall, et al. Deep learning and foundation models for weather
 816 prediction: A survey. *arXiv preprint arXiv:2501.06907*, 2025.

817

818 Christopher Subich. Efficient fine-tuning of 37-level graphcast with the canadian global determinis-
 819 tic analysis. *Artificial Intelligence for the Earth Systems*, 2025.

820

821 Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
 822 *Advances in Neural Information Processing Systems*, 34:24193–24205, 2021.

823

824 Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Cheng-Zhong Xu. Hydralora: An asymmetric
 825 lora architecture for efficient fine-tuning. *Advances in Neural Information Processing Systems*,
 826 37:9565–9584, 2024.

827

828 Zoltan Toth and Eugenia Kalnay. Ensemble forecasting at nmc: The generation of perturbations.
 829 *Bulletin of the american meteorological society*, 74(12):2317–2330, 1993.

830

831 Kevin E Trenberth, Aiguo Dai, Roy M Rasmussen, and David B Parsons. The changing character
 832 of precipitation. *Bulletin of the American Meteorological Society*, 84(9):1205–1218, 2003.

833

834 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 835 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 836 tion processing systems*, 30, 2017.

837

838 Ambrogio Volonté, Mark Muetzelfeldt, Reinhard Schiemann, Andrew G Turner, and Nicholas
 839 Klingaman. Magnitude, scale, and dynamics of the 2020 mei-yu rains and floods over china.
 840 *Advances in Atmospheric Sciences*, 38(12):2082–2096, 2021.

841

842 Qifan Wang, Yuning Mao, Jingang Wang, Hanchao Yu, Shaoliang Nie, Sinong Wang, Fuli Feng,
 843 Lifu Huang, Xiaojun Quan, Zenglin Xu, et al. Aprompt: Attention prompt tuning for efficient
 844 adaptation of pre-trained language models. In *Proceedings of the 2023 conference on empirical
 845 methods in natural language processing*, pp. 9147–9160, 2023a.

846

847 Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
 848 Owais Khan Mohammed, Saksham Singhal, Subhajit Som, et al. Image as a foreign language:
 849 Beit pretraining for vision and vision-language tasks. In *Proceedings of the IEEE/CVF Confer-
 850 ence on Computer Vision and Pattern Recognition*, pp. 19175–19186, 2023b.

851

852 E Ward, W Buytaert, L Peaver, and H Wheater. Evaluation of precipitation products over complex
 853 mountainous terrain: A water resources perspective. *Advances in water resources*, 34(10):1222–
 854 1231, 2011.

855

856 Yi Xiao, Lei Bai, Wei Xue, Hao Chen, Kun Chen, Tao Han, Wanli Ouyang, et al. Towards a self-
 857 contained data-driven global weather forecasting framework. In *Forty-first International Confer-
 858 ence on Machine Learning*, 2024.

859

860 Yi Xin, Siqi Luo, Haodi Zhou, Junlong Du, Xiaohong Liu, Yue Fan, Qing Li, and Yuntao
 861 Du. Parameter-efficient fine-tuning for pre-trained vision models: A survey. *arXiv preprint
 862 arXiv:2402.02242*, 2024.

863

864 Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, Baobao Chang, Songfang Huang, and Fei
 865 Huang. Raise a child in large language model: Towards effective and generalizable fine-tuning.
 866 In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*,
 867 pp. 9514–9528, 2021.

868

869 Bruce XB Yu, Jianlong Chang, Lingbo Liu, Qi Tian, and Chang Wen Chen. Towards a unified view
 870 on visual parameter-efficient transfer learning. *arXiv preprint arXiv:2210.00788*, 2022.

864 Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu,
 865 Xuedong Huang, Boxin Li, Chunyuan Li, et al. Florence: A new foundation model for computer
 866 vision. *arXiv preprint arXiv:2111.11432*, 2021.

867 Haowen Yue, Mekonnen Gebremichael, and Vahid Nourani. Performance of the global forecast
 868 system’s medium-range precipitation forecasts in the niger river basin using multiple satellite-
 869 based products. *Hydrology and Earth System Sciences*, 26(1):167–181, 2022.

870 Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning
 871 for transformer-based masked language-models. In *Proceedings of the 60th Annual Meeting of
 872 the Association for Computational Linguistics (Volume 2: Short Papers)*, pp. 1–9, 2022.

873 Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
 874 Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. The
 875 visual task adaptation benchmark. 2019.

876 Dan Zhang, Tao Feng, Lilong Xue, Yuandong Wang, Yuxiao Dong, and Jie Tang. Parameter-efficient
 877 fine-tuning for foundation models. *arXiv preprint arXiv:2501.13787*, 2025.

878 Henry Hengyuan Zhao, Pichao Wang, Yuyang Zhao, Hao Luo, Fan Wang, and Mike Zheng Shou.
 879 Sct: A simple baseline for parameter-efficient fine-tuning via salient channels. *International
 880 Journal of Computer Vision*, 132(3):731–749, 2024a.

881 Xiangyu Zhao, Zhiwang Zhou, Wenlong Zhang, Yihao Liu, Xiangyu Chen, Junchao Gong, Hao
 882 Chen, Ben Fei, Shiqi Chen, Wanli Ouyang, et al. Weathergfm: Learning a weather generalist
 883 foundation model via in-context learning. *arXiv preprint arXiv:2411.05420*, 2024b.

884 Xiongtao Zhou, Jie He, Yuhua Ke, Guangyao Zhu, Víctor Gutiérrez-Basulto, and Jeff Z Pan. An
 885 empirical study on parameter-efficient fine-tuning for multimodal large language models. *arXiv
 886 preprint arXiv:2406.05130*, 2024.

887 Ervin Zsótér. Recent developments in extreme weather forecasting. *ECMWF newsletter*, 107(107):
 888 8–17, 2006.

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Task-Adaptive Parameter-Efficient Fine-Tuning for Weather Foundation Models

Appendix

CONTENTS

A Overview	20
B Additional Studies	20
B.1 Hyperparameter Ablation Study	20
B.2 Backbone Generalization Study	22
B.3 Module Fine-grained Comparison Study	22
B.4 Real-world Case Study	23
B.5 Synergistic Analysis	24
B.6 Computational Efficiency Analysis	24
B.7 Additional Domain Specificity Analysis	24
C Discussion	25
D Use of Large Language Models (LLMs)	27
E Additional Model Implementation Details	27
E.1 Training-from-Scratch Model Architectures	27
E.1.1 ResNet	27
E.1.2 U-net	27
E.1.3 ViT	27
E.1.4 FourCastNet	28
E.1.5 ClimaX	28
E.1.6 Aurora	28
E.1.7 Prithxi WxC	29
E.2 PEFT Methods	29
E.2.1 WeatherPEFT	30
E.2.2 Other PEFT baselines	30
F Additional Downstream Task Details	30
F.1 Experimental Settings	30
F.2 Downscaling	31
F.2.1 Data	31
F.2.2 Problem Setting	31
F.2.3 Visualization	31

972	F.3	Ensemble Weather Forecast Post-Processing	34
973	F.3.1	Data	34
974	F.3.2	Problem Setting	34
975	F.4	Regional Precipitation Forecasting	35
976	F.4.1	Data	35
977	F.4.2	Problem Setting	35
978	F.4.3	Visualization	36
979	F.5	Metrics	36
980	F.5.1	Root Mean Squared Error (RMSE)	36
981	F.5.2	Mean Bias	37
982	F.5.3	Continuous Ranked Probability Score (CRPS)	37
983	F.5.4	Anomaly Correlation Coefficient (ACC)	37
984	F.5.5	Extreme Event Weighted Continuous Ranked Probability Score (EECRPS)	37
985	F.5.6	Stable Equitable Error in Probability Space (SEEPS)	38
986	F.5.7	Threat Score (TS)	38
987			
988			
989			
990			
991			
992			
993			
994			
995			
996			
997			
998			
999			
1000			
1001			
1002			
1003			
1004			
1005			
1006			
1007			
1008			
1009			
1010			
1011			
1012			
1013			
1014			
1015			
1016			
1017			
1018			
1019			
1020			
1021			
1022			
1023			
1024			
1025			

1026 A OVERVIEW 1027

1028 We provide additional details and analysis in this technical Appendix. In Section B, we furnish
1029 additional studies on hyperparameter, backbone, module fine-grained comparison, and a real-world
1030 case. In Section C, we discuss the limitations and prospective directions of our research. In Section
1031 E, we provide model implementation details on WeatherPEFT and other methodologies. In Section
1032 F, we furnish additional details and visualization examples for the downstream tasks.

1034 B ADDITIONAL STUDIES 1035

1036 B.1 HYPERPARAMETER ABLATION STUDY 1037

1039 Table 5: Ablation study on key hyperparameters for the regional precipitation forecasting task,
1040 using Aurora (Bodnar et al., 2025) as the foundation model. The analyzed hyperparameters include
1041 the rank (r) for LoRA (Hu et al., 2022), the parameter selection percentage (k) and initial linear
1042 decay factor (γ) for SFAS of WeatherPEFT, and the number of soft prompt tokens (P) with adapter
1043 hidden dimensions (HW_h, V_h, D_h) for TADP of WeatherPEFT.

Hyperparameter	Trainable Params (M)	12 Hours			24 Hours			36 Hours		
		SEEPS	ACC ↑	RMSE	SEEPS	ACC ↑	RMSE	SEEPS	ACC ↑	RMSE
Full-Tuning	1246.77	0.304	0.797	0.178	0.452	0.586	0.241	0.542	0.481	0.263
LoRA- $r = 256$	92.01	0.495	0.591	0.241	0.633	0.423	0.272	0.716	0.306	0.288
LoRA- $r = 160$	57.80	0.449	0.648	0.226	0.590	0.474	0.263	0.681	0.353	0.282
LoRA- $r = 128$	46.39	0.491	0.592	0.240	0.627	0.425	0.271	0.714	0.307	0.288
LoRA- $r = 64$	23.59	0.479	0.606	0.237	0.641	0.403	0.274	0.728	0.282	0.290
LoRA- $r = 8$	3.63	0.495	0.592	0.240	0.634	0.415	0.273	0.723	0.294	0.289
$k = 0.040$	52.37	0.302	0.805	0.174	0.437	0.615	0.235	0.526	0.518	0.256
$k = 0.035$	46.09	0.303	0.804	0.175	0.439	0.615	0.235	0.528	0.520	0.256
$k = 0.030$	39.81	0.305	0.803	0.175	0.440	0.616	0.234	0.530	0.519	0.255
$k = 0.025$	33.53	0.306	0.803	0.175	0.441	0.616	0.234	0.532	0.520	0.255
$k = 0.020$	27.25	0.309	0.802	0.176	0.444	0.617	0.234	0.535	0.519	0.255
$k = 0.015$	20.96	0.312	0.800	0.177	0.448	0.617	0.234	0.540	0.516	0.256
$k = 0.010$	14.68	0.315	0.796	0.178	0.453	0.614	0.234	0.548	0.514	0.256
$k = 0.005$	8.40	0.328	0.785	0.182	0.468	0.604	0.237	0.565	0.499	0.258
$k = 0.001$	3.38	0.368	0.742	0.198	0.515	0.559	0.247	0.615	0.443	0.268
$\gamma = 1.0$	3.38	0.369	0.742	0.198	0.518	0.556	0.247	0.616	0.439	0.269
$\gamma = 0.8$	3.38	0.369	0.743	0.198	0.520	0.553	0.248	0.619	0.436	0.269
$\gamma = 0.6$	3.38	0.376	0.736	0.200	0.521	0.552	0.248	0.622	0.434	0.269
$\gamma = 0.4$	3.38	0.371	0.740	0.199	0.517	0.556	0.247	0.617	0.440	0.268
$\gamma = 0.2$	3.38	0.368	0.742	0.198	0.515	0.559	0.247	0.615	0.443	0.268
$P = 100$	4.98	0.376	0.736	0.200	0.524	0.550	0.248	0.622	0.434	0.269
$P = 80$	4.58	0.381	0.728	0.202	0.526	0.548	0.249	0.622	0.438	0.269
$P = 60$	4.18	0.375	0.736	0.200	0.529	0.544	0.250	0.631	0.422	0.272
$P = 40$	3.78	0.400	0.707	0.209	0.545	0.528	0.253	0.645	0.409	0.273
$P = 20$	3.38	0.368	0.742	0.198	0.515	0.559	0.247	0.615	0.443	0.268
$P = 10$	2.98	0.387	0.720	0.205	0.531	0.544	0.250	0.630	0.428	0.270
$HW_h, V_h, D_h = 32, 13, 512$	27.87	0.376	0.736	0.200	0.521	0.552	0.248	0.619	0.437	0.269
$HW_h, V_h, D_h = 8, 6, 16$	3.38	0.368	0.742	0.198	0.515	0.559	0.247	0.615	0.443	0.268

1071 To rigorously assess the impact of key hyperparameters within WeatherPEFT, we conduct an abla-
1072 tion study on the regional precipitation forecasting task, with results presented in Table 5. First, we
1073 investigate the influence of k , the percentage of selected parameters in SFAS. The findings reveal
1074 that WeatherPEFT can achieve performance comparable to, and even superior to, full fine-tuning
1075 (1246.77M parameters) using only approximately 3% of the trainable parameters. With $k = 0.030$,
1076 yielding 39.81M parameters, we observe SEEPS/ACC/RMSE of 0.0440/0.616/0.234 for the 24-
1077 hour forecast, versus Full-Tuning’s 0.452/0.586/0.241. Additionally, a trend indicates that as k in-
1078 creases, model performance generally improves across all forecast horizons (12, 24, and 36 hours).
1079 However, the magnitude of these improvements diminishes with larger k values, suggesting a point
of diminishing returns where adding more trainable parameters yields only marginal gains. For

1080

1081
1082
1083
Table 6: Ablation study on key hyperparameters for the downscaling task, using Aurora (Bodnar
et al., 2025) as the foundation model. The analyzed hyperparameters include parameter selection
percentage (k) for SFAS of WeatherPEFT.

Hyperparameter	Trainable Params (M)	T2m		U10		V10		T850		Z500	
		RMSE	Mean Bias	RMSE	Mean Bias	RMSE	Mean Bias	RMSE	Mean Bias	RMSE	Mean Bias
Full-Tuning	1239.94	0.906	0.002	0.882	0.000	0.884	-0.001	0.836	0.000	35.821	0.314
$k = 0.04$	52.47	0.916	0.000	0.873	-0.001	0.875	-0.002	0.834	-0.002	35.076	0.504
$k = 0.03$	39.91	0.929	0.000	0.882	-0.001	0.883	-0.002	0.840	-0.002	35.511	0.502
$k = 0.02$	27.34	0.949	-0.002	0.898	-0.002	0.898	-0.002	0.851	-0.001	36.284	0.630
$k = 0.01$	14.82	0.987	-0.001	0.928	-0.001	0.927	-0.003	0.869	-0.002	37.826	0.355
$k = 0.001$	3.48	1.119	0.003	1.057	0.000	1.051	-0.001	0.950	0.004	44.922	0.413

1090

1091

1092

1093
1094
1095
Table 7: Ablation study on key hyperparameters for the ensemble weather forecast post-processing
task, using Aurora (Bodnar et al., 2025) as the foundation model. The analyzed hyperparameters
include parameter selection percentage (k) for SFAS of WeatherPEFT.

Hyperparameter	Trainable Params (M)	T2m		U10		V10		T850		Z500	
		CRPS	EERPS	CRPS	EERPS	CRPS	EERPS	CRPS	EERPS	CRPS	EERPS
Full-Tuning	1239.94	0.604	0.206	0.838	0.284	0.854	0.285	0.653	0.223	73.760	27.051
$k = 0.04$	52.47	0.601	0.205	0.838	0.284	0.854	0.286	0.650	0.222	72.745	26.683
$k = 0.03$	39.91	0.605	0.207	0.838	0.284	0.854	0.285	0.652	0.223	74.102	27.247
$k = 0.02$	27.34	0.606	0.207	0.839	0.284	0.855	0.286	0.652	0.223	73.757	27.082
$k = 0.01$	14.82	0.608	0.208	0.841	0.285	0.857	0.287	0.654	0.223	73.438	26.958
$k = 0.001$	3.48	0.618	0.211	0.844	0.286	0.860	0.287	0.657	0.224	72.701	26.665

1102

1103

1104

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
fair comparisons with other PEFT methodologies in this paper, we select $k=0.001$ for most of the
experiments, ensuring a comparable parameter budget. To unleash the potential of WeatherPEFT
and ensure a fair comparison with Full-Tuning, we supplement experiments with k set to 0.04. To
explicitly validate this consistency across all tasks, we have conducted the same ablation study on
the hyperparameter k for the other two downstream tasks: Downscaling and Ensemble Weather
Forecast Post-Processing. The results are presented in Tables 6 and 7, which demonstrate a clear
and consistent trend across two tasks. WeatherPEFT’s performance scales with trainable parameters,
matching or surpassing Full-Tuning when using 3% of the model’s parameters. Beyond this, perfor-
mance gains gradually plateau. Additionally, we conduct a hyperparameter sweep on LoRA’s rank
on Aurora. The results on the precipitation forecasting task show LoRA’s performance is insensitive
to its parameter count and remains significantly inferior to WeatherPEFT even when it uses fewer
parameters. This confirms that WeatherPEFT’s superiority stems from a fundamental architectural
advantage, not from suboptimal baseline tuning.1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
Furthermore, our ablation on γ , the initial value of the linear decay factor in SFAS, demonstrates
that the model exhibits relative insensitivity to this hyperparameter, with $\gamma = 0.2$ yielding the optimal
or jointly optimal results across most metrics and forecast horizons. This could be attributed
to the weights progressively decaying towards zero, making the initial value of γ less critical to the
final results. Regarding the prompt length P in TADP, experiments show that increasing the num-
ber of soft prompt tokens beyond $P=20$ does not lead to further performance improvements and, in
some cases, results in slight degradation (e.g., 12-hour SEEPS increased from 0.368 at $P = 20$ to
0.400 at $P=40$). Given that longer prompts also increase the trainable parameter count (from 3.38M
at $P = 20$ to 4.98M at $P = 100$), $P = 20$ is identified as the most reasonable setting for this task,
suggesting that excessive prompt lengths may introduce redundant parameters or make optimiza-
tion more challenging without contributing additional descriptive power. Finally, the ablation on the
hidden dimensions (HW_h , V_h , D_h) of the three adapters in TADP indicates that increasing these
dimensions from a compact (8, 6, 16) to a larger (32, 13, 512) configuration (i.e. forgoing dimen-
sionality reduction to retain dimensions of the original features), which drastically increase trainable
parameters from 3.38M to 27.87M, do not yield performance benefits and, in fact, led to a decline
in metrics. This suggests that larger adapter capacities may be prone to overfitting on the down-
stream task or are not necessary for capturing the task-specific information for regional precipitation
forecasting, making the smaller dimensions more efficient and effective. These analyses affirm the
selected hyperparameter values for achieving a strong balance between performance and efficiency.

1134 B.2 BACKBONE GENERALIZATION STUDY
1135
11361137 Table 8: Generalization study on the backbone for regional precipitation forecasting in the China
1138 region. Performance is evaluated using SEEPS, ACC, and RMSE (1e-2). Prithvi-WxC (Schmude
1139 et al., 2024) is adopted as the foundation model, and for fine-tuning methods, we report only the
1140 trainable parameters within the backbone.

1141 1142 Method	Trainable 1143 Params (M)	12 Hours			24 Hours			36 Hours		
		SEEPS	ACC ↑	RMSE	SEEPS	ACC ↑	RMSE	SEEPS	ACC ↑	RMSE
Prithvi WxC	1979.10	0.435	0.649	0.226	0.542	0.505	0.259	0.630	0.404	0.275
Full-Tuning	1978.47	0.398	0.678	0.218	0.517	0.521	0.256	0.604	0.419	0.273
LoRA	86.47	0.647	0.406	0.273	0.760	0.231	0.297	0.813	0.149	0.307
WeatherPEFT	81.99	0.405	0.678	0.218	0.523	0.522	0.255	0.605	0.428	0.272

1146
1147 In WeatherPEFT, SFAS is universally applicable to any model trained with gradient-based optimization.
1148 Regarding TADP, its core concept involves applying a series of projection transformations to
1149 the encoder’s embedding space. This extracts task-specific representations, which are concatenated
1150 as soft prompts to the input of each layer in the backbone model. TADP offers broad applicability
1151 across diverse settings due to three key factors:1152
1153 • **Unified Operation Target:** Embedding space is irrespective of architecture (e.g., Transformers
1154 (Vaswani et al., 2017), Convolutional Neural Networks (Krizhevsky et al., 2012), or Graph Neural
1155 Networks Scarselli et al. (2008)), and all models involve an embedding operation mapping in-
1156 put data to a continuous feature space for subsequent computation. Consequently, TADP can be
1157 applied to various embedding networks/encoders by identifying their corresponding embedding
1158 weight matrices.
1159 • **Consistent Feature Processing Across Architectures:** Fundamentally, diverse model architec-
1160 tures perform multi-layered computations on input feature vectors to produce outputs. TADP
1161 concatenates soft prompts to the input feature map at each layer. Therefore, adapting TADP to
1162 different backbones simply requires minor adjustments based on the specific characteristics of the
1163 extracted feature maps.
1164 • **Extension to Multi-modal Inputs:** Handling multi-modal inputs typically involves transitioning
1165 from a single-modal encoder to multiple single-modal encoders. TADP can integrate the embed-
1166 ding weight of multi-modal encoders. Task-specific representations are subsequently derived from
1167 this integrated space and concatenated as soft prompts to the backbone’s inputs at each layer.1168 In summary, WeatherPEFT demonstrates strong generalization capability across variations in model
1169 architecture, embedding methods, and input modalities. To provide concrete evidence for these
1170 claims, we further evaluate our method on a different, larger foundation model: Prithvi-WxC
1171 (Schmude et al., 2024). The results on the regional precipitation forecasting task are shown in Table
1172 8. We note that this model is pre-trained on data sources that are more dissimilar to our downstream
1173 tasks compared to Aurora (Bodnar et al., 2025), which makes effective fine-tuning more challenging.
1174 As the table demonstrates, WeatherPEFT still achieves similar performance, matching Full-Tuning
1175 using only 4% of the parameters. Crucially, the generic PEFT baseline, LoRA, performs very
1176 poorly on this architecture. This result strongly underscores the necessity of a weather-specific and
1177 adaptive PEFT method like WeatherPEFT, as generic approaches are not guaranteed to be effective
1178 across different WFs.1179 B.3 MODULE FINE-GRAINED COMPARISON STUDY
11801181 To precisely evaluate the individual mechanisms of WeatherPEFT, we conduct a fine-grained ab-
1182 lation study on the downscaling task (Table 9), dissecting components of Task-Adaptive Dynamic
1183 Prompting (TADP) and Stochastic Fisher-Guided Adaptive Selection (SFAS).1184 Within TADP, ablating either the ‘Internal’ pattern extraction (designed for task-specific physical
1185 constraints) or the ‘External’ pattern extraction (for coupling physical quantities with spatial resolu-
1186 tion features) consistently leads to performance degradation compared to the full WeatherPEFT. For
1187 instance, T2m RMSE increases from 1.119 in the full model to 1.140 (w/o Internal) and 1.130 (w/o

1188
 1189 Table 9: Fine-grained Ablation study on TADP and SFAS. ‘External’ and ‘Internal’ represent the
 1190 external and internal pattern extraction in TADP, while ‘Randomness’ denotes the stochastic com-
 1191 ponent in SFAS. We adopt the Aurora (Bodnar et al., 2025) as the foundation model. Experiments
 1192 are done on the downscaling task [under the limited \(top\) and increased \(bottom\) parameter budgets](#).

Method	T2m		U10		V10		T850		Z500	
	RMSE	Mean Bias	RMSE	Mean Bias	RMSE	Mean Bias	RMSE	Mean Bias	RMSE	Mean Bias
w/o Internal	1.140	0.007	1.076	0.001	1.069	-0.002	0.964	0.004	46.027	1.048
w/o External	1.130	0.006	1.068	0.001	1.062	-0.003	0.958	0.004	45.292	0.787
w/o Randomness	1.130	0.005	1.069	0.000	1.062	0.000	0.956	0.005	45.808	0.714
WeatherPEFT	1.119	0.003	1.057	0.000	1.051	-0.001	0.950	0.004	44.922	0.413
w/o Internal	0.970	0.000	0.913	-0.002	0.912	-0.002	0.860	-0.002	36.870	0.611
w/o External	0.958	0.000	0.903	-0.001	0.903	-0.003	0.854	-0.001	36.415	0.640
w/o Randomness	0.954	0.000	0.900	-0.002	0.901	-0.002	0.852	-0.001	36.277	0.620
WeatherPEFT	0.916	0.000	0.873	-0.001	0.875	-0.002	0.834	-0.002	35.076	0.504

1202
 1203 External), highlighting the importance of these components for adapting to input data characteris-
 1204 tics, particularly vital for downscaling. Similarly, for SFAS, removing the ‘Randomness’ (stochastic
 1205 component), intended to stabilize parameter selection, results in higher RMSE values for most vari-
 1206 ables (e.g. T2m RMSE increased to 1.130), underscoring the need for stabilizing the parameter
 1207 selection. However, we observe that in the low-parameter regime, the performance differences, dis-
 1208 tinct yet relatively small. This phenomenon is likely attributable to “performance saturation”, where
 1209 the optimization landscape is tightly constrained by the minimal trainable parameter budget, com-
 1210 pressing the variance between methods. The results of larger-parameter setting demonstrate that
 1211 the performance gaps become significantly more pronounced as capacity increases. These findings
 1212 collectively demonstrate that the Internal and External pattern extraction mechanisms are essential
 1213 for robust scaling. They allow the model to efficiently utilize additional capacity to capture complex
 1214 meteorological dynamics, preventing the premature plateauing observed in the ablated variants.

1215 The complete WeatherPEFT consistently achieves the overall best performance (e.g., lowest RMSE
 1216 for T2m, U10, T850, Z500). This demonstrates that each evaluated sub-component contributes
 1217 meaningfully and synergistically to WeatherPEFT’s robust and efficient adaptation capabilities.

1219 B.4 REAL-WORLD CASE STUDY

1220
 1221
 1222 Table 10: Real-world case study on the extreme 2020 China Mei-yu flood event. Performance is
 1223 evaluated using the 50th and 75th percentile Threat Score (TS) and SEEPS with forecast initialized
 1224 from 7.1 12:00 on the China region. Aurora (Bodnar et al., 2025) is adopted as the foundation model,
 1225 and for fine-tuning methods, we report only the trainable parameters within the backbone.

Method	Trainable Params (M)	12 Hours			24 Hours			36 Hours		
		50%TS	75%TS	SEEPS ↓	50%TS	75%TS	SEEPS ↓	50% TS	75%TS	SEEPS ↓
Full-Tuning	1246.77	0.64	0.50	0.34	0.70	0.45	0.67	0.57	0.34	0.68
LoRA	57.80	0.58	0.37	0.49	0.68	0.34	0.86	0.52	0.26	0.83
DoRA	57.92	0.54	0.32	0.55	0.65	0.31	0.89	0.49	0.19	0.94
AdaptFormer	61.68	0.59	0.40	0.45	0.68	0.36	0.83	0.54	0.25	0.82
WeatherPEFT	52.37	0.65	0.50	0.34	0.72	0.46	0.67	0.58	0.37	0.66

1232
 1233 To demonstrate practical utility, we further conduct a case study on the extreme 2020 China Mei-yu
 1234 (plum rain) flood, which is documented as a period of record-breaking flooding (Ding et al., 2021;
 1235 Volonté et al., 2021). We initialize a forecast at 12:00 UTC on July 1, 2020, during an intensely ac-
 1236 tive phase of this event, evaluating performance with decision-relevant metrics such as the 50th and
 1237 75th percentile Threat Score (TS) and SEEPS. The results in Table 10 show that with only 4% of the
 1238 parameters, WeatherPEFT’s performance on heavy rainfall forecasts is comparable to Full-Tuning.
 1239 Crucially, it also outperforms the generic PEFT baselines, including LoRA (Hu et al., 2022), DoRA
 1240 (Liu et al., 2024), and AdaptFormer (Chen et al., 2022), despite their larger number of trainable pa-
 1241 rameters. This demonstrates that our method’s targeted approach offers tangible efficiency benefits
 for real-world extreme event prediction.

1242 B.5 SYNERGISTIC ANALYSIS
1243
12441245 Table 11: Synergistic analysis study on the backbone for regional precipitation forecasting in the
1246 China region. Performance is evaluated using SEEPS, ACC, and RMSE (1e-2). Aurora (Bodnar
1247 et al., 2025) is adopted as the foundation model, and for fine-tuning methods, we report only the
1248 trainable parameters within the backbone.

Method	Trainable Params (M)	12 Hours			24 Hours			36 Hours		
		SEEPS	ACC ↑	RMSE	SEEPS	ACC ↑	RMSE	SEEPS	ACC ↑	RMSE
AdaptFormer+SFAS	5.88	0.475	0.608	0.236	0.617	0.419	0.272	0.705	0.302	0.288
LoRA+SFAS	4.89	0.446	0.647	0.227	0.592	0.464	0.265	0.701	0.316	0.286
VPT+SFAS	5.01	0.395	0.708	0.209	0.537	0.533	0.252	0.639	0.41	0.273
WeatherPEFT	3.38	0.368	0.742	0.198	0.515	0.559	0.247	0.615	0.443	0.268

1249
1250
1251
1252
1253
1254
1255 To rigorously validate whether the proposed TADP module provides significant architectural value
1256 beyond simply applying sparse adaptive parameter selection to existing methods, we conduct a com-
1257 parative study. We integrate the proposed SFAS mechanism with representative generic PEFT meth-
1258 ods, including LoRA (Hu et al., 2022), AdaptFormer (Chen et al., 2022), and VPT (Jia et al., 2022),
1259 and compare them with WeatherPEFT on the Regional Precipitation Forecasting task.1260 As presented in the Table 11, simply adding SFAS to generic adapters yields suboptimal results
1261 compared to WeatherPEFT. While adding SFAS to methods like VPT does improve performance
1262 relative to their standard counterparts (Table 3), they still consistently lag behind WeatherPEFT.
1263 Notably, WeatherPEFT achieves the best performance while utilizing fewer parameters compared
1264 to the combinatorial baselines. These results suggest that generic adapters, even when optimized
1265 with Fisher-guided selection, fail to adequately capture the complex variable-specific couplings and
1266 physical regime shifts inherent in weather data. By explicitly modeling internal and external patterns
1267 through TADP, WeatherPEFT provides a more effective initialization for the selection process. This
1268 empirically demonstrates that TADP is not merely a supplementary module but a critical architec-
1269 tural component that works synergistically with SFAS to achieve superior adaptation.1270 B.6 COMPUTATIONAL EFFICIENCY ANALYSIS
1271
1272

1273 Table 12: Comparison of training times across different tasks.

Methods	Training Time		
	Downscaling	Post-Processing	Precipitation Forecasting
LoRA	5h09m	1h09m	1h42m
AdaptFormer	5h05m	1h06m	1h40m
Ours	5h33m	1h20m	1h58m

1274
1275
1276
1277
1278
1279
1280 The sequential implementation of the three specialized adapters in TADP and the parameter selec-
1281 tion mechanism in SFAS might introduce a degree of computational overhead compared to simpler
1282 techniques. To quantitatively evaluate this trade-off between algorithmic complexity and computa-
1283 tional efficiency, we measure the total training time for WeatherPEFT against representative PEFTs
1284 (LoRA (Hu et al., 2022) and AdaptFormer (Chen et al., 2022)) across all three downstream tasks.1285
1286 As shown in the Table 12, WeatherPEFT incurs a modest training time increase of approximately
1287 10% compared to LoRA. This marginal increase in wall-clock training time is a highly favorable
1288 trade-off given the substantial performance gains demonstrated in the main experiments. It enables
1289 WFs to accurately solve complex downstream tasks where generic, faster PEFT methods fail to
1290 capture the necessary physical dynamics.1291 B.7 ADDITIONAL DOMAIN SPECIFICITY ANALYSIS
12921293 To further investigate the generalizability and domain specificity of our approach, we evaluate
1294 WeatherPEFT on the VTAB-1K benchmark (Zhai et al., 2019), a standard suite for evaluating trans-
1295 fer learning in computer vision. We utilize a ViT-B/16 (Dosovitskiy et al., 2020) backbone pre-
1296 trained on ImageNet-21k (Deng et al., 2009). We compare our method against representative visual

1296 1297 1298 1299 1300	Methods	params (M)	Natural					Specialized			Structured					sNORB-Azim	sNORB-Ele	Average				
			Cifar100	Caltech101	DTD	Flower102	Pets	SVHN	Sun397	Camelyon	EuroSAT	Resisc45	Retinopathy	Clevr-Count	Clevr-Dist	DMLab	KITTI-Dist	dSpr-Loc	dSpr-Ori			
1301	Full-Tuning	85.8	68.9	87.7	64.3	97.2	86.9	87.4	38.8	79.7	95.7	84.2	73.9	56.3	58.6	41.7	65.5	57.5	46.7	25.7	29.1	68.9
1302	Linear-Probing	0.00	64.4	85.0	63.2	97.0	86.3	36.6	51.0	78.5	87.5	68.5	74.0	34.3	30.6	33.2	55.4	12.5	20.0	9.6	19.2	57.6
1303	Convpass	0.33	72.3	91.2	72.2	99.2	90.9	91.3	54.9	84.2	96.1	85.3	75.6	82.3	67.9	51.3	80.0	85.9	53.1	36.4	44.4	76.6
1304	FacT-TK	0.07	70.6	90.6	70.8	99.1	90.7	88.6	54.1	84.8	96.2	84.5	75.7	82.6	68.2	49.8	80.7	80.8	47.4	33.2	43.0	75.6
1305	RepAdapter	0.22	72.4	91.6	71.0	99.2	91.4	90.7	55.1	85.3	95.9	84.6	75.9	82.3	68.0	50.4	79.9	80.4	49.2	38.6	41.0	76.1
1306	SSF	0.24	69.0	92.6	75.1	99.4	91.8	90.2	52.9	87.4	95.9	87.4	75.5	75.9	62.3	53.3	80.6	77.3	54.9	29.5	37.9	75.7
1307	SCT	0.11	75.3	91.6	72.2	99.2	91.1	91.2	55.0	85.0	96.1	86.3	76.2	81.5	65.1	51.7	80.2	75.4	46.2	33.2	45.7	76.0
1308	LoRA	0.29	67.1	91.4	69.4	98.8	90.4	85.3	54.0	84.9	95.3	84.4	73.6	82.9	69.2	49.8	78.5	75.7	47.1	31.0	44.0	74.5
1309	AdaptFormer	0.16	70.8	91.2	70.5	99.1	90.9	86.6	54.8	83.0	95.8	84.4	76.3	81.9	64.3	49.3	80.3	76.3	45.7	31.7	41.1	74.7
1310	VPT	0.53	78.8	90.8	65.8	98.0	88.3	78.1	49.6	81.8	96.1	83.4	68.4	68.5	60.0	46.5	72.8	73.6	47.9	32.9	37.8	72.0
1311	Ours	0.29	73.1	92.2	71.9	99.2	90.2	89.2	53.5	83.3	95.0	83.4	73.6	81.3	68.0	46.8	74.8	72.3	45.2	28.3	37.6	74.0

Table 13: Results on VTAB-1K (Zhai et al., 2019) Benchmark with ViT-B/16 (Dosovitskiy et al., 2020) backbone.

PEFT methods, including Convpass (Jie et al., 2024), FacT (Jie & Deng, 2023), RepAdapter (Luo et al., 2023), SSF (Lian et al., 2022), SCT (Zhao et al., 2024a), LoRA (Hu et al., 2022), AdaptFormer (Chen et al., 2022), and VPT (Jia et al., 2022).

As demonstrated in the Table 13, WeatherPEFT achieves an average accuracy of 74.0%, which is comparable to general PEFT methods like LoRA and AdaptFormer. However, we observe that our method performs slightly below the SOTA on the “Structured” task group (e.g., dSprites, sNORB). We attribute this performance difference to a fundamental distinction between the VTAB-1K experimental setting and the weather domains for which our method was optimized. The core design of our TADP is to extract task-specific characteristics (e.g., variable types and physical resolutions) from the encoder’s embedding layer to introduce context-aware feature recalibration. In weather tasks, the embedding layer is rich with varying physical information, allowing TADP to dynamically adapt the model to the specific “physics” of the input. In contrast, for standard vision tasks like VTAB-1K, the embedding layers of the backbone are typically frozen and process homogeneous RGB data. In this setting, TADP extracts information from a fixed layer, causing the “dynamic prompt” to effectively become a static constant. This neutralizes the primary advantage of TADP’s adaptivity, resulting in performance that is competitive with, but not significantly superior to, other baselines. In summary, while WeatherPEFT is capable of handling generic tasks, its superior performance is unlocked in the weather domain, validating our motivation for a domain-specialized design that addresses meteorological challenges.

C DISCUSSION

Table 14: Scaling trends in weather foundation models.

Model	Year	Parameters	Training Resources
FourCastNet (Pathak et al., 2022)	2022	64M	16 hours; 64 A100 GPUs
Pangu (Bi et al., 2023)	2022	65M	16 days; 192 V100 GPUs
GraphCast (Lam et al., 2023)	2022	37M	28 days; 32 TPU v4
ClimaX (Nguyen et al., 2023a)	2023	117M	~3 days; 80 V100 GPUs
FengWu (Chen et al., 2023a)	2023	158M	17 days; 32 A100 GPUs
Fuxi (Chen et al., 2023b)	2023	157M	~8 days; 8 A100 GPUs
Aurora (Bodnar et al., 2025)	2024	1.3B	~18 days; 32 A100 GPUs
Prithvi WxC (Schmude et al., 2024)	2024	2.3B	64 A100 GPUs

While WeatherPEFT demonstrates promising advances in PEFT for WFs, several aspects warrant further discussion:

1350 **Scales of WFs.** First, one potential limitation of the current work pertains to the existing scale
 1351 of WFs. We are currently in the early stages of developing general AI for the weather domain.
 1352 Current WFs, including Aurora (Bodnar et al., 2025) and ClimaX (Nguyen et al., 2023a), re-
 1353 main in their infancy compared to mature Computer Vision (CV) or Natural Language Processing
 1354 (NLP) foundation models. These models are generally smaller and less computationally demand-
 1355 ing than their counterparts in NLP or CV, which might initially lessen the perceived urgency for
 1356 PEFT methods in meteorological science. However, this view is rapidly being challenged by the
 1357 swift expansion of WFs. As detailed in Table 14, recent models such as Aurora (1.3B parameters)
 1358 (Bodnar et al., 2025) and Prithvi WxC (2.3B parameters) (Schmude et al., 2024) already highlight
 1359 a clear trajectory towards billion-parameter scales and increasing computational requirements. This
 1360 trend indicates that the computational and storage demands for fine-tuning will soon become unsus-
 1361 tainable for many institutions. As a case in point, Environment Canada reported that GPU memory
 1362 constraints make it “effectively impossible” to fully fine-tune GraphCast Lam et al. (2023) on their
 1363 in-house systems (Subich, 2025). In this evolving context, WeatherPEFT is presented as a forward-
 1364 looking initiative. Our work aims to proactively establish efficient adaptation methodologies that
 1365 will be essential for the accessible and sustainable deployment of these increasingly large and com-
 1366 plex future-generation weather foundation models.
 1367

1368 **Generalization of WeatherPEFT.** Furthermore, WeatherPEFT has only been validated on the
 1369 transformer-based backbone, including Aurora (Bodnar et al., 2025) and Prithvi WxC (Schmude
 1370 et al., 2024), but it can be adapted to other architectures with minor modifications as discussed in
 1371 Appendix B.2. Future work should prioritize its extension to other foundational architectures, such
 1372 as Convolutional Neural Networks and Graph Neural Networks. Testing its performance across a
 1373 broader range of downstream tasks will also be crucial for confirming its generalizability.
 1374

1375 **Trade-off between Efficiency and Performance.** Moreover, it is a general observation in the
 1376 PEFT field that a marginal performance gap can sometimes exist when compared to the absolute
 1377 ceiling achievable by exhaustive full fine-tuning when fine-tuning only a minuscule fraction of pa-
 1378 rameters ($\sim 0.3\%$). This potential, slight differential is broadly considered an acceptable trade-off.
 1379 As demonstrated in Appendix B.1, this performance gap for PEFT methods narrows significantly
 1380 as the budget of trainable parameters is increased to $\sim 3\%$. Our method, WeatherPEFT, completely
 1381 closes this gap, achieving performance that is on par with, and on certain metrics even superior
 1382 to, that of full fine-tuning. Practitioners can select the optimal balance based on their specific ap-
 1383 plication, choosing extreme efficiency with a small performance trade-off or allocating a modest
 1384 parameter budget to achieve performance parity with full fine-tuning.
 1385

1386 **Out of Distribution Scenarios.** While the WeatherPEFT framework does not include an explicit
 1387 mechanism for general out-of-distribution (OOD) generalization, our experimental results provide
 1388 evidence of its robustness to specific distribution shifts, namely extreme weather events. This ca-
 1389 pability is demonstrated by its superior performance on metrics designed to penalize errors on rare
 1390 phenomena, including EECRPS and SEEPS. Furthermore, we evaluate WeatherPEFT on the real-
 1391 world case study of the 2020 Mei-yu flood, where it achieves a high Threat Score (TS), a key
 1392 decision-relevant metric. We attribute this enhanced performance to our adaptive parameter selec-
 1393 tion method, SFAS. By dynamically identifying and fine-tuning the most task-critical parameters,
 1394 SFAS more effectively captures the dynamics of events in the tails of the data distribution compared
 1395 to fixed PEFT strategies. This indicates a promising robustness against the OOD challenges posed
 1396 by extreme events.
 1397

1398 **Physical Mechanisms Incorporation.** Finally, the current WeatherPEFT framework, while adapt-
 1399 ing effectively through its data-driven components, does not explicitly incorporate domain-specific
 1400 physical mechanisms or constraints from atmospheric science directly into the PEFT process itself.
 1401 Future research could investigate domain-specific PEFT methods tailored to weather and climate ap-
 1402 plications to improve the performance, such as integrating physical mechanisms into the fine-tuning
 1403 process (e.g., embedding conservation laws or dynamical constraints).
 1404

1404
1405

D USE OF LARGE LANGUAGE MODELS (LLMs)

1406
1407 In the preparation of this manuscript, Large Language Models (LLMs) are utilized as a general-
1408 purpose assistive tool to enhance the quality and clarity of the writing. The core research, experi-
1409 mental design, data analysis, and intellectual contributions remain entirely the work of the authors.
1410 The specific applications of LLMs in this work include:1411

- 1412 • **Text Polishing and Refinement:** The LLM is employed to review the entire text for grammatical
1413 accuracy, improve sentence structure, and ensure consistent phrasing and tone throughout the
1414 paper. This process is akin to using an advanced grammar and style checker to improve the overall
1415 readability of the manuscript.
- 1416 • **Coherence and Logical Flow:** We use the LLM to help organize and structure our arguments.
1417 By presenting existing drafts of sections to the model, we receive suggestions on how to improve
1418 the logical transitions between paragraphs and make the overall narrative more coherent and com-
1419 pelling for the reader.
- 1420 • **Supplementing and Articulating Ideas:** At various stages, the LLM serves as a sounding board
1421 to help supplement our thoughts. It assists in articulating complex ideas more clearly and explor-
1422 ing alternative ways to frame concepts that were already formulated by the authors. The model
1423 does not contribute to the original ideation or the generation of novel research findings but rather
1424 acts as an aid to express the authors' own thoughts more effectively.

1425 All suggestions and modifications proposed by the LLM are critically reviewed, edited, and ap-
1426 proved by the authors to ensure they accurately reflect our research and intended meaning. The final
1427 responsibility for the content of this paper rests solely with the authors.1428

E ADDITIONAL MODEL IMPLEMENTATION DETAILS

1429

E.1 TRAINING-FROM-SCRATCH MODEL ARCHITECTURES

1430

E.1.1 RESNET

1431 We build the ResNet (He et al., 2016) architecture based on WeatherBench (Rasp et al., 2020; 2024)
1432 and ClimateLearn (Nguyen et al., 2023b), where each residual block consists of two identical convo-
1433 lutional modules: 2D convolution → LeakyReLU with $\alpha = 0.3$ → Batch Normalization → Dropout.
1434 Table 15 shows the hyperparameters for ResNet in all of our experiments.1435
1436 **Table 15: Default hyperparameters of ResNet**1437
1438

1439 Hyperparameter	1440 Meaning	1441 Value
1442 Padding size	1443 Padding size of each convolution layer	1
1444 Kernel size	1445 Kernel size of each convolution layer	3
1446 Stride	1447 Stride of each convolution layer	1
1448 Hidden dimension	1449 The number of output channels of each residual block	256
1450 Residual blocks	1451 The number of residual blocks	28
1452 Dropout	1453 Dropout rate	0.1

1454

E.1.2 U-NET

1455 We borrow our U-Net (Ronneberger et al., 2015) implementation from ClimateLearn (Nguyen et al.,
1456 2023b). We use the following hyperparameters in the Table 16 for UNet in all of our experiments.
1457 Similar to ResNet, we use a convolutional layer with a kernel size of 7 at the beginning of the
1458 network, and all paddings are periodic in the longitude direction and zeros in the latitude direction.1459

E.1.3 ViT

1460 We implement the ViT (Dosovitskiy et al., 2020) architecture according to ClimateLearn (Nguyen
1461 et al., 2023b), which differs from the standard ViT with some minor modifications. Specifically, the

1458

1459

Table 16: Default hyperparameters of U-net

1460

1461

Hyperparameter	Meaning	Value
Padding size	Padding size of each convolution layer	1
Kernel size	Kernel size of each convolution layer	3
Stride	Stride of each convolution layer	1
Hidden dimension	The number of base channels of each block	64
Channel multiplications	The number of feature channels to scale	(1,2,2)
Blocks	The number of blocks	4
Use attention	If use attention in Down and Up blocks	False
Dropout	Dropout rate	0.1

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

class token is removed with a 1-hidden MLP prediction head incorporating, which is applied to the tokens after the last attention layer to predict the outputs. Table 17 demonstrates the hyperparameters for ViT in all of our experiments based on ViT-B.

1472

1473

1474

1475

Table 17: Default hyperparameters of ViT

1476

1477

Hyperparameter	Meaning	Value
Padding size	The patch size to embed the input to the token	8
Hidden dimension	The number of embedding dimension	1024
Depth	The number of ViT blocks	24
Heads	The number of attention heads	16
MLP ratio	Determine the hidden dimension of the MLP layer in a ViT block	4
Prediction depth	The number of layers of the prediction head	4
Drop path	For stochastic depth rate (Huang et al., 2016)	0.1
Dropout	Dropout rate	0.1

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

E.1.4 FOURCASTNET

1488

1489

1490

1491

1492

Table 18: Default hyperparameters of FourCastNet

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

Hyperparameter	Meaning	Value
Padding size	The patch size to embed the input to the token	4
Sparsity threshold	The threshold of sparsity controlling in the Soft-Thresholding	0.01
Hidden dimension	The number of embedding dimension	768
Block number	The number of AFNO (Guibas et al., 2021) blocks	8
Depth	The number of layers	12
MLP ratio	Determine the hidden dimension of the MLP layer in a ViT block	4
Activation layer	The activation function within each layer (Huang et al., 2016)	GELU
Dropout	Dropout rate	0

1505

1506

1507

E.1.5 CLIMAX

1508

1509

1510

1511

The ClimaX is implemented based on the official code of [ClimaX](#) (Nguyen et al., 2023a). As shown in the Table 19, we employ the following default hyperparameters for ClimaX in all of our experiments.

E.1.6 AURORA

The Aurora is implemented based on the official code of [Aurora](#) (Bodnar et al., 2025). As shown in the Table 20, we employ the following default hyperparameters for Aurora in all of our experiments.

1512

1513

Table 19: Default hyperparameters of ClimaX

Hyperparameter	Meaning	Value
Padding size	The patch size to embed the input to the token	4
Hidden dimension	The number of embedding dimension	1024
Depth	The number of ViT blocks	8
Heads	The number of attention heads	16
MLP ratio	Determine the hidden dimension of the MLP layer in a ViT block	4
Prediction depth	The number of layers of the prediction head	2
Drop path	For stochastic depth rate (Huang et al., 2016)	0.1
Dropout	Dropout rate	0.1

1523

1524

1525

Table 20: Default hyperparameters of Aurora

Hyperparameter	Meaning	Value
Patch size	The patch size to embed the input to the token	4
Hidden dimension	Embedding dimension size	512
Encoder depths	The number of blocks per encoder layer	(6, 10, 8)
Decoder depths	The number of blocks per decoder layer	(8, 10, 6)
Heads	The number of attention heads	16
MLP ratio	MLP hidden dimension ratio	4.0
Encoder depth	The number of Perceiver (Jaegle et al., 2021) blocks in encoder	1
Decoder depth	The number of Perceiver (Jaegle et al., 2021) blocks in decoder	1
Latent levels	The number of latent pressure levels	4
Window size	3D Swin window dimensions	(2, 6, 12)
Drop path	For stochastic depth rate (Huang et al., 2016)	0
Dropout	Dropout rate	0

1539

1540

1541

E.1.7 PRITHXI WxC

1543

1544

1545

The Prithvi WxC is implemented based on the official code of [Prithvi-WxC](#) (Schmude et al., 2024). As shown in the Table 21, we employ the following default hyperparameters for Prithvi WxC in all of our experiments.

1546

1547

1548

Table 21: Default hyperparameters of Prithvi WxC

Hyperparameter	Meaning	Value
Patch size	The patch size to embed the input to tokens	(2, 2)
Hidden dimension	Embedding dimension size	2560
Encoder blocks	The number of local-global transformer pairs	12
Heads	The number of attention heads	16
MLP ratio	MLP hidden dimension ratio	4.0
Drop path	For stochastic depth rate (Huang et al., 2016)	0.0
Dropout	Dropout rate	0.0

1558

1559

1560

1561

E.2 PEFT METHODS

1562

1563

1564

1565

The PEFT methods are implemented within the backbone of Aurora (Bodnar et al., 2025), which is first loaded with the official [pretrained weights](#) on over a million hours of diverse weather and climate data, and Prithvi WxC (Schmude et al., 2024), which is first loaded with official [pretrained weights](#) of the backbone.

1566 E.2.1 WEATHERPEFT
15671568 As shown in Table 22, we depict some hyperparameter values in our experiment. We denote the
1569 downscaling, post-processing, and forecasting tasks as Tasks 1, 2, and 3, respectively.
15701571 Table 22: Default hyperparameters of WeatherPEFT
1572

Hyperparameter	Module	Meaning	Value (Task 1/2/3)
P	TADP	The number of soft prompt tokens	30/5/20
P_h	TADP	The height of the patch embedding's window	4/4/4
P_w	TADP	The width of the patch embedding's window	4/4/4
V	TADP	The number of input variables	11/21/13
D	TADP	The hidden dimension of the encoder's embedding layer	512/512/512
HW_h	TADP	The hidden dimension of HW-Adapter	8/8/8
V_h	TADP	The hidden dimension of V-Adapter	5/10/6
D_h	TADP	The hidden dimension of D-Adapter	16/16/16
E_h	TADP	The hidden dimension of $E^{VP_h P_w \times D}$ -Adapter	16/16/16
k	SFAS	The percentage of selected parameters	0.001/0.001/0.001
γ	SFAS	The initial value of linear decay factor	0.2/0.2/0.2

1584
1585 E.2.2 OTHER PEFT BASELINES
15861587 We implement six state-of-the-art PEFT methods, including [LoRA](#) (Hu et al., 2022), [DoRA](#) (Liu
1588 et al., 2024), [AdaptFormer](#) (Chen et al., 2022), [SSF](#) (Lian et al., 2022), [VPT](#) (Jia et al., 2022), and
1589 [APrompt](#) (Wang et al., 2023a), based on their original paper. The default hyperparameters in our
1590 experiment are listed in Table 23.
15911592 Table 23: Default hyperparameters of PEFT baselines.
1593

Method	Hyperparameter	Meaning	Value
LoRA	Rank	The rank of the low rank matrix	8
LoRA	Alpha	The alpha value	1
LoRA	Dropout	Dropout rate	0
DoRA	Rank	The rank of the low rank matrix	8
DoRA	Alpha	The alpha value	1
DoRA	Dropout	Dropout rate	0
AdaptFormer	Skip connection	Whether to use residual connection within the adapter	False
AdaptFormer	Mlp ratio	The ratio of down sample	0.25
AdaptFormer	Activation function	The activation function within the adapter	GELU
SSF	Layer number	The number of SSF layer	12
VPT	Prompt length	The number of soft prompt tokens	50
APrompt	Prompt length	The number of soft prompt tokens	50
APrompt	QKV length	The number of soft attention tokens	10

1608
1609 F ADDITIONAL DOWNSTREAM TASK DETAILS
16101611 F.1 EXPERIMENTAL SETTINGS
16121613 We train all the models and WeatherPEFT using the same training framework. Each model is trained
1614 with the AdamW optimizer, employing a weight decay of 0.05. We employ a cosine learning rate
1615 scheduler with a warm-up phase during the first three epochs to stabilize training. For the three
1616 distinct downstream tasks, models are trained on eight 80GB NVIDIA A800 GPUs. The specific
1617 parameters for these tasks are: learning rates of 7e-4, 1e-3, and 3e-3; batch sizes of 5, 1, and 4; and
1618 30, 10, and 15 training epochs, respectively. The approximate training times for these respective
1619 configurations are 6, 2, and 2 hours. In the subsection, we will elaborate on the details of the
implementation of model architectures and PEFT methods.

1620
1621

F.2 DOWNSCALING

1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633

Global weather forecasting models typically operate at coarse spatial resolutions to mitigate computational costs, capturing large-scale atmospheric dynamics at the expense of localized detail. However, such resolutions are insufficient for analyzing regional phenomena such as coastal wind patterns. Downscaling, or statistical super-resolution, addresses this limitation by enhancing coarse-grained model outputs to finer resolutions while preserving physical consistency. In this experiment, we downscale 5.625° ERA5 data to 1.40625° ERA5 data (Hersbach et al., 2020) both at a global scale and 6-hour intervals, leveraging the WeatherBench dataset (Rasp et al., 2020). The training involves 30 epochs over the period from 2007 to 2016, and the test is in 2017 and 2018. Following Nguyen et al. (2023a;b), we first bilinearly interpolate the input to match the resolution of the desired output before feeding it to the model. We use mean square error as the loss function, and the overall surface loss is weighted by 0.25, while the overall upper loss is weighted by 1, following (Bi et al., 2023; Bodnar et al., 2025).

1634

F.2.1 DATA

1635
1636
1637

Table 24 summarizes the variables we use for our experiments, which total 68 variables.

1638
1639

Table 24: ERA5 variables used in our experiments. Surface represents surface variables, and Upper represents atmospheric properties at the chosen altitudes.

1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

Type	Variable	Abbrev.	Levels
Surface	2 metre temperature	T2m	
Surface	10 metre U wind component	U10	
Surface	10 metre V wind component	V10	
Upper	Geopotential	Z	
Upper	U wind component	U	50, 100, 150, 200, 250,
Upper	V wind component	V	300, 400, 500, 600, 700,
Upper	Temperature	T	850, 925, 1000
Upper	Specific humidity	Q	

1650

F.2.2 PROBLEM SETTING

1651
1652
1653
1654
1655
1656
1657

In this 5.625° ERA5 data to 1.40625° downscaling experiment, the 5.625° input data $\mathbf{X} \in \mathbb{R}^{68 \times 32 \times 64}$ is first bilinearly interpolated to 1.40625° data $\hat{\mathbf{X}} \in \mathbb{R}^{68 \times 128 \times 256}$ following Nguyen et al. (2023a;b). The machine learning models are trained to correct the biases between the interpolated input data $\hat{\mathbf{X}}$ and ground truth 1.40625° data $\mathbf{Y} \in \mathbb{R}^{68 \times 32 \times 64}$.

1658
1659
1660
1661
1662

F.2.3 VISUALIZATION

1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

We visualize the input, ground truth, and prediction of seven PEFT approaches (our proposed WeatherPEFT and six other state-of-the-art PEFT baselines) to provide an intuitive comparison for further reference.

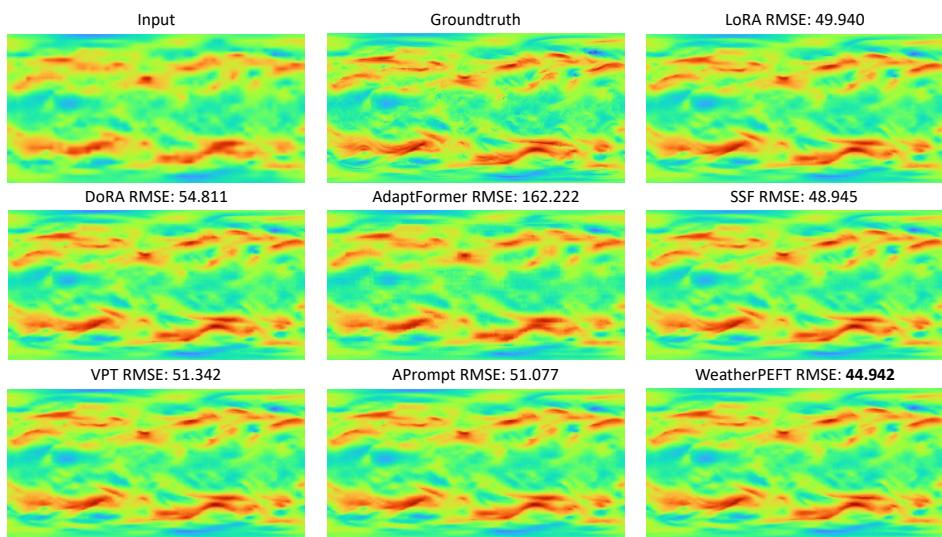


Figure 8: Visualization of PEFT baselines and WeatherPEFT on the variable Z500 of downscaling (2018-03-27 06 UTC).

1805 F.3 ENSEMBLE WEATHER FORECAST POST-PROCESSING

1807 Existing ensemble weather predictions are subject to systematic errors known as biases (Toth &
 1808 Kalnay, 1993). Therefore, post-processing approaches have been introduced to forecast skill by
 1809 correcting the distribution of the ensemble weather prediction to improve the reliability of weather
 1810 forecasting. Our evaluation employs the ENS-10 benchmark (Ashkboos et al., 2022) for global
 1811 ensemble forecast post-processing, which pairs 10-member ensemble prediction (48-hour lead time)
 1812 from the ECMWF Integrated Forecasting System (IFS) (ECMWF, 2022) with ERA5 reanalysis
 1813 targets at 0.5° resolution. The dataset involves two data points per week spanning 20 years, with
 1814 the years 1998-2015 as the training set and 2016-2017 as the test set. Following (Ashkboos et al.,
 1815 2022), we utilize the closed-form expression of the Continuous Ranked Probability Score (CRPS)
 1816 as the loss function, training for 10 epochs.

1818 F.3.1 DATA

1819 Table 25 summarizes the variables we use for our experiments, which total 25 variables.

1822 F.3.2 PROBLEM SETTING

1823 For a given time T , the input is a set of ensemble members $X = \{\mathbf{X}_{k,T}\}_{k \in [1,10]}$. Each ensemble
 1824 member $\mathbf{X}_{k,T} \in \mathbb{R}^{25 \times 360 \times 720}$ consists of all surface and upper variables predictions at time steps
 1825 $T + 24h$. For each target variable, the task is to predict a corrected cumulative distribution function
 1826 (CDF) F_{ij} at time $T + 48h$ at each grid point (i, j) . Following Toth & Kalnay (1993); Grönquist
 1827 et al. (2021), we assume a Gaussian distribution on the target variable and learn the mean and
 1828 standard deviation of this distribution. Specifically, the model is provided with the mean and standard
 1829 deviation of all variables in ENS-10 at a lead time of $T + 48h$. The model outputs two values cor-
 1830 responding to the mean and standard deviation of the target variable. To derive the corrected mean,
 1831 the first output value is multiplied by the ensemble member's standard deviation and added to the
 1832 ensemble mean. Similarly, the corrected standard deviation is obtained by taking the exponential of
 1833 the second output value and multiplying it by the ensemble standard deviation. This normalization
 1834 ensures accurate calibration of the predicted distribution. We choose to minimize the Continuous
 1835 Ranked Probability Score (CRPS) between the ensemble prediction and ERA5 ground-truth. In this
 1836 case, the closed-form expression of CRPS of a Gaussian distribution (Ashkboos et al., 2022) can be

1836
 1837 Table 25: ENS-10 variables used in our experiments. Surface represents surface variables, and
 1838 Upper represents atmospheric properties at the chosen altitudes.

Type	Variable	Abbrev.	Levels
Surface	Sea surface temperature	SST	
Surface	Total column water	TCW	
Surface	Total column water vapor	TCWV	
Surface	Convective precipitation	CP	
Surface	Mean sea level pressure	MSL	
Surface	Total cloud cover	TCC	
Surface	Skin temperature at surface	SKT	
Surface	Total precipitation	TP	
Surface	2 metre temperature	T2m	
Surface	10 metre U wind component	U10	
Surface	10 metre V wind component	V10	
Upper	Geopotential	Z	
Upper	U wind component	U	
Upper	V wind component	V	
Upper	Temperature	T	500, 850
Upper	Specific humidity	Q	
Upper	Vertical velocity	W	
Upper	Divergence	D	

1859 defined as:

$$1860 \quad \text{CRPS}(F_{i,j}, \mathbf{X}) = \sigma \left[2\psi \left(\frac{\mathbf{X} - \mu}{\sigma} \right) + \frac{\mathbf{X} - \mu}{\sigma} \left(2\phi \left(\frac{\mathbf{X} - \mu}{\sigma} \right) - 1 \right) - \frac{1}{\sqrt{\pi}} \right], \quad (9)$$

1862 where μ and σ are the mean and standard deviation of the distribution, ψ and ϕ are the probability
 1863 density and cumulative density function of a standard Gaussian random variable, respectively.
 1864

1865 F.4 REGIONAL PRECIPITATION FORECASTING

1867 Precipitation forecasting plays a crucial role in agriculture, water resource management, and disaster
 1868 prevention (Yue et al., 2022; Ward et al., 2011). Among fundamental atmospheric forecast variables,
 1869 precipitation forecasting presents unique challenges. This is primarily attributed to the multiscale
 1870 interactions involved in precipitation processes, ranging from cloud microphysics to large-scale cir-
 1871 culation (Frank et al., 2024), encompassing complex nonlinear dynamical, water vapor transport,
 1872 and thermodynamic processes (Trenberth et al., 2003). Moreover, global predictions are not always
 1873 feasible, particularly when only regional data is available. In this experiment, we evaluate Weather-
 1874 PEFT on regional six-hour precipitation accumulation forecasts across China, addressing scenarios
 1875 where only localized observational data is available. To enable this assessment, we introduce ERA5-
 1876 CH, a specialized dataset derived from ERA5 reanalysis at resolution 0.25° exclusively over China.
 1877 To do this, we first identified the latitude (58.5°N - 1.5°S) and longitude (74.0°E - 134.0°E) range to
 1878 form a rectangular area that encapsulates China. For each data sample, we then extracted the spatial
 1879 positions that fall into this range, forming ERA5-CH. We utilize the mean absolute error loss for
 1880 training and train the model over 15 epochs, with data from 2010–2019 serving as the training set
 1881 and 2020 as the test set. Both datasets are configured with a 12-hour temporal resolution.

1882 F.4.1 DATA

1883 Table 24 summarizes the variables we use for our experiments, which total 70 variables.
 1884

1885 F.4.2 PROBLEM SETTING

1887 In this regional precipitation forecasting experiment, the input $\mathbf{X} \in \mathbb{R}^{70 \times 240 \times 240}$ is 0.25° data with
 1888 70 variables and 240×240 grids. The machine learning models are trained to predict the six-hour
 1889 accumulation of precipitation for three lead times of 12 hours, 24 hours, and 36 hours, which is also
 0.25° data $\mathbf{Y} \in \mathbb{R}^{3 \times 240 \times 240}$ with 240×240 grids.

1890

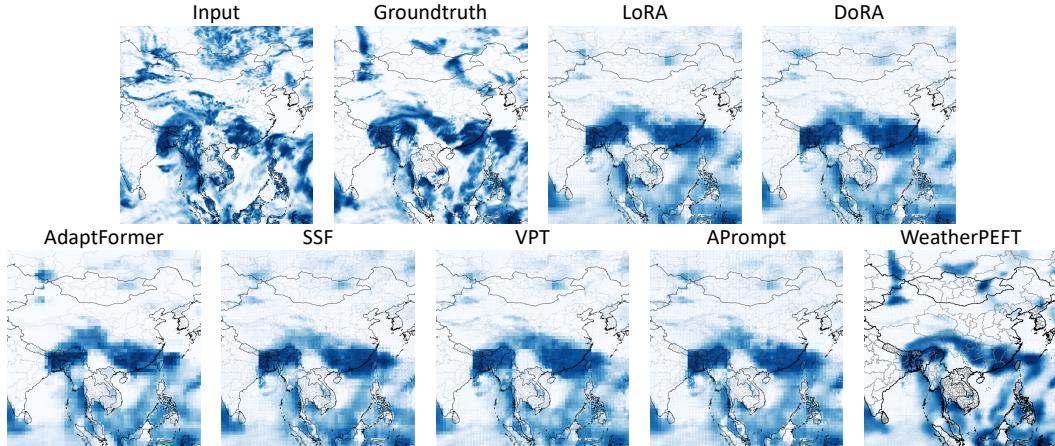
1891 Table 26: ERA5 variables used in our experiments. Surface represents surface variables, and Upper
1892 represents atmospheric properties at the chosen altitudes.

Type	Variable	Abbrev.	Levels
Surface	Total precipitation of 6 hours	TP	
Surface	Mean sea level pressure	MSL	
Surface	2 metre temperature	T2m	
Surface	10 metre U wind component	U10	
Surface	10 metre V wind component	V10	
Upper	Geopotential	Z	
Upper	U wind component	U	50, 100, 150, 200, 250,
Upper	V wind component	V	300, 400, 500, 600, 700,
Upper	Temperature	T	850, 925, 1000
Upper	Relative humidity	R	

1899

1900 F.4.3 VISUALIZATION

1901

1902 We provide the visualization of PEFT baselines and WeatherPEFT on the variable TP (total precipitation)
1903 in Figure 9.1925 Figure 9: PEFT baselines and WeatherPEFT visualization of a 12-hour forecast for TP-6hr over
1926 China (2020-05-20 12 UTC).
1927

1928

1929 F.5 METRICS

1930

1931 This section defines all the evaluation metrics we employ in the experiment. For arbitrarily variable,
1932 we denote $\hat{\mathbf{Y}} \in \mathbb{R}^{N \times H \times W}$ and $\mathbf{Y} \in \mathbb{R}^{N \times H \times W}$ and \mathbf{Y} as the prediction output and the ground
1933 truth, both of which have the same shape, where N represents the number of data points, H denotes
1934 the number of latitude coordinates, and W is the number of longitude coordinates. $\hat{y}_{k,i,j}$ and $y_{k,i,j}$
1935 indicates scalar values of the prediction tensor $\hat{\mathbf{Y}}$ and the ground-truth tensor \mathbf{Y} , respectively. The
1936 indices k , i , and j correspond to the data sample, latitude, and longitude.

1937

1938 F.5.1 ROOT MEAN SQUARED ERROR (RMSE)

1939

1940 Following WeatherBench, we define the RMSE as the mean latitude-weighted RMSE over all fore-
1941 casts for each variable:

1942

$$1943 \text{RMSE} = \frac{1}{N} \sum_{k=1}^N \sqrt{\frac{1}{H \times W} \sum_{i=1}^H \sum_{j=1}^W W(i)(\hat{y}_{k,i,j} - y_{k,i,j})^2}, \quad (10)$$

1944 where $W(i)$ is the latitude weighting factor for the latitude at i^{th} latitude index:
 1945

$$1946 \quad W(i) = \frac{\cos(\text{lat}(i))}{\frac{1}{N_{\text{lat}}} \sum_i^{N_{\text{lat}}} \cos(\text{lat}(i))}. \quad (11)$$

$$1947$$

$$1948$$

1949 F.5.2 MEAN BIAS

$$1950$$

1951 Mean bias quantifies the discrepancy between the spatial average of predictions and ground truth. A
 1952 positive value indicates systematic overestimation, while a negative value reflects an underestimation
 1953 of the mean. The Mean Bias for each variable is defined as:

$$1954$$

$$1955 \quad \text{Mean Bias} = \frac{1}{N \times H \times W} \sum_{k=1}^N \sum_{i=1}^H \sum_{j=1}^W (\hat{y}_{k,i,j} - y_{k,i,j}). \quad (12)$$

$$1956$$

$$1957$$

1958 F.5.3 CONTINUOUS RANKED PROBABILITY SCORE (CRPS)

$$1959$$

1960 CRPS generalizes the mean absolute error for probabilistic forecasts. Given a ground truth observa-
 1961 tion y at grid-point (i, j) , the CRPS for the corrected cumulative distribution function F at the same
 1962 point is defined as:

$$1963$$

$$1964 \quad \text{CRPS}(F_{ij}, y) = \int_{-\infty}^{\infty} (F_{ij}(x) - \mathbf{1}_{y \leq x})^2 dx, \quad (13)$$

$$1965$$

1966 where $\mathbf{1}_{y \leq x}$ is an indicator function that equals 1 if $y \leq x$ and 0 otherwise. This formulation
 1967 quantifies the discrepancy between the predicted cumulative distribution function and the observed
 1968 value, providing a robust measure of probabilistic forecast accuracy. We report the mean CRPS over
 1969 all grid points over the two test years.

$$1970$$

1971 F.5.4 ANOMALY CORRELATION COEFFICIENT (ACC)

$$1972$$

1973 ACC measures the spatial correlation between the anomalies of prediction $\hat{\mathbf{Y}}$ and ground truth \mathbf{Y} ,
 1974 where both are computed relative to climatological baselines. Formally, ACC is defined as:

$$1975$$

$$1976 \quad \text{ACC} = \frac{\sum_{k,i,j} W(i) \hat{y}'_{k,i,j} y'_{k,i,j}}{\sqrt{\sum_{k,i,j} W(i) \hat{y}'^2_{k,i,j} \sum_{k,i,j} W(i) y'^2_{k,i,j}}}, \quad (14)$$

$$1977$$

$$1978$$

$$1979 \quad \hat{\mathbf{Y}}' = \hat{\mathbf{Y}} - \mathbf{C}, \quad \mathbf{Y}' = \mathbf{Y} - \mathbf{C},$$

1980 where climatology \mathbf{C} is the temporal mean of the ground truth data over the dataset.

$$1981$$

1982 F.5.5 EXTREME EVENT WEIGHTED CONTINUOUS RANKED PROBABILITY SCORE 1983 (EECRPS)

$$1984$$

1985 A critical objective in bias correction is reducing uncertainty during extreme weather events. To
 1986 avoid conflating these events with average-case forecast skill, (Ashkboos et al., 2022) introduces a
 1987 weighted version of CRPS that emphasizes extreme conditions. A widely adopted metric for quan-
 1988 tifying forecast irregularity is the Extreme Forecast Index (EFI) (Lalaurette, 2003; Zsótér, 2006),
 1989 which measures the deviation of ensemble forecasts relative to a probabilistic weather model. The
 1990 EFI ranges between -1 and 1, with larger absolute values indicating greater deviation from histori-
 1991 cal meteorological records. Typically, EFI magnitudes between 0.5 and 0.8 are considered unusual,
 1992 while values above 0.8 signify very unusual conditions and a high likelihood of extreme weather.
 1993 Given a ground-truth observation y at grid-point (i, j) , we weight the CRPS using the absolute value
 1994 of the EFI at that location, defining the Extreme Event Weighted CRPS (EECRPS) as:

$$1995$$

$$1996 \quad \text{EECRPS}(F_{i,j}, y) := |\text{EFI}_{(i,j)}| \times \text{CRPS}(F_{i,j}, y). \quad (15)$$

$$1997$$

1998 We report the mean EECRPS over all grid points of the test years. For the calculation of $\text{EFI}_{(i,j)}$,
 1999 please refer to (Ashkboos et al., 2022)

1998
1999

F.5.6 STABLE EQUITABLE ERROR IN PROBABILITY SPACE (SEEPS)

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012

Traditional deterministic metrics such as RMSE and ACC are inadequate for evaluating precipitation forecasts due to precipitation’s highly skewed distribution and spatiotemporal intermittency. These limitations cause conventional metrics to favor overly smooth forecasts. Following (Rasp et al., 2020), we adopt the SEEPS score (Rodwell et al., 2010) for precipitation evaluation. SEEPS categorizes precipitation into three classes: “dry,” “light,” and “heavy,” discouraging smooth forecasts while maintaining stability across parameter choices. For more details about the SEEPS score, please refer to (Rodwell et al., 2010). Here, we describe how we compute the SEEPS score based on (Rasp et al., 2024). For every location, we use a dry threshold of 0.1 mm/day for 6 hourly accumulations. The remaining precipitation values are split into light and heavy categories, with light precipitation days occurring twice as frequently as heavy ones for that location climatologically. We utilize the light-heavy threshold precomputed by (Rasp et al., 2024), which is the 2/3rd quantile of non-dry days based on climatology (Rasp et al., 2024). Forecast-observation pairs are classified into these categories based on the thresholds, generating a 3×3 joint probability contingency table (Table 27) for each lead time.

2013
2014
2015
2016
2017
2018
2019
2020
2021

Table 27: 3×3 contingency table of precipitation classification forecast and observation in SEEPS scores.

Probability		Observation		
		Category	1	2
Forecast	1	P_{11}	P_{12}	P_{13}
	2	P_{21}	P_{22}	P_{23}
	3	P_{31}	P_{32}	P_{33}

2022
2023
2024

The contingency table is then multiplied by the scoring error matrix S based on the climatological occurrence of dry days for each geographical location:

$$S = \frac{1}{2} \begin{bmatrix} 0 & \frac{1}{1-p} & \frac{4}{1-p} \\ \frac{1}{p} & 0 & \frac{3}{1-p} \\ \frac{1}{p} + \frac{3}{2+p} & \frac{3}{2+p} & 0 \end{bmatrix} \quad (16)$$

2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042

where p represents the climatological probability of dry days, columns represent observed probabilities, and rows represent forecast probabilities. Following (Zhao et al., 2024b; Rodwell et al., 2010), we exclude extreme climates using $0.1 < p < 0.85$ and compute area-weighted mean SEEPS scores. It can be seen in Equation 16 that the SEEPS error scoring matrix is uniquely determined by p . For rainy climate regions, where p is smaller, the lower triangular elements of the SEEPS error scoring matrix (corresponding to false negatives for “dry” conditions) are larger. For arid climate regions, where p is larger, the upper triangular elements of the SEEPS error scoring matrix (corresponding to false negatives for “heavy rain”) are larger. This indicates that the SEEPS error scoring matrix, which is based on the probability of precipitation occurrence ($1 - p$), varies across different climate regions or precipitation seasons. Consequently, a key feature of SEEPS is its ability to assign different error scores to the same forecast characteristic (e.g., missing a “heavy rain” event) depending on the climate region or season. In other words, the “penalty” for forecast errors is tied to the climatic probability of precipitation. Thus, SEEPS automatically adapts to site-specific precipitation probabilities across varying climate zones or seasons.

2043
2044

F.5.7 THREAT SCORE (TS)

2045
2046
2047
2048
2049
2050
2051

The Threat Score (TS), also known as the Critical Success Index (CSI), is a widely used verification metric in meteorology for evaluating the performance of categorical forecasts, particularly for precipitation events (Schaefer, 1990). It measures the fraction of correctly predicted “yes” events out of all instances where the event was either predicted or observed. The TS is particularly valuable as it ignores correct negatives (correctly forecasting no event), making it sensitive to performance on rare or localized phenomena like heavy rainfall.

To calculate the TS, forecast-observation pairs at each grid point are first categorized into a contingency table based on a predefined event threshold. The categories are Hits (H), where the event was

2052 forecast to occur and did occur, Misses (M), where the event was not forecast to occur but did occur,
 2053 and False Alarms (F), where the event was forecast to occur but did not occur. The Threat Score is
 2054 then computed using the following formula:
 2055

$$2056 \quad TS = \frac{H}{(H + M + F)}. \quad (17)$$

2057

2058 The score ranges from 0 to 1, where 1 indicates a perfect forecast. In the context of our case study
 2059 on the 2020 Mei-yu flood, we use percentile-based thresholds to define the precipitation events,
 2060 allowing for a location-specific evaluation of moderate and heavy rainfall. Specifically, we establish
 2061 two thresholds for each grid point based on a climatology constructed from precipitation data in
 2062 June and July between 2010 and 2020:

2063 • **50th Percentile TS:** An event is defined as precipitation exceeding the local 50th percentile of the
 2064 climatology.
 2065 • **75th Percentile TS:** An event is defined as precipitation exceeding the local 75th percentile of the
 2066 climatology.
 2067

2068 This approach ensures that the metric evaluates the model’s ability to predict rainfall events that are
 2069 significantly intense relative to the typical climate of each specific location during that season.
 2070

2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105