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ABSTRACT

While recent advances in machine learning have equipped Weather Foundation
Models (WFMs) with substantial generalization capabilities across diverse down-
stream tasks, the escalating computational requirements associated with their
expanding scale increasingly hinder practical deployment. Current Parameter-
Efficient Fine-Tuning (PEFT) methods, designed for vision or language tasks,
fail to address the unique challenges of weather downstream tasks, such as vari-
able heterogeneity, resolution diversity, and spatiotemporal coverage variations,
leading to suboptimal performance when applied to WFMs. To bridge this gap,
we introduce WeatherPEFT, a novel PEFT framework for WFMs incorporat-
ing two synergistic innovations. First, during the forward pass, Task-Adaptive
Dynamic Prompting (TADP) dynamically injects the embedding weights within
the encoder to the input tokens of the pre-trained backbone via internal and ex-
ternal pattern extraction, enabling context-aware feature recalibration for spe-
cific downstream tasks. Furthermore, during backpropagation, Stochastic Fisher-
Guided Adaptive Selection (SFAS) not only leverages Fisher information to
identify and update the most task-critical parameters, thereby preserving invari-
ant pre-trained knowledge, but also introduces randomness to stabilize the se-
lection. We demonstrate the effectiveness and efficiency of WeatherPEFT on
three downstream tasks, where existing PEFT methods show significant gaps
versus Full-Tuning, and WeatherPEFT achieves performance parity with Full-
Tuning using fewer trainable parameters. The code of this work is available at
https://anonymous.4open.science/r/WeatherPEFT-A068.

1 INTRODUCTION

In an era marked by intensifying global climate change, the frequency and severity of extreme
weather events, such as droughts (Fabian et al., 2023; Deng et al., 2023) and floods (Hirabayashi
et al., 2013), have been steadily increasing. Consequently, developing accurate and timely weather
modeling systems is crucial for enhancing our understanding of climate change (Beddington et al.,
2011; Connor, 2015). For decades, physics-based models (Kimura, 2002; Lynch, 2008; Coiffier,
2011; Bauer et al., 2015; Ravindra et al., 2019) have served as cornerstones for weather research.
However, their computational demands, stemming from resolving complex physical constraints,
present significant challenges regarding efficiency and scalability (Ren et al., 2021). Over the last
decade, the widespread adoption of machine learning models in weather research has led to signifi-
cant advances in prediction accuracy and computational efficiency (Schultz et al., 2021; Chen et al.,
2023c; Shi et al., 2025). Nevertheless, most of these models remain task-specific, requiring bespoke
architectures and training protocols for distinct applications, limiting their generalizability.

This limitation has spurred interest in Weather Foundation Models (WFMs), large-scale pre-trained
models that leverage massive data to acquire generalized representations of atmospheric processes
(Nguyen et al., 2023a; Bodnar et al., 2025; Schmude et al., 2024; Zhao et al., 2024b). Fine-tuning
is then applied to transfer the pre-trained model’s knowledge, enabling it to achieve promising per-
formance on downstream tasks. Nevertheless, as the scale of these models increases (Bodnar et al.,
2025; Schmude et al., 2024), so too does the challenge of fine-tuning them effectively and efficiently
for downstream tasks. Full fine-tuning, which adjusts the entire model per task, is computationally
prohibitive due to escalating resource demands. Furthermore, maintaining distinct parameter sets
per task creates storage bottlenecks when scaling to large models with multi-task scenarios.
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Figure 1: Unlike the uniform adaptation of existing PEFT methods, WeatherPEFT is adaptive to
heterogeneous weather tasks like global downscaling (left) and regional precipitation forecasting
(right) with Task-Adaptive Dynamic Prompting and Stochastic Fisher-Guided Adaptive Selection.

In light of these challenges, Parameter-Efficient Fine-Tuning (PEFT) techniques prevalent in natu-
ral language processing and computer vision have shown great promise (Hu et al., 2022; Jia et al.,
2022; Zhang et al., 2025), which seeks to potentially match or even exceed the performance of full
fine-tuning with a minimal number of trainable parameters updates. These methods not only facil-
itate more effective adaptation to novel tasks but also preserve the pre-existing knowledge within
the foundation models. However, the weather downstream tasks are inherently diverse, encompass-
ing a wide range of objectives. This diversity poses significant challenges when adapting pre-trained
models to these tasks, as the varying characteristics of each task make it difficult to apply a one-size-
fits-all approach. Unlike the standardized three-channel RGB inputs of vision models or the unified
word embedding space of language models, meteorological data involve a wide variety of variables
(e.g., temperature and humidity), resolutions (e.g., 1.40625◦ and 0.25◦), and spatiotemporal cover-
age (e.g., global versus regional) across tasks. First, these variables are distinct physical quantities
governed by fluid dynamics equations. Crucially, the correlations between these variables change
depending on the task. Second, resolution in weather is not merely a spatial dimension but a physical
regime. Changing resolution, e.g., from 5.625◦ to 0.25◦, fundamentally alters the governing physics,
transmitting from hydrostatic, large-scale dynamics to non-hydrostatic, convective-scale processes.
Third, weather data is inherently spherical and multi-dimensional, often requiring simultaneous rea-
soning across vast spatiotemporal scales. Tasks at different spatiotemporal scales impose distinctly
different demands on the model’s feature hierarchies.

These complexities require models to adapt to the varying characteristics inherent in each down-
stream task. Moreover, a critical limitation of most existing PEFT approaches is their tendency to
apply the same set of trainable parameters across different downstream tasks (Figure 1) , which uni-
formly updates the entire PEFT module across all inputs. These methods fail to account for the fact
that different parameters may play varying roles in different tasks. For example, parameters relevant
for regional precipitation forecasting may differ from those critical for meteorological downscaling.
While task-specific selection methods exist in the broader PEFT literature, they primarily focus on
reducing fine-tuning costs in general domains through static selection mechanisms (Xu et al., 2021;
Fu et al., 2023; Zhao et al., 2024a). Consequently, as evidenced by the results of these methods in
Table 3 and 13, they fail to dynamically recalibrate for the complex, variable-specific couplings and
physical regime shifts that characterize meteorological data, leading to suboptimal performance.

To fill this gap, we propose WeatherPEFT, a novel PEFT framework for WFMs comprising Task-
Adaptive Dynamic Prompting (TADP), which adapts the model’s forward pass to task-specific char-
acteristics, and Stochastic Fisher-Guided Adaptive Selection (SFAS), which governs the subsequent
parameter updates during backpropagation. Since the encoder’s embedding layer captures the task-
specific information about input variables, resolutions, and weather phenomena, TADP extracts and
integrates this information by transforming its weights into the input token space of the pre-trained
backbone. Specifically, TADP first employs three specialized adapters to model the internal patterns
within the data dimension. Subsequently, it utilizes self-attention to capture the external patterns by
modeling the coupling between physical variables and spatial resolution features, forming a cohesive
representation. This dual approach effectively conditions the model on the specific characteristics
of the current task. SFAS provides a principled approach to identify optimal task-specific parameter
subsets, as the relevance and impact of specific parameters can vary significantly across different
weather downstream tasks. SFAS utilizes the Fisher information matrix to quantify the sensitivity of
parameters to the learning objective. It further integrates an annealed stochastic component to pri-
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oritize updates for task-critical parameters with higher possibilities while preserving foundational
pre-trained knowledge. The injected randomness serves to stabilize the selection, mitigating the risk
of prioritizing parameters influenced by initial noise. Our main contributions are summarized as:

• This work pioneers in exploring generalizing WFMs to downstream tasks. Particularly, we high-
light the efficiency issues in tuning WFMs, tackling the diverse demands of weather applications.

• We propose WeatherPEFT, a novel PEFT framework that integrates Task-Adaptive Dynamic
Prompting (TADP) and Stochastic Fisher-guided Adaptive Selection (SFAS). TADP utilizes task-
related soft prompts extracted from the encoder and SFAS filter task-adaptive parameters based
on Fisher information, enabling efficient and adaptive adaptation to weather downstream tasks.

• We evaluate WeatherPEFT on three downstream tasks where existing PEFT methods exhibit a
significant performance gap versus Full-Tuning. Our results demonstrate that WeatherPEFT closes
this gap, achieving performance on par with Full-Tuning while using fewer trainable parameters.
Remarkably, WeatherPEFT outperforms Full-Tuning on regional precipitation forecasting.

2 RELATED WORKS

2.1 WEATHER FOUNDATION MODELS

The increasing scale of available meteorological data has spurred the application of machine learning
(ML) techniques in weather and climate modeling (Shi et al., 2025; Chen et al., 2023c; Schultz et al.,
2021). Most notably, several models (Bi et al., 2023; Lam et al., 2023; Chen et al., 2023b;a; Price
et al., 2023; Chen et al., 2023b) have demonstrated superior performance in medium-range weather
forecasting, surpassing traditional NWPs in terms of accuracy and computational efficiency. Beyond
forecasting, ML techniques show promise in various tasks, including bias correction (Gregory et al.,
2024; Bretherton et al., 2022), downscaling (Mardani et al., 2024; 2023), data assimilation (Huang
et al., 2024; Xiao et al., 2024), and post-processing (Ashkboos et al., 2022; Rasp & Lerch, 2018).
Despite these successes, these models are typically designed for specific tasks and often trained on
data in particular formats, lacking general-purpose utility for weather and climate modeling.

Foundation Models (FMs) offer a promising solution due to their ability to learn extensive prior
knowledge from pre-training on large datasets (Devlin et al., 2019; Brown et al., 2020; Chowdhery
et al., 2023; Radford et al., 2021; Yuan et al., 2021; Wang et al., 2023b). Therefore, recent studies
have begun exploring WFMs (Bodnar et al., 2025; Nguyen et al., 2023a; Schmude et al., 2024; Zhao
et al., 2024b). For instance, Aurora (Bodnar et al., 2025) is pretrained on ten sources of weather
datasets and has demonstrated its adaptability to a range of tasks, capable of handling weather data
at arbitrary pressure levels for an arbitrary set of variables. Furthermore, Prithvi WxC (Schmude
et al., 2024), a 2.3 billion parameter foundation model developed using 160 variables, demonstrates
its generalization abilities across a set of challenging downstream tasks. However, as size grows, of-
ten encompassing billions of parameters, the computational and storage demands increase substan-
tially. This makes the standard approach of Full-Tuning for each downstream task unsustainable.
Therefore, more efficient and resource-saving fine-tuning solutions are urgently needed for WFMs.

2.2 PARAMETER-EFFICIENT FINE-TUNING

PEFT has emerged as a promising paradigm for adapting foundation models to novel downstream
tasks while maintaining their intrinsic knowledge (Yu et al., 2022; Hu et al., 2022; Zhou et al., 2024;
Han et al., 2024; Xin et al., 2024; Zhang et al., 2025; Li & Liang, 2021). Current PEFT can be
broadly categorized into four principal classes: Selective, Additive, Prompt-based, and Reparame-
terization approaches. Selective PEFT strategically optimizes partial parameter subsets of founda-
tion models (Xu et al., 2021; Zaken et al., 2022; Sung et al., 2021). Additive PEFT incorporates
trainable modules into the backbone and only fine-tunes these additional networks (Chen et al.,
2023d; Gao et al., 2023). For instance, AdaptFormer (Chen et al., 2022) incorporates a lightweight
down-and-up module into the model’s backbone. Similarly, SSF (Lian et al., 2022) applies scaling
and shifting to the features generated by each layer. Prompt-based PEFT involves learning soft con-
straints in the input token or the attention layer to adapt models to new tasks like VPT (Jia et al.,
2022) and Aprompt (Wang et al., 2023a). Reparameterization PEFT transforms the initial parame-
ters into a low-dimensional representation during training while seamlessly converting the weights
back to their original form for inference. LoRA (Hu et al., 2022) is a widely recognized method
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Figure 2: (a) Overview of WeatherPEFT, with TADP and SFAS applied to backbone. (b) TADP
generates task-aware prompts by extracting internal and external patterns from the encoder. (c)
SFAS uses Fisher information and a stochastic intervention to update task-critical parameters.

that decomposes the updated weight into two low-rank matrices, and DoRA (Liu et al., 2024) fur-
ther advances the decomposition by separating them into a magnitude vector and a direction matrix.
However, the inherent heterogeneity of weather downstream tasks, with their varied variables, res-
olutions, and spatiotemporal coverage, renders conventional homogeneous PEFT approaches sub-
optimal. While task-specific selection methods exist (Xu et al., 2021; Fu et al., 2023; Zhao et al.,
2024a), they primarily focus on reducing fine-tuning costs in general domains, often relying on static
selection determined prior to training. These static mechanisms fail to dynamically recalibrate for
complex, variable-specific couplings and physical regime shifts inherent in weather tasks. In con-
trast, WeatherPEFT introduces a dynamic, annealed selection mechanism (SFAS) combined with
context-aware dynamic prompting (TADP) to explicitly address the meteorological challenges.

3 BACKGROUND AND PRELIMINARIES

Weather Downstream Tasks. This work focuses on gridded prediction tasks, which are formal-
ized as spatiotemporal modeling to map input states (historical) to target states (future or derived
quantities). Specifically, the input is denoted as a three-dimensional array X ∈ RV×H×W , where
V represents the number of physical variables, such as temperature and geopotential, and H ×W
denotes the spatial resolution, determined by how the globe is gridded. The target is to predict an
output states Ŷ ∈ RV̂×Ĥ×Ŵ . Similarly, V̂ and Ĥ × Ŵ are the variables and spatial resolution of
the task-dependent output. For example, a global downscaling task involves mapping the 5.625◦

low-resolution data (32 × 64 grid points) to 1.40625◦ high-resolution data (128 × 256 grid points).

Parameter-Efficient Fine-Tuning. The foundation model is first pre-trained on extensive source
data and then is fine-tuned to perform a variety of downstream tasks T = {T i}|T |

i=1, where T i =

{(Xi
j ,Y

i
j)}

|Ti|
j=1 serves as input-label pairs of each downstream task. Let the pre-trained model Mθ

be parametrized by θ, the goal of fine-tuning is to adapt θ to different downstream tasks. While the
standard full fine-tuning need to update all parameters in θ to obtain θi for each downstream task
T i, PEFT aims to introduce minimal parameter updates ∆θi with |∆θi| ≪ |θi|. For each task T i,
the objective is to optimize the task-specific loss Li with output Ŷi

j from the model Mθ+∆θi :

min
∆θi

E(Xi
j ,Y

i
j)∈T iLi(Mθ+∆θi(Ŷi

j |Xi
j),Y

i
j). (1)

Since our method is applicable to all tasks, we omit task index superscript i hereafter for simplicity.

4 METHODS

Figure 2 presents an overview of the proposed WeatherPEFT, which integrates two synergistic inno-
vations operating at distinct stages of the fine-tuning process. The Task-Adaptive Dynamic Prompt-
ing (TADP) makes the model task-aware on the forward pass, while Stochastic Fisher-Guided Adap-
tive Selection (SFAS) governs the resulting parameter updates during backpropagation.
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4.1 TASK-ADAPTIVE DYNAMIC PROMPTING

The encoder embedding layer serves as a rich repository of task-specific knowledge, implicitly en-
coding the distinct characteristics of tasks. To explicitly extract and leverage this information, we
propose TADP. This method employs adapters that process the embedding weights to identify both
internal and external patterns. These patterns are subsequently used to generate task-aware prompts
that condition the forward pass, enabling the model to adapt to specific downstream applications.

Internal Pattern Extraction. The internal patterns within the encoder represent the intrinsic fea-
ture learned from data dimensions. The embedding weights E ∈ RD×V×Ph×Pw capture these
relationships by mapping the input into tokens, with Ph × Pw the kernel size involving spatial and
resolution information, V the number of variables, D the hidden dimension revealing meteorologi-
cal characteristics. To harness the patterns, we sequentially extract features using three specialized
adapters arranged in a progressive, low-to-high-level hierarchy. Each adapter consists of a Layer-
Norm layer, a down-projection layer, a GELU activation, and an up-projection layer. Specifically,

• HW-Adapter: We first process the spatial and resolution information (Ph × Pw) that governs lo-
calized interactions. The HW-adapter learns patterns from neighboring areas, thereby establishing
the fundamental context of how features behave and interact across spatial locations.

• V-Adapter: Building upon the spatially-refined features processed by the HW-Adapter, the V-
Adapter models the complex interdependencies and relationships among different physical input
variables (V ) such as temperature and humidity, within the established spatial context.

• D-Adapter: The D-Adapter processes the abstract attributes represented by the weather charac-
teristics (D). It integrates the outputs from the previous spatial and physical processing stages to
capture high-level, universal patterns that holistically explain atmospheric response mechanisms.

Formally, we first flatten the spatial dimension of the embedding weights E to Ê ∈ RD×V×PhPw .
Subsequently, Ê is passed through the adapter sequence to extract the respective internal patterns:

EHW = (AdapterHW (Ê))
π
, EV = (AdapterV (EHW ))

π
, ED = AdapterD(EV ), (2)

where EHW ∈ RPhPw×D×V , EV ∈ RV×PhPw×D, and ED ∈ RV×PhPw×D are the respective
outputs of adapters, and π denotes an operation that shifts the last dimension of a tensor to the first.

External Pattern Integration. The next step involves integrating the patterns to form a cohesive,
task-specific representation. To achieve this, we capture external patterns by establishing a coupling
analysis between the physical quantities (V ) and spatial resolution features (PhPw). We first merge
the first two dimension of ED to ÊD ∈ RV PhPw×D and then apply the self-attention operation
SA(·) to ÊD, followed by a linear projection to generate the final soft prompt tokens EP :

SA(·) = Softmax(
EqueryEkey√

D
)Evalue, ESA = (SA(ÊD))π, EP = (MLP(ESA))

π, (3)

where ESA ∈ RD×V PhPw , EP ∈ RP×D, P is the prompt length, and Equery,Ekey , Evalue are the
query, key, and value, respectively. Specifically, the final step is to inject these task-adaptive prompt
tokens into the backbone. The input X is first encoded into a sequence of M tokens T ∈ RM×D by
the encoder. The generated soft prompt tokens EP are then concatenated with the input tokens T
before being fed into each block of the pretrained backbone. This ensures that the model processes
the input data in the context of the task-specific information at every stage of computation.

4.2 STOCHASTIC FISHER-GUIDED ADAPTIVE SELECTION

The diversity of weather downstream tasks implies that parameters are not uniformly relevant across
all applications. Some parameters may encode chaotic patterns for precipitation forecasting, while
some focus on spatial relationships for downscaling. Consequently, we propose SFAS that adopts
the Fisher information (Kirkpatrick et al., 2017) as the metric to update the task-critical parameters.

A parameter’s significance can be determined by evaluating the extent to which altering the parame-
ter influences the output. Consider a model parameterized by θ ∈ R|θ| that defines a predictive distri-
bution Pθ(Y|X) with input X. The sensitivity of this distribution to a small parameter perturbation

5
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δ ∈ R|θ| can be measured using the Kullback-Leibler divergence DKL(Pθ(Y|X) ∥ Pθ+δ(Y|X)).
Abbass et al. (2022); Sung et al. (2021) shows that as δ → 0, the following relationship holds:

EX [DKL(Pθ(Y|X) ∥ Pθ+δ(Y|X))] = δTFθδ +O(δ3), (4)

where Fθ ∈ R|θ|×|θ| is the Fisher information matrix (Fisher, 1922), defined as:

Fθ = EX

[
EY∼Pθ(Y|X)∇θlogPθ(Y|X)∇θlogPθ(Y|X)T

]
. (5)

Evidently, the Fisher information matrix is intrinsically linked to the change in parameters induced
by the small perturbation δ. Therefore, we leverage Fisher information to guide the adaptive pa-
rameter selection process. However, the |θ| × |θ| size of Fθ renders it computationally infeasible to
compute the Fisher information matrix exactly in practice. Consequently, prior work often approxi-
mates Fθ with its diagonal matrix, or equivalently, as a vector in R|θ|. Especially, when we sample
N data X1,X2, ...,XN from data distribution P (X), Eq. 5 can be effectively approximated as:

F̂θ =
1

N

N∑
j=1

EY∼Pθ(Y|Xj)(∇θlogPθ(Y|Xj))
2. (6)

Here F̂θ ∈ R|θ| and Eq. 6 demonstrates that a larger F̂θ corresponds to a more influential parameter.
Furthermore, in a supervised learning framework, we have the data pairs (Xj ,Yj) and can access
the ground-truth label Yj for each Xj . So we can approximate Eq. 6 as:

F̂θ =
1

N

N∑
j=1

(∇θlogPθ(Yj |Xj))
2. (7)

This approximation improves computational efficiency and performance. However, due to the sig-
nificant heterogeneity among weather downstream tasks, substantial noise exists during early fine-
tuning, distorting Fisher information. For example, in the early epochs, parameters with high Fisher
scores may capture transient noise artifacts rather than task-relevant features. To stabilize the train-
ing process, we introduce an annealed stochastic component with a linear decay factor:

F̄θ = γ × (1− ns

ts
)⊙Msc + F̂θ, (8)

where γ is the initial factor, Msc ∼ Uniform(0, 1) is the stochastic vector, and ns and ts are
the current step and total step respectively. Each batch is treated as a step, and during training we
select the Top-k parameters with the highest F̄θ for optimization. The hyperparameter k governs the
sparsity of the Fish Mask. The Fish Mask entries for the Top-k parameters are set to one, while the
rest are zero, thereby excluding less significant parameters and updating only the Top-k parameters.

5 EXPERIMENTS

We evaluate WeatherPEFT on downscaling, ensemble forecast post-processing, and regional precip-
itation prediction. These tasks are selected to span diverse weather challenges, including variable
variations, resolution shifts, and spatiotemporal coverage heterogeneity. Additional ablation studies
on hyperparameters and fine-grained comparisons are provided in Appendix B.1 and B.3.

Implementation Details. We mainly leverage Aurora (Bodnar et al., 2025), a 1.3B-parameter
pre-trained foundation model with a 3D Swin Transformer U-Net backbone for the fine-tuning ex-
periments. We also evaluate our method on another larger backbone, Prithvi-WxC (Schmude et al.,
2024), provided in Appendix B.2. More experimental settings will be discussed in Appendix F.1.

Baselines. Generally, we adopt three types of baselines. Firstly, we include models trained from
scratch from vision and weather domains, i.e., U-Net (Ronneberger et al., 2015), ResNet (He et al.,
2016), and ViT (Dosovitskiy et al., 2020), FourCastNet (Pathak et al., 2022), ClimaX (Nguyen et al.,
2023a), and Aurora (Bodnar et al., 2025). This comparison helps to highlight the advantages of fine-
tuning over training from the ground up. Secondly, to demonstrate the efficiency of PEFT, we select
three conventional fine-tuning approaches, including Linear-Probing, Bias-Tuning, and Full-Tuning.
Thirdly, we chose six state-of-the-art PEFT methods,including LoRA (Hu et al., 2022), DoRA (Liu
et al., 2024), AdaptFormer (Chen et al., 2022), SSF (Lian et al., 2022), VPT (Jia et al., 2022),
APrompt (Wang et al., 2023a). The architectural details are provided in the Appendix E.
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Table 1: The RMSE and Mean Bias on downscaling experiments from ERA5 (5.625◦) to ERA5
(1.40625◦). We adopt the Aurora (Bodnar et al., 2025) as the foundation model and only count the
trainable parameters in the backbone for all fine-tuning methods.

Method Trainable
Params (M)

T2m U10 V10 T850 Z500
RMSE Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE Mean Bias

Nearest 0.00 3.007 0.001 2.695 -0.039 2.717 0.038 2.010 0.007 295.493 -0.054
Bilinear 0.00 2.284 0.001 2.118 -0.038 2.176 0.038 1.439 0.007 149.662 -0.053
U-Net 20.10 1.915 -0.111 1.174 0.031 1.152 -0.033 1.773 -0.059 120.045 -11.118
ResNet 34.78 2.164 0.095 1.562 -0.087 1.513 0.013 1.513 -0.067 105.101 10.229
ViT 315.43 2.972 0.018 1.931 -0.024 1.837 0.006 2.143 -0.218 201.027 -27.900
FourCastNet 63.53 2.036 -0.016 1.535 -0.001 1.492 -0.003 1.494 -0.032 160.271 -4.184
ClimaX 116.65 2.512 -0.043 1.691 0.005 1.649 0.009 2.000 -0.102 163.806 -12.55
Aurora 1256.27 1.227 0.006 1.126 0.006 1.134 -0.012 1.192 0.002 99.764 -0.996
Linear-Probing 0.00 1.291 0.014 1.227 -0.002 1.198 0.003 1.078 0.002 58.085 0.598
Bias-Tuning 0.78 1.242 0.013 1.168 -0.003 1.148 0.000 1.026 0.004 53.049 0.108
LoRA 3.63 1.190 0.006 1.130 0.000 1.118 -0.002 0.998 -0.001 50.421 0.084
DoRA 3.75 1.228 0.010 1.140 0.001 1.120 -0.001 1.024 0.000 50.061 0.984
AdaptFormer 4.64 1.737 -0.065 1.505 -0.050 1.412 0.002 1.429 -0.083 106.667 -21.029
SSF 3.92 1.180 0.009 1.106 -0.001 1.094 -0.001 0.987 0.002 48.342 0.936
VPT 3.75 1.241 0.008 1.163 -0.002 1.144 0.001 1.031 0.005 52.453 0.998
APrompt 4.34 1.228 0.010 1.151 -0.002 1.132 0.000 1.025 0.008 51.587 1.099
TADP Only 2.22 1.183 0.005 1.118 0.000 1.105 -0.001 0.996 0.003 49.809 1.491
SFAS Only 1.26 1.161 0.010 1.090 -0.001 1.081 -0.002 0.973 0.002 47.000 0.848
WeatherPEFT 3.48 1.119 0.003 1.057 0.000 1.051 -0.001 0.950 0.004 44.922 0.413
Full-Tuning 1239.94 0.906 0.002 0.882 0.000 0.884 -0.001 0.836 0.000 35.821 0.314
LoRA 57.80 1.131 0.004 1.069 0.001 1.060 0.001 0.961 0.004 45.914 1.110
DoRA 57.92 1.236 0.009 1.147 -0.002 1.126 -0.001 1.030 -0.001 50.405 1.289
AdaptFormer 61.68 1.590 -0.007 1.376 -0.012 1.331 -0.003 1.282 0.006 81.465 1.739
WeatherPEFT 52.47 0.916 0.000 0.873 -0.001 0.875 -0.002 0.834 -0.002 35.076 0.504

5.1 DOWNSCALING

Downscaling, the process of mapping coarse-resolution data to a higher resolution, is critical for
analyzing local phenomena. In this experiment, we downscale 5.625◦ ERA5 data to 1.40625◦

ERA5 data (Hersbach et al., 2020) globally with WeatherBench dataset (Rasp et al., 2020). We
simultaneously downscale the 68 atmospheric input variables to test the model’s ability to learn the
cross-variable interactions required for accurate high-resolution outputs. Additionally, we compare
WeatherPEFT with nearest and bilinear interpolation. We evaluate all methods on latitude-weighted
Root Mean Squared Error (RMSE) and Mean Bias, which are common metrics in downscaling
works (Nguyen et al., 2023b). We select 2-meter temperature (T2m), 10-meter zonal wind (U10),
10-meter meridional wind (V 10), 500 hPa geopotential (Z500), and 850 hPa temperature (T850) as
the primary verification fields as they collectively ensure a holistic evaluation of model performance
(Rasp et al., 2020). Details of the task configurations and metrics are in the Appendix F.2.

Visualizations are included in Appendix F.2.3. Table 1 shows downscaling results, indicating that

• Models trained from scratch generally exhibit poorer performance compared to fine-tuning ap-
proaches. For example, Aurora achieves an RMSE of 1.227 for T2m, which is significantly worse
than the 0.906 RMSE of Full-Tuning. This performance gap arises from the task’s nature, which
necessitates simultaneous downscaling of 68 variables, posing significant challenges for models
trained from scratch to effectively capture the complex interdependencies among these variables.

• While the PEFT methods significantly reduce trainable parameters, they incur a certain degree of
accuracy degradation compared to Full-Tuning. For example, DoRA shows ∼36% higher T2m
RMSE compared to Full-Tuning with only 3.75M parameters (1.228 vs. 0.906). These results
underscore the limitations of existing PEFT strategies in specialized scientific domains. Notably,
WeatherPEFT effectively balances parameter efficiency and performance, outperforming existing
PEFT baselines in terms of RMSE using the fewest parameters, with only 3.48M parameters,
demonstrating its ability to adapt the foundation model to the task of downscaling.

• The ablation study provides further evidence of the effectiveness of our framework. TADP and
SFAS individually perform well but slightly underperform versus the full WeatherPEFT, under-
scoring the synergistic benefits of both modules during the forward and backpropagation passes.

• To ensure a comprehensive and fair comparison, we also evaluated the PEFT methods with an
increased parameter budget (∼4%). Even in this setting, existing PEFT methods like LoRA and
DoRA still fail to approach the performance of Full-Tuning. Remarkably, WeatherPEFT nearly
closes the gap, achieving results nearly on par with, and in some cases better than, the Full-Tuning.
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Table 2: The CRPS and EECRPS on ensemble weather forecast post-processing with ten ensemble
members. We adopt the Aurora (Bodnar et al., 2025) as the foundation model.

Method Trainable
Params (M)

T2m U10 V10 T850 Z500
CRPS EECRPS CRPS EECRPS CRPS EECRPS CRPS EECRPS CRPS EECRPS

RAW 0.00 0.732 0.250 0.889 0.304 0.899 0.304 0.719 0.246 78.222 28.766
U-Net 19.88 0.661 0.226 0.859 0.292 0.872 0.292 0.672 0.230 74.158 27.260
ResNet 33.95 0.682 0.232 0.865 0.294 0.880 0.295 0.689 0.235 75.562 27.750
ViT 311.10 0.646 0.221 0.856 0.291 0.872 0.292 0.672 0.229 73.503 26.956
FourCastNet 73.56 0.679 0.231 0.859 0.291 0.872 0.292 0.687 0.234 74.552 27.342
ClimaX 114.55 0.636 0.217 0.854 0.290 0.870 0.292 0.669 0.229 72.916 26.751
Aurora 1256.46 0.619 0.211 0.847 0.287 0.863 0.288 0.662 0.226 80.852 29.616
Linear-Probing 0.00 0.649 0.222 0.850 0.288 0.866 0.290 0.662 0.226 73.151 26.847
Bias-Tuning 0.78 0.644 0.220 0.849 0.288 0.865 0.290 0.661 0.226 73.009 26.827
LoRA 3.63 0.637 0.218 0.849 0.288 0.865 0.289 0.661 0.226 72.798 26.719
DoRA 3.75 0.638 0.218 0.847 0.287 0.864 0.289 0.660 0.225 72.827 26.735
AdaptFormer 4.64 0.647 0.221 0.862 0.294 0.878 0.295 0.666 0.227 73.312 26.869
SSF 3.92 0.629 0.215 0.847 0.287 0.862 0.289 0.659 0.225 73.025 26.832
VPT 3.75 0.635 0.217 0.846 0.287 0.862 0.288 0.659 0.225 72.883 26.774
APrompt 4.34 0.632 0.216 0.846 0.287 0.862 0.288 0.660 0.225 73.022 26.820
TADP Only 1.92 0.632 0.216 0.848 0.288 0.863 0.289 0.659 0.226 72.715 26.731
SFAS Only 1.26 0.629 0.215 0.849 0.288 0.864 0.289 0.660 0.226 72.716 26.715
WeatherPEFT 3.18 0.618 0.211 0.844 0.286 0.860 0.287 0.657 0.224 72.701 26.665
Full-Tuning 1239.94 0.604 0.206 0.838 0.284 0.854 0.285 0.653 0.223 73.760 27.051
LoRA 57.80 0.630 0.215 0.847 0.287 0.862 0.288 0.66 0.225 72.805 26.710
DoRA 57.92 0.631 0.216 0.845 0.287 0.861 0.288 0.659 0.225 72.987 26.779
AdaptFormer 61.68 0.638 0.218 0.860 0.293 0.874 0.293 0.662 0.226 73.114 26.815
WeatherPEFT 52.18 0.601 0.205 0.838 0.284 0.854 0.286 0.650 0.222 72.745 26.683

5.2 ENSEMBLE WEATHER FORECAST POST-PROCESSING

Existing ensemble weather predictions have biases (Toth & Kalnay, 1993), prompting post-
processing methods to improve forecast reliability by correcting prediction distributions. Our eval-
uation uses the ENS-10 benchmark (Ashkboos et al., 2022), which pairs 10-member ECMWF IFS
(ECMWF, 2022) ensemble predictions with ERA5 targets at 0.5◦ resolution. The dataset includes
25 surface and atmospheric variables. An additional baseline (‘RAW’) is included, which refers to
using the raw ensemble mean and standard deviation. Performance is quantified using the Continu-
ous Ranked Probability Score (CRPS) and Extreme Event Weighted Continuous Ranked Probability
Score (EECRPS) (Ashkboos et al., 2022). We train the model to simultaneously correct the five
same target variables as Section 5.1. Implementation specifics are included in the Appendix F.3.

Table 2 presents the results of post-processing across five target variables, indicating that

• Unlike the downscaling task, the performance gap between Full-Tuning and training-from-scratch
baselines narrows in the post-processing task. For example, ClimaX achieves a Z500 CRPS of
72.916, marginally better than Full-Tuning’s 73.760. This might suggest a significant task shift
between the pre-training objectives and the probabilistic correction required for post-processing,
which could hinder the transfer of knowledge learned during the pre-training phase.

• While PEFT methods such as SSF demonstrate competitive results, they still lag behind Full-
Tuning. Despite the challenging task shift, WeatherPEFT achieves near-Full-Tuning performance
with only 3.18M parameters. Especially on Z500, WeatherPEFT outperforms Full-Tuning (72.701
vs. 73.760 CRPS and 26.665 vs. 27.051 EECRPS). This result suggests that WeatherPEFT is
capable of handling the specific challenges posed by this post-processing task, even when the
pre-training knowledge does not directly align with the task’s variable characteristics.

• Furthermore, the ablation study demonstrates the importance of combining both modules, which
synergistically to adapt the foundation model’s parameters to the specific task at hand.

• Similarly, the results in the increased parameter setting further underscore our method’s supe-
riority. WeatherPEFT, with 52.18M parameters, not only exceeds the performance of its PEFT
counterparts but also surpasses the 1.2B Full-Tuning method across most key metrics.

5.3 REGIONAL PRECIPITATION FORECASTING

Precipitation forecasting is vital for agriculture, water management, and disaster prevention. How-
ever, global predictions are often unfeasible, especially with only regional data available. To address
this, we formulate a regional precipitation forecasting task to predict the future six-hour accumula-
tion of total precipitation (TP-6hr) based on the regional weather conditions. For this task, we intro-
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Table 3: The SEEPS, ACC, RMSE (1e-2) on regional precipitation forecasting, focusing on China
region. We adopt the Aurora (Bodnar et al., 2025) as the foundation model and only count the
trainable parameters in the backbone for all fine-tuning methods.

Method Trainable
Params (M)

12 Hours 24 Hours 36 Hours
SEEPS ACC ↑ RMSE SEEPS ACC ↑ RMSE SEEPS ACC ↑ RMSE

Persistence 0.00 0.695 0.265 0.371 0.720 0.168 0.387 0.855 0.088 0.416
U-Net 19.89 0.467 0.639 0.225 0.591 0.468 0.263 0.685 0.352 0.281
ResNet 33.99 0.551 0.499 0.259 0.664 0.342 0.283 0.767 0.210 0.300
ViT 311.30 0.560 0.499 0.257 0.646 0.389 0.276 0.717 0.292 0.290
FourCastNet 63.94 0.640 0.376 0.279 0.756 0.213 0.299 0.824 0.126 0.310
ClimaX 117.32 0.590 0.487 0.260 0.695 0.328 0.285 0.759 0.231 0.297
Aurora 1239.94 0.470 0.589 0.241 0.578 0.449 0.268 0.660 0.351 0.283
Linear-Probing 0.00 0.581 0.464 0.266 0.720 0.265 0.293 0.790 0.171 0.303
Bias-Tuning 0.78 0.573 0.474 0.265 0.715 0.271 0.292 0.783 0.177 0.302
LoRA 3.63 0.495 0.592 0.24 0.634 0.415 0.273 0.723 0.294 0.289
DoRA 3.75 0.513 0.574 0.244 0.662 0.372 0.279 0.748 0.246 0.294
AdaptFormer 4.62 0.499 0.577 0.243 0.643 0.378 0.278 0.731 0.258 0.293
SSF 3.92 0.459 0.631 0.231 0.588 0.474 0.264 0.680 0.356 0.281
VPT 3.75 0.522 0.550 0.25 0.666 0.356 0.281 0.750 0.235 0.296
APrompt 4.34 0.521 0.554 0.249 0.650 0.387 0.277 0.733 0.271 0.292
Covpass 4.92 0.485 0.606 0.237 0.615 0.439 0.269 0.697 0.326 0.285
FacT-TT 2.73 0.525 0.553 0.249 0.662 0.371 0.279 0.747 0.246 0.294
RepAdapter 3.75 0.534 0.532 0.254 0.675 0.340 0.283 0.757 0.222 0.297
SCT 3.94 0.481 0.607 0.237 0.616 0.439 0.269 0.706 0.316 0.286
Child-TuingD 3.39 0.407 0.694 0.214 0.565 0.500 0.259 0.672 0.364 0.280
MoA 8.62 0.515 0.563 0.246 0.665 0.354 0.281 0.749 0.235 0.296
HydraLoRA 5.77 0.510 0.571 0.245 0.650 0.393 0.276 0.734 0.268 0.292
VeRA 0.98 0.524 0.551 0.250 0.663 0.365 0.280 0.744 0.256 0.293
SAM 3.39 0.421 0.673 0.220 0.598 0.457 0.267 0.704 0.299 0.289
TADP Only 2.12 0.549 0.523 0.256 0.676 0.357 0.282 0.750 0.247 0.295
SFAS Only 1.26 0.459 0.634 0.231 0.612 0.443 0.269 0.716 0.294 0.289
WeatherPEFT 3.38 0.368 0.742 0.198 0.515 0.559 0.247 0.615 0.443 0.268
Full-Tuning 1246.77 0.304 0.797 0.178 0.452 0.586 0.241 0.542 0.481 0.263
LoRA 57.80 0.449 0.648 0.226 0.59 0.474 0.263 0.681 0.353 0.282
DoRA 57.92 0.512 0.576 0.244 0.659 0.383 0.277 0.746 0.254 0.293
AdaptFormer 61.68 0.458 0.623 0.232 0.599 0.438 0.269 0.691 0.324 0.286
WeatherPEFT 52.37 0.302 0.805 0.174 0.437 0.615 0.235 0.526 0.518 0.256

duce a new dataset ERA5-CH from the ERA5 data at 0.25◦, which includes five surface variables
and five upper variables but focuses exclusively on the China region. Following WeatherBench2
(Rasp et al., 2024), we employ the latitude-weighted Stable Equitable Error in Probability Space
(SEEPS) (Rodwell et al., 2010), Anomaly Correlation Coefficient(ACC), and RMSE as the evalu-
ation metrics. Specifically, we focus on short-term forecasting with lead times of 12, 24, and 36
Hours. “Persistence” represents utilizing the input as the prediction. Complete experimental details
are listed in Appendix F.4, and a case study on extreme precipitation is presented in Appendix B.4.

To rigorously evaluate WeatherPEFT, we include an expanded suite of PEFT baselines, including
vision PEFTs (ConvPass (Jie et al., 2024), FacT (Jie & Deng, 2023), RepAdapter (Luo et al., 2023))
and task-selective methods (SCT (Zhao et al., 2024a), Child-Tuning (Xu et al., 2021), SAM (Fu
et al., 2023)), LoRA variants (HydraLoRA (Tian et al., 2024), VeRA (Kopiczko et al., 2024)), and
Mixture of Adapter (MOA). Table 3 presents the following results of precipitation forecasting:

• Full-Tuning significantly achieves superior performance over training-from-scratch models, con-
firming that knowledge transfer from pre-training is highly effective for this task.

• Moreover, standard PEFT methods show significant gaps versus Full-Tuning. For example,
LoRA’s 12h SEEPS is 62.8% higher than Full-Tuning, indicating poorer calibration of rainfall
events. This underperformance is due to the unique challenges of precipitation, including its
sparse nature and highly localized patterns, which conventional PEFT methods fail to adequately
capture. In contrast, the WeatherPEFT significantly surpasses PEFT baselines, and significantly
narrows the gap with Full-Tuning when constrained to a minimal parameter budget (∼0.3%).

• Task-adaptive selection methods (SCT, SAM, Child-TuningD) consistently outperform other base-
lines like LoRA. This validates the intuition that selecting task-relevant parameters is crucial for
heterogeneous weather tasks. Despite these improvements, WeatherPEFT significantly surpasses
all competitors. This confirms that adaptivity alone is insufficient and coupling it with the domain-
specific context awareness provided by TADP is essential for meteorological adaptation.

• The ablation experiments provide insights into the effectiveness of the two components in Weath-
erPEFT, indicating that SFAS is more critical than prompting for precipitation’s sparse signals.
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• Despite the increased trainable parameters, PEFT baselines’ performance improves marginally but
remains inferior to Full-Tuning. Notably, WeatherPEFT, with ∼4% parameters, even surpasses the
performance of Full-Tuning across all metrics. This demonstrates that our method is not only more
efficient but also more effective at adapting the foundation model for this complex task.

Input Groundtruth AdaptFormer SSF WeatherPEFT

Figure 3: Visualization of a 12-hour forecast for TP-6hr over China (2020-05-20 12 UTC).

Visualization We visualize the input, ground truth, and prediction of AdaptFormer, SSF, and
WeatherPEFT in Figure 3 to provide an intuitive comparison. The complete visualization of PEFT
methods is provided in the Appendix F.4.3. It distinctly reveals that deep learning approaches em-
ploying pixel-wise MAE loss exhibit over-smoothed characteristics in their precipitation predictions,
which are particularly noticeable in their failure to preserve fine-grained spatial patterns. However,
our proposed WeatherPEFT demonstrates superior alignment with the ground truth compared to
other PEFT baselines, highlighting the importance of WeatherPEFT’s task-adaptive feature.

5.4 DOMAIN SPECIFICITY ANALYSIS

Table 4: The mIoU (%) on Cityscapes to ACDC
domain generalization benchmark for semantic
segmentation. We adopt the DINOv2-L (Oquab
et al., 2024) as the foundation model.

Methods Trainable
Params (M)

ACDC (Target) MeanNight Snow Fog Rain

Full-Tuning 304.20 52.4 70.5 80.9 74.4 69.5
Linear-Probing 0.00 54.3 69.3 79.1 68.0 67.6
Convpass 3.64 56.0 71.7 80.2 74.9 70.7
FacT-TT 2.85 56.1 71.3 81.0 72.9 70.3
MOA 6.39 53.2 70.6 80.3 72.8 69.3
LoRA 3.14 52.3 74.4 79.5 74.0 70.1
AdaptFormer 3.17 53.8 74.8 80.3 74.6 70.9
VPT 3.15 53.4 74.4 80.4 70.5 69.7
Ours 2.90 56.0 70.9 81.2 74.5 70.7

To verify that the performance gains of Weath-
erPEFT stem from addressing meteorological
challenges, we evaluate it on a standard vision
task. Specifically, we conduct experiments on
the Cityscapes (Cordts et al., 2016) → ACDC
(Sakaridis et al., 2021) domain generalization
benchmark for semantic segmentation, which
encompasses the Night, Snow, Fog, and Rain
as the target domains. We compare Weather-
PEFT against established vision PEFT meth-
ods, including ConvPass, FacT, MoA, LoRA,
AdaptFormer, and VPT. We utilize Dinov2-L
(Oquab et al., 2024) as the backbone and re-
port the mean Intersection over Union (mIoU).

The results indicate that while WeatherPEFT remains competitive in the vision domain (comparable
to AdaptFormer), it does not demonstrate the dominant superiority observed in the weather tasks.
This distinction is pivotal, verifying that WeatherPEFT functions not merely as an enhanced general
adapter, but rather as a method specifically optimized for the unique physical semantics of weather
data. Notably, the dynamic, annealed selection mechanism of SFAS, combined with context-aware
dynamic prompting of TADP, provides distinct advantages in meteorological contexts.

6 CONCLUSION

This paper proposes WeatherPEFT, the first exploration of efficient fine-tuning for weather foun-
dation models. WeatherPEFT is a novel PEFT framework that integrates two synergetic modules,
i.e., Task-Adaptive Dynamic Prompting (TADP) and Stochastic Fisher-Guided Adaptive Selection
(SFAS). In the forward pass, TADP dynamically encodes task-specific characteristics into contex-
tual prompts, enabling feature recalibration tailored to diverse meteorological inputs without altering
the core pre-trained knowledge. During backpropagation, SFAS integrates randomness with Fisher
information to identify and update parameters sensitive to downstream objectives with higher pos-
sibilities, preserving invariant physical priors while optimizing task-critical weights. Experiment
results on three downstream tasks demonstrate the effectiveness and efficiency of WeatherPEFT
over existing PEFT methods, highlighting its adaptability to weather-related data.
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ETHICS STATEMENT

The authors have read and adhered to the ICLR Code of Ethics. We believe this work presents no
major ethical concerns and offers significant societal benefits. The primary goal of our research is to
develop more efficient methods for fine-tuning Weather Foundation Models. This work contributes
positively to human well-being by making advanced weather forecasting more accessible, which is
critical for applications in disaster preparedness (e.g., flood and extreme weather warnings), agri-
culture, and water resource management. Our research exclusively utilizes publicly available me-
teorological datasets (e.g., ERA5 and WeatherBench), which do not contain personally identifiable
or sensitive human data, thereby avoiding privacy and security issues. In line with our commitment
to scientific transparency and reproducibility, we have provided our code and will make it publicly
available. This work has been conducted in adherence to the ICLR Code of Ethics, with the goal of
fostering responsible and beneficial scientific advancement.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. Source code and a README.md
file with detailed instructions for environment setup, data preparation, and script execution are avail-
able at https://anonymous.4open.science/r/WeatherPEFT-A068 and also pro-
vided in the supplementary material. The appendix offers comprehensive details to support our
claims. Appendix E describes the implementation of our proposed WeatherPEFT and all baseline
models. Appendix F details the setup for each downstream task, including data sources, problem
settings, and formal definitions for all evaluation metrics. Furthermore, Appendix B presents ex-
tensive hyperparameter ablation studies and a generalization study to justify our main experimental
choices and demonstrate the robustness of our method.
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A OVERVIEW

We provide additional details and analysis in this technical Appendix. In Section B, we furnish
additional studies on hyperparameter, backbone, module fine-grained comparison, and a real-world
case. In Section C, we discuss the limitations and prospective directions of our research. In Section
E, we provide model implementation details on WeatherPEFT and other methodologies. In Section
F, we furnish additional details and visualization examples for the downstream tasks.

B ADDITIONAL STUDIES

B.1 HYPERPARAMETER ABLATION STUDY

Table 5: Ablation study on key hyperparameters for the regional precipitation forecasting task,
using Aurora (Bodnar et al., 2025) as the foundation model. The analyzed hyperparameters include
the rank (r) for LoRA (Hu et al., 2022), the parameter selection percentage (k) and initial linear
decay factor (γ) for SFAS of WeatherPEFT, and the number of soft prompt tokens (P ) with adapter
hidden dimensions (HWh, Vh, Dh) for TADP of WeatherPEFT.

Hyperparameter Trainable
Params (M)

12 Hours 24 Hours 36 Hours
SEEPS ACC ↑ RMSE SEEPS ACC ↑ RMSE SEEPS ACC ↑ RMSE

Full-Tuning 1246.77 0.304 0.797 0.178 0.452 0.586 0.241 0.542 0.481 0.263

LoRA-r = 256 92.01 0.495 0.591 0.241 0.633 0.423 0.272 0.716 0.306 0.288
LoRA-r = 160 57.80 0.449 0.648 0.226 0.590 0.474 0.263 0.681 0.353 0.282
LoRA-r = 128 46.39 0.491 0.592 0.240 0.627 0.425 0.271 0.714 0.307 0.288
LoRA-r = 64 23.59 0.479 0.606 0.237 0.641 0.403 0.274 0.728 0.282 0.290
LoRA-r = 8 3.63 0.495 0.592 0.240 0.634 0.415 0.273 0.723 0.294 0.289

k = 0.040 52.37 0.302 0.805 0.174 0.437 0.615 0.235 0.526 0.518 0.256
k = 0.035 46.09 0.303 0.804 0.175 0.439 0.615 0.235 0.528 0.520 0.256
k = 0.030 39.81 0.305 0.803 0.175 0.440 0.616 0.234 0.530 0.519 0.255
k = 0.025 33.53 0.306 0.803 0.175 0.441 0.616 0.234 0.532 0.520 0.255
k = 0.020 27.25 0.309 0.802 0.176 0.444 0.617 0.234 0.535 0.519 0.255
k = 0.015 20.96 0.312 0.800 0.177 0.448 0.617 0.234 0.540 0.516 0.256
k = 0.010 14.68 0.315 0.796 0.178 0.453 0.614 0.234 0.548 0.514 0.256
k = 0.005 8.40 0.328 0.785 0.182 0.468 0.604 0.237 0.565 0.499 0.258
k = 0.001 3.38 0.368 0.742 0.198 0.515 0.559 0.247 0.615 0.443 0.268

γ = 1.0 3.38 0.369 0.742 0.198 0.518 0.556 0.247 0.616 0.439 0.269
γ = 0.8 3.38 0.369 0.743 0.198 0.520 0.553 0.248 0.619 0.436 0.269
γ = 0.6 3.38 0.376 0.736 0.200 0.521 0.552 0.248 0.622 0.434 0.269
γ = 0.4 3.38 0.371 0.740 0.199 0.517 0.556 0.247 0.617 0.440 0.268
γ = 0.2 3.38 0.368 0.742 0.198 0.515 0.559 0.247 0.615 0.443 0.268
P = 100 4.98 0.376 0.736 0.200 0.524 0.550 0.248 0.622 0.434 0.269
P = 80 4.58 0.381 0.728 0.202 0.526 0.548 0.249 0.622 0.438 0.269
P = 60 4.18 0.375 0.736 0.200 0.529 0.544 0.250 0.631 0.422 0.272
P = 40 3.78 0.400 0.707 0.209 0.545 0.528 0.253 0.645 0.409 0.273
P = 20 3.38 0.368 0.742 0.198 0.515 0.559 0.247 0.615 0.443 0.268
P = 10 2.98 0.387 0.720 0.205 0.531 0.544 0.250 0.630 0.428 0.270

HWh, Vh, Dh = 32, 13, 512 27.87 0.376 0.736 0.200 0.521 0.552 0.248 0.619 0.437 0.269
HWh, Vh, Dh = 8, 6, 16 3.38 0.368 0.742 0.198 0.515 0.559 0.247 0.615 0.443 0.268

To rigorously assess the impact of key hyperparameters within WeatherPEFT, we conduct an abla-
tion study on the regional precipitation forecasting task, with results presented in Table 5. First, we
investigate the influence of k, the percentage of selected parameters in SFAS. The findings reveal
that WeatherPEFT can achieve performance comparable to, and even superior to, full fine-tuning
(1246.77M parameters) using only approximately 3% of the trainable parameters. With k = 0.030,
yielding 39.81M parameters, we observe SEEPS/ACC/RMSE of 0.0.440/0.616/0.234 for the 24-
hour forecast, versus Full-Tuning’s 0.452/0.586/0.241. Additionally, a trend indicates that as k in-
creases, model performance generally improves across all forecast horizons (12, 24, and 36 hours).
However, the magnitude of these improvements diminishes with larger k values, suggesting a point
of diminishing returns where adding more trainable parameters yields only marginal gains. For
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Table 6: Ablation study on key hyperparameters for the downscaling task, using Aurora (Bodnar
et al., 2025) as the foundation model. The analyzed hyperparameters include parameter selection
percentage (k) for SFAS of WeatherPEFT.

Hyperparameter Trainable
Params (M)

T2m U10 V10 T850 Z500
RMSE Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE Mean Bias

Full-Tuning 1239.94 0.906 0.002 0.882 0.000 0.884 -0.001 0.836 0.000 35.821 0.314
k = 0.04 52.47 0.916 0.000 0.873 -0.001 0.875 -0.002 0.834 -0.002 35.076 0.504
k = 0.03 39.91 0.929 0.000 0.882 -0.001 0.883 -0.002 0.840 -0.002 35.511 0.502
k = 0.02 27.34 0.949 -0.002 0.898 -0.002 0.898 -0.002 0.851 -0.001 36.284 0.630
k = 0.01 14.82 0.987 -0.001 0.928 -0.001 0.927 -0.003 0.869 -0.002 37.826 0.355
k = 0.001 3.48 1.119 0.003 1.057 0.000 1.051 -0.001 0.950 0.004 44.922 0.413

Table 7: Ablation study on key hyperparameters for the ensemble weather forecast post-processing
task, using Aurora (Bodnar et al., 2025) as the foundation model. The analyzed hyperparameters
include parameter selection percentage (k) for SFAS of WeatherPEFT.

Hyperparameter Trainable
Params (M)

T2m U10 V10 T850 Z500
CRPS EECRPS CRPS EECRPS CRPS EECRPS CRPS EECRPS CRPS EECRPS

Full-Tuning 1239.94 0.604 0.206 0.838 0.284 0.854 0.285 0.653 0.223 73.760 27.051
k = 0.04 52.47 0.601 0.205 0.838 0.284 0.854 0.286 0.650 0.222 72.745 26.683
k = 0.03 39.91 0.605 0.207 0.838 0.284 0.854 0.285 0.652 0.223 74.102 27.247
k = 0.02 27.34 0.606 0.207 0.839 0.284 0.855 0.286 0.652 0.223 73.757 27.082
k = 0.01 14.82 0.608 0.208 0.841 0.285 0.857 0.287 0.654 0.223 73.438 26.958
k = 0.001 3.48 0.618 0.211 0.844 0.286 0.860 0.287 0.657 0.224 72.701 26.665

fair comparisons with other PEFT methodologies in this paper, we select k=0.001 for most of the
experiments, ensuring a comparable parameter budget. To unleash the potential of WeatherPEFT
and ensure a fair comparison with Full-Tuning, we supplement experiments with k set to 0.04. To
explicitly validate this consistency across all tasks, we have conducted the same ablation study on
the hyperparameter k for the other two downstream tasks: Downscaling and Ensemble Weather
Forecast Post-Processing. The results are presented in Tables 6 and 7, which demonstrate a clear
and consistent trend across two tasks. WeatherPEFT’s performance scales with trainable parameters,
matching or surpassing Full-Tuning when using 3% of the model’s parameters. Beyond this, perfor-
mance gains gradually plateau. Additionally, we conduct a hyperparameter sweep on LoRA’s rank
on Aurora. The results on the precipitation forecasting task show LoRA’s performance is insensitive
to its parameter count and remains significantly inferior to WeatherPEFT even when it uses fewer
parameters. This confirms that WeatherPEFT’s superiority stems from a fundamental architectural
advantage, not from suboptimal baseline tuning.

Furthermore, our ablation on γ, the initial value of the linear decay factor in SFAS, demonstrates
that the model exhibits relative insensitivity to this hyperparameter, with γ = 0.2 yielding the opti-
mal or jointly optimal results across most metrics and forecast horizons. This could be attributed
to the weights progressively decaying towards zero, making the initial value of γ less critical to the
final results. Regarding the prompt length P in TADP, experiments show that increasing the num-
ber of soft prompt tokens beyond P=20 does not lead to further performance improvements and, in
some cases, results in slight degradation (e.g., 12-hour SEEPS increased from 0.368 at P = 20 to
0.400 at P=40). Given that longer prompts also increase the trainable parameter count (from 3.38M
at P = 20 to 4.98M at P = 100), P = 20 is identified as the most reasonable setting for this task,
suggesting that excessive prompt lengths may introduce redundant parameters or make optimiza-
tion more challenging without contributing additional descriptive power. Finally, the ablation on the
hidden dimensions (HWh, Vh, Dh) of the three adapters in TADP indicates that increasing these
dimensions from a compact (8, 6, 16) to a larger (32, 13, 512) configuration (i.e. forgoing dimen-
sionality reduction to retain dimensions of the original features), which drastically increase trainable
parameters from 3.38M to 27.87M, do not yield performance benefits and, in fact, led to a decline
in metrics. This suggests that larger adapter capacities may be prone to overfitting on the down-
stream task or are not necessary for capturing the task-specific information for regional precipitation
forecasting, making the smaller dimensions more efficient and effective. These analyses affirm the
selected hyperparameter values for achieving a strong balance between performance and efficiency.
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B.2 BACKBONE GENERALIZATION STUDY

Table 8: Generalization study on the backbone for regional precipitation forecasting in the China
region. Performance is evaluated using SEEPS, ACC, and RMSE (1e-2). Prithvi-WxC (Schmude
et al., 2024) is adopted as the foundation model, and for fine-tuning methods, we report only the
trainable parameters within the backbone.

Method Trainable
Params (M)

12 Hours 24 Hours 36 Hours
SEEPS ACC ↑ RMSE SEEPS ACC ↑ RMSE SEEPS ACC ↑ RMSE

Prithvi WxC 1979.10 0.435 0.649 0.226 0.542 0.505 0.259 0.630 0.404 0.275
Full-Tuning 1978.47 0.398 0.678 0.218 0.517 0.521 0.256 0.604 0.419 0.273
LoRA 86.47 0.647 0.406 0.273 0.760 0.231 0.297 0.813 0.149 0.307
WeatherPEFT 81.99 0.405 0.678 0.218 0.523 0.522 0.255 0.605 0.428 0.272

In WeatherPEFT, SFAS is universally applicable to any model trained with gradient-based optimiza-
tion. Regarding TADP, its core concept involves applying a series of projection transformations to
the encoder’s embedding space. This extracts task-specific representations, which are concatenated
as soft prompts to the input of each layer in the backbone model. TADP offers broad applicability
across diverse settings due to three key factors:

• Unified Operation Target: Embedding space is irrespective of architecture (e.g., Transformers
(Vaswani et al., 2017), Convolutional Neural Networks (Krizhevsky et al., 2012), or Graph Neural
Networks Scarselli et al. (2008)), and all models involve an embedding operation mapping in-
put data to a continuous feature space for subsequent computation. Consequently, TADP can be
applied to various embedding networks/encoders by identifying their corresponding embedding
weight matrices.

• Consistent Feature Processing Across Architectures: Fundamentally, diverse model architec-
tures perform multi-layered computations on input feature vectors to produce outputs. TADP
concatenates soft prompts to the input feature map at each layer. Therefore, adapting TADP to
different backbones simply requires minor adjustments based on the specific characteristics of the
extracted feature maps.

• Extension to Multi-modal Inputs: Handling multi-modal inputs typically involves transitioning
from a single-modal encoder to multiple single-modal encoders. TADP can integrate the embed-
ding weight of multi-modal encoders. Task-specific representations are subsequently derived from
this integrated space and concatenated as soft prompts to the backbone’s inputs at each layer.

In summary, WeatherPEFT demonstrates strong generalization capability across variations in model
architecture, embedding methods, and input modalities. To provide concrete evidence for these
claims, we further evaluate our method on a different, larger foundation model: Prithvi-WxC
(Schmude et al., 2024). The results on the regional precipitation forecasting task are shown in Table
8. We note that this model is pre-trained on data sources that are more dissimilar to our downstream
tasks compared to Aurora (Bodnar et al., 2025), which makes effective fine-tuning more challenging.
As the table demonstrates, WeatherPEFT still achieves similar performance, matching Full-Tuning
using only 4% of the parameters. Crucially, the generic PEFT baseline, LoRA, performs very
poorly on this architecture. This result strongly underscores the necessity of a weather-specific and
adaptive PEFT method like WeatherPEFT, as generic approaches are not guaranteed to be effective
across different WFMs.

B.3 MODULE FINE-GRAINED COMPARISON STUDY

To precisely evaluate the individual mechanisms of WeatherPEFT, we conduct a fine-grained ab-
lation study on the downscaling task (Table 9), dissecting components of Task-Adaptive Dynamic
Prompting (TADP) and Stochastic Fisher-Guided Adaptive Selection (SFAS).

Within TADP, ablating either the ‘Internal’ pattern extraction (designed for task-specific physical
constraints) or the ‘External’ pattern extraction (for coupling physical quantities with spatial resolu-
tion features) consistently leads to performance degradation compared to the full WeatherPEFT. For
instance, T2m RMSE increases from 1.119 in the full model to 1.140 (w/o Internal) and 1.130 (w/o
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Table 9: Fine-grained Ablation study on TADP and SFAS. ‘External’ and ‘Internal’ represent the
external and internal pattern extraction in TADP, while ‘Randomness’ denotes the stochastic com-
ponent in SFAS. We adopt the Aurora (Bodnar et al., 2025) as the foundation model. Experiments
are done on the downscaling task under the limited (top) and increased (bottom) parameter budgets.

Method T2m U10 V10 T850 Z500
RMSE Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE Mean Bias

w/o Internal 1.140 0.007 1.076 0.001 1.069 -0.002 0.964 0.004 46.027 1.048
w/o External 1.130 0.006 1.068 0.001 1.062 -0.003 0.958 0.004 45.292 0.787
w/o Randomness 1.130 0.005 1.069 0.000 1.062 0.000 0.956 0.005 45.808 0.714
WeatherPEFT 1.119 0.003 1.057 0.000 1.051 -0.001 0.950 0.004 44.922 0.413
w/o Internal 0.970 0.000 0.913 -0.002 0.912 -0.002 0.860 -0.002 36.870 0.611
w/o External 0.958 0.000 0.903 -0.001 0.903 -0.003 0.854 -0.001 36.415 0.640
w/o Randomness 0.954 0.000 0.900 -0.002 0.901 -0.002 0.852 -0.001 36.277 0.620
WeatherPEFT 0.916 0.000 0.873 -0.001 0.875 -0.002 0.834 -0.002 35.076 0.504

External), highlighting the importance of these components for adapting to input data characteris-
tics, particularly vital for downscaling. Similarly, for SFAS, removing the ‘Randomness’ (stochastic
component), intended to stabilize parameter selection, results in higher RMSE values for most vari-
ables (e.g. T2m RMSE increased to 1.130), underscoring the need for stabilizing the parameter
selection. However, we observe that in the low-parameter regime, the performance differences, dis-
tinct yet relatively small. This phenomenon is likely attributable to “performance saturation”, where
the optimization landscape is tightly constrained by the minimal trainable parameter budget, com-
pressing the variance between methods. The results of larger-parameter setting demonstrate that
the performance gaps become significantly more pronounced as capacity increases. These findings
collectively demonstrate that the Internal and External pattern extraction mechanisms are essential
for robust scaling. They allow the model to efficiently utilize additional capacity to capture complex
meteorological dynamics, preventing the premature plateauing observed in the ablated variants.

The complete WeatherPEFT consistently achieves the overall best performance (e.g., lowest RMSE
for T2m, U10, T850, Z500). This demonstrates that each evaluated sub-component contributes
meaningfully and synergistically to WeatherPEFT’s robust and efficient adaptation capabilities.

B.4 REAL-WORLD CASE STUDY

Table 10: Real-world case study on the extreme 2020 China Mei-yu flood event. Performance is
evaluated using the 50th and 75th percentile Threat Score (TS) and SEEPS with forecast initialized
from 7.1 12:00 on the China region. Aurora (Bodnar et al., 2025) is adopted as the foundation model,
and for fine-tuning methods, we report only the trainable parameters within the backbone.

Method Trainable
Params (M)

12 Hours 24 Hours 36 Hours
50%TS 75%TS SEEPS ↓ 50%TS 75%TS SEEPS ↓ 50% TS 75%TS SEEPS ↓

Full-Tuning 1246.77 0.64 0.50 0.34 0.70 0.45 0.67 0.57 0.34 0.68
LoRA 57.80 0.58 0.37 0.49 0.68 0.34 0.86 0.52 0.26 0.83
DoRA 57.92 0.54 0.32 0.55 0.65 0.31 0.89 0.49 0.19 0.94
AdaptFormer 61.68 0.59 0.40 0.45 0.68 0.36 0.83 0.54 0.25 0.82
WeatherPEFT 52.37 0.65 0.50 0.34 0.72 0.46 0.67 0.58 0.37 0.66

To demonstrate practical utility, we further conduct a case study on the extreme 2020 China Mei-yu
(plum rain) flood, which is documented as a period of record-breaking flooding (Ding et al., 2021;
Volonté et al., 2021). We initialize a forecast at 12:00 UTC on July 1, 2020, during an intensely ac-
tive phase of this event, evaluating performance with decision-relevant metrics such as the 50th and
75th percentile Threat Score (TS) and SEEPS. The results in Table 10 show that with only 4% of the
parameters, WeatherPEFT’s performance on heavy rainfall forecasts is comparable to Full-Tuning.
Crucially, it also outperforms the generic PEFT baselines, including LoRA (Hu et al., 2022), DoRA
(Liu et al., 2024), and AdaptFormer (Chen et al., 2022), despite their larger number of trainable pa-
rameters. This demonstrates that our method’s targeted approach offers tangible efficiency benefits
for real-world extreme event prediction.
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B.5 SYNERGISTIC ANALYSIS

Table 11: Synergistic analysis study on the backbone for regional precipitation forecasting in the
China region. Performance is evaluated using SEEPS, ACC, and RMSE (1e-2). Aurora (Bodnar
et al., 2025) is adopted as the foundation model, and for fine-tuning methods, we report only the
trainable parameters within the backbone.

Method Trainable
Params (M)

12 Hours 24 Hours 36 Hours
SEEPS ACC ↑ RMSE SEEPS ACC ↑ RMSE SEEPS ACC ↑ RMSE

AdaptFormer+SFAS 5.88 0.475 0.608 0.236 0.617 0.419 0.272 0.705 0.302 0.288
LoRA+SFAS 4.89 0.446 0.647 0.227 0.592 0.464 0.265 0.701 0.316 0.286
VPT+SFAS 5.01 0.395 0.708 0.209 0.537 0.533 0.252 0.639 0.41 0.273
WeatherPEFT 3.38 0.368 0.742 0.198 0.515 0.559 0.247 0.615 0.443 0.268

To rigorously validate whether the proposed TADP module provides significant architectural value
beyond simply applying sparse adaptive parameter selection to existing methods, we conduct a com-
parative study. We integrate the proposed SFAS mechanism with representative generic PEFT meth-
ods, including LoRA (Hu et al., 2022), AdaptFormer (Chen et al., 2022), and VPT (Jia et al., 2022),
and compare them with WeatherPEFT on the Regional Precipitation Forecasting task.

As presented in the Table 11, simply adding SFAS to generic adapters yields suboptimal results
compared to WeatherPEFT. While adding SFAS to methods like VPT does improve performance
relative to their standard counterparts (Table 3), they still consistently lag behind WeatherPEFT.
Notably, WeatherPEFT achieves the best performance while utilizing fewer parameters compared
to the combinatorial baselines. These results suggest that generic adapters, even when optimized
with Fisher-guided selection, fail to adequately capture the complex variable-specific couplings and
physical regime shifts inherent in weather data. By explicitly modeling internal and external patterns
through TADP, WeatherPEFT provides a more effective initialization for the selection process. This
empirically demonstrates that TADP is not merely a supplementary module but a critical architec-
tural component that works synergistically with SFAS to achieve superior adaptation.

B.6 COMPUTATIONAL EFFICIENCY ANALYSIS

Table 12: Comparison of training times across different tasks.

Methods Training Time
Downscaling Post-Processing Precipitation Forecasting

LoRA 5h09m 1h09m 1h42m
AdaptFormer 5h05m 1hs06m 1h40m
Ours 5h33m 1h20m 1h58m

The sequential implementation of the three specialized adapters in TADP and the parameter selec-
tion mechanism in SFAS might introduce a degree of computational overhead compared to simpler
techniques. To quantitatively evaluate this trade-off between algorithmic complexity and computa-
tional efficiency, we measure the total training time for WeatherPEFT against representative PEFTs
(LoRA (Hu et al., 2022) and AdaptFormer (Chen et al., 2022)) across all three downstream tasks.

As shown in the Table 12, WeatherPEFT incurs a modest training time increase of approximately
10% compared to LoRA. This marginal increase in wall-clock training time is a highly favorable
trade-off given the substantial performance gains demonstrated in the main experiments. It enables
WFMs to accurately solve complex downstream tasks where generic, faster PEFT methods fail to
capture the necessary physical dynamics.

B.7 ADDITIONAL DOMAIN SPECIFICITY ANALYSIS

To further investigate the generalizability and domain specificity of our approach, we evaluate
WeatherPEFT on the VTAB-1K benchmark (Zhai et al., 2019), a standard suite for evaluating trans-
fer learning in computer vision. We utilize a ViT-B/16 (Dosovitskiy et al., 2020) backbone pre-
trained on ImageNet-21k (Deng et al., 2009). We compare our method against representative visual
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Full-Tuning 85.8 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 68.9
Linear-Probing 0.00 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 57.6
Convpass 0.33 72.3 91.2 72.2 99.2 90.9 91.3 54.9 84.2 96.1 85.3 75.6 82.3 67.9 51.3 80.0 85.9 53.1 36.4 44.4 76.6
FacT-TK 0.07 70.6 90.6 70.8 99.1 90.7 88.6 54.1 84.8 96.2 84.5 75.7 82.6 68.2 49.8 80.7 80.8 47.4 33.2 43.0 75.6
RepAdapter 0.22 72.4 91.6 71.0 99.2 91.4 90.7 55.1 85.3 95.9 84.6 75.9 82.3 68.0 50.4 79.9 80.4 49.2 38.6 41.0 76.1
SSF 0.24 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 75.7
SCT 0.11 75.3 91.6 72.2 99.2 91.1 91.2 55.0 85.0 96.1 86.3 76.2 81.5 65.1 51.7 80.2 75.4 46.2 33.2 45.7 76.0
LoRA 0.29 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.9 95.3 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 74.5
AdaptFormer 0.16 70.8 91.2 70.5 99.1 90.9 86.6 54.8 83.0 95.8 84.4 76.3 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1 74.7
VPT 0.53 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 72.0
Ours 0.29 73.1 92.2 71.9 99.2 90.2 89.2 53.5 83.3 95.0 83.4 73.6 81.3 68.0 46.8 74.8 72.3 45.2 28.3 37.6 74.0

Table 13: Results on VTAB-1K (Zhai et al., 2019) Benchmark with ViT-B/16 (Dosovitskiy et al.,
2020) backbone.

PEFT methods, including Convpass (Jie et al., 2024), FacT (Jie & Deng, 2023), RepAdapter (Luo
et al., 2023), SSF (Lian et al., 2022), SCT (Zhao et al., 2024a), LoRA (Hu et al., 2022), AdaptFormer
(Chen et al., 2022), and VPT (Jia et al., 2022).

As demonstrated in the Table 13, WeatherPEFT achieves an average accuracy of 74.0%, which is
comparable to general PEFT methods like LoRA and AdaptFormer. However, we observe that our
method performs slightly below the SOTA on the “Structured” task group (e.g., dSprites, sNORB).
We attribute this performance difference to a fundamental distinction between the VTAB-1K ex-
perimental setting and the weather domains for which our method was optimized. The core design
of our TADP is to extract task-specific characteristics (e.g., variable types and physical resolutions)
from the encoder’s embedding layer to introduce context-aware feature recalibration. In weather
tasks, the embedding layer is rich with varying physical information, allowing TADP to dynami-
cally adapt the model to the specific ”physics” of the input. In contrast, for standard vision tasks like
VTAB-1K, the embedding layers of the backbone are typically frozen and process homogeneous
RGB data. In this setting, TADP extracts information from a fixed layer, causing the “dynamic
prompt” to effectively become a static constant. This neutralizes the primary advantage of TADP’s
adaptivity, resulting in performance that is competitive with, but not significantly superior to, other
baselines. In summary, while WeatherPEFT is capable of handling generic tasks, its superior perfor-
mance is unlocked in the weather domain, validating our motivation for a domain-specialized design
that addresses meteorological challenges.

C DISCUSSION

Table 14: Scaling trends in weather foundation models.
Model Year Parameters Training Resources

FourCastNet (Pathak et al., 2022) 2022 64M 16 hours; 64 A100 GPUs
Pangu (Bi et al., 2023) 2022 65M 16 days; 192 V100 GPUs
GraphCast (Lam et al., 2023) 2022 37M 28 days; 32 TPU v4
ClimaX (Nguyen et al., 2023a) 2023 117M ∼3 days; 80 V100 GPUs
FengWu (Chen et al., 2023a) 2023 158M 17 days; 32 A100 GPUs
Fuxi (Chen et al., 2023b) 2023 157M ∼8 days; 8 A100 GPUs
Aurora (Bodnar et al., 2025) 2024 1.3B ∼18 days; 32 A100 GPUs
Prithvi WxC (Schmude et al., 2024) 2024 2.3B 64 A100 GPUs

While WeatherPEFT demonstrates promising advances in PEFT for WFMs, several aspects warrant
further discussion:

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Scales of WFMs. First, one potential limitation of the current work pertains to the existing scale
of WFMs. We are currently in the early stages of developing general AI for the weather domain.
Current WFMs, including Aurora (Bodnar et al., 2025) and ClimaX (Nguyen et al., 2023a), re-
main in their infancy compared to mature Computer Vision (CV) or Natural Language Processing
(NLP) foundation models. These models are generally smaller and less computationally demand-
ing than their counterparts in NLP or CV, which might initially lessen the perceived urgency for
PEFT methods in meteorological science. However, this view is rapidly being challenged by the
swift expansion of WFMs. As detailed in Table 14, recent models such as Aurora (1.3B parameters)
(Bodnar et al., 2025) and Prithvi WxC (2.3B parameters) (Schmude et al., 2024) already highlight
a clear trajectory towards billion-parameter scales and increasing computational requirements. This
trend indicates that the computational and storage demands for fine-tuning will soon become unsus-
tainable for many institutions. As a case in point, Environment Canada reported that GPU memory
constraints make it “effectively impossible” to fully fine-tune GraphCast Lam et al. (2023) on their
in-house systems (Subich, 2025). In this evolving context, WeatherPEFT is presented as a forward-
looking initiative. Our work aims to proactively establish efficient adaptation methodologies that
will be essential for the accessible and sustainable deployment of these increasingly large and com-
plex future-generation weather foundation models.

Gnerlization of WeatherPEFT. Furthermore, WeatherPEFT has only been validated on the
transformer-based backbone, including Aurora (Bodnar et al., 2025) and Prithvi WxC (Schmude
et al., 2024), but it can be adapted to other architectures with minor modifications as discussed in
Appendix B.2. Future work should prioritize its extension to other foundational architectures, such
as Convolutional Neural Networks and Graph Neural Networks. Testing its performance across a
broader range of downstream tasks will also be crucial for confirming its generalizability.

Trade-off between Efficiency and Performance. Moreover, it is a general observation in the
PEFT field that a marginal performance gap can sometimes exist when compared to the absolute
ceiling achievable by exhaustive full fine-tuning when fine-tuning only a minuscule fraction of pa-
rameters (∼0.3%). This potential, slight differential is broadly considered an acceptable trade-off.
As demonstrated in Appendix B.1, this performance gap for PEFT methods narrows significantly
as the budget of trainable parameters is increased to ∼3%. Our method, WeatherPEFT, completely
closes this gap, achieving performance that is on par with, and on certain metrics even superior
to, that of full fine-tuning. Practitioners can select the optimal balance based on their specific ap-
plication, choosing extreme efficiency with a small performance trade-off or allocating a modest
parameter budget to achieve performance parity with full fine-tuning.

Out of Distribution Scenarios. While the WeatherPEFT framework does not include an explicit
mechanism for general out-of-distribution (OOD) generalization, our experimental results provide
evidence of its robustness to specific distribution shifts, namely extreme weather events. This ca-
pability is demonstrated by its superior performance on metrics designed to penalize errors on rare
phenomena, including EECRPS and SEEPS. Furthermore, we evaluate WeatherPEFT on the real-
world case study of the 2020 Mei-yu flood, where it achieves a high Threat Score (TS), a key
decision-relevant metric. We attribute this enhanced performance to our adaptive parameter selec-
tion method, SFAS. By dynamically identifying and fine-tuning the most task-critical parameters,
SFAS more effectively captures the dynamics of events in the tails of the data distribution compared
to fixed PEFT strategies. This indicates a promising robustness against the OOD challenges posed
by extreme events.

Physical Mechanisms Incorporation. Finally, the current WeatherPEFT framework, while adapt-
ing effectively through its data-driven components, does not explicitly incorporate domain-specific
physical mechanisms or constraints from atmospheric science directly into the PEFT process itself.
Future research could investigate domain-specific PEFT methods tailored to weather and climate ap-
plications to improve the performance, such as integrating physical mechanisms into the fine-tuning
process (e.g., embedding conservation laws or dynamical constraints).
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D USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, Large Language Models (LLMs) are utilized as a general-
purpose assistive tool to enhance the quality and clarity of the writing. The core research, experi-
mental design, data analysis, and intellectual contributions remain entirely the work of the authors.
The specific applications of LLMs in this work include:

• Text Polishing and Refinement: The LLM is employed to review the entire text for grammatical
accuracy, improve sentence structure, and ensure consistent phrasing and tone throughout the
paper. This process is akin to using an advanced grammar and style checker to improve the overall
readability of the manuscript.

• Coherence and Logical Flow: We use the LLM to help organize and structure our arguments.
By presenting existing drafts of sections to the model, we receive suggestions on how to improve
the logical transitions between paragraphs and make the overall narrative more coherent and com-
pelling for the reader.

• Supplementing and Articulating Ideas: At various stages, the LLM serves as a sounding board
to help supplement our thoughts. It assists in articulating complex ideas more clearly and explor-
ing alternative ways to frame concepts that were already formulated by the authors. The model
does not contribute to the original ideation or the generation of novel research findings but rather
acts as an aid to express the authors’ own thoughts more effectively.

All suggestions and modifications proposed by the LLM are critically reviewed, edited, and ap-
proved by the authors to ensure they accurately reflect our research and intended meaning. The final
responsibility for the content of this paper rests solely with the authors.

E ADDITIONAL MODEL IMPLEMENTATION DETAILS

E.1 TRAINING-FROM-SCRATCH MODEL ARCHITECTURES

E.1.1 RESNET

We build the ResNet (He et al., 2016) architecture based on WeatherBench (Rasp et al., 2020; 2024)
and ClimateLearn (Nguyen et al., 2023b), where each residual block consists of two identical convo-
lutional modules: 2D convolution → LeakyReLU with α = 0.3 → Batch Normalization → Dropout.
Table 15 shows the hyperparameters for ResNet in all of our experiments.

Table 15: Default hyperparameters of ResNet
Hyperparameter Meaning Value

Padding size Padding size of each convolution layer 1
Kernel size Kernel size of each convolution layer 3
Stride Stride of each convolution layer 1
Hidden dimension The number of output channels of each residual block 256
Residual blocks The number of residual blocks 28
Dropout Dropout rate 0.1

E.1.2 U-NET

We borrow our U-Net (Ronneberger et al., 2015) implementation from ClimateLearn (Nguyen et al.,
2023b). We use the following hyperparameters in the Table 16 for UNet in all of our experiments.
Similar to ResNet, we use a convolutional layer with a kernel size of 7 at the beginning of the
network, and all paddings are periodic in the longitude direction and zeros in the latitude direction.

E.1.3 VIT

We implement the ViT (Dosovitskiy et al., 2020) architecture according to ClimateLearn (Nguyen
et al., 2023b), which differs from the standard ViT with some minor modifications. Specifically, the
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Table 16: Default hyperparameters of U-net
Hyperparameter Meaning Value

Padding size Padding size of each convolution layer 1
Kernel size Kernel size of each convolution layer 3
Stride Stride of each convolution layer 1
Hidden dimension The number of base channels of each block 64
Channel multiplications The number of feature channels to scale (1,2,2)
Blocks The number of blocks 4
Use attention If use attention in Down and Up blocks False
Dropout Dropout rate 0.1

class token is removed with a 1-hidden MLP prediction head incorporating, which is applied to the
tokens after the last attention layer to predict the outputs. Table 17 demonstrates the hyperparameters
for ViT in all of our experiments based on ViT-B.

Table 17: Default hyperparameters of ViT
Hyperparameter Meaning Value

Padding size The patch size to embed the input to the token 8
Hidden dimension The number of embedding dimension 1024
Depth The number of ViT blocks 24
Heads The number of attention heads 16
MLP ratio Determine the hidden dimension of the MLP layer in a ViT block 4
Prediction depth The number of layers of the prediction head 4
Drop path For stochastic depth rate (Huang et al., 2016) 0.1
Dropout Dropout rate 0.1

E.1.4 FOURCASTNET

The FourCastNet is implemented based on the official code of FourCastNet (Pathak et al., 2022). As
shown in the Table 18, we employ the following default hyperparameters for FourCastNet.

Table 18: Default hyperparameters of FourCastNet
Hyperparameter Meaning Value

Padding size The patch size to embed the input to the token 4
Sparsity threshold The threshold of sparsity controlling in the Soft-Thresholding 0.01
Hidden dimension The number of embedding dimension 768
Block number The number of AFNO (Guibas et al., 2021) blocks 8
Depth The number of layers 12
MLP ratio Determine the hidden dimension of the MLP layer in a ViT block 4
Activation layer The activation function within each layer (Huang et al., 2016) GELU
Dropout Dropout rate 0

E.1.5 CLIMAX

The ClimaX is implemented based on the official code of ClimaX (Nguyen et al., 2023a). As
shown in the Table 19, we employ the following default hyperparameters for ClimaX in all of our
experiments.

E.1.6 AURORA

The Aurora is implemented based on the official code of Aurora (Bodnar et al., 2025). As shown in
the Table 20, we employ the following default hyperparameters for Aurora in all of our experiments.
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Table 19: Default hyperparameters of ClimaX
Hyperparameter Meaning Value

Padding size The patch size to embed the input to the token 4
Hidden dimension The number of embedding dimension 1024
Depth The number of ViT blocks 8
Heads The number of attention heads 16
MLP ratio Determine the hidden dimension of the MLP layer in a ViT block 4
Prediction depth The number of layers of the prediction head 2
Drop path For stochastic depth rate (Huang et al., 2016) 0.1
Dropout Dropout rate 0.1

Table 20: Default hyperparameters of Aurora
Hyperparameter Meaning Value

Patch size The patch size to embed the input to the token 4
Hidden dimension Embedding dimension size 512
Encoder depths The number of blocks per encoder layer (6, 10, 8)
Decoder depths The number of blocks per decoder layer (8, 10, 6)
Heads The number of attention heads 16
MLP ratio MLP hidden dimension ratio 4.0
Encoder depth The number of Perceiver (Jaegle et al., 2021) blocks in encoder 1
Decoder depth The number of Perceiver (Jaegle et al., 2021) blocks in decoder 1
Latent levels The number of latent pressure levels 4
Window size 3D Swin window dimensions (2, 6, 12)
Drop path For stochastic depth rate (Huang et al., 2016) 0
Dropout Dropout rate 0

E.1.7 PRITHXI WXC

The Prithvi WxC is implemented based on the official code of Prithvi-WxC (Schmude et al., 2024).
As shown in the Table 21, we employ the following default hyperparameters for Prithvi WxC in all
of our experiments.

Table 21: Default hyperparameters of Prithvi WxC
Hyperparameter Meaning Value

Patch size The patch size to embed the input to tokens (2, 2)
Hidden dimension Embedding dimension size 2560
Encoder blocks The number of local-global transformer pairs 12
Heads The number of attention heads 16
MLP ratio MLP hidden dimension ratio 4.0
Drop path For stochastic depth rate (Huang et al., 2016) 0.0
Dropout Dropout rate 0.0

E.2 PEFT METHODS

The PEFT methods are implemented within the backbone of Aurora (Bodnar et al., 2025), which
is first loaded with the official pretrained weights on over a million hours of diverse weather and
climate data, and Prithvi WxC (Schmude et al., 2024), which is first loaded with official pretrained
weights of the backbone.
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E.2.1 WEATHERPEFT

As shown in Table 22, we depict some hyperparameter values in our experiment. We denote the
downscaling, post-processing, and forecasting tasks as Tasks 1, 2, and 3, respectively.

Table 22: Default hyperparameters of WeatherPEFT
Hyperparameter Module Meaning Value (Task 1/2/3)

P TADP The number of soft prompt tokens 30/5/20
Ph TADP The heigth of the patch embedding’s window 4/4/4
Pw TADP The width of the patch embedding’s window 4/4/4
V TADP The number of input variables 11/21/13
D TADP The hidden dimension of the encoder’s embedding layer 512/512/512
HWh TADP The hidden dimension of HW-Adapter 8/8/8
Vh TADP The hidden dimension of V-Adapter 5/10/6
Dh TADP The hidden dimension of D-Adapter 16/16/16
Eh TADP The hidden dimension of EV PhPw×D-Adapter 16/16/16
k SFAS The percentage of selected parameters 0.001/0.001/0.001
γ SFAS The initial value of linear decay factor 0.2/0.2/0.2

E.2.2 OTHER PEFT BASELINES

We implement six state-of-the-art PEFT methods, including LoRA (Hu et al., 2022), DoRA (Liu
et al., 2024), AdaptFormer (Chen et al., 2022), SSF (Lian et al., 2022), VPT (Jia et al., 2022), and
APrompt (Wang et al., 2023a), based on their original paper. The default hyperparameters in our
experiment are listed in Table 23.

Table 23: Default hyperparameters of PEFT baselines.
Method Hyperparameter Meaning Value

LoRA Rank The rank of the low rank matrix 8
LoRA Alpha The alpha value 1
LoRA Dropout Dropout rate 0
DoRA Rank The rank of the low rank matrix 8
DoRA Alpha The alpha value 1
DoRA Dropout Dropout rate 0
AdaptFormer Skip connection Whether to use residual connection within the adapter False
AdaptFormer Mlp ratio The ratio of down sample 0.25
AdaptFormer Activation function The activation function within the adapter GELU
SSF Layer number The number of SSF layer 12
VPT Prompt length The number of soft prompt tokens 50
APrompt Prompt length The number of soft prompt tokens 50
APrompt QKV length The number of soft attention tokens 10

F ADDITIONAL DOWNSTREAM TASK DETAILS

F.1 EXPERIMENTAL SETTINGS

We train all the models and WeatherPEFT using the same training framework. Each model is trained
with the AdamW optimizer, employing a weight decay of 0.05. We employ a cosine learning rate
scheduler with a warm-up phase during the first three epochs to stabilize training. For the three
distinct downstream tasks, models are trained on eight 80GB NVIDIA A800 GPUs. The specific
parameters for these tasks are: learning rates of 7e-4, 1e-3, and 3e-3; batch sizes of 5, 1, and 4; and
30, 10, and 15 training epochs, respectively. The approximate training times for these respective
configurations are 6, 2, and 2 hours. In the subsection, we will elaborate on the details of the
implementation of model architectures and PEFT methods.
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F.2 DOWNSCALING

Global weather forecasting models typically operate at coarse spatial resolutions to mitigate com-
putational costs, capturing large-scale atmospheric dynamics at the expense of localized detail.
However, such resolutions are insufficient for analyzing regional phenomena such as coastal wind
patterns. Downscaling, or statistical super-resolution, addresses this limitation by enhancing coarse-
grained model outputs to finer resolutions while preserving physical consistency. In this experiment,
we downscale 5.625◦ ERA5 data to 1.40625◦ ERA5 data (Hersbach et al., 2020) both at a global
scale and 6-hour intervals, leveraging the WeatherBench dataset (Rasp et al., 2020). The training
involves 30 epochs over the period from 2007 to 2016, and the test is in 2017 and 2018. Following
Nguyen et al. (2023a;b), we first bilinearly interpolate the input to match the resolution of the de-
sired output before feeding it to the model. We use mean square error as the loss function, and the
overall surface loss is weighted by 0.25, while the overall upper loss is weighted by 1, following (Bi
et al., 2023; Bodnar et al., 2025).

F.2.1 DATA

Table 24 summarizes the variables we use for our experiments, which total 68 variables.

Table 24: ERA5 variables used in our experiments. Surface represents surface variables, and Upper
represents atmospheric properties at the chosen altitudes.

Type Variable Abbrev. Levels

Surface 2 metre temperature T2m
Surface 10 metre U wind component U10
Surface 10 metre V wind component V10

Upper Geopotential Z
50, 100, 150, 200, 250,
300, 400, 500, 600, 700,
850, 925, 1000

Upper U wind component U
Upper V wind component V
Upper Temperature T
Upper Specific humidity Q

F.2.2 PROBLEM SETTING

In this 5.625◦ ERA5 data to 1.40625◦ downscaling experiment, the 5.625◦ input data X ∈
R68×32×64 is first bilinearly interpolated to 1.40625◦ data X̂ ∈ R68×128×256 following Nguyen
et al. (2023a;b). The machine learning models are trained to correct the biases between the interpo-
lated input data X̂ and ground truth 1.40625◦ data Y ∈ R68×32×64.

F.2.3 VISUALIZATION

We visualize the input, ground truth, and prediction of seven PEFT approaches (our proposed Weath-
erPEFT and six other state-of-the-art PEFT baselines) to provide an intuitive comparison for further
reference.
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Input Groundtruth

AdaptFormer RMSE: 2.061

LoRA RMSE: 1.289

DoRA RMSE: 1.391 SSF RMSE: 1.275

VPT RMSE: 1.334 APrompt RMSE: 1.315 WeatherPEFT RMSE: 1.198

Figure 4: Visualization of PEFT baselines and WeatherPEFT on the variable T2m of downscaling
(2018-01-11 06 UTC).

Input Groundtruth

AdaptFormer RMSE: 1.647

LoRA RMSE: 1.132

DoRA RMSE: 1.235 SSF RMSE: 1.105

VPT RMSE: 1.170 APrompt RMSE: 1.154 WeatherPEFT RMSE: 1.049

Figure 5: Visualization of PEFT baselines and WeatherPEFT on the variable U10 of downscaling
(2017-08-14 06 UTC).
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Input Groundtruth

AdaptFormer RMSE: 1.497

LoRA RMSE: 1.101

DoRA RMSE: 1.178 SSF RMSE: 1.077

VPT RMSE: 1.131 APrompt RMSE: 1.114 WeatherPEFT RMSE: 1.034

Figure 6: Visualization of PEFT baselines and WeatherPEFT on the variable V10 of downscaling
(2017-08-14 06 UTC).

Input Groundtruth

AdaptFormer RMSE: 1.670

LoRA RMSE: 1.077

DoRA RMSE: 1.166 SSF RMSE: 1.068

VPT RMSE: 1.127 APrompt RMSE: 1.115 WeatherPEFT RMSE: 1.020

Figure 7: Visualization of PEFT baselines and WeatherPEFT on the variable T850 of downscaling
(2018-01-11 06 UTC).
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Input Groundtruth

AdaptFormer RMSE: 162.222

LoRA RMSE: 49.940

DoRA RMSE: 54.811 SSF RMSE: 48.945

VPT RMSE: 51.342 APrompt RMSE: 51.077 WeatherPEFT RMSE: 44.942

Figure 8: Visualization of PEFT baselines and WeatherPEFT on the variable Z500 of downscaling
(2018-03-27 06 UTC).

F.3 ENSEMBLE WEATHER FORECAST POST-PROCESSING

Existing ensemble weather predictions are subject to systematic errors known as biases (Toth &
Kalnay, 1993). Therefore, post-processing approaches have been introduced to forecast skill by
correcting the distribution of the ensemble weather prediction to improve the reliability of weather
forecasting. Our evaluation employs the ENS-10 benchmark (Ashkboos et al., 2022) for global
ensemble forecast post-processing, which pairs 10-member ensemble prediction (48-hour lead time)
from the ECMWF Integrated Forecasting System (IFS) (ECMWF, 2022) with ERA5 reanalysis
targets at 0.5◦ resolution. The dataset involves two data points per week spanning 20 years, with
the years 1998-2015 as the training set and 2016-2017 as the test set. Following (Ashkboos et al.,
2022), we utilize the closed-form expression of the Continuous Ranked Probability Score (CRPS)
as the loss function, training for 10 epochs.

F.3.1 DATA

Table 25 summarizes the variables we use for our experiments, which total 25 variables.

F.3.2 PROBLEM SETTING

For a given time T, the input is a set of ensemble members X = {Xk,T }k∈[1,10]. Each ensemble
member Xk,T ∈ R25×360×720 consists of all surface and upper variables predictions at time steps
T + 24h. For each target variable, the task is to predict a corrected cumulative distribution function
(CDF) Fij at time T + 48h at each grid point (i, j). Following Toth & Kalnay (1993); Grönquist
et al. (2021), we assume a Gaussian distribution on the target variable and learn the mean and stan-
dard deviation of this distribution. Specifically, the model is provided with the mean and standard
deviation of all variables in ENS-10 at a lead time of T + 48h. The model outputs two values cor-
responding to the mean and standard deviation of the target variable. To derive the corrected mean,
the first output value is multiplied by the ensemble member’s standard deviation and added to the
ensemble mean. Similarly, the corrected standard deviation is obtained by taking the exponential of
the second output value and multiplying it by the ensemble standard deviation. This normalization
ensures accurate calibration of the predicted distribution. We choose to minimize the Continuous
Ranked Probability Score (CRPS) between the ensemble prediction and ERA5 ground-truth. In this
case, the closed-form expression of CRPS of a Gaussian distribution (Ashkboos et al., 2022) can be
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Table 25: ENS-10 variables used in our experiments. Surface represents surface variables, and
Upper represents atmospheric properties at the chosen altitudes.

Type Variable Abbrev. Levels

Surface Sea surface temperature SST
Surface Total column water TCW
Surface Total column water vapor TCWV
Surface Convective precipitation CP
Surface Mean sea level pressure MSL
Surface Total cloud cover TCC
Surface Skin temperature at surface SKT
Surface Total precipitation TP
Surface 2 metre temperature T2m
Surface 10 metre U wind component U10
Surface 10 metre V wind component V10

Upper Geopotential Z

500, 850

Upper U wind component U
Upper V wind component V
Upper Temperature T
Upper Specific humidity Q
Upper Vertical velocity W
Upper Divergence D

defined as:

CRPS(Fi,j ,X) = σ

[
2ψ

(
X− µ

σ

)
+

X− µ

σ

(
2ϕ

(
X− µ

σ

)
− 1

)
− 1√

π

]
, (9)

where µ and σ are the mean and standard deviation of the distribution, ψ and ϕ are the probability
density and cumulative density function of a standard Gaussian random variable, respectively.

F.4 REGIONAL PRECIPITATION FORECASTING

Precipitation forecasting plays a crucial role in agriculture, water resource management, and disaster
prevention (Yue et al., 2022; Ward et al., 2011). Among fundamental atmospheric forecast variables,
precipitation forecasting presents unique challenges. This is primarily attributed to the multiscale
interactions involved in precipitation processes, ranging from cloud microphysics to large-scale cir-
culation (Frank et al., 2024), encompassing complex nonlinear dynamical, water vapor transport,
and thermodynamic processes (Trenberth et al., 2003). Moreover, global predictions are not always
feasible, particularly when only regional data is available. In this experiment, we evaluate Weather-
PEFT on regional six-hour precipitation accumulation forecasts across China, addressing scenarios
where only localized observational data is available. To enable this assessment, we introduce ERA5-
CH, a specialized dataset derived from ERA5 reanalysis at resolution 0.25◦ exclusively over China.
To do this, we first identified the latitude (58.5◦N-1.5◦S) and longitude (74.0◦E-134.0◦E) range to
form a rectangular area that encapsulates China. For each data sample, we then extracted the spatial
positions that fall into this range, forming ERA5-CH. We utilize the mean absolute error loss for
training and train the model over 15 epochs, with data from 2010–2019 serving as the training set
and 2020 as the test set. Both datasets are configured with a 12-hour temporal resolution.

F.4.1 DATA

Table 24 summarizes the variables we use for our experiments, which total 70 variables.

F.4.2 PROBLEM SETTING

In this regional precipitation forecasting experiment, the input X ∈ R70×240×240 is 0.25◦ data with
70 variables and 240 × 240 grids. The machine learning models are trained to predict the six-hour
accumulation of precipitation for three lead times of 12 hours, 24 hours, and 36 hours, which is also
0.25◦ data Y ∈ R3×240×240 with 240× 240 grids.
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Table 26: ERA5 variables used in our experiments. Surface represents surface variables, and Upper
represents atmospheric properties at the chosen altitudes.

Type Variable Abbrev. Levels

Surface Total precipitation of 6 hours TP
Surface Mean sea level pressure MSL
Surface 2 metre temperature T2m
Surface 10 metre U wind component U10
Surface 10 metre V wind component V10

Upper Geopotential Z
50, 100, 150, 200, 250,
300, 400, 500, 600, 700,
850, 925, 1000

Upper U wind component U
Upper V wind component V
Upper Temperature T
Upper Relative humidity R

F.4.3 VISUALIZATION

We provide the visualization of PEFT baselines and WeatherPEFT on the variable TP (total precip-
itation) in Figure 9.

Input DoRA

VPT

Groundtruth

AdaptFormer APrompt

LoRA

SSF WeatherPEFT

Figure 9: PEFT baselines and WeatherPEFT visualization of a 12-hour forecast for TP-6hr over
China (2020-05-20 12 UTC).

F.5 METRICS

This section defines all the evaluation metrics we employ in the experiment. For arbitrarily variable,
we denote Ŷ ∈ RN×H×W and Y ∈ RN×H×W and Y as the prediction output and the ground
truth, both of which have the same shape, where N represents the number of data points, H denotes
the number of latitude coordinates, and W is the number of longitude coordinates. ŷk,i,j and yk,i,j
indicates scalar values of the prediction tensor Ŷ and the ground-truth tensor Y, respectively. The
indices k, i, and j correspond to the data sample, latitude, and longitude.

F.5.1 ROOT MEAN SQUARED ERROR (RMSE)

Following WeatherBench, we define the RMSE as the mean latitude-weighted RMSE over all fore-
casts for each variable:

RMSE =
1

N

N∑
k=1

√√√√ 1

H ×W

H∑
i=1

W∑
j=1

W (i)(ŷk,i,j − yk,i,j)2, (10)
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where W (i) is is the latitude weighting factor for the latitude at ith latitude index:

W (i) =
cos(lat(i))

1
Nlat

∑Nlat

i cos(lat(i))
. (11)

F.5.2 MEAN BIAS

Mean bias quantifies the discrepancy between the spatial average of predictions and ground truth. A
positive value indicates systematic overestimation, while a negative value reflects an underestimation
of the mean. The Mean Bias for each variable is defined as:

Mean Bias =
1

N ×H ×W

N∑
k=1

H∑
i=1

W∑
j=1

(ŷk,i,j − yk,i,j). (12)

F.5.3 CONTINUOUS RANKED PROBABILITY SCORE (CRPS)

CRPS generalizes the mean absolute error for probabilistic forecasts. Given a ground truth observa-
tion y at grid-point (i, j), the CRPS for the corrected cumulative distribution function F at the same
point is defined as:

CRPS(Fij , y) =

∫ ∞

−∞
(Fij(x)− 1y≤x)

2
dx, (13)

where 1y≤x is an indicator function that equals 1 if y ≤ x and 0 otherwise. This formulation
quantifies the discrepancy between the predicted cumulative distribution function and the observed
value, providing a robust measure of probabilistic forecast accuracy. We report the mean CRPS over
all grid points over the two test years.

F.5.4 ANOMALY CORRELATION COEFFICIENT (ACC)

ACC measures the spatial correlation between the anomalies of prediction Ŷ and ground truth Y,
where both are computed relative to climatological baselines. Formally, ACC is defined as:

ACC =

∑
k,i,j W (i)ŷ

′

k,i,jy
′

k,i,j√∑
k,i,j W (i)ŷ

′2
k,i,j

∑
k,i,j W (i)y

′2
k,i,j

,

Ŷ
′
= Ŷ −C,Y

′
= Y −C,

(14)

where climatology C is the temporal mean of the ground truth data over the dataset.

F.5.5 EXTREME EVENT WEIGHTED CONTINUOUS RANKED PROBABILITY SCORE
(EECRPS)

A critical objective in bias correction is reducing uncertainty during extreme weather events. To
avoid conflating these events with average-case forecast skill, (Ashkboos et al., 2022) introduces a
weighted version of CRPS that emphasizes extreme conditions. A widely adopted metric for quan-
tifying forecast irregularity is the Extreme Forecast Index (EFI) (Lalaurette, 2003; Zsótér, 2006),
which measures the deviation of ensemble forecasts relative to a probabilistic weather model. The
EFI ranges between -1 and 1, with larger absolute values indicating greater deviation from histori-
cal meteorological records. Typically, EFI magnitudes between 0.5 and 0.8 are considered unusual,
while values above 0.8 signify very unusual conditions and a high likelihood of extreme weather.
Given a ground-truth observation y at grid-point (i, j), we weight the CRPS using the absolute value
of the EFI at that location, defining the Extreme Event Weighted CRPS (EECRPS) as:

EECRPS(Fi,j , y) := |EFI(i,j)| × CRPS(Fi,j , y). (15)

We report the mean EECRPS over all grid points of the test years. For the calculation of EFI(i, j),
please refer to (Ashkboos et al., 2022)
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F.5.6 STABLE EQUITABLE ERROR IN PROBABILITY SPACE (SEEPS)

Traditional deterministic metrics such as RMSE and ACC are inadequate for evaluating precipi-
tation forecasts due to precipitation’s highly skewed distribution and spatiotemporal intermittency.
These limitations cause conventional metrics to favor overly smooth forecasts. Following (Rasp
et al., 2020), we adopt the SEEPS score (Rodwell et al., 2010) for precipitation evaluation. SEEPS
categorizes precipitation into three classes: “dry,” “light,” and “heavy,” discouraging smooth fore-
casts while maintaining stability across parameter choices. For more details about the SEEPS score,
please refer to (Rodwell et al., 2010). Here, we describe how we compute the SEEPS score based
on (Rasp et al., 2024). For every location, we use a dry threshold of 0.1 mm/day for 6 hourly ac-
cumulations. The remaining precipitation values are split into light and heavy categories, with light
precipitation days occurring twice as frequently as heavy ones for that location climatologically.
We utilize the light-heavy threshold precomputed by (Rasp et al., 2024), which is the 2/3rd quantile
of non-dry days based on climatology (Rasp et al., 2024). Forecast-observation pairs are classified
into these categories based on the thresholds, generating a 3× 3 joint probability contingency table
(Table 27) for each lead time.

Table 27: 3× 3 contingency table of precipitation classification forecast and observation in SEEPS
scores.

Probability Observation
Category 1 2 3

Forecast
1 P11 P12 P13

2 P21 P22 P23

3 P31 P32 P33

The contingency table is then multiplied by the scoring error matrix S based on the climatological
occurrence of dry days for each geographical location:

S =
1

2

 0 1
1−p

4
1−p

1
p 0 3

1−p
1
p + 3

2+p
3

2+p 0

 (16)

where p represents the climatological probability of dry days, columns represent observed probabil-
ities, and rows represent forecast probabilities. Following (Zhao et al., 2024b; Rodwell et al., 2010),
we exclude extreme climates using 0.1 <p< 0.85 and compute area-weighted mean SEEPS scores.
It can be seen in Equation 16 that the SEEPS error scoring matrix is uniquely determined by p. For
rainy climate regions, where p is smaller, the lower triangular elements of the SEEPS error scoring
matrix (corresponding to false negatives for “dry” conditions) are larger. For arid climate regions,
where p is larger, the upper triangular elements of the SEEPS error scoring matrix (corresponding
to false negatives for “heavy rain”) are larger. This indicates that the SEEPS error scoring matrix,
which is based on the probability of precipitation occurrence (1 - p), varies across different climate
regions or precipitation seasons. Consequently, a key feature of SEEPS is its ability to assign dif-
ferent error scores to the same forecast characteristic (e.g., missing a “heavy rain” event) depending
on the climate region or season. In other words, the “penalty” for forecast errors is tied to the cli-
matic probability of precipitation. Thus, SEEPS automatically adapts to site-specific precipitation
probabilities across varying climate zones or seasons.

F.5.7 THREAT SCORE (TS)

The Threat Score (TS), also known as the Critical Success Index (CSI), is a widely used verification
metric in meteorology for evaluating the performance of categorical forecasts, particularly for pre-
cipitation events (Schaefer, 1990). It measures the fraction of correctly predicted ”yes” events out
of all instances where the event was either predicted or observed. The TS is particularly valuable as
it ignores correct negatives (correctly forecasting no event), making it sensitive to performance on
rare or localized phenomena like heavy rainfall.

To calculate the TS, forecast-observation pairs at each grid point are first categorized into a contin-
gency table based on a predefined event threshold. The categories are Hits (H), where the event was
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forecast to occur and did occur, Misses (M ), where the event was not forecast to occur but did occur,
and False Alarms (F), where the event was forecast to occur but did not occur. The Threat Score is
then computed using the following formula:

TS =
H

(H +M + F )
. (17)

The score ranges from 0 to 1, where 1 indicates a perfect forecast. In the context of our case study
on the 2020 Mei-yu flood, we use percentile-based thresholds to define the precipitation events,
allowing for a location-specific evaluation of moderate and heavy rainfall. Specifically, we establish
two thresholds for each grid point based on a climatology constructed from precipitation data in
June and July between 2010 and 2020:

• 50th Percentile TS: An event is defined as precipitation exceeding the local 50th percentile of the
climatology.

• 75th Percentile TS: An event is defined as precipitation exceeding the local 75th percentile of the
climatology.

This approach ensures that the metric evaluates the model’s ability to predict rainfall events that are
significantly intense relative to the typical climate of each specific location during that season.
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