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Abstract
Deep learning based systems are susceptible001
to adversarial attacks, where a small, imper-002
ceptible change at the input alters the model003
prediction. However, to date the majority of004
the approaches to detect these attacks have005
been designed for image processing systems.006
Many popular image adversarial detection ap-007
proaches are able to identify adversarial exam-008
ples from embedding feature spaces, whilst in009
the NLP domain existing state of the art de-010
tection approaches solely focus on input text011
features, without consideration of model em-012
bedding spaces. This work examines what dif-013
ferences result when porting these image de-014
signed strategies to Natural Language Process-015
ing (NLP) tasks - these detectors are found to016
not port over well. This is expected as NLP017
systems have a very different form of input:018
discrete and sequential in nature, rather than019
the continuous and fixed size inputs for images.020
As an equivalent model-focused NLP detection021
approach, this work proposes a simple sentence-022
embedding "residue" based detector to identify023
adversarial examples. On many tasks, it out-024
performs ported image domain detectors and025
recent state of the art NLP specific detectors 1.026

1 Introduction027

In the last decade deep learning based models have028

demonstrated success in a wide range of applica-029

tion areas, including Natural Language Processing030

(NLP) (Vaswani et al., 2017) and object recogni-031

tion (He et al., 2015). These systems may be de-032

ployed in mission critical situations, where there is033

the requirement for a high level of robustness. How-034

ever, (Szegedy et al., 2014) demonstrated that deep035

models have an inherent weakness: small perturba-036

tions in the input can yield significant, undesired,037

changes in the output from the model. These input038

perturbations were termed adversarial examples039

and their generation adversarial attacks.040

1Code is available at: GitHub repository link will be pro-
vided after the anonymity period.

Adversarial attacks have been developed for sys- 041

tems operating in various domains: image sys- 042

tems (Serban et al., 2020; Biggio and Roli, 2017; 043

Bhambri et al., 2019) and NLP systems (Lin et al., 044

2014; Samanta and Mehta, 2017; Rosenberg et al., 045

2017). The characteristics of the input can be 046

very different between these application domains. 047

Broadly, the nature of inputs can be described us- 048

ing two key attributes: static (fixed length) vs se- 049

quential and continuous vs discrete. Under this 050

categorisation, image inputs are continuous and 051

static, whilst NLP inputs are discrete and sequen- 052

tial. This work argues that due to the fundamental 053

differences in the input and resulting adversarial 054

perturbations in the different domains, adversarial 055

attack behaviour can vary significantly from one 056

domain to another. Hence, the extensive research 057

on exploring and understanding adversarial pertur- 058

bation behaviour in the continuous, static world of 059

image systems does not necessarily transfer well to 060

the NLP tasks. 061

For adversarial attack generation, a number of 062

specific NLP attacks have been proposed that are 063

designed for NLP task inputs (Lin et al., 2014; 064

Samanta and Mehta, 2017; Rosenberg et al., 2017; 065

Huang et al., 2018; Papernot et al., 2016; Grosse 066

et al., 2016; Sun et al., 2018; Cheng et al., 2018; 067

Blohm et al., 2018; DBL, 2018; Neekhara et al., 068

2018; Raina et al., 2020; Jia and Liang, 2017; Min- 069

ervini and Riedel, 2018; Niu and Bansal, 2018; 070

Ribeiro et al., 2018; Iyyer et al., 2018; Zhao et al., 071

2017). However, there has been less research on 072

developing defence schemes. These defence strate- 073

gies can be split into two main groups: model mod- 074

ification, where the model or data is altered at train- 075

ing time (e.g. adversarial training (Yoo and Qi, 076

2021)) and detection, where external systems or 077

algorithms are applied to trained models to iden- 078

tify adversarial attacks. As model modification ap- 079

proaches demand re-training of models, detection 080

approaches are usually considered easier for imple- 081
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mentation on deployed systems and thus are often082

preferred. Hence, this work investigates the porta-083

bility of popular detection approaches designed for084

image systems to NLP systems. Furthermore, this085

work introduces a specific NLP detection approach086

that exploits the discrete nature of the inputs for087

NLP systems. This approach out-performs stan-088

dard schemes designed for image adversarial attack089

detection, as well as other NLP detection schemes.090

The proposed NLP specific detection approach091

will be referred to as residue detection, as it is092

shown that adversarial attacks in the discrete, word093

sequence, space result in easily detectable resid-094

ual components in the sentence embedding space.095

This residue can be easily detected using a simple096

linear classifier operating in the encoder embed-097

ding space. In addition, this work shows that even098

when an adversary has knowledge of the linear099

residual detector, they can only construct attacks100

at a fraction of the original strength. Hence this101

work argues that realistic (word level, semantically102

similar) adversarial perturbations at the natural lan-103

guage input of NLP systems leave behind easily104

detectable residue in the sentence embedding. In-105

terestingly, the residue detection approach is shown106

to perform poorly when used to detect attacks in107

the image domain, supporting the hypothesis that108

the nature of the input has an important influence109

on the design of effective defence strategies.110

2 Related Work111

Previous work in the image domain has analysed112

the output of specific layers in an attempt to iden-113

tify adversarial examples or adversarial subspaces.114

First, (Feinman et al., 2017) proposed that adver-115

sarial subspaces have a lower probability density,116

motivating the use of the Kernel Density (KD) met-117

ric to detect the adversarial examples. Nevertheless,118

(Ma et al., 2018) found Local Intrinsic Dimension-119

ality (LID) was a better metric in defining the sub-120

space for more complex data. In contrast to the121

local subspace focused approaches of KD and LID,122

(Carrara et al., 2019b) showed that trajectories of123

hidden layer features can be used to train a LSTM124

network to accurately discriminate between authen-125

tic and adversarial examples. Out performing all126

previous methods, (Lee et al., 2018) introduced an127

effective detection framework using Mahalanobis128

Distance Analysis (MDA), where the distance is129

calculated between a test sample and the closest130

class-conditional Gaussian distribution in the space131

defined by the output of the final layer of the clas- 132

sifier (logit space). (Li and Li, 2016) also explored 133

using the output of convolutional layers for image 134

classification systems to identify statistics that dis- 135

tinguish adversarial samples from original samples. 136

They find that by performing a PCA decomposi- 137

tion the statistical variation in the least principal 138

directions is the most significant and can be used 139

to separate original and adversarial samples. How- 140

ever, they argue this is ineffective as an adversary 141

can easily suppress the tail distribution. Hence, (Li 142

and Li, 2016) extract statistics from the convolu- 143

tional layer output to train a cascade classifier to 144

separate the original and adversarial samples. Most 145

recently, (Mao et al., 2019) avoid the use of artifi- 146

cially designed metrics and combine the adversarial 147

subspace identification stage and the detecting ad- 148

versaries stage into a single framework, where a 149

parametric model adaptively learns the deep fea- 150

tures for detecting adversaries. 151

In contrast to the embedding space detection 152

approaches, (Cohen et al., 2019) shows that influ- 153

ence functions combined with Nearest Neighbour 154

distances perform comparably or better than the 155

above standard detection approaches. Other de- 156

tection approaches have explored the use of un- 157

certainty: (Smith and Gal, 2018) argues that ad- 158

versarial examples are out of distribution and do 159

not lie on the manifold of real data. Hence, a dis- 160

criminative Bayesian model’s epistemic (model) 161

uncertainty should be high. Therefore, calcula- 162

tions of the model uncertainty are thought to be 163

useful in detecting adversarial examples, indepen- 164

dent of the domain. However, Bayesian approaches 165

aren’t always practical in implementation and thus 166

many different approaches to approximate this un- 167

certainty have been suggested in literature (Leibig 168

et al., 2017; Gal, 2016; Gal and Ghahramani, 2016). 169

There are a number of existing NLP specific 170

detection approaches. For character level attacks, 171

detection approaches have exploited the grammat- 172

ical (Sakaguchi et al., 2017) and spelling (Mays 173

et al., 1991; Islam and Inkpen, 2009) inconsisten- 174

cies to identify and detect the adversarial samples. 175

However, these character level attacks are unlikely 176

to be employed in practice due to the simplicity 177

with which they can be detected. Therefore, de- 178

tection approaches for the more difficult semanti- 179

cally similar attack samples are of greater interest, 180

where the meaning of the textual input is main- 181

tained without compromising the spelling or gram- 182
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matical integrity. To tackle such word-level, se-183

mantically similar examples, (Zhou et al., 2019)184

designed a discriminator to classify each token rep-185

resentation as part of an adversarial perturbation186

or not, which is then used to ‘correct’ the pertur-187

bation. Other detection approaches (Raina et al.,188

2020; Han et al., 2020; Minervini and Riedel, 2018)189

have shown some success in using perplexity to190

identify adversarial textual examples. Most re-191

cently, (Mozes et al., 2020) achieved state of the192

art performance with the Frequency Guided Word193

Substitution (FGWS) detector, where a change in194

model prediction after substituting out low fre-195

quency words is revealing of adversarial samples.196

3 Adversarial Attacks197

An adversarial attack is defined as an imperceptible198

change to the input that causes an undesired change199

in the output of a system. Often, an attack is found200

for a specific data point, x. Consider a classifier Fθ̂,201

with parameters θ̂, that predicts a class label for an202

input data point, x, sampled from the input distri-203

bution X . A successful adversarial attack is where204

a perturbation δ at the input causes the system to205

miss-classify,206

Fθ̂(x+ δ) ̸= Fθ̂(x). (1)207

When defining adversarial attacks, it is impor-208

tant consider the interpretation of an imperceptible209

change. Adversarial perturbations are not consid-210

ered effective if they are easy to detect. Hence, the211

size of the perturbation must be constrained:212

G(x,x+ δ) ≤ ϵ, (2)213

where the function G() describes the form of con-214

straint and ϵ is a selected threshold of imperceptibil-215

ity. Typically, when considering continuous space216

inputs (such as images), a popular form of the con-217

straint of Equation 2, is to limit the perturbation in218

the lp norm, with p ∈ [1,∞), e.g. ||δ||p ≤ ϵ.219

For whitebox attacks in the image domain, the220

dominant attack approach has proven to be Pro-221

jected Gradient Descent (PGD) (Kurakin et al.,222

2016). The PGD approach, iteratively updates the223

adversarial perturbation, δ, initialised as δ0 = 0.224

Each iterative step moves the perturbation in the225

direction that maximises the loss function, L, used226

in the training of the model,227

δi+1 = clipϵ(δi + α∇δiL(x+ δi; θ̂)), (3)228

where α is an arbitrary step-size parameter and the 229

clipping function, clipϵ, ensures the impercepti- 230

bility constraint of Equation 2 is satisfied. 231

When considering the NLP domain, a sequen- 232

tial, discrete input of L words, can be explicitly 233

represented as, 234

x = w1:L = w1, w2, . . . , wL−1, wL, (4) 235

where, the discrete word tokens, w1:L, are often 236

mapped to a continuous, sequential word embed- 237

ding (Devlin et al., 2019) space, 238

h1:L = h1,h2, . . . ,hL−1,hL. (5) 239

Attacks must take place in the discrete text space, 240

x+ δ = w′
1:L′ = w′

1, w
′
2, . . . , w

′
L′−1, wL′ , (6) 241

This requires a change in the interpretation of the 242

perturbation δ. It is not simple to define an ap- 243

propriate function G() in Equation 2 for word se- 244

quences. Perturbations can be measured at a char- 245

acter or word level. Alternatively, the perturba- 246

tion could be measured in the vectorized embed- 247

ding space (Equation 5), using for example lp-norm 248

based (Goodfellow et al., 2015) metrics or cosine 249

similarity (Carrara et al., 2019a), which have been 250

used in the image domain. However, constraints in 251

the embedding space do not necessarily achieve im- 252

perceptibility in the original word sequence space. 253

The simplest approach is to use a variant of an edit- 254

based measurement (Li et al., 2018), Le(), which 255

counts the number of changes between the original 256

sequence, w1:L and the adversarial sequence w′
1:L′ , 257

where a change is a swap/addition/deletion, and 258

ensures it is smaller than a maximum number of 259

changes, N , 260

Le(w1:L, w
′
1:L′) ≤ N. (7) 261

For the NLP adversarial attacks this work only 262

examines word-level attacks, as these are consid- 263

ered more difficult to detect than character-level 264

attacks. As an example, for an input sequence of L 265

words, a N -word substitution adversarial attack, 266

w′
1:N , applied at word positions n1, n2, . . . , nN 267

gives the adversarial output, w′
1:L′ 268

w′
1:L′ = w1, . . . , wn1−1, w

′
1, wn1+1, . . . , 269

wnN−1, w
′
N , wnN+1, . . . , wL. (8) 270

The challenge is to select which words to replace, 271

and what to replace them with. A simple yet ef- 272

fective substitution attack approach that ensures a 273
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small change in the semantic content of a sentence274

is to use saliency to rank the word positions, and to275

use word synonyms for the substitutions (Ren et al.,276

2019). This attack is termed Probability Weight277

Word Saliency (PWWS). The highest ranking word278

word can be swapped for a synonym from a pre-279

selected list of given synonyms. The next most280

highly ranked word is substituted in the same man-281

ner and the process is repeated till the required N282

words have been substituted.283

The above approach is limited to attacking spe-284

cific word sequences and so cannot easily be gener-285

alised to universal attacks (Moosavi-Dezfooli et al.,286

2016), where the same perturbation is used for287

all inputs. For this situation, a simple solution288

is concatenation (Wang and Bansal, 2018; Blohm289

et al., 2018), where for example, the same N -length290

sequence of words is appended to each input se-291

quence of words, as described in (Raina et al.,292

2020). Here,293

w′
1:L′ = w1, . . . , wL, w

′
1, . . . , w

′
N . (9)294

In both the substitution attack (Equation 8) and295

the concatenation attack (Equation 9), the size of296

the attack can be measured using the number of297

edits, Le(w1:L, w
′
1:L′) = N .298

4 Adversarial Attack Detection299

For a deployed system, the easiest approach to de-300

fend against adversarial attacks is to use a detection301

process to identify adversarial examples without302

having to modify the existing system.303

For the image domain Section 2 discusses many304

of the standard detection approaches. In this work,305

we select two distinct approaches that have been306

generally successful: uncertainty (Smith and Gal,307

2018), where adversarial samples are thought to308

result in greater epistemic uncertainty and Maha-309

lanobis Distance (Lee et al., 2018), where the Ma-310

halanobis distance in the logit space is indicative of311

how out of distribution a sample is (adversarial sam-312

ples are considered more out of distribution). In the313

NLP domain, when excluding trivial grammar and314

spelling based detectors, perplexity based detectors315

can be used (Raina et al., 2020). Many other NLP316

specific detectors (Zhou et al., 2019; Han et al.,317

2020; Minervini and Riedel, 2018) have been pro-318

posed, but (Mozes et al., 2020)’s FGWS detector319

is considered the state of art and is thus selected320

for comparison. Here low frequency words in an321

input are substituted for higher frequency words322

and the change in model prediction is measured 323

- adversarial samples are found to generally have 324

a greater change. This work introduces a further 325

NLP specific detector: residue detection, described 326

in detail in Section 4.1. 327

When considering any chosen detection mea- 328

sure Fd, a threshold β can be selected to decide 329

whether an input, w1:L, is adversarial or not, where 330

Fd(w1:L) > β, implies that w1:L is an adversarial 331

sample. To assess the success of the adversarial 332

attack detection processes, precision-recall curves 333

are used. For the binary classification task of iden- 334

tifying an input as adversarially attacked or not, at 335

a given threshold β, the precision and recall val- 336

ues can be computed as prec = TP/TP + FP and 337

rec = TP/TP + FN, where TP, FP and FN are 338

the standard true-positive, false-positive and false- 339

negative definitions. A single point summary of 340

precision recall-curves is given with the F1 score. 341

4.1 Residue Detection 342

In this work we introduce a new NLP detection 343

approach, residue detection, that aims to exploit 344

the nature of the NLP input space, discrete and 345

sequential. Here we make two hypotheses: 346

1. Adversarial samples in an encoder embedding 347

space result in larger components (residue) 348

in central PCA eigenvector components than 349

original examples. 350

2. The residue is only significant (detectable) for 351

systems operating on discrete data (e.g. NLP 352

systems). 353

The rationale behind these hypotheses is discussed 354

next. 355

Deep learning models typically consist of many 356

layers of non-linear activation functions. For exam- 357

ple, in the NLP domain systems are usually based 358

on layers of the Transformer architecture (Vaswani 359

et al., 2017). The complete end-to-end model Fθ̂() 360

can be treated as a two stage process, with an ini- 361

tial set of layers forming the encoding stage, Fen() 362

and the remaining layers forming the output stage, 363

Fcl(), i.e. Fθ̂(x) = Fcl (Fen(x)). 364

If the encoding stage of the end-to-end classifier 365

is sufficiently powerful, then the embedding space 366

Fen(x) will have compressed the useful informa- 367

tion into very few dimensions, allowing the output 368

stage to easily separate the data points into classes 369

(for classification) or map the data points to a con- 370

tinuous value (for regression). A simple Principal 371
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Component Analysis (PCA) decomposition of this372

embedding space can be used to visualize the level373

of compression of the useful information. The PCA374

directions can be found using the eigenvectors of375

the covariance matrix, C, of the data in the en-376

coder embedding space. If {qi}di=1, where d is the377

dimension of the encoder embedding space, repre-378

sent the eigenvectors of C ordered in descending379

order by the associated eigenvalue in magnitude,380

then it is expected that almost all useful information381

is contained within the first few principal directions,382

{qi}pi=1, where p ≪ d. Hence, the output stage,383

Fcl() will implicitly use only these useful compo-384

nents. The impact of a successful adversarial per-385

turbation, Fen(x+ δ), is the significant change in386

the components in the principal eigenvector direc-387

tions {qi}pi=1, to allow fooling of the output stage.388

Due to the complex nature of the encoding stage389

and the out of distribution nature of the adversarial390

perturbations, there are likely to be residual compo-391

nents in the non-principal {qi}di=p+1 eigenvector392

directions. These perturbations in the non-principal393

directions are likely to be more significant for the394

central eigenvectors, as the encoding stage is likely395

to almost entirely compress out components in the396

least principal eigenvector directions, {qi}di=d′+1,397

where d′ ≈ d. Hence, {qi}d
′

i=p+1 can be viewed398

as a subspace containing adversarial attack residue399

that can be used to identify adversarial examples.400

The existence of adversarial attack residue in401

the central PCA eigenvector directions, {qi}d
′

i=p+1,402

suggests that in the encoder embedding space,403

Fen(x), adversarial and original examples are lin-404

early separable. This motivates the use of a simple405

linear classifier as an adversarial attack detector,406

P (adv|x) = σ(WFen(x) + b), (10)407

where W and b are the parameters of the linear408

classifier to be learnt and σ is the sigmoid function.409

The above argument cannot predict how signifi-410

cant the residue in the central eigenvector space is411

likely to be. For the discrete space NLP attacks, the412

input perturbations are semantically small, whilst413

for continuous space image attacks the perturba-414

tions are explicitly small using a standard lp-norm.415

Hence, it is hypothesised that NLP perturbations416

cause larger errors to propagate through the system,417

resulting in more significant residue in the encoder418

embedding space than that for image attacks. Thus,419

the residue technique is only likely to be a feasible420

detection approach for discrete text attacks.421

The hypotheses made in this section are analysed 422

and empirically verified in Section 5.3. 423

5 Experiments 424

5.1 Experimental Setup 425

Table 1 describes four NLP classification datasets: 426

IMDB (Maas et al., 2011); Twitter (Saravia et al., 427

2018); AG News (Zhang et al., 2015) and DB- 428

pedia (Zhang et al., 2015). Further, a regression 429

dataset, Linguaskill-Business (L-Bus) (Chambers 430

and Ingham, 2011) is included. The L-Bus data is 431

from a multi-level prompt-response free speaking 432

test i.e. candidates from a range of proficiency lev- 433

els provide open responses to prompted questions. 434

Based on this audio input a system must predict a 435

score of 0-6 corresponding to the 6 CEFR (Council 436

of Europe, 2001) grades. This audio data was tran- 437

scribed using an Automatic Speech Recognition 438

system with an average word error rate of 19.5%. 439

Dataset #Train #Test #Classes

IMDB 25,000 25,000 2
Twitter 16,000 2000 6
AG News 120,000 7600 4
DBpedia 560,000 70,000 14
L-Bus 900 202 1

Table 1: NLP Datasets.

All NLP task models were based on the Trans- 440

former encoder architecture (Vaswani et al., 2017). 441

Table 2 indicates the specific architecture used for 442

each task and also summarises the classification 443

and regression performance for the different tasks. 444

For classification tasks, the performance is mea- 445

sured by top 1 accuracy, whilst for the regression 446

task (L-Bus), the performance is measured using 447

Pearson Correlation Coefficient (PCC). 448

Dataset Transformer Performance

IMDB BERT Acc: 93.8%
Twitter ELECTRA Acc: 93.3%
AG News BERT Acc: 94.5%
DBpedia ELECTRA Acc: 99.2%
L-Bus BERT PCC: 0.749

Table 2: Performance of models (BERT (Devlin et al.,
2018), ELECTRA (Clark et al., 2020)).

Table 3 shows the impact of realistic adversar- 449

ial attacks on the tasks: substitution (sub) attack 450

(Equation 8), which replaces the N most salient 451

tokens with a synonym defined by WordNet2, as 452

2https://wordnet.princeton.edu/
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dictated by the PWWS attack algorithm described453

in Section 3; or a targeted universal concatenation454

(con) attack (Equation 9), used for the regression455

task on the L-Bus dataset, seeking to maximise the456

average score output from the system by appending457

the same N words to the end of each input. For458

classification tasks, the impact of the adversarial at-459

tack is measured using the fooling rate, the fraction460

of originally correctly classified points, misclassi-461

fied after the attack, whilst for the regression task,462

the impact is measured as the average increase in463

the output score.464

Dataset Attack N Impact

IMDB sub 25 Fool: 0.70
Twitter sub 6 Fool: 0.77
AG News sub 40 Fool: 0.65
DBpedia sub 25 Fool: 0.52
L-Bus con 3 Score: +0.51

Table 3: Impact of different N -word adversarial attacks.

5.2 Results465

Section 4.1 predicts that adversarial attacks in the466

discrete text space leave residue in a system’s en-467

coder embedding space that can be detected using468

a simple linear classifier. Hence, using the 12-469

layer Transformer encoder’s output CLS token em-470

bedding as the encoder embedding space for each471

dataset’s trained system (Table 2), a simple linear472

classifier, as given in Equation 10, was trained 3473

to detect adversarial examples from the adversarial474

attacks given for each dataset in Table 3. The train-475

ing of the detection linear classifier was performed476

on the training data (Table 1) augmented with an477

equivalent adversarial example for each original478

input sample in the dataset. Using the test data479

samples augmented with adversarial examples (as480

defined by Table 3), Table 4 compares the efficacy481

of the linear residue detector to other popular de-482

tection strategies 4 (from Section 4) using the best483

F1 score. It is evident from the high F-scores, that484

for most NLP tasks the linear detection approach485

is better than other state of the art NLP specific486

and ported image detection approaches. Table A.2487

3lr=0.02, epochs=20, batch size=200, #769 parameters
4Detection Strategies: Mahalanobis Distance (MD) used

the same train-test split as the residue approach; Perplexity
(Perp) was calculated using the language model from (Chen
et al., 2016); Uncertainty (Unc) used the best measure out
of mutual information, confidence, KL-divergence, expected
entropy and entropy of expected and reverse mutual informa-
tion; and FGWS was implemented using the code given at
https://github.com/maximilianmozes/fgws.

presents the detector performances for further spe- 488

cific popular NLP adversarial attacks. 489

Dataset Res Perp FGWS MD Unc

IMDB 0.91 0.68 0.87 0.67 0.75
Twitter 0.84 0.67 0.76 0.67 0.78
AG News 0.95 0.69 0.89 0.68 0.75
DBpedia 0.80 0.67 0.82 0.68 0.90
L-Bus 0.99 0.68 0.91 n/a 0.81

Table 4: F1-score performance of detection approaches.

However, an adversary may have knowledge of 490

the detection approach and may attempt to design 491

an attack that directly avoids detection. Hence, for 492

each dataset, the attack approaches were repeated 493

with the added constraint that any attack words that 494

resulted in detection were rejected. The impact 495

of attacks that suppress detection have been pre- 496

sented in Table 5. Generally, it is shown across all 497

NLP tasks that an adversary that attempts to avoid 498

detection of its residue by a previously trained lin- 499

ear classifier, can only generate a significantly less 500

powerful adversarial attack. 501

Dataset Without With

IMDB 0.70 0.19
Twitter 0.77 0.23
AG News 0.65 0.16
DBpedia 0.52 0.14

L-Bus +0.51 +0.23

Table 5: Fooling rate (classification) or score (regres-
sion) with and without attack modified to avoid detec-
tion.

5.3 Analysis 502

The aim of this section is verify that the success of 503

the residue detector can be explained by the two 504

main hypotheses made in Section 4.1. The claim 505

that residue is left by adversarial samples in the 506

central PCA eigenvector components is explored 507

first. For each NLP task a PCA projection matrix 508

is learnt in the encoder embedding space using the 509

original training data samples (Table 1). Using 510

the test data, the residue in the embedding space 511

can be visualized through a plot of the average 512

(across the data) component, ρi = 1
J

∑J
j=1 ρi,j in 513

each eigenvector direction, qi of the original and 514

attacked data, where 515

ρi,j =
∣∣Fen(xj)

Tqi

∣∣ , (11) 516

with xj being the jth data point. Figure 1 shows 517

an example plot for the Twitter dataset, where ρi is 518
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plotted against the eigenvalue rank, i for the origi-519

nal and attacked data examples. Residue plots for520

other datasets are included in Appendix A. Next,521

it is necessary to verify that the residue detector522

specifically uses the residue in the central eigen-523

vector components to distinguish between original524

and adversarial samples. To establish this, each en-525

coder embedding, Fen(x)’s components not within526

a target subspace of PCA eigenvector directions527

{qi}p+w
i=p , are removed, i.e. we have a projected em-528

bedding, x(p) = Fen(x)−
∑

i/∈[p,p+w) q
T
i Fen(x)qi,529

where w is a window size to choose. Now, us-530

ing Fcl(x
(p)) and a residue detector trained us-531

ing the modified embeddings, x(p), the classifier’s532

(Fcl(x
(p))) accuracy and detector performance533

(measured using F1 score) can be found. Figure 2534

shows the performance of the classifier (Fcl(x
(p)))535

and the detector for different start components p,536

with the window size, w = 5. It is clear that the537

principal components hold the most important in-538

formation for classifier accuracy, but, as hypothe-539

sised in Section 4.1, it is the more central eigen-540

vector components that hold the most information541

useful for the residue detector, i.e. the subspace de-542

fined by {qi}10i=5 holds the most detectable residue543

from adversarial examples.544

Figure 1: Encoder Embedding Space Residue Plot.

The second hypothesis in Section 4.1 claims that545

the existence of residue in the central eigenvector546

components is due to the discrete nature of NLP547

adversarial attacks. Hence, to analyze the impact548

of the discrete aspect of the attack, an artificial549

continuous space attack was constructed for the550

Twitter NLP system, where the continuous input551

embedding layer space (Equation 5) of the system552

is the space in which the attack is performed. Us-553

ing the Twitter emotion classifier, a PGD (Equation554

Figure 2: Performance of classifier and detector with
windowed projection of encoder embedding space.

3) attack was performed on the input embeddings 555

for each token, where the perturbation size was 556

limited to be ϵ = 0.1 in the l∞ norm, achieving a 557

fooling rate of 0.73. Note that this form of attack 558

is artificial, as a real adversary can only modify the 559

discrete word sequence (Equation 4). To compare 560

the influence of discrete and continuous attacks 561

on the same system, the average (across dataset) 562

l2 and l∞ norms of the perturbations in the input 563

layer embedding space were found. Further, a sin- 564

gle value summary, Nσ, of the residue plot (e.g. 565

Figure 1), was calculated for each attack. Nσ is the 566

average difference in standard deviations between 567

the original component mean, ρ(orig)
i and attack 568

mean, ρ(attack)
i , 569

Nσ =
1

I

I∑
i=1

∣∣∣ρ(attack)
i − ρ

(orig)
i

∣∣∣√
Varj [ρ

(orig)
i,j ]

. (12) 570

Table 6 reports these metrics for the discrete and 571

artificial continuous NLP adversarial attacks on the 572

Twitter system 5. It is apparent that perturbation 573

sizes for the discrete attacks are significantly larger. 574

Moreover, Nσ is significantly smaller for the con- 575

tinuous space attack, indicating that the residue left 576

by continuous space adversarial attacks is smaller. 577

Attack Nσ l2 error l∞ error

Discrete 1.201 50.2±19.2 3.26±0.86

Continuous 0.676 5.35±3.95 0.08±0.03

Table 6: Comparison of token level discrete attack and
input embedding layer continuous PGD attack.

To explicitly observe the impact of the nature 578

of data on detectors, adversarial attacks are con- 579

5Similar trends were found across all datasets (Table A.3)
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sidered in four domains: the discrete, sequential580

NLP input space (NLP-disc); the artificial con-581

tinuous, sequential embedding space of an NLP582

model (NLP-cont); the continuous, static image in-583

put space (Img-cont) and a forced discretised, static584

image input space (Img-disc). For the NLP-disc585

and NLP-cont the same attacks as in Table 6 are586

used. For the continuous image domain (Img-cont),587

a VGG-16 architecture image classifier trained on588

CIFAR-100 (Krizhevsky et al.) image data (achiev-589

ing a top-5 accuracy of 90.1%) and attacked us-590

ing a standard l∞ PGD approach (Equation 3) is591

used. For the discrete image domain (Img-disc),592

the CIFAR-100 images, X ∈ ZR×R
256 were discre-593

tised using function Qq : ZR×R
256 → ZR×R

q , where594

Zq = {0, 1 256
q−1 , 2

255
q−1 , . . . , 255}. In this work 2-595

bit quantization was used, i.e. q = 4. With this596

quantization, a VGG-16 architecture was trained to597

achieve 78.2% top-5 accuracy. To perform a dis-598

crete space attack, a variant of the PWWS synonym599

substitution attack (Section 3) was implemented,600

where synonyms were interpreted as closest permit-601

ted quantisation values and N pixel values were602

substituted 6. For these different domains, Table603

7 compares applicable detection approaches (cer-604

tain NLP detection approaches are not valid outside605

the word sequence space) using the best F1 score,606

where different attack perturbation sizes are consid-607

ered (N substitutions for discrete attacks and for608

continuous attacks |δ| ≤ ϵ for perturbation δ).609

Domain Attack Res Unc MD

NLP-disc N=3 0.80 0.74 0.67
N=6 0.84 0.78 0.67

NLP-cont ϵ=0.1 0.67 0.71 0.68
ϵ=0.3 0.67 0.80 0.85

Img-disc N=200 0.78 0.67 0.70
N=400 0.84 0.68 0.72

Img-cont ϵ=12 0.68 0.70 0.72
ϵ=48 0.83 0.81 0.87

Table 7: Portability of detection approaches.

In the discrete domains, the residue detection610

approach is better than all the other approaches.611

However, in the continuous data type domains, the612

Mahalanobis Distance dominates as the detection613

approach, with the residue detection approach per-614

forming the worst. As predicted by the second615

hypothesis of Section 4.1, the lack of success of616

the residue detection approach is expected here -617

6Code for Image Experiments: link after anonymity period.

the residue detection approach is only successful 618

for discrete space attacks. 619

To verify that the residue detection approach is 620

agnostic to the type of attack, the residue detector 621

trained on substitution attack examples was evalu- 622

ated on concatenation attack examples. Using the 623

Twitter dataset, a N = 3 concatenation attack was 624

applied, achieving a fooling rate of 0.59. In this 625

setting, the residue detector (trained on the N = 6 626

substitution adversarial examples) achieved a F1 627

score of 0.81, which is comparable to the original 628

score of 0.84 (from Table 4). This shows that even 629

with different attack approaches similar forms of 630

residue are produced, meaning a residue detector 631

can be used even without knowledge of the type of 632

adversarial attack. 633

6 Conclusions 634

In recent years, deep learning systems have been 635

deployed for a large number of tasks, ranging from 636

the image to the natural language domain. How- 637

ever, small, imperceptible adversarial perturbations 638

at the input, have been found to easily fool these 639

systems, compromising their validity in high-stakes 640

applications. Defence strategies for deep learning 641

systems has been extensively researched, but this 642

work has been predominantly carried out for sys- 643

tems operating in the image domain. As a result, 644

the adversarial detection strategies developed, are 645

inherently tuned to attacks on the continuous space 646

of images. This work shows that these detection 647

strategies do not necessarily transfer well to attacks 648

on natural language processing systems. Hence, an 649

adversarial attack detection approach is proposed 650

that specifically exploits the discrete nature of per- 651

turbations for attacks on discrete sequential inputs. 652

The proposed approach, termed residue detec- 653

tion, demonstrates that imperceptible attack pertur- 654

bations on natural language inputs tend to result 655

in large perturbations in word embedding spaces, 656

which result in distinctive residual components. 657

These residual components can be identified using 658

a simple linear classifier. This residue detection ap- 659

proach was found to out-perform both detection ap- 660

proaches ported from the image domain and other 661

state of the art NLP specific detectors. 662

The key finding in this work is that the nature 663

of the data (e.g. discrete or continuous) strongly 664

influences the success of detection systems and 665

hence it is important to consider the domain when 666

designing defence strategies. 667
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Appendix A922

Training Details923

For each NLP dataset, pre-trained base (12-layer,924

768-hidden dimension, 110M parameters) Trans-925

former encoders 7 were fine-tuned during train-926

ing. Table A.1 gives the training hyperparameters:927

learning rate (lr), batch size (bs) and the number of928

training epochs. In all training regimes an Adam929

optimizer was used. With respect to hardware,930

NVIDIA Volta GPU cores were used for training931

all models.932

7https://huggingface.co/transformers/
pretrained_models.html

Dataset Model lr bs epochs

IMDB BERT 1e-5 8 2
Twitter ELECTRA 1e-5 8 2
AG News BERT 1e-5 8 2
DBpedia ELECTRA 1e-5 8 2
L-Bus BERT 1e-6 16 5

Table A.1: Training Hyperparameters

Experiments 933

Figure A.1 presents the impact of adversarial at- 934

tacks of different perturbation sizes, N on each 935

NLP dataset. All classification datasets’ models 936

underwent saliency ranked, N -word substitution 937

attacks described in Equation 8, whilst the regres- 938

sion dataset, L-Bus, was subject to a N -word con- 939

catenation attack as in Equation 9. For the classi- 940

fication tasks the impact of the adversarial attacks 941

was measured using fooling rate, whilst for the L- 942

Bus dataset task, the average output score from the 943

system is given. Figure A.2 gives the encoder em- 944

bedding space PCA residue plots for all the datasets 945

not included in the main text. 946

In the main text, two main forms of text adver- 947

sarial attacks are considered: PWWS substitution 948

attack (Ren et al., 2019) and a simple universal 949

concatenation attack (con) (Raina et al., 2020). For 950

completeness, Table A.2 presents the success of the 951

adversarial attack detection approaches from the 952

main text on two other popular adversarial attack 953

approaches: 954

• Textfooler (Jin et al., 2019) - A blackbox sub- 955

stitution attack where words with highest im- 956

portance ranking are replaced. 957

• BERT-based Adversarial Examples 958

(BAE) (Garg and Ramakrishnan, 2020) 959

- A BERT language model is used to replace 960

and insert tokens to construct the adversarial 961

sequence. This variant is termed BAE-R/I. 962

These adversarial attack approaches were imple- 963

mented using the TextAttack (Morris et al., 964

2020) Python library with no change made to the 965

default configurations. Note that this means the 966

perturbation sizes are measured using a Universal 967

Sentence Encoder’s cosine similarity (Cer et al., 968

2018). 969

Table A.3 compares the impact on error sizes 970

(using l2 and l∞ norms) and the residue plot met- 971

ric, Nσ for the original text space discrete attacks 972
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and an artificial input embedding space continuous973

attack. The purpose of this table is to present the974

results for the datasets not included in the main text975

in Table 6.976

Limitations, Risks and Ethics977

A limitation of the residue approach proposed in978

this work is that it requires training on adversarial979

examples, which is not necessary for other NLP de-980

tectors. This means there is a greater computational981

cost associated with this detector. Moreover, asso-982

ciated with this limitation is a small risk, where in983

process of generating creative adversarial examples984

to build a robust residue detector, the attack gen-985

eration scheme may be so strong that it can more986

easily evade detection from other existing detectors987

already deployed in industry. There are no further988

ethical concerns related to this detector.989
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(a) IMDB (b) Twitter (c) AG News

(d) DBpedia (e) L-Bus

Figure A.1: Adversarial Attack Impact against N -word attack.

Dataset Attack Res Perp FGWS MD Unc

IMDB

PWWS 0.91 0.68 0.87 0.67 0.75
con 0.92 0.69 0.85 0.67 0.73
TextFooler 0.88 0.68 0.88 0.67 0.74
BAE 0.81 0.70 0.72 0.69 0.73

Twitter

PWWS 0.84 0.67 0.76 0.67 0.78
con 0.85 0.70 0.81 0.68 0.74
TextFooler 0.90 0.67 0.87 0.68 0.71
BAE 0.84 0.68 0.73 0.67 0.75

Table A.2: Comparison of different detection approaches on a range of adversarial attack types

Dataset Attack Nσ l2 error l∞ error

IMDB
Discrete 0.181 73.5±22.5 4.02±0.95

Continuous 0.111 6.73±3.98 0.09±0.03

Twitter
Discrete 1.201 50.2±19.2 3.26±0.86

Continuous 0.676 5.35±3.95 0.08±0.03

AG News
Discrete 0.642 67.9±28.1 3.35±0.95

Continuous 0.393 5.41±4.10 0.09±0.04

DBpedia
Discrete 1.355 57.4±18.6 3.29±0.88

Continuous 0.991 6.57±3.23 0.09±0.04

L-Bus
Discrete 0.201 94.6±30.1 5.91±1.12

Continuous 0.135 8.22±3.54 0.07±0.04

Table A.3: Comparison of token level discrete attack and input embedding layer continuous PGD attack.
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(a) IMDB (b) Twitter (c) AG News

(d) DBpedia (e) L-Bus (f) CIFAR-100

Figure A.2: Encoder Embedding space residue plot using PCA decomposition.
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