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Abstract

Fine-grained recognition and retrieval are complex tasks
in computer vision due to the high level of similarity be-
tween images of different subclasses. Recent work on fine-
grained image recognition achieved significant improve-
ments by using the attention mechanisms of the Vision or
Swin Transformers to find discriminative image regions at
coarse or fine scales, respectively. Here, we propose Swin-
TransFuse, a novel architecture for fine-grained recognition
that fuses a Swin transformer and a Multiscale Vision trans-
former to capture both local and global features. We also
propose Swin Transformer and SwinTransFuse siamese net-
works for fine-grained image retrieval. Our methods reach
state-of-the-art performance on the CUB-200-2011 and
Stanford Online Products fine-grained datasets.

1. Introduction
The goal of fine-grained image retrieval is to find im-

ages in an extensive database that belong to the same sub-
class as a given query image. This task finds numerous
applications including face retrieval, bird recognition, and
product search. Existing approaches to image retrieval
[1, 15, 13, 10] are based on global descriptors such as
VLAD [9] or Fisher vectors [14] obtained by aggregating
features extracted from convolutional neural networks such
as VGG19 [16] and ResNet [8]. However, global descrip-
tors are insufficient for fine-grained retrieval due to the high
similarity between images of different subclasses, which re-
quires identifying regions in the image that are discrimina-
tive of the subclass.

Related work. Architectures based on transformers [18],
such as the Vision Transformer (ViT) [3], TransFG [6],
the Image Retrieval Transformer (IRT) [4], the Multiscale
Transformer (MViT) [5], and the Swin Transformer [12],
have recently achieved significant improvements in coarse-
and fine-grained image recognition and retrieval. The ViT

captures long-range interactions among image regions by
dividing the image into patch tokens, computing several lay-
ers of self-attention between such tokens and a learned class
token, and then classifying the class token. The TransFG
extends the ViT to fine-grained recognition by using a part
selection module to identify discriminative regions and re-
move redundant information. The selected part tokens,
along with the class token, are fed to a network trained with
a contrastive loss to further increase the distance between
feature representations of samples from different subclasses
and decrease that of samples from the same subclass. The
IRT extends the ViT to image retrieval by using a siamese
ViT network trained with a contrastive loss and differential
entropy regularization. However, the discriminative power
of the IRT is limited by its inability to localize discrimina-
tive regions and capture multiscale level information. The
MViT addresses these issues by using using a multiscale
pyramid where early layers operate at high resolutions and
deep layers operate at coarse resolutions. However, the
ViT, TransFG, IRT and MViT require large-scale training
datasets to perform well and the complexity of computing
self-attention among all token pairs is quadratic on the num-
ber of tokens. The Swin Transformer captures information
at multiple spatial scales while achieving linear computa-
tional complexity by using a hierarchical design in which
the computation of self-attention is reduced to tokens within
local shifted windows. However, its use of local windows
sacrifices the ability to capture global image features.

Paper contributions. This paper proposes SwinTransFuse,
a combined architecture for fine-grained image recognition
that leverages the complementary advantages of the Swin
Transformer, which focuses more on local feature informa-
tion, and a Multiscale Vision Transformer (MSViT), which
captures global feature information at multiple scales. The
SwinTransFuse architecture consists of multiple Swin and
MSViT blocks connected in parallel, whose outputs are
fused before passing to the next block. We also propose
Swin Transformer and SwinTransFuse siamese networks
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Figure 1. Swin Transformer Siamese Network

for fine-grained image retrieval. Both architectures are
trained using a contrastive loss that compares a mini-batch
to a cross batch memory (XBM) [20] queue at each itera-
tion of training. Our experiments demonstrate that the pro-
posed models achieve state-of-the-art performance in sev-
eral datasets for fine-grained image retrieval tasks.

2. Methods

In this section, we introduce the proposed Swin Trans-
former Siamese Network and SwinTransFuse Siamese Net-
work for fine-grained image recognition and retrieval.

2.1. Swin Transformer Siamese Network

The top row of Figure 1 shows the original architec-
ture of the Swin Transformer [12]. In this architecture, a
224x224x3 image is fed to a convolutional layer whose out-
put is a feature of size 56x56x128. This feature is fed to
a network with four stages, each one consisting of a Swin
Transformer block and a Patch Merging layer, which halve
the resolution of the features and double the number of
channels. When used for coarse-grained image recognition,
the output of the last stage of this architecture is fed to a
global average pooling layer followed by an MLP classifi-
cation layer. The resulting network is trained by minimizing
the categorical cross entropy loss Lcross entropy.

While the original Swin Transformer can also be used for
fine-grained recognition by treating each subclass as a sep-
arate category, this strategy does not work well in practice
because different subclasses can be very similar. To min-
imize the similarity of features corresponding to different
subsclasses and maximize the similarity of features corre-
sponding to the same subclass, we use a siamese network
architecture trained with a contrastive loss. Specifically, we
use the Swin Transformer Siamese network shown in Fig-
ure 1, which consists of two parallel Swin Transformers that

share the same weights. We feed two different images, Ii
and Ij , to the two Swin Transformers and compare their
outputs, fi and fj , using the contrastive loss

Lcontrastive batch =
1

N2

N∑
i

[

N∑
j:yi=yj

(1−cos sim(fi, fj))+

N∑
j:yi ̸=yj

max((cos sim(fi, fj)−α), 0)],

(1)

where cos sim(fi, fj) is the cosine similarity of fi and fj ,
α is a margin on the cosine similarity of negative pairs that
prevents the loss from being dominated by easy negatives,
and N is the batch size. The final loss for fine-grained
recognition is the sum of the cross-entropy and contrastive
losses

Ltotal = Lcross entropy + λ ∗ Lcontrastive batch, (2)

where λ is a parameter with default value of 1.
The loss for fine-grained image retrieval includes an ad-

ditional contrastive loss with a cross-batch memory (XBM)
module [20]. The reason is that the performance of image
retrieval methods is related to their ability to mine informa-
tive negative pairs, which is limited by the size of the batch
used in each training iteration. The XBM module main-
tains and updates as a queue that can store a large num-
ber of embeddings and thus help mine informative negative
pairs. Specifically, at each iteration, the XBM enqueues the
embeddings and labels of the current mini-batch, and de-
queues the entities of the earliest mini-batch. This allows
us to compute a contrastive loss Lcontrastive xbm between
the current batch and the entire XBM by evaluating (1) with
fi being the output of the Swin Transformer for an image
in the current batch, and fj being one of the features in the
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Figure 2. SwinTransFuse Siamese Network

XBM. The final loss for fine-grained retrieval is given by

Ltotal = Lcontrastive batch + k ∗ Lcontrastive xbm, (3)

where k is a parameter whose default value is 1.

2.2. SwinTransFuse Siamese Network

First, we present the proposed SwinTransFuse network
for fine-grained image recognition, which combines a Swin
Transformer and a Multiscale Vision Transformer (MSViT)
as shown in the top row of Figure 2. As described in the
previous section, the 224x224x3 input image is first fed
to a convolutional layer that generates a feature of size
56x56x128. This new feature is then fed to a network with
four stages, each one consisting of a Transformer block, a
Swin Transformer block, and a Patch Merging layer. The
Swin Transformer block and the Patch Merging layer are
identical to those in the Swin Transformer described before.
The main difference is that, at each stage, the input feature
is fed in parallel to a Transformer block and a Swin Trans-
former block, whose outputs are then added to produce the
output of that stage. Note that different Transformer blocks
have different spatial scales, hence their concatenation de-
fines a Multiscale Vision Transformer. However, the so ob-
tained MSViT is different from the MViT in [5] in that the
downsampling happens outside the block to parallel the ar-
chitecture of the Swin Transformer. Finally, the output of
the SwinTransFuse network is fed to a pooling layer and an

MLP classifier, and the overall network is trained using the
sum of the cross entropy and contrastive losses, as in (2).

Next, we present the SwinTransFuse Siamese network
for fine-grained image retrieval, which consists of two par-
allel SwinTransFuse networks that share the same weights,
as shown in Figure 2. We separately feed two different im-
ages into these two parallel SwinTransFuse networks and
compute two contrastive losses between their outputs. The
first one is the contrastive loss between the two outputs of
the SwinTransFuse Siamese network, and the second one is
the contrastive loss between the output of one SwinTrans-
Fuse network and the XBM of the output of the other Swin-
TransFuse network, as in (3).

3. Experiments

3.1. Datasets

We evaluate the proposed Swin Transformer Siamese
and SwinTransFuse Siamese networks on the CUB-200-
2011 [2], Stanford Online Products [17], and Cars196 [11]
fine-grained datasets, whose details are shown in Table 1.

Table 1. Datasets for fine-grained tasks
Dataset Category Training Testing

CUB-200-2011 200 5994 5794
Cars196 196 8144 8041

Stanford Online Products 22634 59551 60502
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3.2. Implementation Details

During training we resize the images to 256x256 and
crop them to 224x224. During evaluation we resize the im-
ages to 256x256. The batch size is set to 8 and the XBM
size is set to 8,192. We load the pretrained Swin Trans-
former model on ImageNet21K. We use the SGD optimizer
with a momentum of 0.9. The learning rate is initialized as
0.03 and we use cosine annealing as the optimizer sched-
uler. We train 40K steps for all experiments. For fine-
grained image retrieval, we first train the Swin Transformer
and the SwinTransFuse networks on the image recognition
task, then train the Swin Transformer Siamese network and
the SwinTransFuse Siamese network on the image retrieval
task with the pretrained models from the image recognition
task.

3.3. Results

We compare our SwinTransFuse with the Swin Trans-
former on the fine-grained image recognition task on the
Stanford Online Products, CUB-200-2011 and Cars196
datasets. As we can see in Table 2, our method achieves
higher accuracy than the Swin Transformer on all datasets1.

We then compare our SwinTransFuse Siamese network
and the Swin Transformer Siamese network with CGD [10]
and IRT [4] on the fine-grained image retrieval task. The

1The input image size is 224*224, while others [7, 19] use 448*448.

Recall@K scores for the three datasets are shown in Table 3,
Table 4 and Table 5. As we can see, the Swin Transformer
Siamese network achieves state-of-the-art performance for
all Recall@K scores on the SOP and CUB datasets, while
the SwinTransFuse Siamese Network gets better Recall@K
scores than the Swin Transformer Siamese network on the
Cars196 dataset. However, the CGD method still achieves
the best performance on the Cars196 dataset. We conjecture
this is due to our use of the standard Swin network, thus we
plan to explore using the Swin large version in the future.

4. Conclusion

This paper proposed various novel architecture for fine-
grained image recognition and retrieval. For fine-grained
recognition, we proposed SwinTransFuse, which combines
the complementary advantages of a Swin Transformer and
a Multiscale Vision Transformer to capture both local and
global information at different scales. Our experiments
showed that SwinTransFuse achieves state-of-the-art per-
formance in fine-grained image recognition on three dif-
ferent datasets. We also proposed two siamese architec-
tures for fine-grained retrieval, Swin Tranformer Siamese
Network and SwinTransFuse Siamese Network, and trained
them with a contrastive loss with cross batch memory. Our
experiments showed that the former achieves state-of-the-
art performance on the SOP and CUB-200-2011 datasets.

Table 2. Fine-grained image recognition task on SOP, CUB-200-2011, Cars196 dataset
Model Feature size SOP accuracy CUB-200-2011 accuracy Cars196 accuracy

Swin Transformer 1024 89.64% 87.03% 91.55%
SwinTransFuse Network 1024 90.10% 87.24% 91.81%

Table 3. Fine-grained image retrieval task on Stanford Online Products (SOP) dataset
Model Dataset Feature size recall@1 recall@10 recall@100 recall@1000
CGD SOP 1536 84.2 93.9 97.4 99.2
IRT SOP 384 84.2 93.7 97.3 99.1

Swin Transformer Siamese Network SOP 1024 88.4 95.9 98.2 99.3
SwinTransFuse Siamese Network SOP 1024 88.1 95.7 98.1 99.3

Table 4. Fine-grained image retrieval task on CUB-200-2011 bird dataset
Model Dataset Feature size recall@1 recall@2 recall@4 recall@8
CGD CUB-200-2011 1536 79.2 86.6 92.0 95.1
IRT CUB-200-2011 384 76.6 85.0 91.1 94.3

Swin Transformer Siamese Network CUB-200-2011 1024 86.1 90.4 92.8 94.8
SwinTransFuse Siamese Network CUB-200-2011 1024 86.0 90.2 92.8 94.6

Table 5. Fine-grained image retrieval task on Cars196 dataset
Model Dataset Feature size recall@1 recall@2 recall@4 recall@8
CGD Cars196 1536 94.8 97.1 98.2 98.8
IRT Cars196 384 - - - -

Swin Transformer Siamese Network Cars196 1024 92.2 95.4 97.2 98.3
SwinTransFuse Siamese Network Cars196 1024 92.4 95.6 97.3 98.3
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