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Abstract

Transfer of recent advances in deep reinforcement learning to real-world
applications is hindered by high data demands and thus low efficiency and
scalability. Through independent improvements of components such as replay
buffers or more stable learning algorithms, and through massively distributed
systems, training time could be reduced from several days to several hours for
standard benchmark tasks. However, while rewards in simulated environments are
well-defined and easy to compute, reward evaluation becomes the bottleneck in
many real-world environments, e.g., in molecular optimization tasks, where
computationally demanding simulations or even experiments are required to
evaluate states and to quantify rewards. Therefore, training might become
prohibitively expensive without an extensive amount of computational resources
and time. We propose to alleviate this problem by replacing costly ground-truth
rewards with rewards modeled by neural networks, counteracting non-stationarity
of state and reward distributions during training with an active learning component.
We demonstrate that using our proposed ACRL method (actively learning costly
rewards for reinforcement learning), it is possible to train agents in complex
real-world environments orders of magnitudes faster. By enabling the application
of reinforcement learning methods to new domains, we show that we can find
interesting and non-trivial solutions to real-world optimization problems in
chemistry, materials science and engineering.

1 Introduction

Reinforcement Learning (RL) techniques have achieved impressive results in a wide range of
applications such as robotics [21], games [27, 37, 43] or natural sciences [26, 47]. This success is the
result of improvements along multiple independent branches of RL research such as an improved
understanding of rewards in difficult environments [34, 1, 8, 45], more sample-efficient training
via experience replay [23, 35, 2, 22] or more effective sampling via active learning [11, 9, 6],
more powerful algorithms [27, 42] and more efficient and scalable implementations [16, 10, 15] of
established techniques. These extensions were primarily developed and benchmarked in simulated
environments such as OpenAI Gym [7] or MuJoCo [41], where rewards are well-defined and
computationally cheap to obtain. However, in real-world tasks rewards may be either difficult to
formulate or to collect. There has been extensive work on how to formulate and quantify rewards in
scenarios where agents have to learn from demonstrations [34, 1] or from ranked alternatives [8, 45].
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These methods are mainly developed within the field of robotics, where feedback frequently is
provided by a human supervisor. Thus, since human feedback is relatively expensive, it would be
desirable to reduce the number of expert evaluations. Active reward learning techniques aim to
reduce the number of expert queries by selecting only the most informative ones, usually employing
uncertainty measures within the Bayesian framework [11, 9, 6] as a selection criterion. More recently,
Information Directed Reward Learning (IDRL) [24] has been proposed to learn an unknown reward
function with as few expert queries as possible.

Existing literature focuses on developments in simulated environments and real-world tasks in fields
such as robotics. While in the former case rewards are clearly formulated and cheap to obtain, in the
latter case rewards are typically difficult to formulate and/or quantify, e.g., in object manipulation
tasks [17]. However, in many other fields rewards appear to have different properties than in these
scenarios, for which most of existing work has been done. In a natural sciences and engineering
context, for example, rewards are frequently the result of computationally demanding optimization
procedures or algorithms. Thus, it may not be possible to leverage recent advances in RL to make
training more efficient in these scenarios, since frequent reward evaluation may become a major
bottleneck during training without an extensive amount of computational resources and horizontal
scaling.

In this paper, we present a framework to make training of RL agents feasible in environments where
it is prohibitively expensive to evaluate ground-truth rewards at every step. We propose to use
neural networks as reward function approximators with active learning to address non-stationarity
of state and reward distributions during training. We show that within our framework, which we
term ACRL 1, neural networks, pre-trained on a relatively small initial dataset and regularly updated
during training via an active learning approach, can be used as reward proxies and that agents
trained within this framework achieve competitive results across different real-world tasks with
varying computational cost, thus extending the applicability of RL algorithms to a wide range of new
applications. This way, our agents are able to generalize in environments with varying constraints
which avoids re-optimizations for new instances of a task.

2 Related work

2.1 Learning reward functions

In theory, every agent accumulates rewards under a unified mathematical framework. In practice,
though, the exact properties of a reward function depend on the task. For example, rewards can be
immediate or delayed and the reward signal can be binary, discrete or real. In simulated environments
like OpenAI Gym and MuJoCo rewards are well-defined and exposed to the agent via a simulator
interface. In fields like robotics, rewards can become complex, high-level signals of desired behavior,
e.g., to manipulate an object in a particular manner [17]. Since the formulation of a reward function is
often difficult in the latter case, early work [34, 1] aimed to infer an unknown reward function solely
from demonstration. While alleviating the issue of reward formulation, demonstrations by a human
supervisor are costly to obtain. As an alternative, preference-based learning [8, 45] allows feedback
to be a relative preference over a set of trajectories rather than a quantitative measure of goodness.

In our work, we focus on problems where the reward function is known, e.g., as the solution of an
optimization problem, but difficult to evaluate. This is frequently the case in real-world applications,
e.g., in natural sciences and engineering, where the solution to a problem can be formulated as a
goal-directed search implemented as an agent’s policy. Thus, states of high rewards correspond
to more optimal solution spaces of the underlying problem. We therefore propose to replace the
known reward function with an approximate model and to jointly train it with the agent to account for
non-stationarity of state and reward distributions during exploration. Due to their ability to generalize,
our agents are able to solve optimization tasks with varying constraints, which is, in general, not
trivially doable using conventional optimization and search methods.

1Our code is available at: https://github.com/32af3611/ai4mat-neurips-workshop-2022
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2.2 Active reward learning

Active reward learning techniques [11, 9, 6] build upon the insight that not all training samples are
equally important for learning and aim to select only those samples which are most beneficial for
learning. The selection is usually done by some form of uncertainty estimation, often within the
Bayesian framework. Reducing the number of state queries is vital in cases where reward evaluation
is expensive. While existing work employs active learning to reduce the number of queries for the
agent to accelerate convergence of the RL training, we employ active learning for the reward model
such that predictions become more accurate on states the agent visits during exploration. Closest to
our method is Information Directed Reward Learning (IDRL) [24], which also uses a reward model
and active reward learning to accelerate training. Yet, there are important conceptual differences to
our method:

• IDRL assumes the absence of a reward function, while in our context the reward function is
known.

• IDRL makes learning more efficient w.r.t. the number of training steps, our method makes
training more efficient w.r.t. wall-clock time.

• IDRL uses active learning for faster convergence, we use active learning for the exploration
of relevant solution spaces.

• IDRL relies on the Bayesian framework for uncertainty estimation, while our method
requires standard deep learning components only.

• IDRL trains multiple policies for query selection which does not scale to tasks where agents
are expensive to train. In contrast, our method trains only one agent.

2.3 Sample-efficiency

Active learning techniques improve sample-efficiency in terms of sample collection. In vanilla
RL, every observation is used only once to update the agent’s policy, making learning slow and
sample-inefficient. A popular technique to overcome this is to use experience replay [23], which
improves sample-efficiency in terms of sample usage by storing experience in a replay buffer and
performing parameter updates on batches uniformly sampled from it. Improvements of experience
replay use different forms of non-uniform sampling [35, 22], handle sparse and binary reward signals
and multi-goal environments [2], and are also extended to a distributed context [16].

In our work, we do not aim to increase sample-efficiency of the RL training process. Rather, we avoid
expensive ground-truth evaluations for known regions of the state space by using a reward model.
We increase the size of this region over the course of training by providing ground-truth labels for a
small fraction of states selected by some sampling method.

2.4 Efficient implementations

The effects of other extensions within the RL framework have been studied in [15], showing recent
advances can be integrated to improve their standalone-performance. From a practical point of view,
the authors of [38] provide a unified implementation view of RL algorithms to leverage modern,
parallel hardware architectures to further reduce training time.

In our work, we do not aim to improve RL from a technical perspective. Rather, we propose an
extension to restore the effectiveness of these methods in scenarios where their efficiency would be
threatened by the reward evaluation bottleneck. We note that our method is scalable and naturally can
be integrated into distributed architectures such as [16].

3 Our method: ACRL

Existing literature covers how to learn a reward function in cases of unclear tasks or how to make
efficient use of it in cases where it exists and can be evaluated frequently. In contrast to that, in many
other tasks the reward function is clearly defined but costly to evaluate. Providing these kinds of
rewards to an agent during training thus can become prohibitively expensive even with off-policy
learning with experience replay as one may fail to gather enough examples to learn from. In the
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following we describe our proposed ACRL framework to alleviate this issue. We use a standard MDP
formulation as found in [40].

Let f(s) be a quantity or metric associated with state s, f being a known but expensive to evaluate
function of s. Without loss of generality, we aim to find a (local) minimum of f , or equivalently, a
(locally) optimal state s∗ = argmin

s
f(s). Due to high computational cost as well as non-convexity

of f in real-world tasks, we neither can directly solve for s∗ nor is it likely that we can find s∗ with
heuristic search in general. We therefore propose a more principled search of s∗ by framing it as
a sequential decision-making problem within the RL framework. A natural definition of reward in
such environments is rt = f(st−1)− f(st), i.e., the agent aims to accumulate reward by sequentially
visiting states s with decreasing f(s). Let s0 be a possibly random initial state, the agent then aims
to maximize the total cumulative reward RT =

∑T
t=1 f(st−1)− f(st) = f(s0)− f(sT ). Due to the

computational complexity of f , training an agent for a large number of steps may become infeasible
or at least very time-consuming. To reduce the computational burden of state evaluations during
training, our framework requires only a few modifications of the standard training loop, namely the
introduction of a reward model and its improvement via active learning. The two steps are then as
follows.

The first step is to pre-train an approximate reward model f̂ , e.g., a neural network, on a small, initial
dataset D in a supervised manner. f̂ is then used as a drop-in replacement for the true evaluation
function f . Doing so is theoretically sound as the reward distribution does not depend on the agent’s
policy. This allows using our framework with both value-based and policy gradient methods without
the necessity to change the underlying theory. At this point, we make several mild assumptions about
f . In contrast to the general RL setting, we assume that we can evaluate f in any state, thus providing
dense and instantaneous rewards on state transitions. Hence, our method is not well-suited for sparse
or delayed rewards.

The second step is then to actively improve the reward model during agent training. Since the initial
state distribution in D likely differs from states visited by an exploring agent, f̂ may have poor
extrapolation capabilities which will cause agent training to diverge as estimated state quantities
may not have their true value predicted accurately. This particularly applies in scenarios where it
is difficult to define good initial states, for example in the case of optimization problems where the
optimal solution is to be found rather than given. To overcome this issue, we propose to sample a
small number of states encountered during agent training and to provide the expensive ground-truth
labels for them. In the most general form, we define an acquisition function h(s) which hypothesizes
about how beneficial adding the true label f(s) to D is for training the reward model. We then
periodically evaluate h for a small fraction of the agent’s experience E , e.g., the last N steps, where
N is an application-dependent hyperparameter. We set s′ = argmax

s∈E
h(s), D = D ∪ {s′} and

subsequently update f̂ on the new D, either by training from scratch or fine-tuning. At this point,
we assume that reward model can be trained reasonably fast such that the training time can be
amortized given enough reward evaluations. For example, h(s) may be chosen to be f̂(s), ||∇f̂(s)||
or other sampling techniques like uniform or uncertainty sampling. We hypothesize that this active
learning component allows to explore relevant regions of the state space effectively and efficiently.
An important implication of using active learning is that, depending on the task at hand, the initial
reward model must not be perfectly accurate. For example, when using our method for optimization
tasks where it is unlikely that the optimal solution space is included in the initial dataset D, perfect
accuracy in this space is not necessary since the agent moves away from the initially covered space
towards a more optimal region. It is thus more important for the reward model to be accurate on
the on-policy distribution of states rather than on randomly selected initial data points. The reward
model is only required to improve as the agent’s policy improves and stabilizes. We found this active
learning component to be crucial in our tasks.

A summary of the overall procedure can be found in Algorithm 1. We note that even though we use
variations of Double DQN [42] agents in all experiments, our method does not assume any particular
type of RL implementation and can be integrated into existing implementations with minimal changes,
even in asynchronous and distributed settings.
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Algorithm 1 Double Deep-Q-Learning within ACRL

1: agent A, replay buffer B, initial dataset D, environment E, reward network f̂ trained on D

2: f̂ ← train(f̂ , D) ▷ train reward network
3: E.reward← f̂ ▷ E.step() uses f̂ instead of f
4: for episode = 1 to M do ▷ training loop
5: st ← initial state
6: for step = 1 to T do ▷ episode loop
7: at ← A.action(st) ▷ ϵ-greedy
8: st+1, r̂t+1 ← E.step(at) ▷ r̂t+1 = f̂(st, at)
9: obs← (st, at, r̂t+1, st+1)

10: B.add(obs) ▷ save observation
11: obs← B.sample() ▷ sample experience from B
12: A.optimize(obs) ▷ update parameters
13: end for
14: if sample state then ▷ e.g., periodically
15: s′ ← argmax

s∈E
h(s) ▷ any method

16: y′ ← f(s′) ▷ calculate ground-truth label
17: D ← D ∪ {(s′, y′)}
18: end if
19: if update model then ▷ e.g., periodically
20: f̂ ← train(f̂ , D) ▷ retrain reward network
21: E.reward← f̂ ▷ update reward network
22: end if
23: end for

4 Applications

4.1 Proof-of-principle: Molecular property optimization

The algorithm described above is first used in molecular property optimization tasks as a proof-of-
principle. We use two fast-to-evaluate benchmarking properties to evaluate the performance of the
algorithm and to choose its optimal hyperparameters. Both the Q-network and the reward network
are trained on Morgan fingerprint vectors as molecular representations [28, 32]. States and actions
are based on prior work [47], where states are discrete molecular graphs and actions are semantically
allowed local graph modifications.

The first benchmarking property is the penalized logP score, a widely used metric in the literature for
evaluating and benchmarking machine learning models on regression and generative tasks [29, 13, 46].
The logP score is the logarithm of the water-octanol partition coefficient, quantifying the lipophilicity
or hydrophobicity of a molecule. Penalized logP additionally takes into account the synthetic
accessibility (SA) and the number of long cycles (ncycles):

pen. logP = logP − SA− ncycles (1)

The second benchmarking property used here is the QED score, which is a quantitative estimate of
druglikeness based on the concept of desirability [5]. QED is an empirical score quantifying how
"drug-like" a molecule is. Both properties are computationally inexpensive and can be calculated
using RDKit [31]. We use them as benchmarking properties to study the effect of replacing the
ground-truth reward with an approximation and to choose hyperparameters of our algorithm. In
both applications, empty initial states are optimized for T = 40 steps. We then test our method on a
real-life application in molecular improvement with a more costly property value to calculate.

4.2 Application I: Molecular design

In our first application, we evaluate ACRL on a molecular design task involving more costly rewards.
We aim to optimize electronic properties of molecules such as energies of the Highest Occupied
Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) by performing
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sequential modifications. These values can be calculated using semiempirical quantum mechanical
methods such as density functional tight binding methods as implemented in xTB [14, 4]. xTB-based
reward evaluations on one Intel Xeon Gold 6248 CPU range from seconds to minutes, depending on
size and structure of the molecule. Compared to other RL applications, this is comparably expensive,
especially considering the number of reward evaluations needed during agent training. The algorithm
described above is applied using the hyperparameters found in the experiments of Section 4.1. Here,
the agent learns a more application-oriented optimization goal, i.e., how to decrease the LUMO
energy of randomly sampled starting molecules with only T = 5 steps per episode, while keeping the
HOMO-LUMO gap constant. Therefore, the goal of the agent is to find optimal local improvements
of given molecules with a limited number of actions, i.e., changes of the chemical structure. Let s0 be
a randomly sampled molecule at the beginning of an episode, then the improvement of the molecule
st at timestep t over s0 is defined as:

R(st) = −|gap(st)− gap(s0)| − (LUMO(st)− LUMO(s0)) (2)

with gap(s) = LUMO(s)− HOMO(s) being the HOMO-LUMO energy difference of molecule s.

4.3 Application II: Optimization of airflow drag around an airfoil

The control technique of wall-normal blowing or/and suction constitutes a promising approach
for the reduction of drag in turbulent boundary layers [20]. This technique has been successfully
utilized not only in flat-plate boundary layers [18] but also on more complex curved geometries like
airfoils [3]. The majority of studies on the aforementioned control technique, however, considers
uniform distribution of the introduced blowing or suction profiles. In our second application, we use
ACRL to minimize aerodynamic drag around an airfoil by sequential adjustment of a set of blowing
and suction coefficients represented as vectors in Rd (see figure 2a), which form the state space in
R2d. As higher coefficients trivially reduce drag, we seek to optimize profiles with a constrained
mean value for each side. By choosing a different constraint at the start of each episode, we aim
to generalize across multiple instances of optimization. We use a Double DQN [42] agent with
discrete actions corresponding to exactly one (or no) modification of an entry of s per step to keep the
action space as small as possible. Thus, we seek to find a (near-)optimal state s∗ ∈ R2d under given
constraints. In our experiments, we use an episode length of T = 30 steps. While policy methods
would be a more appropriate for this task, we use Double DQN for the sake of consistency.

Let d0 = f(s0) be the drag coefficient of starting state s0 corresponding to a uniform profile on each
side. Our agent then seeks to find a sequence of modifications such that RT =

∑T
t=1 dt−1 − dt =

d0 − dT becomes as large as possible. We note that while the agent seeks to maximize RT , we are
primarily interested in the shape of states sT close to the (globally) optimal state s∗ rather than the
exact value of f(sT ).

The incompressible flow around airfoils is analysed using Reynolds-averaged Navier–Stokes equation
based simulations in order to assess the effect of localized blowing and suction on the global
aerodynamic performance of the airfoil. The simulations are carried out with the open-source CFD-
toolbox OpenFOAM [44] using a steady state, incompressible solver. For the current study we
consider a flow around the NACA4412 airfoil at the Reynolds number Re = U∞c/ν = 4 · 105 and
the angle of attack α = 5◦. For a more detailed description of the setup the reader is referred to [12].

One particular difficulty in training an RL agent in this scenario is the fact that the true state
evaluation function f is a Computational Fluid Dynamics (CFD) simulation. On one core of an
Intel Xeon Platinum 8368 CPU, the simulation runs for approximately 10 minutes. Due to a fixed
mesh size, we found that parallelization beyond 4 cores did not result in a significant speed-up, hence
one reward evaluation takes approximately 2 to 3 minutes and cannot be reduced significantly, which
severely limits the applicability of conventional RL algorithms with thousands of sequential reward
evaluations.

5 Results and discussion

5.1 Molecular property optimization

Based on prior work by Zhou et al. [47], we used cheap chemistry benchmarking properties logP
and QED as a proof of concept to evaluate how the use of actively learned rewards performs in
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comparison to the real reward. Figure 1a and 1b show the performance of three different agents with
NN-approximated rewards compared to a reference agent ("oracle-based reward") trained on the real
reward. One of the reward approximation agents is only trained once in the beginning ("static"). One
of the agents ("ACLR") uses a reward model which is updated at regular intervals using additional
oracle queries selected based on uncertainty sampling. The last agent ("full update") is updated
after every episode using oracle queries of all states encountered in that episode (i.e., closest to the
reference agent which directly uses oracle queries for training). After approximately 2000 episodes
in case of logP optimization and already at the beginning of QED optimization, the performances of
the agents start to differ. While the performance of the static agent stagnates, all three other agents
show similar performance.

(a) (b) (c)

Figure 1: Evolution of the reward reached by the agent during the optimization of logP and QED: The
red curve was obtained by training the agent on real (oracle-based) rewards, while the blue, orange
and green curves are the ACRL model, the static reward model and a fully updated reward model,
respectively. Due to high computational costs, only ACRL and static models can be tested in (c).

The failure of the static agent to learn is due to the low generalization ability of the initial reward
model itself, which is trained on the QM9 dataset [33, 30] containing approximately 134.000
molecules with up to 9 non-hydrogen atoms. To some extent, the weak generalization can be
attributed to not using state-of-the-art graph neural networks. However, we decided to use the same
molecular representation and model as in the original Q-networks in Zhou et al.[47], i.e., fingerprint
representations and MLPs. Furthermore, during the learning process, the molecules generated
(especially after a high number of episodes) contain many more atoms, which explains why the
static reward model fails to correctly estimate the real property values. The strength of this effect
depends on the property studied. In the logP optimization task, the property values reached with
a static reward model follow the general trend of learning with real reward, even though the final
performance after 5000 episodes is lower. In case of QED optimization, the static reward model fails
to predict QED-values for molecules outside the training distribution. As a consequence, the RL
agent learns to exploit errors of the static reward model and finds adversarial examples, rather than
samples with desirable properties.

The active learning component within ACRL agent allows the reward model to learn from molecules
outside its initial training distribution, thus improving reward evaluations during agent training. By
only selecting a small subset of labels obtained using oracle queries to be added to the training set,
the objective of the ACLR agent is to mimic the reference agent’s real behavior as closely as possible.
This includes finding (nearly) optimal points (see e.g., [24]) to be selected for retraining of the reward
model to minimize its errors while at the same time minimizing the number of costly oracle queries.
We experimented with different sampling strategies (see SI), from which a query-of-committee
model (see [36]) performed best. Therefore, in the ACLR model used in the molecular design and
improvement tasks, three reward models were trained independently to form a query-of-committee
model. The three reward models are retrained after 500 episodes with the initial training set along
with all 400 new molecules generated during the agent learning process and their computed real
property values. The selection of new oracle queries to extend the dataset is based on the disagreement
between the three reward models measured by the standard deviation of the predictions. However,
our work is independent of the particular sampling strategy (even random sampling of visited states
can work well in some applications), as long as the reward model’s training distribution follows the
exploration of the RL agent. Overall, the speed-up achieved by the ACRL model in this experiment
compared to the fully updated and oracle-based model is 50 (see Table 1). The relationship between
speed-up and rewards reached is analyzed in the SI.
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Fully updating the reward model on oracle queries of all samples ("full update") aids the learning
process. In case of logP optimization and even stronger in case of QED optimization, learning by fully
updating the reward model has even surpassed learning with actual reward values at certain episodes.
One potential reason for that can be that the exploration of the fully updated agent is stronger than
that of the reference agent (see SI), which needs to be confirmed in future work. However, in practice,
fully updating the reward model by adding every single generated point (along with its real property
value) to the initial dataset and retraining the neural network is as expensive as training the reference
agent, so it cannot be applied to tasks with costly rewards.

In order to understand why the fully updated reward model in some cases (e.g., Figure 1b) outperforms
the oracle-based training, we analyzed the effect of additional noise and thus exploration which might
be induced by replacing oracle-based rewards with (noisy) approximated rewards. We therefore
varied the ϵ-greedy strategy of the learning process. In particular, we varied final ϵ values (i.e.,
probabilities of random actions) and the form of the ϵ-decay function used on the learning process.
However, none of the changes in ϵ-decay could improve the learning behaviour, i.e., the ϵ-decay rate
and function used by [47] was optimal. Therefore, for the rest of the simulations we used a fully
exponential decay reaching approximately 1% randomness in episode 5000. The results of this study
are available in the supplementary information section. Further study of the improvement effect
due to a fully updated reward model is part of ongoing work as it has the potential to improve the
performance of RL agents with little computational overhead.

5.2 Molecular improvement

After evaluating the performance of our agent on easy-to-compute properties such as penalized logP
and QED, we test our ACRL approach on a molecular improvement task with more costly rewards,
where an oracle-based reference study is unfeasible. In particular, we study a RL agent with the goal
of independently varying two quantum mechanically calculated energy levels of molecules with only
very few, in our case five, modification steps (see Section 4). Figure 1c shows the evolution of the
ACRL and the static reward agents’ rewards as a function of the training episode. We observe that
the reward becomes positive after approximately 1000 episodes and stagnates after approximately
2000 episodes. Therefore, the agent has learned to improve given (arbitrary) molecules, since the
reward value of the starting reference molecule is zero, each episode starts with a randomly sampled
molecule, and any molecule with negative reward would have less desirable properties than the initial
one. This suggests that even though the agent deals with different starting reference molecules at
each episode, it has managed to learn a strategy to increase the reward in a limited number of steps.

In contrast to the property optimization task discussed before, the performance of the ACRL and
the static reward agents are equal within the confidence intervals. A likely explanation for this
observation is that the number of steps per epoch in this task is limited to five, whereas 40 steps were
possible in the prior task. Therefore, the agent here cannot generate molecules that are far outside
the initial distribution of starting molecules, i.e., the QM9 dataset. Furthermore, the ratio of reward
model queries to oracle queries in this experiment is comparably low (see Table 1), meaning that the
ACRL reward model is updated on a high fraction of actually encountered molecules. A reference
calculation with oracle based rewards or a fully updated reward model to check if the ACRL model
found near-optimal results (within the DQN framework) are computationally too costly here and
thus unfeasible. However, we compared the predictions of the reward models for randomly selected
molecules throughout the training process to oracle predictions (see points in Figure 1c). We found
excellent agreement, indicating that the ACRL as well as the static reward models are reliable. Thus,
the solutions found are not exploiting weaknesses of the reward models, nor is the training limited
by wrong predictions of the reward models. Therefore, it is likely that the found solutions are of
comparable quality as ones that a hypothetical oracle-based RL model would find. The speed-up
achieved in this experiment compared to a hypothetical oracle based model is 6.25, which still has
room for improvement, given the high reliability of the reward models.

5.3 Optimization of airflow drag around an airfoil

Our ACRL method is applicable to a large number of different tasks in natural sciences and
engineering, not only limited to chemistry. Therefore, in this section we present the results of a task
in engineering, namely the reduction of airflow drag around an airfoil, e.g. an airplane wing (see
Section 4). The objective in this task was to find a set of coefficients minimizing drag and to analyze
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the resulting profiles. Figure 2b shows the evolution of drag during 300000 episodes of training. The
discrete jumps of the ACRL model coincide with retraining of the reward model every 10000
episodes. As higher mean constraints are highly correlated with lower drag, we choose samples for
ground-truth evaluation based on reward rather than drag. Dots represent oracle-based ground-truth
evaluations of random profiles sampled during training.

x

x/c = 0 1

drag

α
U∞

0.25 0.86

control section
suction

blowing

1 2 3 4 5 6 7 8 9 101112131415

(a) (b) (c)

Figure 2: (a) blowing/suction distribution discretized with 30 coefficients corresponding to 15 sections
on each side of the considered airfoil. (b) drag evolution of two independent runs. (c) coefficient
distribution for low-drag profiles.

The results demonstrate that the ACRL agent is able to find profiles with significantly lower drag
coefficients than the static reward model. They also show that in this task (in contrast to the molecular
improvement task) it is crucial to actively update the reward model during training. This is related
to the fact that in order to improve upon the initially uniform profile, the RL agent has to perform
a constrained optimization in high-dimensional real space (30-dimensional in our case). Accurate
reward model predictions require sufficient coverage of the relevant space within the initial dataset
which is difficult to assert because the relevant region is, in general, not known, which is also true
for many other real-world problems. As a consequence, an agent trained without active updates of
the reward model only slightly improves upon a uniform profile. At the same time, model updates
result in sharp drops of both predicted and ground-truth drag especially in the beginning of training
as the relative effect of new ground-truth samples is high and the RL agent probably exploits wrong
predictions of the early-stage reward models. This effect decreases as more and more samples are
obtained along the trajectories towards the low-drag region in parameter space.

Task Oracle queries Model queries Speed-up
Mol. opt. ∼4,000 ∼200,000 ∼50
Mol. imp. ∼4,000 ∼25,000 ∼6.25
Drag opt. ∼3,000 ∼9,000,000 ∼3,000

Table 1: Relative speed-up factors for different tasks comparing the number of oracle and model
queries.

Figure 2c shows the distribution of a small number of low-drag profiles sampled with ground-truth
labels during training. The resulting profiles are non-trivial and have a regular, alternating pattern of
coefficients with physically explainable meaning [19, 25, 39]. We note that due to various limitations
of the simulated environment such as discretization of action space, a limited number of coefficients
due to limitations in OpenFOAM simulations (used as an oracle) and limited episode length, these
results are only locally optimal w.r.t. our setup. Yet, we find consistent, physically interpretable and
highly non-trivial results.

6 Conclusion

We introduced ACRL, an extension to standard reinforcement learning methods in the context of
(computationally) expensive rewards, which models the reward of given applications using machine
learning models. Because optimal regions in the search spaces are not known a priori and thus
typically not included in initial training sets, we use active learning during the exploration of the state
space to update the reward model. This way, the number of reward evaluations can be significantly
reduced, leading to a speed-up of up to 3000 in the presented applications. This reduction enables the
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application of reinforcement learning algorithms, in our case Double DQN, to real-world problems
where reward evaluation can become prohibitively expensive, and where conventional optimization
methods cannot be applied due to dynamic constraints which require generalization across multiple
problem instances. We show in three applications - one for benchmarking purposes and two real
applications with expensive rewards - that training an agent with modelled rewards yields reliable
results and non-trivial solutions in complex environments. The transferability and wide applicability
of our approach paves way for the exploration of a wide range of real-world application areas using
reinforcement learning methods.
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7 Supplementary Information

Comparison of querying strategies for retraining

The three strategies for selection of points presented were compared on a constant number of selected
points (800) (Figure 3). In each case, three reward models are initially trained with three different
train-test splits of the original QM9 dataset and used for prediction later on. The mean of the three
reward models’ predictions is used as a final reward for the agent to maximize, and the standard
deviation of these are calculated to give an idea of the uncertainty on prediction. Based on these
models, three selection modes are studied. In the first setting, the models are retrained by randomly
sampling a number of points from the initial QM9 test set as well as newly generated points during
the learning process. In a second setting, the points with the highest standard deviations of model
predictions are sampled and the models are updated using these points as train set. This is based on
the assumption that the points with the highest standard deviations of model predictions (points in
which the three models "disagree") are more likely to come from outside the original train distribution,
thus potentially representing the points that the model needs to learn from in order to improve its
predictions during the agent training process. In this sense, having three reward models instead of
only one could provide a good basis for the selection of points. Finally, a third approach in sampling
points is based on classifying the previously obtained test set and newly generated points in different
bins before selecting points with the highest standard deviation (of model predictions). This stems
from the fact that in certain situations, points with the highest standard deviations could represent
outliers, and therefore could prevent the reward models from learning the main trend of the data. The
strategy of bin-based selection offers a solution to this by selecting points with the highest standard
deviations while respecting the initial data distribution. It is important to note that all these sampling
processes are done separately for each model to be retrained, since their respective starting train and
test sets are not the same to start with. Therefore, the three models will never be updated on the
same training data, and will thus provide independent predictions, depending on the points they were
trained on. Overall, the standard deviation based sampling method performed best and was thus used
in the main part of this paper.

Comparison of the number of points selected for retraining

Given the best strategy (standard deviation based), the effect of the number of points selected for
reward model retraining was studied (Figure 4). The minimal number of points that was consistently
comparable to the real reward was 400 points.

Study of the effect of varying degrees of randomness on learning

The ϵ values in the MolDQN paper start with values of 100% and decrease exponentially at each
episode until they reach a percentage of 1% at episode 5000. In this study, our aim was to compare
the effect of the ϵ end value (last value of randomness) on the real reward agent at episode 4800,
considering that the agent does not choose any more random actions from episode 4800 to 5000 (to
better guide it towards the end goal). Results are shown in Figure 5. We concluded that increasing the
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(a) logp (b) QED

Figure 3: Comparison of different selection modes, random (red), standard deviation based (yellow)
and bin-based (purple) on 800 sampled points.

(a) logp (b) QED

Figure 4: Comparison of reward models retrained on a varying number of points selected based on
standard deviation

ϵ end values (increasing randomness, with the hope of favoring exploration) did not help the agent
reach better rewards.

Study of the effect of the decay function form

The ϵ-decay function used in MolDQN is an exponential decay function. In this study, we choose to
study the effect of varying decay function forms by adding a linear component to the exponential
function with varying fractions. The equation is the following:

ϵ(t) = ϵ0(λ(1− βt) + (1− λ)αt) (3)

with 1− βt and αt the linear and exponential components respectively, ϵ0 the starting randomness (at
100%), β and α constants that depend on the starting and end values (we choose an end value of 1%
at episode 4800), and λ the fraction (relative importance) of the linear component. At a λ of 0, the
decay-function is fully exponential, and at a λ of 1, it is fully linear. Results are shown in Figure 6.
We conclude here that a fully exponential function is more convenient for the learning of the agent.

Comparison of different mean constraints

In this section, we present a more detailed description of the results for the drag optimization task.
Our initial training dataset contains 5000 random profiles with a mean value centered around ±0.002
on each side. For a constraint configuration matching the distribution of the initial dataset, Figures 7a
and 7b show the evolution of drag and reward, respectively. In order to test extrapolation and
generalization capabilities of our ACRL method, we repeated the same experiment with a larger
constraint interval which lies outside the initial training distribution. The results in Figures 8a and 8b
show that ACRL is able to explore the underrepresented space well, in contrast to a static reward
model which fails to guide the agent to explore the relevant solution spaces. The higher variance
stems from the fact that higher mean values (or equivalently, higher total volume) trivially reduce
drag. Thus, in this experiment the agent encounters a higher diversity of states in terms of their
constraint. Even though most of the observed states lie outside the initial training distribution, an
ACRL agent is still able to explore the relevant low-drag space. The importance of actively updating
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(a) ϵ-values’ exponential decay with varying end points (b) Results on the QED task

Figure 5: The effect of increasing randomness by reaching different ϵ end values with the same
exponential decay function.

(a) Different forms of ϵ-decay functions (b) Results on the QED task

Figure 6: The effect of different ϵ-decay functions with the same randomness end value.

the reward model during training is reflected by the results of agents using a static reward model
in both experiments. Both agents trained with a static reward model achieve very similar results in
terms of drag, even though drag distributions vary considerably between the experiments. Only the
ACRL agents are able to capture the variance of drag well, which is especially high in Figure 8 due
a larger constraint interval. In contrast, static models fail to move outside their initially modelled
distribution, even though they predict drag values of encountered states very accurately.

(a) (b)

Figure 7: Results for different mean constraints in [0.0019, 0.0021].
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(a) (b)

Figure 8: Results for different mean constraints in [0.0015, 0.0025].
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