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ABSTRACT

The vulnerability of Deep Neural Networks to Adversarial Attacks has fuelled
research towards building robust models. While most Adversarial Training algo-
rithms aim towards defending attacks constrained within low magnitude `p norm
bounds, real-world adversaries are not limited by such constraints. In this work,
we aim to achieve adversarial robustness within larger bounds, against perturba-
tions that may be perceptible, but do not change human (or Oracle) prediction.
The presence of images that flip Oracle predictions and those that do not, makes
this a challenging setting for adversarial robustness. We discuss the ideal goals of
an adversarial defense algorithm beyond perceptual limits, and further highlight
the shortcomings of naively extending existing training algorithms to higher per-
turbation bounds. In order to overcome these shortcomings, we propose a novel
defense, Oracle-Aligned Adversarial Training (OA-AT), to align the predictions
of the network with that of an Oracle during adversarial training. The proposed
approach achieves state-of-the-art performance at large epsilon bounds (such as an
`∞ bound of 16/255 on CIFAR-10) while outperforming existing defenses (AWP,
TRADES and PGD-AT) at standard perturbation bounds (8/255) as well.

1 INTRODUCTION

Deep Neural Networks are known to be vulnerable to Adversarial Attacks, which are perturbations
crafted with an intention to fool the network (Szegedy et al., 2013). With the rapid increase in
deployment of Deep Learning algorithms in various critical applications such as autonomous nav-
igation, it is becoming increasingly crucial to improve the Adversarial robustness of these models.
In a classification setting, Adversarial attacks can flip the prediction of a network to even unrelated
classes, while causing no change in a human’s prediction (which we refer to as the Oracle label).

The definition of adversarial attacks involves the prediction of an Oracle, making it challenging to
formalize threat models for the training and verification of adversarial defenses. The widely used
convention that overcomes this challenge is the `p norm based threat model with low-magnitude
bounds to ensure imperceptibility (Goodfellow et al., 2015; Carlini et al., 2019). For example,
attacks constrained within an `∞ norm of 8/255 on the CIFAR-10 dataset are imperceptible to the
human eye as shown in Fig.1(b), ensuring that the Oracle label is unchanged. The goal of Adversarial
Training within such a threat model is to ensure that the prediction of the model is consistent within
the considered perturbation radius ε, and matches the label associated with the unperturbed image.

While low-magnitude `p norm based threat models form a crucial subset of the widely accepted
definition of adversarial attacks (Goodfellow & Papernot), they are not sufficient, as there exist valid
attacks at higher perturbation bounds as well, as shown in Fig.1(c) and (e). However, the challenge
at large perturbation bounds is the existence of attacks that can flip Oracle labels as well (Tramèr
et al., 2020), as shown in Fig.1(g), (i) and (j). Naively scaling existing Adversarial Training algo-
rithms to large perturbation bounds would enforce consistent labels on images that flip the Oracle
prediction as well, leading to a conflict in the training objective as shown in Fig.2. This results in
a large drop in clean accuracy, as shown in Table-1. This has triggered interest towards developing
perceptually aligned threat models, and defenses that are robust under these settings (Laidlaw et al.,
2021). However, as noted by Tramèr et al. (2020), finding a perceptually aligned metric is as chal-
lenging as building a network that can replicate oracle predictions. Thus, it is crucial to investigate
adversarial robustness using the well-defined `p norm metric under larger perturbation bounds.
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Figure 1: Perturbations within different threat models: Adversarially attacked images (b, c, e,
g, i, j) and perturbations (d, f, h) along with the corresponding clean image (a) for various `∞
norm bounds on CIFAR-10. Attacks are generated either from an Adversarially Trained model
(AT) or a Normally Trained model (NT) using the gradient-based attack GAMA-PGD (Sriramanan
et al., 2020) or the Random-search based attack Square (Andriushchenko et al., 2020). The medium-
magnitude threat model consists of attacks which are Oracle-Invariant and partially Oracle-Sensitive,
making it a challenging setting to achieve robustness.

In this work, we aim to improve robustness at larger epsilon bounds, such as an `∞ norm bound
of 16/255 on the CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009). We define this
as a moderate-magnitude bound, and discuss the ideal goals for achieving robustness under this
threat model in Sec.3.3. We further propose a novel defense Oracle-Aligned Adversarial Training
(OA-AT), which attempts to align the predictions of the network with that of an Oracle, rather than
enforcing all samples within the constraint set to have the same label as the unperturbed image.

Our contributions have been summarized below:
• We define the ideal goals for a moderate-ε threat model (such as `∞ radius of 16/255 for

CIFAR-10 and CIFAR-100) and construct our goals as a feasible subset of the same.
• We propose methods for generating Oracle-Aligned adversaries, which can be used for

adversarial training.
• We propose Oracle-Aligned Adversarial Training (OA-AT) to improve robustness within

the defined moderate-ε threat model.
• We demonstrate superior performance when compared to state-of-the-art methods such as

AWP (Wu et al., 2020), TRADES (Zhang et al., 2019) and PGD-AT (Madry et al., 2018) at
ε = 16/255 while also performing better at ε = 8/255 on CIFAR-10 and CIFAR-100. We
demonstrate improved performance on SVHN (Netzer et al., 2011) as well.

• We achieve improvements over the baselines even at larger model capacities such as
ResNet-34 and WideResNet-34-10.

• We empirically show the relation between contrast level of images and the existence of
attacks that can flip the Oracle label within a given perturbation bound, and use this ob-
servation for constructing better evaluation metrics at large perturbation bounds. We fur-
ther show that the difference in contrast levels of images in a dataset leads to degraded
robustness-accuracy trade-off.
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Table 1: CIFAR-10: Standard Adversarial
Training using Large-ε perturbations results in
poor clean accuracy. Performance (%) of various
existing Adversarial Defenses trained using ε =
8/255 or 16/255 against attacks bound within
ε = 8/255 and 16/255. Defenses reported are
TRADES (Zhang et al., 2019), AWP (Wu et al.,
2020), PGD-AT (Madry et al., 2018) and FAT
(Zhang et al., 2020).

Method Attack ε
(Training) Clean GAMA

(8/255)
AA

(8/255)
GAMA
(16/255)

Square
(16/255)

TRADES 8/255 80.53 49.63 49.42 19.27 27.82
TRADES 16/255 75.30 35.64 35.12 10.10 18.87
AWP 8/255 80.47 50.06 49.87 19.66 28.51
AWP 16/255 71.63 40.85 40.55 15.92 24.16
PGD-AT 8/255 81.12 49.03 48.58 15.77 26.47
PGD-AT 16/255 64.93 46.66 46.21 26.73 32.25
FAT 8/255 84.36 48.41 48.14 15.18 25.07
FAT 16/255 75.27 47.68 47.34 22.93 29.47
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Figure 2: Issues with Standard Adversarial
Training at large perturbation bounds

2 RELATED WORKS

Robustness against imperceptible attacks: Following the discovery of adversarial examples by
Szegedy et al. (2013), a myriad of adversarial attack and defense methods have been proposed.
Adversarial Training has emerged as the most successful defense strategy against `p norm bound
imperceptible attacks. PGD Adversarial Training (PGD-AT) proposed by Madry et al. (2018) con-
structs multi-step adversarial attacks by maximizing Cross-Entropy loss within the considered threat
model and subsequently minimizes the same for training. This was followed by several adversarial
training methods (Zhang et al., 2019; 2020; Rice et al., 2020; Wu et al., 2020; Sriramanan et al.,
2020; Pang et al., 2021) that improved accuracy against such imperceptible threat models further.
Zhang et al. (2019) proposed the TRADES defense, which maximizes the Kullback-Leibler (KL)
divergence between the softmax outputs of adversarial and clean samples for attack generation, and
minimizes the same in addition to the Cross-Entropy loss on clean samples for training.

Improving Robustness of base defenses: Wu et al. (2020) proposed an additional step of Adver-
sarial Weight Perturbation (AWP) to maximize the training loss, and further train the perturbed
model to minimize the same. This generates a flatter loss surface (Stutz et al., 2021), thereby im-
proving robust generalization. While this can be integrated with any defense, AWP-TRADES is the
state-of-the-art adversarial defense today. On similar lines, the use of stochastic weight averaging of
model weights (Izmailov et al., 2018) is also seen to improve the flatness of loss surface, resulting
in a boost in adversarial robustness (Gowal et al., 2020; Chen et al., 2020). Recent works attempt
to use training techniques such as early stopping (Rice et al., 2020), optimal weight decay (Pang
et al., 2021), Cutmix data augmentation (Yun et al., 2019; Rebuffi et al., 2021) and label smoothing
(Szegedy et al., 2016; Rebuffi et al., 2021) to achieve enhanced robust performance on base defenses
such as PGD-AT (Madry et al., 2018) and TRADES (Zhang et al., 2019). We utilize some of these
methods in our approach (Sec.6), and also present improved baselines by combining the strongest
defense, AWP-TRADES (Wu et al., 2020) with these enhancements.

Robustness against large perturbation attacks: Shaeiri et al. (2020) demonstrate that the standard
formulation of adversarial training is not well-suited for achieving robustness at large perturbations,
as the loss saturates very early. The authors propose Extended Adversarial Training (ExAT), where
a model trained on low-magnitude perturbations (ε = 8/255) is fine-tuned with large magnitude
perturbations (ε = 16/255) for merely 5 training epochs, to achieve improved robustness at large
perturbations. The authors also discuss the use of a varying epsilon schedule to improve training
convergence. Friendly Adversarial Training (FAT) (Zhang et al., 2020) performs early-stopping
of an adversarial attack by thresholding the number of times the model misclassifies the image
during attack generation. The threshold is increased over training epochs to increase the strength
of the attack over training. On similar lines, Sitawarin et al. (2020) propose Adversarial Training
with Early Stopping (ATES), which performs early stopping of a PGD attack based on the margin
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(difference between true and maximum probability class softmax outputs) of the perturbed image
being greater than a threshold that is increased over epochs. We compare against these methods and
improve upon them significantly using our proposed approach (Sec.4).

Evaluation of Adversarial Defenses: Gradient-based white-box attacks such as PGD (Madry et al.,
2018), GAMA-PGD (Sriramanan et al., 2020) and Auto-PGD with Cross-Entropy (CE) and Differ-
ence of Logits Ratio (DLR) losses (Croce & Hein, 2020a) are known to be the strongest attacks
against standard Adversarial Training methods that do not obfuscate gradients. Gradient-Free at-
tacks such as ZOO (Chen et al., 2017), SPSA (Uesato et al., 2018), Square (Andriushchenko et al.,
2020) and RayS (Chen & Gu, 2020) are useful to craft perturbations without requiring white-box
access to the model. These attacks are also used to reliably estimate the robustness of defenses that
rely on gradient masking (Papernot et al., 2017). Amongst the Gradient-Free attacks, Square and
Ray-S do not use Zeroth order gradient estimates, and utilize Random-Search and Binary-Search
based algorithms respectively to construct strong attacks against a given defense. We use such
query-based attacks to generate perturbations that do not flip Oracle predictions even for moderate-
magnitude constraint sets. AutoAttack combines strong untargeted and targeted white-box attacks
with the query-based black-box attack Square to effectively estimate the robustness of a given de-
fense, and is a well accepted standard for benchmarking defenses. We report our results against
GAMA-PGD, AutoAttack, Square and Ray-S. We additionally perform evaluations against various
adaptive attacks (Sec.F) to ensure an accurate estimation of robustness for the proposed defense.

3 PRELIMINARIES AND THREAT MODEL

In this section, we first discuss the notation used in the paper, and the nomenclature we would use for
different types of adversarial attacks. We further describe the ideal goals for achieving robustness
within a moderate-magnitude perturbation bound. Based on these goals, we present the objectives
considered in this work and our evaluation criteria.

3.1 NOTATION

We consider an N -class image classification problem with access to a labelled training dataset
D. The input images are denoted by x ∈ X and their corresponding labels are denoted as
y ∈ {1, ..., N}. The function represented by the Deep Neural Network is denoted by fθ where
θ ∈ Θ denotes the set of network parameters. The N -dimensional softmax output of the input im-
age x is denoted as fθ(x). Adversarial examples are defined as images that are crafted specifically
to fool a model into making an incorrect prediction (Goodfellow & Papernot). An adversarial image
corresponding to a clean image x would be denoted as x̃. The set of all images within an `p norm
ball of radius ε is defined as S(x) = {x̂ : ||x̂− x||p < ε}. The set of all `p norm bound adversarial
examples is defined as A(x) = {x̃ : fθ(x̃) 6= y, x̃ ∈ S(x)}. In this work, we specifically consider
robustness to `∞ norm bound adversarial examples. We define the Oracle prediction of a sample
x as the label that a human is likely to assign to the image, and denote it as O(x). For a clean
image, O(x) would correspond to the true label y, while for a perturbed image it could differ from
the original label.

3.2 NOMENCLATURE OF ADVERSARIAL ATTACKS

Tramèr et al. (2020) discuss the existence of two types of adversarial examples: Sensitivity-based
examples, where the model prediction changes, but the Oracle prediction remains the same as the
unperturbed image, and Invariance-based examples, where the Oracle prediction changes, while the
model prediction remains unchanged. Models trained using standard empirical risk minimization are
susceptible to sensitivity-based adversarial examples, while models which are overly robust to large
perturbation bounds could be susceptible to invariance-based examples. Since these definitions are
dependent on the model being considered, we define a different nomenclature which only depends
on the input image and the threat model considered, as below:

• Oracle-Invariant setOI(x), is defined as the set of all images within the bound S(x), which
preserve the Oracle label. The Oracle is invariant to such perturbations:

OI(x) := {x̂ : O(x̂) = O(x), x̂ ∈ S(x)} (1)
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• Oracle-Sensitive set OS(x), is defined as the set of all images within the bound S(x),
which flip the Oracle label. The Oracle is sensitive to such perturbations:

OS(x) := {x̂ : O(x̂) 6= O(x), x̂ ∈ S(x)} (2)

3.3 OBJECTIVES OF THE PROPOSED DEFENSE

Defenses based on the conventional `p norm threat model attempt to train models which are invariant
to all samples within S(x). This is an ideal requirement for low ε-bound perturbations, where the
added noise is imperceptible, and hence all samples within the threat model are Oracle-Invariant. An
example of a low ε-bound constraint set is the `∞ threat model defined by ε = 8/255 for the CIFAR-
10 dataset, which produces adversarial examples that are perceptually similar to the corresponding
clean images, as shown in Fig.1(b).

As we move to larger ε bounds, Oracle-labels begin to change, as shown in Fig.1(g, i, j). For
a very high perturbation bound such as 32/255, the changes produced by an attack are clearly
perceptible and in many cases flip the Oracle label as well. Hence, robustness at such large bounds
is not of practical relevance. The focus of this work is to achieve robustness within a moderate-
magnitude `p norm bound, where some perturbations look partially modified (Fig.1(g)), while others
look unchanged (Fig.1(c, e)), as is the case with ε = 16/255 for CIFAR-10. The existence of
attacks that do not significantly change the perception of the image necessitates the requirement
of robustness within such bounds, while the existence of partially Oracle-Sensitive samples makes
it difficult to use standard adversarial training methods on the same. The ideal goals for training
defenses under this moderate-magnitude threat model are described below:

• Robustness against samples which belong to OI(x)

• Sensitivity towards samples which belong to OS(x), with model’s prediction matching the
Oracle label

• No specification on Out-of-Distribution (OOD) images

We incorporate these goals in the training objective of our proposed defense, which is discussed in
Sec.4. Given the practical difficulty in assigning Oracle labels, we consider the following criteria
for our defense evaluations:

• Robustness-Accuracy trade-off, measured using accuracy on clean samples and robustness
against valid attacks within the threat model (discussed below)

• Robustness against all attacks within an imperceptible radius (ε = 8/255 for CIFAR-10),
measured using strong white-box attacks (Croce & Hein, 2020b; Sriramanan et al., 2020)

• Robustness to Oracle-Invariant samples within a larger radius (ε = 16/255 for CIFAR-10),
measured using gradient-free attacks (Andriushchenko et al., 2020; Chen & Gu, 2020)

In Sec.5 we show the relation between the contrast of an image and the existence of Oracle-Sensitive
attacks within a given radius, and introduce additional evaluation metrics based on this.

4 PROPOSED METHOD

In order to achieve the goals discussed in Sec.3.3, we require to generate Oracle-Sensitive and
Oracle-Invariant samples and impose specific training losses on each of them individually. Since
labeling adversarial samples as Oracle-Invariant or Oracle-Sensitive is expensive and cannot be done
while training networks, we propose to use attacks which ensure a given type of perturbation (OI or
OS) by construction, and hence do not require explicit annotation.

Generation of Oracle-Sensitive examples: Robust models are known to have perceptually aligned
gradients (Tsipras et al., 2019). Adversarial examples generated using a robust model tend to start
looking like the target (other) class images at large perturbation bounds, as seen in Fig.1(g, i, j). We
therefore use large ε-bound white-box adversarial examples generated from the model being trained
as Oracle-Sensitive samples, and the model prediction as a proxy to the Oracle prediction.

Generation of Oracle-Invariant examples: While the strongest Oracle-Invariant examples are
generated using the gradient-free attacks Square (Andriushchenko et al., 2020) and Ray-S (Chen &
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Figure 3: Oracle-Aligned Adversarial Training: The proposed defense OA-AT involves alternate
training on Oracle-Invariant and Oracle-Sensitive samples. 1) Oracle-Invariant samples are gener-
ated by minimizing the LPIPS distance between the clean and perturbed images in addition to the
maximization of the Classification Loss. 2) Oracle-Sensitive samples are trained using a convex
combination of the predictions of the clean image and the perturbed image at a larger perturbation
bound as reference in the KL divergence loss.

Gu, 2020), they require a large number of queries (5000 to 10000), which is computationally expen-
sive for use in adversarial training. Furthermore, reducing the number of queries weakens the attack
significantly. The most efficient attack that is widely used for adversarial training is the PGD 10-step
attack. However, it cannot be used for the generation of Oracle-Invariant samples as gradient-based
attacks generated from adversarially trained models produce Oracle-Sensitive samples. We propose
to use the Learned Perceptual Image Patch Similarity (LPIPS) measure for the generation of Oracle-
Invariant attacks, as it is known to match well with perceptual similarity (Zhang et al., 2018; Laidlaw
et al., 2021). As shown in Fig.8, while the standard AlexNet model used in prior work (Laidlaw et al.,
2021) fails to distinguish between Oracle-Invariant and Oracle-Sensitive samples, an adversarially
trained model is able to distinguish between the two effectively. We therefore propose to mini-
mize the LPIPS distance between natural and perturbed images, in addition to the maximization of
Cross-Entropy loss for attack generation: LCE(x, y)−λ ·LPIPS(x, x̂). The ideal setting of λ is the
minimum value that transforms attacks from Oracle-Sensitive to Oracle-Invariant (OI) for majority
of the images. This results in the generation of strong Oracle-Invariant (OI) attacks. As shown in
Fig.10, λ = 1 generates attacks which are Oracle-Invariant and strong on the CIFAR-10 dataset. The
value of λ is further fine-tuned during training to achieve the optimal robustness-accuracy trade-off.

Oracle-Aligned Adversarial Training (OA-AT): The training algorithm for the proposed defense,
Oracle-Aligned Adversarial Training (OA-AT) is presented in Algorithm-1 and illustrated in Fig.3.
We explain the proposed algorithm by considering an example of the moderate-magnitude threat
model of ε = 16/255 on the CIFAR-10 and CIFAR-100 datasets below.

We use the TRADES-AWP formulation (Zhang et al., 2019; Wu et al., 2020) as the base implemen-
tation, with Cross-Entropy loss instead of KL-divergence loss for attack generation, as it results in
stronger attacks Gowal et al. (2020). We maximize loss on xi + 2 · δ̃i (where δ̃i is the attack) in
the additional weight perturbation step, as it results in improved robust generalization. We start with
an initial ε value of 4/255 upto one-fourth the training epochs, and ramp up this value linearly to a
value of εmax = 16/255 at the last epoch alongside a cosine learning rate schedule. We use 5 attack
steps when ε = 4/255 and 10 attack steps later.

We perform standard adversarial training upto ε = 12/255 as the attacks in this range are im-
perceptible. Beyond this, we start incorporating separate training losses for Oracle-Invariant and
Oracle-Sensitive samples in alternate training iterations as shown in Fig.3. Oracle-Sensitive sam-
ples are generated by maximizing Cross-Entropy loss in a PGD attack formulation. Rather than
enforcing the predictions of such attacks to be similar to the original image, we allow the network
to be partially sensitive to such attacks by training them to be similar to a convex combination of
predictions on the clean image and perturbed samples at a larger bound, εref as shown below:

Ladv = KL
(
fθ(xi + δ̃i) || α fθ(xi) + (1− α) fθ(xi + δ̂i)

)
(3)

Here δ̃i is the perturbation at the varying epsilon value ε̃, and δ̂i is the perturbation at εref . We
set the value of εref to be greater than or equal to εmax This results in better robustness-accuracy
trade-off as shown in Table-4. In the alternate iteration, we use the LPIPS metric to efficiently
generate strong Oracle-Invariant attacks during training. We perform exponential weight-averaging
of the network being trained and use this for computing the LPIPS metric for improved and stable
results (Table-4). We increase α and λ over training, as the nature of attacks changes with varying
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Figure 4: Relation between the contrast level of an image and the Oracle-Sensitivity of ad-
versarial examples within a given perturbation bound. First and second rows show low contrast
images, and third and fourth rows show high contrast images. Column (a) shows the original clean
image and columns (b-e) show adversarial examples at different perturbation bounds generated at
the largest bound in (e) and projected to the other bounds in (b, c, d). The adversarial perturbation is
shown in column (f). Adversarial examples in columns (d) and (e) are Oracle-Invariant for the high
contrast images, and Oracle-Sensitive for the low contrast images.

Table 2: Adversarial Training on Contrast-Enhanced (CE) datasets: Performance (%) of the
AWP-TRADES defense (Wu et al., 2020) by performing the training and evaluation on contrast-
enhanced (CE) datasets when compared to standard datasets. Evaluation is done against AutoAttack
(Croce & Hein, 2020b) at different perturbation bounds. The contrast of a dataset plays a significant
role in the Robustness-Accuracy trade-off achieved.

(a) Training on ε = 8/255 perturbations

Dataset Clean AA
4/255

AA
8/255

AA
12/255

AA
16/255

SVHN 91.91 75.72 30.31 30.31 14.37
SVHN-CE 94.61 87.89 80.23 69.25 56.41
CIFAR-10 80.47 66.82 49.87 33.17 19.23

CIFAR-10-CE 82.18 70.70 57.58 43.04 28.82
CIFAR-100 58.81 39.01 25.30 14.71 8.29

CIFAR-100-CE 59.04 41.40 26.95 15.66 8.97

(b) Training on larger magnitude perturbations

Dataset Training
epsilon Clean AA

4/255
AA

8/255
AA

12/255
AA

16/255
CIFAR-10 8/255 80.47 66.82 49.87 33.17 19.23
CIFAR-10-CE 8/255 82.18 70.70 57.58 43.04 28.82
CIFAR-10 10/255 80.32 65.70 48.89 32.61 18.81
CIFAR-10-CE 10/255 82.05 71.13 57.81 43.02 28.82
CIFAR-10 16/255 71.63 56.31 40.55 26.31 15.42
CIFAR-10-CE 16/255 78.47 67.76 55.77 42.89 30.70

ε̃. The use of both Oracle-Invariant (OI) and Oracle-Sensitive (OS) samples ensures robustness to
Oracle-Invariant samples while allowing sensitivity to partially Oracle-Sensitive samples.

5 ROLE OF IMAGE CONTRAST IN ROBUST TRAINING AND EVALUATION

As shown in Fig.1, perturbations constrained within a low-magnitude bound (Fig.1(b)) do not change
the perceptual appearance of an image, whereas perturbations constrained within very large bounds
such as ε = 32/255 (Fig.1(j)) flip the Oracle prediction. As noted by Balaji et al. (2019), the
perturbation radius at which the Oracle prediction flips varies across images. We hypothesize that
the contrast level of an image plays an important role in determining the minimum perturbation
magnitude εOS that can flip the Oracle prediction of an image to generate an Oracle-Sensitive (OS)
sample. We visualize the top 20 Low-Contrast and High-Contrast images in the SVHN, CIFAR-10
and CIFAR-100 datasets in Fig.15,16,17,18,19,20 of the Appendix, and show a few images in Fig.4
as well. We observe that High-contrast (HC) images are Oracle-Invariant even at large perturbation
bounds, whereas Low-Contrast (LC) images are Oracle-Sensitive at lower perturbation bounds as
well. Based on this, we utilize High-Contrast images for evaluation against strong White-Box attacks
at large epsilon bounds in Sec.6. As shown in Fig.2, the presence of Oracle-Sensitive images in the
considered perturbation bound causes a drop in clean accuracy due to a conflict in training objective,
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Table 3: Comparison with existing methods: Performance (%) of the proposed defense OA-AT
when compared to baselines against the attacks, GAMA-PGD100 (Sriramanan et al., 2020), Au-
toAttack (AA) (Croce & Hein, 2020b) and an ensemble of Square (Andriushchenko et al., 2020)
and Ray-S (Chen & Gu, 2020) attacks (SQ+RS), with different ε bounds. Sorted by AutoAttack
(AA) accuracy at ε = 8/255 for CIFAR-10 and CIFAR-100, and ε = 4/255 for SVHN.

(a) CIFAR-10

Metrics of interest Others

Method Clean GAMA
8/255

AA
8/255

SQ+RS
16/255

GAMA
16/255

AA
16/255

CIFAR-10 (ResNet-18), 110 epochs
FAT 84.36 48.41 48.14 23.22 15.18 14.22
PGD-AT 79.38 49.28 48.68 25.43 18.18 17.00
AWP 80.32 49.06 48.89 25.99 19.17 18.77
ATES 80.95 49.57 49.12 26.43 18.36 16.30
TRADES 80.53 49.63 49.42 26.20 19.27 18.23
ExAT + PGD 80.68 50.06 49.52 25.13 17.81 19.53
ExAT + AWP 80.18 49.87 49.69 27.04 20.04 16.67
AWP 80.47 50.06 49.87 27.20 19.66 19.23
Ours 80.24 51.40 50.88 29.56 22.73 22.05

CIFAR-10 (ResNet-34), 110 epochs
AWP 83.89 52.64 52.44 27.69 20.23 19.69
OA-AT (Ours) 84.07 53.54 53.22 30.76 22.67 22.00

CIFAR-10 (WRN-34-10), 110 epochs
AWP 85.19 55.87 55.69 31.27 24.04 23.46
AWP+ 85.10 56.07 55.87 31.36 23.79 23.27
OA-AT (Ours) 85.67 56.45 55.93 33.89 25.21 24.05

(b) CIFAR-100, SVHN

Metrics of interest Others

Method Clean GAMA
8/255

AA
8/255

SQ+RS
16/255

GAMA
16/255

AA
16/255

CIFAR-100 (ResNet-18), 110 epochs
AWP 58.81 25.51 25.30 11.39 8.68 8.29
AWP+ 59.88 25.81 25.52 11.85 8.72 8.28
OA-AT (no LS) 60.27 26.41 26.00 13.48 10.47 9.95
OA-AT (Ours) 61.70 27.09 26.77 13.87 10.40 9.91

CIFAR-100 (PreActResNet-18), 200 epochs
AWP 58.85 25.58 25.18 11.29 8.63 8.19
AWP+ 62.11 26.21 25.74 12.23 9.21 8.55
OA-AT (Ours) 62.02 27.45 27.14 14.52 10.64 10.10

CIFAR-100 (WRN-34-10), 110 epochs
AWP 62.41 29.70 29.54 14.25 11.06 10.63
AWP+ 62.73 29.92 29.59 14.96 11.55 11.04
OA-AT (no LS) 65.22 30.75 30.35 16.77 12.65 11.95
OA-AT (Ours) 65.73 30.90 30.35 17.15 13.21 12.01

SVHN (PreActResNet-18), 110 epochs

Method Clean GAMA
4/255

AA
4/255

SQ+RS
12/255

GAMA
12/255

AA
12/255

AWP 91.91 75.92 75.72 35.49 30.70 30.31
OA-AT (Ours) 94.61 78.37 77.96 39.24 34.25 33.63

hinting at the fact that contrast levels of images in the dataset can impact the accuracy-robustness
trade-off significantly. We validate this hypothesis by performing standard adversarial training using
the AWP-TRADES algorithm (Wu et al., 2020) and robust evaluation using AutoAttack (Croce &
Hein, 2020a) on a contrast-enhanced dataset (contrast enhancement is done for both train and test
set) that is generated using histogram equalization. We present results in Table-2a. We observe
significant gains of around 40% or higher against AutoAttack at large ε values on SVHN. We observe
noteworthy gains on the CIFAR-10 and CIFAR-100 datasets as well. Since the SVHN dataset has the
highest imbalance in terms of contrast levels of images, this dataset benefits the most with histogram
equalization. We note that this is not a practical option for improving the robustness of models as
images in the test set would be of varying contrast levels and their contrast levels before attack
generation cannot be controlled. Moreover, incorporating pre-processing methods as part of the
defense are known to be susceptible to adaptive attacks (Athalye et al., 2018; Carlini et al., 2019;
Tramer et al., 2020) that consider the defense strategy to generate stronger attacks. This experiment
merely highlights the role of contrast in robustness-accuracy trade-off in adversarial training. We
further show in Table-2b that the contrast-enhanced dataset can be used for adversarial training at
relatively larger perturbation bounds as well, without a significant drop in clean accuracy.

6 EXPERIMENTS AND RESULTS

We compare performance of the proposed approach with the existing defenses discussed in Sec.2
on the CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) using the ResNet-18 architecture for a
training budget of 110 epochs. On CIFAR-10, for each baseline, we find the best set of hyperpa-
rameters to achieve clean accuracy of around 80% to ensure a fair comparison across all methods.
We also perform baseline training across various ε values and report the best baselines in Table-
3a. We observe that baseline defenses do not perform well when trained using large ε bounds such
as 16/255 as shown in Table-1 (Detailed results in Table-5). We compare the proposed approach
against the strongest baseline AWP-TRADES (Wu et al., 2020) on CIFAR-100 in Table-3a and show
a more detailed comparison against more baselines in Table-6.

Based on the baseline evaluations on CIFAR-10 and CIFAR-100 datasets, we find that the strongest
baseline is AWP-TRADES, which we refer to as AWP in the tables. We therefore compare the
proposed approach against this baseline for the CIFAR-10 and CIFAR-100 evaluations on other
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Figure 5: Evaluation across test subsets of increasing contrast levels: Performance comparison of
the proposed defense OA-AT against AWP-Trades (Wu et al., 2020) across test subsets of increasing
contrast levels. The proposed defense achieves higher gains as the contrast of the images in the
test subsets increases, verifying that the proposed approach is more robust to the Oracle-Invariant
white-box attacks on High-Contrast images.

model architectures (ResNet-34, WideResNet-34-10 and PreActResNet-18), and for evaluations on
the SVHN dataset. We observe additional gains with the use of techniques such as AutoAugment
(Cubuk et al., 2018; Stutz et al., 2021; Rebuffi et al., 2021) and Model Weight Averaging (WA)
(Izmailov et al., 2018; Gowal et al., 2020; Chen et al., 2020), especially at larger model capacities.
To ensure a fair comparison, we use these methods to obtain improved baselines as well, and report
this as AWP+ in Table-3 (Detailed results in Table-8). As observed by Rebuffi et al. (2021), we
find that label-smoothing and the use of warmup in the learning rate scheduler helps achieve an
additional boost in robustness. However, we report our results without including this as well (no
LS) to highlight the gains of the proposed method individually.

On the CIFAR-10 and CIFAR-100 datasets, we report adversarial robustness against the strongest
known attacks, AutoAttack (AA) (Croce & Hein, 2020b) and GAMA PGD-100 (GAMA) (Srira-
manan et al., 2020) for ε = 8/255 in order to obtain the worst-case robust accuracy. For larger
bounds such as 12/255 and 16/255, we primarily aim for robustness against an ensemble of the
Square (Andriushchenko et al., 2020) and Ray-S (Chen & Gu, 2020) attacks, as they are the strongest
known Oracle-Invariant attacks. On the SVHN dataset, we find that the perturbation bound for im-
perceptible attacks is ε = 4/255, and we consider robustness within ε = 12/255. The proposed
defense achieves consistent gains across all metrics considered in Sec.3.3. Although we train the
model for achieving robustness at larger ε bounds, we achieve an improvement in the robustness at
the low ε bound (such as ε = 8/255 on CIFAR-10) as well, which is not observed in any of the ex-
isting methods (Table-5). As show in Fig.5, the proposed defense achieves higher gains on the high
contrast subsets of all datasets, verifying that the proposed approach has higher gains in robustness
against Oracle-Invariant attacks, and not against Oracle-Sensitive attacks. We further evaluate the
proposed defense against diverse attacks (Table-7) and sanity checks (Sec.F) to ensure the absence
of gradient masking.

7 CONCLUSIONS

We explore the idea of robustness beyond perceptual limits in an `p norm based threat model. We
first discuss the ideal goals of an adversarial defense at larger perturbation bounds, and further
propose a novel defense, Oracle-Aligned Adversarial Training (OA-AT) that aims to align model
predictions with that of an Oracle during training. The key aspects of the defense include the use
of LPIPS metric for generating Oracle-Invariant attacks during training, and the use of a convex
combination of clean and adversarial image predictions as targets for Oracle-Sensitive samples.
We achieve significant gains in robustness at low and moderate perturbation bounds, and a better
robustness-accuracy trade-off. We further show the relation between the contrast level of images
and the existence of Oracle-Sensitive attacks within a given perturbation bound. We use this for
better evaluation, and to highlight the role of contrast-level of images in achieving an improved
robustness-accuracy trade-off. We hope that future work would build on this to construct better
defenses and to obtain a better understanding on the existence of adversarial examples.
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8 REPRODUCIBILITY STATEMENT

We share the code for reproducing the results of the proposed method OA-AT along with the Sup-
plementary submission.
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A ORACLE-INVARIANT ATTACKS

Square Attack: The strongest Oracle-Invariant examples are generated using the Square attack
(Andriushchenko et al., 2020). Images so generated are Oracle-Invariant since the Square Attack is
query-based, and does not utilise gradients from the model for attack generation. However this attack
uses 5000 queries, and is thus computationally expensive. Hence it cannot be directly incorporated
for adversarial training, although it is one of the strongest attacks for evaluation purposes. We note
that the computationally efficiency can be improved by reducing the number of queries; however it
also reduces the effectiveness of the attack significantly. The adversarial images generated using the
Square attack and their corresponding perturbations are presented in 6.

RayS Attack: Another technique that is observed to generate strong Oracle-Invariant examples is
the black-box RayS attack (Chen & Gu, 2020). Similar to the Square attack, the images so generated
are also Oracle-Invariant since it is a query-based attack and does not utilise gradients for attack
generation. Although the RayS attack requires 10000 queries which is highly demanding from a
computational viewpoint, it is observed to be weaker than the Square attack. Adversarial images
generated using the RayS attack and their corresponding perturbations are presented in 7. PGD
based Attacks: While the most efficient attack that is widely used for adversarial training is the
PGD 10-step attack, it cannot be used for the generation of Oracle-Invariant samples as adversarially
trained models have perceptually aligned gradients, and tend to produce Oracle-Sensitive samples.
Therefore, we explore some variants of the PGD attack to make the generated perturbations Oracle-
Invariant. We denote the Cross-Entropy loss on a data sample x with ground truth label y using
LCE(x, y). We explore the addition of regularizers to the Cross-Entropy loss weighted by a factor
of λX in each case. The value of λX is chosen as the minimum value which transforms the PGD
attacks from Oracle-Sensitive to Oracle-Invariant. This results in the strongest possible Oracle-
Invariant attacks.

Discriminator based PGD Attack: We train a discriminator to distinguish between Oracle-
Invariant and Oracle-Sensitive adversarial examples, and further maximize the below loss for the
generation of Oracle-Invariant attacks:

LCE(x, y)− λDisc · LBCE(x̂,OI) (4)

Here LBCE(x̂,OI) is the Binary Cross-Entropy loss of the adversarial example x̂w.r.t. the label cor-
responding to an Oracle-Invariant (OI) attack. We train the discriminator to distinguish between two
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Figure 6: Square attack: Adversarially at-
tacked images (b, c, d, f) and the correspond-
ing perturbations (e, g) for various `∞ bounds
generated using the gradient-free random search
based attack Square (Andriushchenko et al.,
2020). The clean image is shown in (a). Attacks
are generated from a model trained using the
proposed Oracle-Aligned Adversarial Training
(OA-AT) algorithm on CIFAR-10. Prediction of
the same model is printed above each image.

cat cat cat deer deer deer deer

ship ship truck truck truck truck truck

aero aero aero aero aero aero aero

frog deer deer deer deer deer deer

frog frog frog frog frog auto auto

(a)

Clean

(b)

8/255

(c)

12/255

(d)

16/255

(e)

16/255
(noise)

(f)

24/255

(g)

24/255
(noise)

Figure 7: RayS attack: Adversarially attacked
images (b, c, d, f) and the corresponding per-
turbations (e, g) for various `∞ bounds gener-
ated using the gradient-free binary search based
attack RayS (Chen & Gu, 2020). The clean
image is shown in (a). Attacks are generated
from a model trained using the proposed Oracle-
Aligned Adversarial Training (OA-AT) algo-
rithm on CIFAR-10. Prediction of the same
model is printed above each image.
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Figure 8: LPIPS distance between clean and
adversarially perturbed images. Attacks gen-
erated from PGD-AT (Madry et al., 2018;
Pang et al., 2021) model (Oracle-Sensitive) and
Normally Trained model (Oracle-Invariant) are
considered. (a) PGD-AT ResNet-18 model
is used for computation of LPIPS distance
(b) Normally Trained AlexNet model is used
for computation of LPIPS distance. PGD-AT
model based LPIPS distance is useful to dis-
tinguish between Oracle-Sensitive and Oracle-
Invariant attacks.
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Figure 9: Comparison of the proposed model
with the best baseline, AWP (Wu et al., 2020)
trained on CIFAR-10 with ResNet-18 architec-
ture, against attacks of varying strength and Or-
acle sensitivity constrained within perturbation
bound of ε = 16/255. (a) LPIPS based reg-
ularizer, and (b) Discriminator based regular-
izer are used for generating Oracle-Invariant at-
tacks respectively. As the coefficient of the reg-
ularizer increases, the attack transforms from
Oracle-Sensitive to Oracle-Invariant. The pro-
posed method (OA-AT) achieves improved ac-
curacy compared to AWP.

input distributions; the first corresponding to images concatenated channel-wise with their respec-
tive Oracle-Sensitive perturbations, and a second distribution where perturbations are shuffled across
images in the batch. This ensures that the discriminator relies on the spatial correlation between the
image and its corresponding perturbation for the classification task, rather than the properties of
the perturbation itself. The attack in Eq.4 therefore attempts to break the most salient property of
Oracle-Sensitive attacks, which is the spatial correlation between an image and its perturbation.

LPIPS based PGD Attack: We propose to use the Learned Perceptual Image Patch Similarity
(LPIPS) measure for the generation of Oracle-Sensitive attacks, as it is known to match well with
perceptual similarity (Zhang et al., 2018; Laidlaw et al., 2021). As shown in Fig.8, while the stan-
dard AlexNet model that is used in prior work (Laidlaw et al., 2021) fails to distinguish between

13



Under review as a conference paper at ICLR 2022

cat dog dog dog dog cat cat dog dog cat horse dog dog

ship auto auto auto auto ship ship auto auto ship truck truck ship

frog cat cat frog frog frog frog cat deer frog cat deer frog

frog frog frog frog frog frog frog auto frog frog auto frog frog

cat bird bird dog dog cat cat bird dog cat bird bird dog

(a)

Clean

(b)

16/255
(  = 0)

(c)

16/255
(  = 0)
(noise)

(d)

16/255
(  = 1)

(e)

16/255
(  = 1)
(noise)

(f)

16/255
(  = 2)

(g)

16/255
(  = 2)
(noise)

(h)

24/255
(  = 0)

(i)

24/255
(  = 1)

(j)

24/255
(  = 2)

(k)

32/255
(  = 0)

(l)

32/255
(  = 1)

(m)

32/255
(  = 2)

Figure 10: Oracle-Invariant adversarial examples generated using the LPIPS based PGD attack in
Eq.5 across various perturbation bounds. White-box attacks and predictions on the model trained
using the proposed OA-AT defense on the CIFAR-10 dataset with ResNet-18 architecture are shown:
(a) Original Unperturbed image, (b, h, k) Adversarial examples generated using the standard PGD
10-step attack, (d, f, i, j, l, m) LPIPS based PGD attack generated within perturbation bounds of
16/255 (d, f), 24/255 (i, j) and 32/255 (l, m) by setting the value of λLPIPS to 1 and 2, (c, e, g)
Perturbations corresponding to (b), (d) and (f) respectively.

Oracle-Invariant and Oracle-Sensitive samples, an adversarially trained model is able to distinguish
between the two types of attacks effectively. In this plot, we consider attacks generated from a
PGD-AT (Madry et al., 2018; Pang et al., 2021) model (Fig.1(c-e)) as Oracle-Sensitive attacks, and
attacks generated from a Normally Trained model (Fig.1(h)) as Oracle-Invariant attacks. We there-
fore propose to minimize the LPIPS distance between the natural and perturbed images, in addition
to the maximization of Cross-Entropy loss for attack generation as shown below:

LCE(x, y)− λLPIPS · LPIPS(x, x̂) (5)

We choose λLPIPS as the minimum value that transforms the PGD attack from Oracle-Sensitive to
Oracle-Invariant (OI), to generate strong OI attacks. This is further fine-tuned during training to
achieve the optimal robustness-accuracy trade-off. As shown in Fig.10, setting λLPIPS to 1 changes
adversarial examples from Oracle-Sensitive to Oracle-Invariant, as they look similar to the corre-
sponding original images shown in Fig.10(a). This can be observed more distinctly at perturbation
bounds of 24/255 and 32/255. The perturbations in Fig.10(c) are smooth, while those in (e) and (g)
are not. This shows that the addition of the LPIPS term helps in making the perturbations Oracle-
Invariant. Very large coefficients of the LPIPS term make the attack weak as can be seen in Fig.10(f,
j, m) where the model prediction is same as the true label. We therefore set the value of λLPIPS to 1
to obtain strong Oracle-Invariant attacks.

As shown in Table-4, while we obtain the best results using the LPIPS based PGD attack for training
(E1), the use of discriminator based PGD attack (E6) also results in a better robustness-accuracy
trade-off when compared to E2, where there is no explicit regularizer to ensure the generation of
Oracle-Invariant attacks.

Evaluation of the proposed defense against Oracle-Invariant Attacks: We compare the perfor-
mance of the proposed defense OA-AT with the strongest baseline AWP (Wu et al., 2020) against
the two proposed Oracle-Invariant attacks, LPIPS based attack and Discriminator based attack in
Fig.9 (a) and (b) respectively. We vary the coefficient of the regularizers used in the generation of
attacks, λDisc (Eq.4) and λLPIPS (Eq.5) in each of the plots. As we increase the coefficient, the at-
tack transforms from Oracle-Sensitive to Oracle-Invariant. The proposed method (OA-AT) achieves
improved accuracy when compared to the AWP (Wu et al., 2020) baseline.
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Algorithm 1 Oracle-Aligned Adversarial Training

1: Input: Deep Neural Network fθ with parameters θ, Training Data {xi, yi}Mi=1, Epochs T ,
Learning Rate η, Perturbation budget εmax, Adversarial Perturbation function A(x, y, `, ε)
which maximises loss `

2: for epoch = 1 to T do
3: ε̃ = max{εmax/4, εmax · epoch/T}
4: for i = 1 to M do
5: δi ∼ U(−min(ε̃, εmax/4),min(ε̃, εmax/4))
6: if ε̃ < 3/4 · εmax then
7: ` = `CE(fθ(xi + δi), yi)

8: δ̃i = A(xi, yi, `, ε̃)

9: Ladv = DKL

(
fθ(xi + δ̃i)||fθ(xi)

)
10: else if i% 2 = 0 then
11: ` = `CE(fθ(xi + δi), yi)

12: δ̂i = A(xi, yi, `, 1.5 · εmax)

13: δ̃i = Π∞(δ̂i, ε̃)

14: Ladv = DKL

(
fθ(xi + δ̃i) || α · fθ(xi) + (1− α) · fθ(xi + δ̂i)

)
15: else
16: δi ∼ U(−ε̃, ε̃ )
17: ` = `CE(fθ(xi + δi), yi)− LPIPS(xi, xi + δi)
18: δ̃i = A(xi, yi, `, ε̃)

19: Ladv = DKL

(
fθ(xi + δ̃i)||fθ(xi)

)
20: end if
21: L = `CE(fθ(xi), yi) + Ladv
22: θ = θ − η · ∇θL
23: end for
24: end for

B DETAILS ON THE DATASETS USED

We evaluate the proposed approach on the CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and
SVHN (Netzer et al., 2011) datasets. The three datasets consist of RGB images of spatial dimension
32×32. CIFAR-10 and SVHN contain 10 distinct classes, while CIFAR-100 contains 100. CIFAR-
10 is the most widely used benchmark dataset to perform a comparative analysis across different
adversarial defense and attack methods. CIFAR-100 is a challenging dataset to achieve adversarial
robustness given the large number of diverse classes that are interrelated. Each of these datasets
consists of 50,000 training images and 10,000 test images. While SVHN contains 73257 training
and 26032 testing images. We split the original training set to create a validation set of 1,000
images in CIFAR-10 and 2,500 images in CIFAR-100 and SVHN. We ensure that the validation
split is balanced equally across all classes, and use the remaining images for training. To ensure a
fair comparison, we use the same split for training the proposed defense as well as other baseline
approaches. For CIFAR-10 and CIFAR-100 datasets, we consider the `∞ threat model of radius
8/255 to be representative of imperceptible perturbations, that is, the Oracle label does not change
within this set. While for SVHN we consider this bound to be 4/255. Further, we consider the
`∞ threat model of radius 16/255 to investigate robustness within moderate magnitude perturbation
bounds for CIFAR-10 and CIFAR-100 while this bound is 12/255 for SVHN dataset.

C DETAILS ON TRAINING

The algorithm for the proposed method as explained in Sec.4 is presented in Algorithm-1. We use
a varying ε schedule and start training on perturbations of magnitude ε = 4/255. This results in
marginally better performance when compared to ramping up the value of ε from 0 (E8 of Table-
4). For CIFAR-10 training on ResNet-18, we set the weight of the adversarial loss Ladv in L21 of
Alg.1 (β parameter of TRADES (Zhang et al., 2019)) to 1.5 for the first three-quarters of training,
and then linearly increase it from 1.5 to 3 in the moderate perturbation regime, where ε is linearly
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Table 4: CIFAR-10, CIFAR-100: Ablation experiments on ResNet-18 architecture to highlight the
importance of various aspects in the proposed defense OA-AT. Performance (%) against attacks with
different ε bounds is reported.

CIFAR-10 CIFAR-100

Method Clean GAMA
(8/255)

GAMA
(16/255)

Square
(16/255) Clean GAMA

(8/255)
GAMA

(16/255)
Square
(16/255)

E1: OA-AT (Ours) 80.24 51.40 22.73 31.16 60.27 26.41 10.47 14.60
E2: LPIPS weight = 0 78.47 50.60 24.05 31.37 58.47 25.94 10.91 14.66
E3: Alpha = 1 79.29 50.60 23.65 31.23 58.84 26.15 10.97 14.89
E4: Alpha = 1, LPIPS weight = 0 77.16 50.49 24.93 32.01 57.77 25.92 11.33 15.03
E5: Using Current model (without WA) for LPIPS 80.50 50.75 22.90 30.76 59.54 26.23 10.50 14.86
E6: Using Discriminator instead of LPIPS (OI Attack) 80.56 50.75 22.13 31.17 58.84 26.35 10.64 14.82
E7: Without 2*eps perturbations for AWP 79.96 50.50 22.61 30.60 60.18 26.27 10.15 14.20
E8: Increasing epsilon from the beginning 80.34 50.77 22.57 30.80 60.51 26.34 10.37 14.61
E9: Maximizing KL div in the AWP step 81.19 49.77 21.17 29.39 59.48 25.03 7.93 13.34
E10: Without AutoAugment 80.24 51.40 22.73 31.16 58.08 25.81 10.40 14.31
E11: With AutoAugment (p=0.5) 81.59 50.40 21.59 30.84 60.27 26.41 10.47 14.60
E12: With AutoAugment (p=1) 81.74 48.15 18.92 28.31 60.19 25.32 9.24 13.78
E13: With fixed ε=16/255 71.64 47.59 25.91 31.75 50.99 23.19 9.99 13.48

increased from 12/255 to 16/255. In this moderate perturbation regime, we also linearly increase
the coefficient of the LPIPS distance (Alg.1, L17) from 0 to 1, and linearly decrease the α parameter
used in the convex combination of softmax prediction (Alg.1, L14) from 1 to 0.8. This results in a
smooth transition from adversarial training on imperceptible attacks to attacks with larger perturba-
tion bounds. We set the weight decay to 5e-4.

For all our experiments, we use the cosine learning rate schedule with 0.2 as the maximum learning
rate. We use SGD optimizer with momentum of 0.9, and train for 110 epochs, except for training
PreActResNet18 on CIFAR-100 where we use 200 epochs. We compute the LPIPS distance using
an exponential weight averaged model with τ = 0.995. We note from Table-4 that the use of weight-
averaged model results in better performance when compared to using the model being trained for
the same (E5). This also leads to more stable results across reruns.

We utilise AutoAugment (Cubuk et al., 2018) for training on CIFAR-100, SVHN and for CIFAR-10
training on large model capacities. We apply AutoAugment with a probability of 0.5 for CIFAR-
100, and for the CIFAR-10 model trained on ResNet-34. Since the extent of overfitting is higher
for large model capacities, we use AutoAugment with p = 1 on WideResNet-34-10. While the use
of AutoAugment helps in overcoming overfitting, it could also negatively impact robust accuracy
due to the drift between the training and test distributions. We observe a drop in robust accuracy on
the CIFAR-10 dataset with the use of AutoAugment (E11, E12 in Table-4), while there is a boost
in the clean accuracy. On similar lines, we observe a drop in robust accuracy on the CIFAR-100
dataset as well, when we increase the probability of applying AutoAugment from 0.5 (E11 in Table-
4) to 1 (E12 in Table-4). We use AutoAugment with p = 1 for SVHN as we find it helps in more
stable training of our method. Further we find that using Label Smoothing with CIFAR-100 helps
in improving the clean accuracy as shown in Table-3.

To investigate the stability of the proposed approach, we train a ResNet-18 network multiple times by
using different random initialization of network parameters. We observe that the proposed approach
is indeed stable, with standard deviation of 0.167, 0.115, 0.180 and 0.143 for clean accuracy, GAMA
PGD-100 accuracies with ε = 8/255 and 16/255, and accuracy against the Square attack with
ε = 16/255 respectively over three independent training runs on CIFAR-10. We also observe that
the last epoch is consistently the best performing model for the ResNet-18 architecture. Nonetheless,
we still utilise early stopping on the validation set using PGD 7-step accuracy for all the baselines
to enable a fair comparison overall.

D ABLATION STUDY

In order to study the impact of different components of the proposed defense, we present a detailed
ablative study using ResNet-18 models in Table-4. We present results on the CIFAR-10 and CIFAR-
100 datasets, with E1 representing the proposed approach. First, we study the efficacy of the LPIPS
metric in generating Oracle-Invariant attacks. In experiment E2, we train a model without LPIPS by
setting its coefficient to zero. While the resulting model achieves a slight boost in robust accuracy
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Figure 11: Accuracy and Loss plots on a 1000-sample class-balanced subset of the respective test-
sets of CIFAR-10 and CIFAR-100 datasets. (a, c) Plots showing the trend of Accuracy (%) against
PGD-7 step attacks across variation in attack perturbation bound (ε) on CIFAR-10 and CIFAR-
100 datasets with ResNet-18 architecture. As the perturbation bound increases, accuracy against
white-box attacks goes to 0, indicating the absence of gradient masking (Athalye et al., 2018) (b,
d) Plots showing the variation of Cross-Entropy Loss on FGSM attack (Goodfellow et al., 2015)
against variation in the attack perturbation bound (ε) on CIFAR-10 and CIFAR-100 datasets. As
the perturbation bound increases, loss increases linearly, indicating the absence of gradient masking
(Athalye et al., 2018)

at ε = 16/255 due to the use of stronger attacks for training, there is a considerable drop in clean
accuracy, and a corresponding drop in robust accuracy at ε = 8/255 as well. We observe a similar
trend by setting the value of α to 1 as shown in E3, and by combining E2 and E3 as shown in
E4. We note that E4 is similar to standard adversarial training, where the model attempts to learn
consistent predictions in the ε ball around every data sample. While this works well for large ε
attacks (ε = 16/255), it leads to poor clean accuracy as shown in the first partition of Table-5.

As discussed in Sec.4, we maximize loss on xi+2·δ̃i (where δ̃i is the attack) in the additional weight
perturbation step. We present results by using the standard ε limit for the weight perturbation step
as well, in E7. This leads to a drop across all metrics, indicating the importance of using large
magnitude perturbations in the weight perturbation step for producing a flatter loss surface that
leads to better generalization to the test set. Different from the standard TRADES formulation, we
maximize Cross-Entropy loss for attack generation in the proposed method. From E9 we note that
the use of KL divergence leads to a drop in robust accuracy since the KL divergence based attack
is weaker. This is consistent with the observation by Gowal et al. (2020). We also investigate the
effect of AutoAugment (Cubuk et al., 2018), Weight Averaging (Izmailov et al., 2018) and Label
Smoothing + Warmup on AWP (Wu et al., 2020) baseline in Table- 8.

E DETAILED RESULTS

In Tables-5 and 6, we present results of different defense methods such as AWP-TRADES (Wu
et al., 2020), TRADES (Zhang et al., 2019), PGD-AT (Madry et al., 2018), ExAT (Shaeiri et al.,
2020), ATES (Sitawarin et al., 2020) and FAT (Zhang et al., 2020), evaluated across a wide range
of adversarial attacks. We present evaluations on the Black-Box FGSM attack (Goodfellow et al.,
2015) and a suite of White-Box attacks, on `∞ constraint sets of different radii: 8/255, 12/255 and
16/255. The white-box evaluations consist of the single-step Randomized-FGSM (R-FGSM) attack
(Tramèr et al., 2018), the GAMA PGD-100 attack (Sriramanan et al., 2020) and AutoAttack (Croce
& Hein, 2020b), with the latter two being amongst the strongest of attacks known to date. Lastly,
we also present evaluations on the Square attack (Andriushchenko et al., 2020) for ε = 12/255 and
16/255 in order to evaluate performance on Oracle-Invariant samples at large perturbation bounds.

CIFAR-10: To enable a fair comparison of the proposed approach with existing methods, we present
comprehensive results of various defenses trained with different attack strengths in Table-5. In the
first partition of the table, we present baselines trained using attacks constrained within an `∞ bound
of 16/255. While these models do achieve competitive robustness on adversaries of attack strength
ε = 8/255, 12/255 and 16/255, they achieve significantly lower accuracy on clean samples which
limits their use in practical scenarios. Thus, for better comparative analysis that accounts for the
robustness-accuracy trade-off, we present results of the existing methods with hyperparameters and
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Table 5: CIFAR-10: Performance (%) of the proposed defense OA-AT against attacks with different
ε bounds, when compared to the following baselines: AWP (Wu et al., 2020), ExAT (Shaeiri et al.,
2020), TRADES (Zhang et al., 2019), ATES (Sitawarin et al., 2020), PGD-AT (Madry et al., 2018)
and FAT (Zhang et al., 2020). AWP (Wu et al., 2020) is the strongest baseline. The first partition
shows defenses trained on ε = 16/255. Training on large perturbation bounds results in very poor
Clean Accuracy. The second partition consists of baselines tuned to achieve clean accuracy close to
80%. These are sorted by AutoAttack accuracy (Croce & Hein, 2020b) (AA 8/255). The proposed
defense achieves significant gains in accuracy across all attacks.

Method Attack ε
(Training) Clean FGSM (BB)

(8/255)
R-FGSM
(8/255)

GAMA
(8/255)

AA
(8/255)

FGSM (BB)
(12/255)

R-FGSM
(12/255)

GAMA
(12/255)

Square
(12/255)

FGSM (BB)
(16/255)

R-FGSM
(16/255)

GAMA
(16/255)

Square
(16/255)

TRADES 16/255 75.30 73.26 53.10 35.64 35.12 72.13 44.27 20.24 30.11 70.76 36.99 10.10 18.87
AWP 16/255 71.63 69.71 54.53 40.85 40.55 68.65 47.13 27.06 34.42 67.42 40.89 15.92 24.16
PGD-AT 16/255 64.93 63.65 55.47 46.66 46.21 62.81 51.05 36.95 40.53 61.70 46.40 26.73 32.25
FAT 16/255 75.27 73.44 60.25 47.68 47.34 72.22 53.17 34.31 39.79 70.73 46.88 22.93 29.47
ExAT+AWP 16/255 75.28 73.27 60.02 47.63 47.46 71.81 52.38 34.42 39.62 70.47 45.39 22.61 28.79
ATES 16/255 66.78 65.60 56.79 47.89 47.52 64.64 51.71 37.47 42.07 63.75 47.28 26.50 32.55
ExAT + PGD 16/255 72.04 70.68 59.99 49.24 48.80 69.66 53.96 36.68 41.93 68.04 48.37 23.01 30.21

FAT 12/255 80.27 77.87 61.46 45.42 45.13 76.69 52.33 29.08 36.71 74.79 44.56 16.18 24.59
FAT 8/255 84.36 82.20 64.06 48.41 48.14 80.32 55.41 29.39 39.48 78.13 47.50 15.18 25.07
ATES 8/255 84.29 82.39 65.66 49.14 48.56 80.81 55.59 29.36 40.68 78.48 47.03 14.70 25.88
PGD-AT 8/255 81.12 78.94 63.48 49.03 48.58 77.19 54.42 30.84 40.82 74.37 46.28 15.77 26.47
PGD-AT 10/255 79.38 77.89 62.78 49.28 48.68 76.60 54.76 32.40 41.46 74.75 47.46 18.18 28.29
AWP 10/255 80.32 77.87 62.33 49.06 48.89 76.33 53.83 32.88 40.27 74.13 45.51 19.17 27.56
ATES 10/255 80.95 79.22 63.95 49.57 49.12 77.77 55.37 32.44 42.21 75.51 48.12 18.36 29.07
TRADES 8/255 80.53 78.58 63.69 49.63 49.42 77.20 55.48 33.32 40.94 75.05 47.92 19.27 27.82
ExAT + PGD 11/255 80.68 79.07 63.58 50.06 49.52 77.98 55.92 32.47 41.10 76.12 48.37 17.81 27.23
ExAT + AWP 10/255 80.18 78.04 63.15 49.87 49.69 76.34 54.64 33.51 41.04 74.37 46.54 20.04 28.40
AWP 8/255 80.47 78.22 63.32 50.06 49.87 76.88 54.61 33.47 41.05 74.42 46.16 19.66 28.51
OA-AT (Ours) 16/255 80.24 78.54 65.00 51.40 50.88 77.34 57.68 36.01 43.20 75.72 51.13 22.73 31.16

Gain w.r.t. AWP −0.23 +0.32 +1.68 +1.34 +1.01 +0.46 +3.07 +2.54 +2.15 +1.30 +4.97 +3.07 +2.65

Table 6: CIFAR-100: Performance (%) of the proposed defense OA-AT against attacks with dif-
ferent ε bounds, when compared to the following baselines: AWP (Wu et al., 2020), ExAT (Shaeiri
et al., 2020), TRADES (Zhang et al., 2019), ATES (Sitawarin et al., 2020), PGD-AT (Madry et al.,
2018) and FAT (Zhang et al., 2020). AWP (Wu et al., 2020) is the strongest baseline. The base-
lines are sorted by AutoAttack accuracy (Croce & Hein, 2020b) (AA 8/255). The proposed defense
achieves significant gains in accuracy against the strongest attacks across all ε bounds. Since the
proposed defense uses AutoAugment (Cubuk et al., 2018) as the augmentation strategy, we present
results on the strongest baseline AWP (Wu et al., 2020) with AutoAugment as well.

Method Attack ε
(Training) Clean FGSM (BB)

(8/255)
R-FGSM
(8/255)

GAMA
(8/255)

AA
(8/255)

FGSM (BB)
(12/255)

R-FGSM
(12/255)

GAMA
(12/255)

Square
(12/255)

FGSM (BB)
(16/255)

R-FGSM
(16/255)

GAMA
(16/255)

Square
(16/255)

FAT 8/255 56.61 52.10 34.76 23.36 23.20 49.54 27.77 13.96 18.21 46.01 22.52 8.30 11.56
TRADES 8/255 58.27 54.33 36.20 23.67 23.47 51.64 28.55 13.88 18.46 48.46 22.78 8.31 11.89
PGD-AT 8/255 57.43 53.71 37.66 24.81 24.33 50.90 30.07 13.51 19.62 47.43 23.18 7.40 11.64
ATES 8/255 57.54 53.62 37.05 25.08 24.72 50.84 29.18 13.75 19.42 47.35 22.89 7.59 11.40
ExAT-PGD 9/255 57.46 53.56 38.48 25.25 24.93 51.43 30.60 15.12 20.40 48.15 24.21 8.37 12.47
ExAT-AWP 10/255 57.76 53.46 37.84 25.55 25.27 50.42 30.39 14.98 19.72 46.99 24.48 9.07 12.68
AWP 8/255 58.81 54.13 37.92 25.51 25.30 50.72 30.40 14.71 19.82 46.66 23.96 8.68 12.44
AWP (with AutoAug.) 8/255 59.88 55.62 39.10 25.81 25.52 52.75 31.11 14.80 20.24 49.44 24.99 8.72 12.80
OA-AT (Ours) (with AutoAug.) 16/255 60.27 56.27 40.24 26.41 26.00 53.86 33.78 16.28 21.47 51.11 28.02 10.47 14.60

Gain w.r.t. AWP (with AutoAug.) +0.39 +0.65 +1.14 +0.60 +0.48 +1.11 +2.67 +1.48 +1.23 +1.67 +3.03 +1.75 +1.80

attack strengths tuned to achieve the best robust performance, while maintaining clean accuracy
close to 80% as commonly observed on the CIFAR-10 dataset on ResNet-18 architecture, in the
second partition of Table-5. We observe that the proposed method OA-AT consistently outperforms
other approaches on all three metrics described in Sec.3.3, by achieving enhanced performance
at ε = 8/255 and 16/255, while striking a favourable robustness-accuracy trade-off as well. The
proposed defense achieves better robust performance even on the standard `∞ constraint set of 8/255
when compared to existing approaches, despite being trained on larger perturbations sets.

CIFAR-100: In Table-6, we present results on models trained on the highly-challenging CIFAR-100
dataset. Since this dataset contains relatively fewer training images per class, we seek to enhance
performance further by incorporating the augmentation technique, AutoAugment (Cubuk et al.,
2018; Stutz et al., 2021). To enable fair comparison, we incorporate AutoAugment for the strongest
baseline, AWP (Wu et al., 2020) as well. We observe that the proposed method consistently performs
better than existing approaches by significant margins, both in terms of clean accuracy, as well as
robustness against adversarial attacks conforming to the three distinct constraint sets. Further, this
also confirms that the proposed method scales well to large, complex datasets, while maintaining a
consistent advantage in performance compared to other approaches.
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Table 7: Evaluation against various attacks with a perturbation bound of ε = 8/255 on CIFAR-
10: Performance (%) of the proposed defense OA-AT against various attacks (sorted by Robust
Accuracy) to ensure the absence of gradient masking. †Includes 5000-queries of Square attack.

Attack No. of Steps No. of restarts Robust Accuracy (%)

AutoAttack† Croce & Hein (2020b) 100 20 50.88
GAMA-MT Sriramanan et al. (2020) 100 5 50.90
ODS (98 +2 steps) Tashiro et al. (2020) 100 100 50.94
MDMT attack Jiang et al. (2020) 100 10 51.19
Logit-Scaling attack Carlini & Wagner (2016); Hitaj et al. (2021) 100 20 51.26
GAMA-PGD Sriramanan et al. (2020) 100 1 51.40
MD attack Jiang et al. (2020) 100 1 51.47
PGD-50 (1000 RR) Madry et al. (2018) 50 1000 55.37
PGD-1000 Madry et al. (2018) 1000 1 56.15

F GRADIENT MASKING CHECKS

As discussed by Athalye et al. (2018), we present various checks to ensure the absence of Gradi-
ent Masking in the proposed defense. In Fig.11(a,c), we observe that the accuracy of the proposed
defense on the CIFAR-10 and CIFAR-100 datasets monotonically decreases to zero against 7-step
PGD white-box attacks as the perturbation budget is increased. This shows that gradient based
attacks indeed serve as a good indicator of robust performance, as strong adversaries of large per-
turbation sizes achieve zero accuracy, indicating the absence of gradient masking. In Fig.11(b,d),
we plot the Cross-Entropy loss against FGSM attacks with varying perturbation budget. We observe
that the loss increases linearly, thereby suggesting that the first-order Taylor approximation to the
loss surface indeed remains effective in the local neighbourhood of sample images, again indicating
the absence of gradient masking.

We verify that the model achieves higher robust accuracy against weaker Black-box attacks, as
compared to strong gradient based attacks such as GAMA or AutoAttack in Tables-5,6. We also
observe that adversaries that conform to larger constraint sets are stronger than their counterparts
that are restricted to smaller epsilon bounds, as expected.

In Table-7, we perform exhaustive evaluations using various attack techniques to further verify the
absence of gradient masking. In addition to AutoAttack (Croce & Hein, 2020b) which in itself con-
sists of an ensemble of four attacks- AutoPGD with Cross-Entropy and Difference-of-Logits loss,
the FAB attack (Croce & Hein, 2020a) and Square Attack (Andriushchenko et al., 2020), we present
evaluations against strong multi-targeted attacks such as GAMA-MT (Sriramanan et al., 2020) and
the MDMT attack (Jiang et al., 2020) which specifically target other classes during optimization.
We also consider the untargeted versions of the latter two attacks, the GAMA-PGD and MD attack
respectively. We also present robustness against the ODS attack (Tashiro et al., 2020) with 100
restarts, which diversifies the input random noise based on the output predictions in order to obtain
results which are less dependent on the sampled random noise used for attack initialization. Next,
the Logit-Scaling attack (Carlini & Wagner, 2016; Hitaj et al., 2021) helps yield robust evaluations
that are less dependent on the exact scale of output logits predicted by the network, and is seen to be
effective on some defenses which exhibit gradient masking. However, we observe that the proposed
method is robust against all such attacks, with the lowest accuracy being attained on the AutoAttack
ensemble.

Furthermore, we evaluate the model on PGD 50-step attack run with 1000 restarts. The robust ac-
curacy saturates with increasing restarts, with the final accuracy still being higher than that achieved
on AutoAttack. Lastly, we observe that the PGD-1000 attack is not very strong, confirming that the
accuracy does not continually decrease as the number of steps used in the attack increases. Thus,
we observe that the proposed approach is robust against a diverse set of attack methods, thereby
confirming the absence of gradient masking and verifying that the model is truly robust.

G DETAILS ON CONTRAST CALCULATION

In order to determine the contrast level for a given image, the mean absolute deviation of each
pixel is first computed for the three RGB color channels independently. Following this, top 20% of
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Table 8: Effect of Ancillary Methods applied to AWP baseline: Performance (%) of models
trained by applying AutoAugment (Cubuk et al., 2018), Label Smoothing + Warmup and Weight
Averaging (Izmailov et al., 2018) to the AWP baseline (Wu et al., 2020), against GAMA-PGD100
(Sriramanan et al., 2020) and Square (Andriushchenko et al., 2020) attacks. Results on the CIFAR-
10, CIFAR-100 and SVHN datasets are reported using different ε bounds.

AutoAugment
probability

Label Smoothing
+ Warmup

Weight
Averaging

Metrics of interest Others

Clean GAMA
(8/255)

Square
(16/255)

GAMA
(16/255)

CIFAR-10 (WRN-34-10), 110 epochs
0 × × 85.19 55.87 32.68 24.04
0 × X 85.10 56.07 32.50 23.79

0.5 × × 85.42 55.40 32.25 22.48
0.5 × X 84.85 55.00 32.26 22.50
1 × × 84.60 51.62 29.73 19.77
1 × X 83.81 52.22 30.06 20.03

CIFAR-100 (ResNet-18), 110 epochs
0 × × 58.81 25.51 12.44 8.68

0.5 × × 59.88 25.81 12.80 8.72
0 X X 58.99 26.07 13.10 8.98

0.5 X × 59.82 25.39 13.04 8.62

CIFAR-100 (PreActResNet-18), 200 epochs
0 × × 58.85 25.58 12.39 9.01

0.5 X × 62.10 25.99 13.27 8.91
0.5 X X 62.11 26.21 13.26 9.21
0 X × 59.70 26.61 13.80 9.70
0 X X 59.97 26.90 13.74 9.95

CIFAR-100 (WRN-34-10), 110 epochs
0 × × 62.41 28.98 14.68 10.98
0 × X 61.72 29.78 15.32 11.15

0.5 × × 61.33 29.22 15.18 10.94
0 X × 62.78 29.82 15.70 11.45
0 X X 62.73 29.92 11.55 15.85

0.5 X X 62.23 29.36 15.47 11.20

SVHN (PreActResNet-18), 110 epochs
0 × × 91.91 75.92 35.78 30.70

0.5 × × 90.99 75.37 36.42 31.02
0.5 × X 92.21 72.31 36.02 30.80
1 × × 89.97 75.08 38.47 31.34
1 × X 89.71 74.73 38.41 31.15

pixels which correspond to the highest mean absolute deviations averaged over the three channels
are selected. The variance in intensities over these selected pixels, averaged over the three channels,
is used as a measure of contrast for the image. We sort images in order of increasing contrast and
split the dataset into 10 bins for the evaluations in Fig.5.

H SENSITIVITY OF OA-AT TOWARDS HYPERPARAMETERS

We check the sensitivity of the proposed method across variation in different hyperparameters on
the CIFAR-10 dataset with ResNet-18 model architecture using a 110 epoch training schedule. The
value of the mixup coefficient is varied from 0.6 to 1 as seen in Fig.12. On reducing the value of
mixup coefficient, clean accuracy drops sharply due to the presence of Oracle-Sensitive adversarial
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Figure 12: Sensitivity against variation in Mixup coefficient: (a) Clean Accuracy (%), (b) Ac-
curacy (%) against GAMA-PGD 100-step attack (Sriramanan et al., 2020) at ε = 8/255 and (c)
Accuracy (%) against Square Attack (Andriushchenko et al., 2020) at ε = 16/255 are reported on
the CIFAR-10 dataset. The optimal setting chosen is mixup coefficient of 0.8.
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Figure 13: Sensitivity against variation in Maximum LPIPS coefficient: (a) Clean Accuracy (%),
(b) Accuracy (%) against GAMA-PGD 100-step attack (Sriramanan et al., 2020) at ε = 8/255 and
(c) Accuracy (%) against Square Attack (Andriushchenko et al., 2020) at ε = 16/255 are reported
on the CIFAR-10 dataset. The optimal setting chosen is maximum lpips coefficient of 1.

examples. While a higher value of mixup coefficient helps in improving clean accuracy, it makes the
attack weaker, resulting in a lower robust accuracy. We visualize the effect of changing the maximum
value of LPIPS coefficeint in Fig.13. Using a higher LPIPS coefficient helps in boosting the clean
accuracy while dropping the adversarial accuracy, while a low value close to zero drops both clean
as well as robust accuracy due to the presence of oracle sensitive examples. Finally, we show the
effect of changing the ε used in the mixup iteration. We find that a high epsilon perturbations for
mixup iterartion leads to weak attack since we project every perturbation to a lower epsilon value
while training, resulting in a higher clean accuracy and lower robust accuracy. Overall, we observe
that OA-AT is less sensitive to hyperparameter changes.
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Figure 14: Sensitivity against variation in ε used in mixup iteration: (a) Clean Accuracy (%), (b)
Accuracy (%) against GAMA-PGD 100-step attack (Sriramanan et al., 2020) at ε = 8/255 and (c)
Accuracy (%) against Square Attack (Andriushchenko et al., 2020) at ε = 16/255 are reported on
the CIFAR-10 dataset. The optimal setting chosen is ε = 24 for mixup.
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Figure 15: SVHN, Low-Contrast
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Figure 16: SVHN, High Contrast
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Figure 17: CIFAR-10 Low Contrast
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Figure 18: CIFAR-10 High Contrast
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Figure 19: CIFAR-100 Low Contrast
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Figure 20: CIFAR-100 High Contrast
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