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ABSTRACT

As fairness in machine learning has been increasingly important to mitigate bias
in models, various methods to enhance fairness have been proposed. Among
them, the data augmentation approach has shown promising results in improv-
ing fairness. However, existing data augmentation methods on either input or
latent features provide limited evidence of how they discover bias and rectify it.
In this paper, we propose the Adversarial Latent Feature Augmentation (ALFA)
for fairness, which effectively merges adversarial attacks against fairness and data
augmentation in the latent space to promote fairness. Though the adversarial per-
turbation against fairness has been discussed in existing literature, the effect of
such adversarial perturbations has been inadequately studied only as a means to
depreciate fairness. In contrast, in this paper, we point out that such perturbation
can in fact be used to augment fairness. Drawing from a covariance-based fairness
constraint, our method unveils a counter-intuitive relationship between adversarial
attacks against fairness and enhanced model fairness upon training with the resul-
tant perturbed latent features by hyperplane rotation. We theoretically prove that
our adversarial fairness objective assuredly generates biased feature perturbation,
and we validate with extensive experiments that training with adversarial features
significantly improve fairness.

1 INTRODUCTION

Machine learning is widely used in the decision-making process for various applications such as
screening employment applicants, evaluating credit scores, and predicting crime or abuse. Data
imbalance in demographic information might evoke a biasedly trained model, and produce unfair
results in the testing step. For this reason, fairness in machine learning has increasingly drawn
attention to alleviating reluctant bias in learned models. Various methods of achieving fairness have
been proposed with different strategies such as data reweighing, fair representation learning, fair
optimization, and data augmentation.

In machine learning, data augmentation is a pre-processing method that increases data diversity. In
classification tasks, data augmentation is mainly used for enhancing the classifier’s accuracy. It both
enlarges the number of training samples and modifies the training features into more challenging
ones, thereby enabling the classifier to better adapt and learn from a broader range of data variations.
In the same manner, data augmentation can be applied to improve the model’s ability to make a fairer
decision.

However, the transparency and efficacy of utilizing data augmentation in the input space (Jang et al.,
2021; Rajabi & Garibay, 2022) to foster fairness are not inherently evident due to the inherent dif-
ficulties in determining how transformations impact the nonlinear decision hyperplane. This has
led to the exploration of data augmentation strategies in the latent space, which facilitates a more
in-depth study of the impact of augmentation since the decision hyperplane in the latent space is lin-
ear. For example, Fair-Mixup (Mroueh et al., 2021) operates under the assumption of the existence
of a manifold in the latent space between two demographic groups and advocates for data genera-
tion on this manifold through interpolation. However, the manifold assumptions could potentially
be overly stringent. FAAP (Wang et al., 2022b) aims to obfuscate sensitive attributes in the latent
representation by perturbing latent features towards the sensitive hyperplane. The challenges arise
as the perturbation is produced by Generative Adversarial Networks (GANs) model. In the tabular
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dataset, GAN-based perturbation might yield unsuitable generated features not aligning on the sen-
sitive hyperplane. The inadequate perturbation results in a decision boundary that is not sufficiently
fair.

In response to the limitations of existing methods, we consider training on the perturbed latent
features designed as antidote data to mitigate bias. We define the regions of unfairness where a
demographic group is overestimated or underestimated, resulting in the misclassification rate being
disproportionately high. We propose a novel data augmentation technique in the latent space, Ad-
versarial Latent Feature Augmentation (ALFA), explicitly addressing the unfair regions to produce
similar misclassification rates across demographic groups.

First, we define a fairness attack as feature-level adversarial perturbation against fairness constraint.
We employ a covariance-based fairness constraint (Zafar et al., 2017) as an objective function for
fairness attack, and provide theoretical insights on how attacks on such constraints can detrimentally
impact fairness. By maximizing the covariance-based fairness constraint with the frozen pre-trained
classifier, the perturbed latent features are highly biased, posing potential fairness challenges to the
classifier. For example, after the adversarial perturbation, privileged groups may be pushed towards
positive areas, while underprivileged ones towards negative areas, irrespective of their true labels,
hence resulting in a high correlation between the sensitive attribute and the decision. During the
adversarial training, we ensure that the semantic essence of the perturbed features is preserved by
minimizing the Sinkhorn distance (Genevay et al., 2018) between original and perturbed features.

Second, we show that fine-tuning on such perturbed features can yield a ‘rotated’ decision boundary.
Counter-intuitively, the perturbed features cover the unfair regions directly. Therefore, fine-tuning
the perturbed features changes the decision boundary to incorporate the unfair regions, making de-
mographic groups have proportionate misclassification rates. We illustrate this with synthetic data
to visualize how adversarial perturbations can rotate the decision hyperplane in Figure 1.

To validate our approach, we conduct extensive experiments on diverse datasets, including Adult,
COMPAS, German, and Drug datasets, and extend our concept to image classification on CelebA,
demonstrating that our proposed method maintains accuracy while achieving group fairness.

We summarize our contribution as follows:

1. Introduced a novel latent space data augmentation method aimed at identifying and recti-
fying areas of unfairness in classification models.

2. Provided foundational theoretical perspectives elucidating the potential detrimental impacts
of adversarial perturbations on fairness, supported by visual illustrations of the rotated
decision hyperplane.

3. Through experiments on tabular datasets and an image dataset, our method consistently
achieves group fairness with sacrificing minimum accuracy.

2 RELATED WORK

2.1 FAIRNESS IN MACHINE LEARNING

Diverse approaches have been proposed to secure fairness in the classification tasks. At first, Chai
& Wang (2022) and Li & Liu (2022) proposed data reweighing; allocating weights for all samples
according to their importance. Chai & Wang (2022) balanced the gap between demographic groups
weighing error-prone samples in an adaptive way. Li & Liu (2022) adopted influence function (Koh
& Liang, 2017) to evaluate individual sample’s importance in affecting prediction. Wang et al.
(2022a) also utilized the influence function as a constraint to prune influential data samples. Sim-
ilarly, Zafar et al. (2017) and Wu et al. (2019) developed a fairness constraint adopting covariance
between sensitive attribute and classifier, and extending the constraint having convexity.

Some approaches use data augmentation to improve fairness. Jang et al. (2021) and Rajabi &
Garibay (2022) generated new fair data using VAE and GAN, respectively. Hsu et al. (2022) and
Zhao et al. (2020) adopted adversarial samples as data augmentation to improve accuracy and ro-
bustness, respectively. Similarly, Li et al. (2023) generated antidote data analogous to the original
data but containing the opposite sensitive attribute to enhance individual fairness.
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Figure 1: Assume that the demographic group {A = 1} is privileged to be predicted as Y = 1. The
misclassification rates of subgroup {A = 1, Y = 0} and {A = 0, Y = 1} are disproportionately
high, indicated as unfair region in the left figure. Adversarial Latent Feature Augmentation (ALFA)
generates adversarial perturbation in the latent space by the fairness constraint, moving the features
towards a biased direction to make the perturbed features overlap the unfair region. Training on the
perturbed features rotates the decision boundary to cover the unfair region.

Manipulating features in the latent space becomes popular. Mroueh et al. (2021) proposed to gen-
erate new data in the latent space by interpolation between latent features from different sensitive
groups to optimize fairness constraints. Wang et al. (2022b) suggested adversarial perturbation on
the latent features towards the sensitive hyperplane which predicts the demographic group. Sun
et al. (2023) disentangle the latent feature into the sensitive feature and non-sensitive feature and
obfuscate the sensitive feature only. Mao et al. (2023) fine-tune the pre-trained classifier by training
the last layer with the balanced latent features under the designated fairness constraint.

In contrast, there exist attempts to attack fairness. Koh et al. (2018) suggested attacking anomaly
detectors by blending perturbed data with the natural data and by optimizing influence-based gra-
dient ascent. Mehrabi et al. (2021) extended the idea of (Koh et al., 2018) combining the fairness
constraint suggested by Zafar et al. (2017). Similarly, Solans et al. (2020) developed a gradient-
based poisoning attack on algorithmic fairness. Chhabra et al. (2022) proposed a fairness attack and
defense framework in terms of unsupervised learning and fair clustering.

3 PROPOSED METHOD

Motivation. We use Demographic Parity (DP) and Equalized Odds (EOd) as criteria for group
fairness. DP requires independence between the predicted outcome and the sensitive information
A ∈ {0, 1}, P (Ŷ |A = 0) = P (Ŷ |A = 1), i.e. Ŷ ⊥⊥ A. However, the usefulness of DP is limited
to cases where there exists a correlation between Y and A such that Y ⊥̸⊥ A. EOd overcomes the
limitation of DP by conditioning the metric on the ground truth Y , i.e. P (Ŷ |A = 1, Y = y) =

P (Ŷ |A = 0, Y = y),∀y ∈ {0, 1}.
In other words, EOd implies the gap of misclassification rate between two demographic groups
is zero for each true label. In general, when a classifier is biased, the misclassification occurs in a
particular region. For example, if instances in the privileged group have more chance to be predicted
as positive, i.e. P (Ŷ |A = 1) ≥ P (Ŷ |A = 0), the false positive rate of group {A = 1} and the false
negative rate of a group {A = 0} are disproportionately higher, i.e. P (Ŷ = 1|A = 1, Y = 0) ≥
P (Ŷ = 1|A = 0, Y = 0) and P (Ŷ = 0|A = 0, Y = 1) ≥ P (Ŷ = 0|A = 0, Y = 1).

As shown in Figure 1, the unfair regions indicate the misclassified samples reflecting the biased
classifier. The proposed method aims to automatically discover the unfair regions generate perturbed
samples directly covering the unfair regions with over/underestimated demographic groups for each
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label, by attacking the fairness constraint. Training on the perturbed latent features produces a
‘rotated’ decision boundary pruning the misclassification rate of biased subgroups.

3.1 FAIRNESS ATTACK

In this section, we adopt an objective function suggested in (Zafar et al., 2017) for fairness at-
tack, Lfair. Zafar et al. (2017) suggested measurement for disparate impact using a covariance
between the sensitive attribute a and the signed distance dθ from x to the decision boundary, i.e.
Cov(a, dθ) ≈ 0 means fair where the signed distance dθ obtained by the logit (inverse sigmoid)
function from the predicted probability ŷ, i.e. dθ = σ−1(ŷ). Contrary to (Zafar et al., 2017), we
maximize the covariance between the sensitive feature and the signed distance between the perturbed
feature and the decision boundary of the pre-trained classifier. Therefore, the fairness constraint
Lfair is defined

Lfair = |Cov(a, σ−1(ŷ))| = |Cov(a, g(z + δ))| (1)
where the overall model consists of an encoder f and linear classifier g such that ŷ = g(f(x)) =
g(z), x ∈ RN×dinput is the input, z ∈ RN×d is the latent feature, δ ∈ RN×d is the perturbation, N
is the number of instances, and d is the dimension of latent feature. Let z̃ = z + δ and di = g(z̃i),
then Eq.1 becomes

Lfair = |Cov(a, g(z̃))|

=
∣∣∣E[(a− ā)

(
g(z̃)− E[g(z̃)])

]∣∣∣
≈ 1

Np

∣∣∣ Np∑
i=1

(ai − ā)
(
di − d̄

)∣∣∣.
where Np is the number of target samples and d̄ is the mean of all di. In the fairness attack, we
adopt upsampling strategy selecting the same size of samples from each subgroup as a attacking
target such that Np ≈ 4 · max

(
n00, n01, n10, n11

)
, where nay means the number of samples for

each sensitive subset for given y such that nay = |Say|, Say = {i|ai = a, yi = y}, a ∈ {0, 1} and
y ∈ {0, 1}.
Proposition 3.1. Lfair is proportional to the mean signed distance gap (∆ddp) between two sensi-
tive attribute groups, and the sum of the mean signed distance gap (∆deod,y) between the sensitive
groups for each ground truth label y ∈ {0, 1},

Lfair =
1

4
∆ddp

=
1

8

[
∆deod,1 +∆deod,0

]
,

where

∆ddp =
∣∣∣ 1
n1

∑
i∈S1

di −
1

n0

∑
j∈S0

dj

∣∣∣
∆deod,1 =

∣∣∣ 1

n11

∑
i∈S11

di −
1

n01

∑
j∈S01

dj

∣∣∣
∆deod,0 =

∣∣∣ 1

n10

∑
i∈S10

di −
1

n00

∑
j∈S00

dj

∣∣∣
The detailed proof for Proposition 3.1 is in Appendix C.

A positive covariance between two variables indicates that they tend to increase or decrease together,
while a negative covariance means an inverse relationship. A fairness attack aims to maximize the
covariance to make the sensitive attribute significantly affect the decision of the given classifier.
Instead of |Cov(a, g(z̃))| in Lfair, we follow the sign of covariance (Cov(a, y)) of the clean dataset
to determine Lfair in advance of the training to help the attack-based augmented data effectively
exacerbate the fairness for the given classifier,

Lfair =

{
Cov(a, g(z̃)) if Cov(a, y) ≥ 0

−Cov(a, g(z̃)) if Cov(a, y) < 0.
(2)

4



Under review as a conference paper at ICLR 2024

Algorithm 1 Adversarial Latent Feature Augmentation
Require: Clean dataset (Xc,Yc), hyperparameter α, ϵ and λ, the number of epochs T , pretrained

encoder f and classifier g.
Ensure: Fair classifier gθ

Obtain (X ′
c,Y

′
c ) by balanced upsampling for (Xc,Yc).

Obtain latent feature set (Z,Y ′
c ) where Z = f(X ′

c)
Fairness attack to obtain the latent perturbation δ∗ = argmax∥δ∥∞≤ϵ

(
Lfair − αD(z, z + δ)

)
,

∀z ∈ Z
for i = 1, · · · , T do

Fine-tune the classifier g with the adversarial latent feature z̃ = z + δ∗

θ ←− θ∗ = argminθ
∑Np

i=1

(
(1− λ)Lce(g(zi), yi, θ) + λLce(g(zi + δ∗i ), yi, θ)

)
end for

In this way, we observe in Table 2 in Appendix A that the consequent sign of Cov(a, ŷ) also follows
the sign of clean dataset.

Theorem 3.2. If the cardinalities of subgroups Say = {i|ai = a, yi = y}, a ∈ {0, 1},y ∈ {0, 1}
are equal, Lfair is the lower bound of ∆DP and ∆EOd when we approximate the logit (inverse
sigmoid) function as a piecewise linear function with m segments s.t d = fk(ŷ) = akŷ + bk for
k ∈ {1, 2, · · · ,m}, m > 1,m ∈ N, and amax = max(a1, · · · , ak). Then,

Lfair ≤
1

4

(
amax∆DP + C

)
, (3)

Lfair ≤
1

8

(
amax∆EOd+ C0 + C1

)
. (4)

C = 2
N

∑m
k=1(n

(k)
1 − n

(k)
0 )bk, and Ca = 4

N

∑m
k=1(n

(k)
1 − n

(k)
0 )bk are constants where n

(k)
a is the

number of samples in k-th segment for a ∈ {0, 1}.

We set β ≤ ŷ ≤ 1−β when we compute the signed distance to avoid dθ = ln
(

ŷ
1−ŷ

)
→ (∞ or−∞)

so that amax ≤ m
1−2β

[
logit(β + 1−2β

m )− logit(β)
]
, theoretically. In this work, we set β = 1e−7 and

m = 10 for all experiments. The detailed proof for Theorem 3.2 is in Appendix D.

We empirically verify that the naive logit function is feasible as well and effectively attacks the fair-
ness in terms of ∆DP and ∆EOd. However, the upper bound of Lfair with the naive logit function
is not fully supported mathematically, while the piecewise linear logit function can be proved as Ap-
pendix . Moreover, there’s no significant difference in the fairness performances between the naive
logit function and its piecewise linear approximation. We choose the piecewise linear function to
ensure the upper bound of Lfair.

Insights from Theorem 3.2. We randomly choose an equal number of samples to attack for each
subset, i.e. Np

4 = n00 = n01 = n10 = n11 to satisfy the condition in Theorem 3.2. Consequently,
since Lfair is the lower bound of ∆DP and ∆EOd, we can attack fairness by maximizing Lfair

as the perturbed latent features produce unfair prediction with high ∆DP and ∆EOd on given
pre-trained classifier.

3.2 SINKHORN DISTANCE

The goal of an adversarial attack is to lead a classifier to predict poor results on perturbed samples
while maintaining the distribution of given data to keep it semantically meaningful. In order to ef-
fectively attack the classifier, we adopt the Wasserstein Distance (Arjovsky et al., 2017) to minimize
the statistical distance between z and z̃, i.e. D(z, z̃). Wasserstein distance is a powerful tool for
measuring the statistical distance between two probability distributions and is sensitive to small per-
turbations. One drawback of Wasserstein distance is its burden on computational cost. However,
a faster and more accurate algorithm is developed to approximate the Wasserstein distance using
Sinkhorn iteration, Sinkhorn distance (Genevay et al., 2018). Sinkhorn Distance is an approximate
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entropy regularized Wasserstein distance using the Sinkhorn algorithm measuring the distance be-
tween two probability distributions in terms of optimal transport problem. A detailed explanation of
Sinkhorn distance is in Appendix B.

3.3 ADVERSARIAL LATENT FEATURE AUGMENTATION

We propose a novel data augmentation technique in the latent space, Adversarial Latent Feature
Augmentation (ALFA) to mitigate the bias in the binary classification. We pre-train the encoder and
classifier by Empirical Risk Minimization with binary cross entropy loss Lce

min
θ

1

N

N∑
i=1

Lce(g(f(xi)), yi).

where xi ∈ RN×dinput is the input and yi ∈ {0, 1} is the class label. The trained classifier is
potentially biased to the particular sensitive attribute due to the imbalance in the dataset. As
shown in Figure 1, unfair regions are identified for each label caused by a given classifier which
we aim to cover by introducing the perturbed latent features having corresponding labels with the
over/underestimated demographic group.

The adversarial latent features are generated by the fairness attack while maintaining their distribu-
tional similarity by the Sinkhorn distance. During the attacking step, parameters of both encoder f
and linear classifier g are frozen. The direction and magnitude of perturbation are determined by the
fairness attack introduced in Section 3.1 and 3.2,

max
∥δ∥∞≤ϵ

(
Lfair − αD(z, z + δ)

)
. (5)

where α and ϵ are hyperparatmers. The Sinkhorn distance term is obtained by batch-wise computa-
tion.

At last, both the original and adversarial latent features are trained by fine-tuning where the encoder
f is still frozen, and only the parameters in the linear classifier g are updated. The objective function
for the fine-tuning is

min
θ

1

Np

Np∑
i=1

(
(1− λ)Lce(g(zi), yi, θ) + λLce(g(zi + δ∗i ), yi, θ)

)
. (6)

In the Neural Networks, the encoder and the last layer are easily defined. However, in the Logistic
Regression, there’s no encoder is defined. As a special case, in the Logistic Regression, the linear
classifier is pre-trained in the same manner to produce adversarial samples and trained again with our
data augmentation, while the perturbation is conducted on the input space. The detailed algorithm
is introduced in Algorithm 1.

4 EXPERIMENTAL DETAIL

4.1 DATASET

In this paper, we use four different tabular datasets Adult, COMPAS, German, and Drug. Also
CelebA dataset is used for verify the performance of the proposed method in image classification.
All the tabular datasets are split into 60:20:20 for train, validation, and test subset, respectively. The
detailed description of datasets is in Appendix H.

4.2 EXPERIMENTAL SETUP

To verify our approach, we follow the existing data pre-processing, (Mroueh et al., 2021) for the
Adult and CelebA dataset, and (Mehrabi et al., 2021) for other datasets. We apply our method to
two base classifiers for tabular datasets, Logistic Regression and Multilayer Perceptron (MLP) with
ReLU activation function and two hidden layers of 128 dimensions. For the CelebA dataset, we
use ResNet18 (He et al., 2016) as a baseline. During the pre-training, we choose the best parameter
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Figure 2: Pareto Frontier for Logistic Regression.
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Figure 3: Pareto Frontier for MLP.

when the validation accuracy is the highest across the total epochs. In the attacking step and fine-
tuning, the batch size remains the same as the pre-training. We replace the last layer with the newly
initialized layer for fine-tuning, while the parameters for the encoder are frozen. The different
learning rates are used in each step, Adam optimizer with learning rate 1e−3 in pre-training and
fine-tuning, Adam optimizer with learning rate 0.1 in adversarial attack. All hyperparameters are
carefully tuned with the validation set. The details are provided in the Appendix E. For a fair
comparison, we train each case 10 times and report the mean and the standard deviation for tabular
datasets.

4.3 COMPARISON

To verify the ability of our method to improve fairness, we compare the experimental results of other
approaches using data augmentation for fairness, data reweighing, or data manipulation in the latent
space such as Fair-Mixup (Mroueh et al., 2021), TabFairGAN (Rajabi & Garibay, 2022), FAAP
(Wang et al., 2022b), Fair-CDA (Sun et al., 2023), Influence-reweighing (Li & Liu, 2022) and FDR
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(a) CelebA - Smile (b) CelebA - Hair

Figure 4: Experimental Results for CelebA dataset.

(Mao et al., 2023) in Pareto Frontier, Figure 2 and Figure 3. For a fair comparison, we follow their
instruction such as the number of epochs and the batch size, and vary the hyperparameters for each
method as explained in Appendix F.

4.4 RESULT ANALYSIS

4.4.1 ACCURACY-FAIRNESS TRADE-OFF

The FACT Pareto Frontier (Kim et al., 2020) aims to present the trade-off between fairness metrics
and accuracy and shows a model’s achievable accuracy. The optimal line in FACT Pareto Frontier
is based on a fairness-confusion matrix consisting of 8 values according to two sensitive attributes
a ∈ {0, 1}, two truth labels y ∈ {0, 1}, and two prediction labels ŷ ∈ {0, 1}.
In the tabular dataset, ALFA shows the best fairness improvement in most cases, otherwise presents
comparable performance with the best ones as shown in Figure 2, Figure 3 and Figure 4. In de-
tail, ALFA shows an outstanding accuracy-fairness trade-off in all cases with logistic regression
except ∆EOd for the Adult dataset, while still showing comparable results with the best compari-
son method. Similarly, the experimental results with MLP indicate that ours may not be the best in
all cases such as the Adult dataset and ∆EOd in the COMPAS dataset, but is still comparable to the
best ∆EOd. In short, ALFA has a trade-off only in the Adult dataset, since the unfair regions might
contain correctly predicted samples as well. As ALFA doesn’t have an accuracy constraint in the
attacking step, there’s the possibility that the rotated decision boundary prioritizes unfairly classified
features, while compromising the correctly predicted features.

In the visual recognition task, CelebA, ALFA shows the best accuracy-fairness trade-off compared to
FDR and Fair-Mixup, while FAAP is comparable to ours. However, FAAP doesn’t improve fairness
in the case of tabular datasets. In conclusion, ALFA generally augments fairness, demonstrating
superior or competitive results in varied datasets and tasks. The detailed experimental results for
tabular and visual datasets are provided in Appendix G.

4.4.2 ANALYSIS FOR THE COMPARISONS

We analyze how such approaches, FAAP, Fair-Mixup, and ALFA improve fairness on a synthetic
dataset as shown in Figure 5. In FAAP, the author generates adversarial perturbation using GAN
model towards the sensitive hyperplane to make the sensitive attributes not recognizable, while
trying to maintain the accuracy. In the simplified form the objective function becomes,

min
θ

(
Lce(fθ,x+ δ, y)− Lce(fθ,x+ δ, a)

)
.

However, in FAAP, the perturbations are not necessarily towards the sensitive hyperplane as shown
in Figure 5b, especially in the tabular dataset. There could potentially be two reasons for the ob-
served discrepancies: the variations in the population sizes of each demographic group and the
possible unsuitability of GAN-based perturbation for tabular datasets. Moreover, although the per-
turbed samples are correctly projected to the sensitive hyperplane, it doesn’t necessarily lead to the
fairer classifier. In Fair-Mixup, the author uses an interpolation strategy to generate data in the man-
ifold. However, the manifold assumptions could be too strict. Moreover, although the interpolated

8
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(a) Baseline (b) Sensitive Hyperplane Projection (FAAP)

(c) Interpolation (Fair-Mixup) (d) Ours (ALFA)

Figure 5: Comparison of each concept for synthetic unfair data. The light colors (cyan and red)
indicate the manipulated feature. For example, The light colors are perturbed features in FAAP and
ALFA and interpolated features in Fair-Mixup. The solid black line is the original decision boundary
obtained by Logistic Regression, whereas the red dashed line is the updated decision boundary. The
blue dashed line in FAAP indicates the sensitive hyperplane.

data may compensate for the imbalance in the dataset, it doesn’t take into account the unfair regions,
where the misclassification rates are disproportionately high, as shown in Figure 5c.

On the other hand, as discussed in Section 3 and Figure 1, ALFA directly discovers and covers the
unfair regions to rotate the classifier to become fairer.

5 CONCLUSION

In this research, we address the prominent issue of fairness in machine learning models, focusing
on biased models emanating from data imbalance in demographic information. Through a novel
approach, Adversarial Latent Feature Augmentation (ALFA), we effectively manage to identify and
rectify areas of unfairness in classification models, fostering more equitable decision-making pro-
cesses. ALFA ensures the production of biasedly perturbed features by a fairness attack based on
covariance-based constraint. We theoretically show the fairness attack successfully produces bi-
ased latent features. Moreover, we show that fine-tuning the classifier on the perturbed samples
ultimately mitigates the discrepancy in misclassification rates among different demographic groups.
The counterintuitive result of how the biased samples can be remedied to alleviate bias is explained
in illustration with synthetic data. Our method is validated through extensive experiments on diverse
datasets. Remarkably, ALFA is successful in maintaining accuracy while achieving group fairness
across all datasets, showcasing its effectiveness in promoting unbiased machine learning models.
In future directions, we will further extend the proposed method to take into account fairness in
multi-class classification and multi-sensitive attributes problem which is underexplored in this field.
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A COVARIANCE BETWEEN THE LABEL AND THE SENSITIVE ATTRIBUTE.

Table 1: The estimated value of Cov(a, y) and Cov(a, ŷ). We set the sign of Lfair the same as the
covariance.

Cov(a, y) Cov(a, ŷ) Lfair

Adult 0.0439 0.0441 Cov(a, g(z̃))
COMPAS -0.0198 -0.0194 −Cov(a, g(z̃))
German 0.0210 0.0188 Cov(a, g(z̃))

Drug 0.0434 0.0401 Cov(a, g(z̃))

B SINKHORN DISTANCE

Optimal transport with lowest cost is defined as LC = min
P

∑
i,j CijPij , where C is a cost matrix

(2-Wasserstein Distance), and P is the coupling matrix. Genevay et al. (2018) suggested a regu-
larized optimal transport scheme which includes entropy term to secure stability and smoothness of
P , LC = min

P

∑
i,j CijPij − ϵsH(P ) where H(P ) = −

∑
ij Pij logPij . LC can be solved by

Sinkhorn iteration, s.t. Pij = diag(ui)Kijdiag(vj), and updated alternately,

u(k+1) =
a

Kv(k)
,

v(k+1) =
b

KTu(k+1)
,

where P1 = a,P T1 = b, and Gibbs kernel Kij = e−cij/ϵs . Therefore, the distance between clean
data x and perturbed data x̃ can be rewritten as follows,

D(x, x̃) = Sinkhorn Distance(x, x̃)

= min
P (x,x̃)

∑
i,j

Cij(x, x̃)Pij(x, x̃)− ϵsH(P (x, x̃)).

C PROOF OF PROPOSITION 3.1

Proof. Let di = g(z̃), d̄ is the mean of all di and

∆ddp =
∣∣∣ 1
n1

∑
i∈S1

di −
1

n0

∑
j∈S0

dj

∣∣∣
∆deod,1 =

∣∣∣ 1

n11

∑
i∈S11

di −
1

n01

∑
j∈S01

dj

∣∣∣
∆deod,0 =

∣∣∣ 1

n10

∑
i∈S10

di −
1

n00

∑
j∈S00

dj

∣∣∣
where Sa is a subset containing each sensitive attributes Sa = {i|ai = a}, a ∈ {0, 1}, and nay

means the number of samples for each sensitive subset for given y, Say = {i|ai = a, yi = y},
a ∈ {0, 1} and y ∈ {0, 1}. In our experiments, we select samples with the same size such that
N
4 = n00 = n01 = n10 = n11, and N

2 = n0 = n1 where n0 = n00 + n01, n1 = n10 + n11, and
N = n00 + n01 + n10 + n11.
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The objective function Lfair = |Cov(a, g(z̃))| can be rewritten as

Lfair =
1

N

∣∣∣ N∑
i=1

(ai − ā)(di − d̄)
∣∣∣

=
1

N

∣∣∣∑
i∈S1

(1− ā)(di − d̄) +
∑
j∈S0

(0− ā)(dj − d̄)
∣∣∣

=
1

N2

∣∣∣n0

∑
i∈S1

(di − d̄)− n1

∑
j∈S0

(dj − d̄)
∣∣∣

=
1

N2

∣∣∣n0

∑
i∈S1

di − n1

∑
j∈S0

dj − n0n1d̄+ n0n1d̄
∣∣∣

=
n0n1

N2

∣∣∣ 1
n1

∑
i∈S1

di −
1

n0

∑
j∈S0

dj

∣∣∣
=

1

4
∆ddp. (7)

Similarly, we can conditionize Lfair in terms of y,

Lfair =
1

N

∣∣∣ N∑
i=1

(ai − ā)(di − d̄)
∣∣∣

=
1

N

∣∣∣ ∑
i∈S11

(1− ā)(di − d̄) +
∑
j∈S01

(0− ā)(dj − d̄) +
∑
i∈S10

(1− ā)(di − d̄) +
∑
j∈S00

(0− ā)(dj − d̄)
∣∣∣

=
1

N

∣∣∣ ∑
i∈S11

(n01 + n00)

N
(di − d̄)−

∑
j∈S01

(n11 + n10)

N
(dj − d̄)

+
∑
i∈S10

(n01 + n00)

N
(di − d̄)−

∑
j∈S00

(n11 + n10)

N
(dj − d̄)

∣∣∣
=

∣∣∣n11(n01 + n00)

N2

1

n11

∑
i∈S11

di −
n01(n11 + n10)

N2

1

n01

∑
j∈S01

dj

+
n10(n01 + n00)

N2

1

n10

∑
i∈S10

di −
n00(n11 + n10)

N2

1

n00

∑
j∈S00

dj

∣∣∣
=

n11n0

N2

[∣∣∣ 1

n11

∑
i∈S11

di −
1

n01

∑
j∈S01

dj

∣∣∣+ ∣∣∣ 1

n10

∑
i∈S10

di −
1

n00

∑
j∈S00

dj

∣∣∣]
=

1

8

[
∆deod,1 +∆deod,0

]
(8)
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D PROOF OF THEOREM 3.2

Proof. As we fix the sign of Lfair following the sign of Cov(a, y), the sign of ∆ddp and ∆DP are
particularly defined as

∆ddp =
∣∣∣ 1
n1

∑
i∈S1

di −
1

n0

∑
j∈S0

dj

∣∣∣
=

1

n1

∑
i∈S1

di −
1

n0

∑
j∈S0

dj

∆DP =
∣∣∣ 1
n1

∑
i∈S1

ŷi −
1

n0

∑
j∈S0

ŷj

∣∣∣
=

1

n1

∑
i∈S1

ŷi −
1

n0

∑
j∈S0

ŷj

when we assume that Cov(a, y) is positive. In the negative case, the sign of ∆ddp and ∆DP will
be changed simultaneously.

If we assume the logit function as a piecewise linear function with m segments s.t m > 1,m ∈ N,
and recall that ndp = n0 = n1 and N

4 = n00 = n01 = n10 = n11. Let each linear function is
d = fk(ŷ) = akŷ + bk, k = 1, 2, · · · ,m. Then the ∆ddp and ∆DP becomes

∆ddp =
1

n1

∑
i∈S1

di −
1

n0

∑
j∈S0

dj

=

m∑
k=1

[ 1

n1

∑
i∈S

(k)
1

(akŷi + bk)−
1

n0

∑
j∈S

(k)
0

(akŷj + bk)
]

=
1

ndp

m∑
k=1

ak(
∑

i∈S
(k)
1

ŷi −
∑

j∈S
(k)
0

ŷj)

+
1

ndp

m∑
k=1

(n
(k)
1 − n

(k)
0 )bk

≤ amax

ndp

[ m∑
k=1

(
∑

i∈S
(k)
1

ŷi −
∑

j∈S
(k)
0

ŷj)
]
+ C

=
amax

ndp

[∑
i∈S1

ŷi −
∑
j∈S0

ŷj

]
+ C

= amax∆DP + C (9)

where n(k)
a means the number of samples in k-th segment for a ∈ {0, 1} and C = 1

ndp

∑m
k=1(n

(k)
1 −

n
(k)
0 )bk is a constant. Therefore, maximizing Lfair maximizes ∆DP since

Lfair =
1

4
∆ddp ≤

1

4

(
amax∆DP + C

)
. (10)
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Similarly, the same proof can be applied to the relationship between ∆deod,0, ∆deod,1, and ∆EOd
as explained in Eq. (9), such that

∆EOd =
∣∣∣ 1

n11

∑
i∈S11

ŷi −
1

n01

∑
j∈S01

ŷj

∣∣∣+ ∣∣∣ 1

n10

∑
i∈S10

ŷi −
1

n00

∑
j∈S00

ŷj

∣∣∣
=

1

neod

[( ∑
i∈S11

ŷi −
∑
j∈S01

ŷj
)
+

( ∑
i∈S10

ŷi −
∑
j∈S00

ŷj
)]

∆deod,1 =
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n11

∑
i∈S11

di −
1

n01

∑
j∈S01

dj

∣∣∣
=

1

neod

[ ∑
i∈S11

di −
∑
j∈S01

dj

]
≤ amax

neod

[ ∑
i∈S11

ŷi −
∑
j∈S01

ŷj

]
+ C1

∆deod,0 =
∣∣∣ 1

n10

∑
i∈S10

di −
1

n00

∑
j∈S00

dj

∣∣∣
=

1

neod

[ ∑
i∈S10

di −
∑
j∈S00

dj

]
≤ amax

neod

[ ∑
i∈S10

ŷi −
∑
j∈S00

ŷj

]
+ C0

Therefore,

Lfair =
1

8

[
∆deod,1 +∆deod,0

]
≤ 1

8

[amax

neod

[( ∑
i∈S11

ŷi −
∑
j∈S01

ŷj
)
+

( ∑
i∈S10

ŷi −
∑
j∈S00

ŷj
)]

+ C0 + C1

]
=

1

8

[
amax∆EOd+ C0 + C1

]
(11)

where Ca =
∑m

k=1(n
(k)
1 − n

(k)
0 )bk, a ∈ {0, 1} are constants.

E HYPERPARAMETERS

Table 2: Hyperparameters for the experiments for ALFA.

Hyperparameter Search-range

ϵ [0.05, 0.1, 0.5, 1.0]
λ [0.25, 0.5, 0.75, 1.0]
α [0.0, 0.1, 1.0, 10, 100]

total epoch T [10, 50, 200]
attacking iteration 100

batch size 128

F EXPERIMENTAL SETTINGS FOR FAIR COMPARISON

Fair-Mixup. Fair-Mixup is an in-processing data augmentation using interpolation on manifold
between two sensitive groups. Smooth regularizers for linear interpolation on DP and EOd are as
follows

RDP
mixup =

∫ 1

0

∣∣∣∫ ⟨▽xf(tg(x0) + (1− t)g(x1)), g(x0)− g(x1)⟩dP0(x0)dP1(x1)
∣∣∣dt,

REOd
mixup =

∑
y∈{0,1}

∫ 1

0

∣∣∣∫ ⟨▽xf(tx0 + (1− t)x1), x0 − x1⟩dP y
0 (x0)dP

y
1 (x1)

∣∣∣dt,
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where g : X −→ Z is a feature encoder. The final objective function of Fair Mixup is

Lmixup = Lacc + λRmixup(f).

For a fair comparison, we vary the ratio of regularizer adjusting λ ∈ {0.1, 0.3, 0.5, 0.7} for tabular
datasets and λ = 20 for CelebA dataset as suggested in the released implementation.

TabFairGAN. It aims to produce high-quality tabular data containing the same joint distribution
as the original dataset using Wasserstein GAN. The training algorithm in (Rajabi & Garibay, 2022)
consists of two phases, training for accuracy (phase 1) and training for both accuracy and fairness
(phase 2). In both phases, the loss function for critics C adopts gradient penalty (Gulrajani et al.,
2017).

Vc =Ex̂∼Pg
[C(x̂)]− Ex∼Pr [C(x)] + λcEx̄∼Pg [(∥▽x̄C(x̄)∥2 − 1)2]

The loss function for the generator differs from each phase.

VG =− Ex̂∼Pg
[C(x̂)] (phase 1)

VG =− Ex̂,ŷ,â∼Pg
[C(x̂, ŷ, â)]− λf (Ex̂,ŷ,â∼Pg

[ŷ|â = 0]− Ex̂,ŷ,â∼Pg
[ŷ|â = 1]) (phase 2)

where λf is hyperparameter. We excute TabFairGAN with various λf ∈ {0.1, 0.3, 0.5, 0.7} for fair
comparison since the implementation uses λf = 0.5.

FAAP FAAP aims to generate a perturbation using GANs, while the generator makes perturbation
and the discriminator predicts the perturbed features’ sensitive attributes. In formula,

LD = Lce(D(f(x̂), a))

Lfair
G = −LD − αH(D(f(x̂), a))

LT
G = Lce(g(f(x̂)), y))

where G is a generator, D is a discriminator, x̂ is the perturbed samples,H is the entropy, g is label
predictor (classifier), and f is an encoder. The final formulation becomes

argmax
G

min
D
Lce(D(g(x̂)), a) + αH(D(g(x̂))− βLT

G

where g(x̂) = g(x+G(x)). As the architectures for the generator and discriminator are not provided,
we set a generator as an MLP model with two hidden layers with 128 nodes, having a ReLU activa-
tion function. For the discriminator, we adopt the same network with the label predictor in each tabu-
lar dataset and image dataset. For the fair comparison, we grid search α and β by α ∈ {0.1, 1.0, 10}
and β ∈ {0.1, 1.0, 10} since the value is not given in the original paper.

FDR FDR is a simple fine-tuning method, including balanced sampling in the latent features, and
use fairness constraint as a objective function. In detail, the Equalized-odds-based fairness constraint
is

fpr =
∣∣∣∑i pi(1− yi)ai∑

i ai
−

∑
i pi(1− yi)(1− ai)∑

i(1− ai)

∣∣∣
fnr =

∣∣∣∑i(1− pi)yiai∑
i ai

−
∑

i(1− pi)yi(1− ai)∑
i(1− ai)

∣∣∣
where pi denotes the predicted probability. The final objective function for the fine-tuning is

min
θ

[
Lce(g) + α(fpr + fnr)

]
.

As suggested in the original paper, we search α ∈ {0.5, 1, 2, 5, 10}.
Fair-CDA Fair-CDA aims to disentangle latent features into ‘sensitive feature’ and ‘non-sensitive
feature’, and obfuscate the sensitive features to obtain a fairer classifier. Fair-CDA consists of three
extractor, h, hy , and ha as

zi = h(xi), z
y
i = hy(zi), z

a
i = ha(zi)

hy should extract features only related to the label predictions, while ha is related to the sensitive
attribute only. The regularization becomes

β(Ly
i + L

a
i + L⊥

i )
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and

Ly
i = Lce(gy(z

y
i ), yi)

La
i = Lce(ga(z

a
i ), ai)

L⊥
i =

⟨∇ziL
y
i ,∇ziLa

i ⟩2

∥∇ziL
y
i ∥2 · ∥∇ziLa

i ∥2
.

where gy and ga are two classifier for y and a, respectively. In stage 1 for the first 450 epochs, the
objective function is

1

n

n∑
i=1

Li + β(Ly
i + L

a
i + L⊥

i ),

where Li = Lce(g([z
y
i , z

a
i ]), yi). For stage 2, Fair-CDA conducts semantic augmentation to make

the sensitive features along the direction to increase the attribute loss,

z̃ai = zai + αi

∇za
i
Lce(ga(z

a
i ), ai)

∥∇za
i
Lce(ga(zai ), ai)∥

Based on the obtained z̃ai and the solution of the task model in stage 1; ĝ, obtain two loss functions
for stage 2 for 50 epochs,

L̃i = Lce(g([z
y
i , z̃

a
i ]), yi)

L̂i = Lce(g([z
y
i , z̃

a
i ]), ĝ([z

y
i , z̃

a
i ])).

Then, the final objective function for stage 2 becomes

1

n

n∑
i=1

γL̃i + (1− γ)L̂i + β(Ly
i + L

a
i + L⊥

i ).

Fair-CDA requires five hyperparameters, perturbation size αi randomly drawn by U(0, λ) where
λ ∈ {0, 1, 10, 100, 1000}. γ = 0.9 as written in the paper, and β is the initial loss value. As the
learning rate for stages 1 and 2 are not given, we grid search η1, η2 ∈ {0.0001, 0.001, 0.01} as well
as λ.
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G DETAILS IN EXPERIMENTAL RESULTS

Result comparison for accuracy, ∆DP , and ∆EOd with other fairness approaches. Blue means
the best result for each dataset, and Cyan means the second best. Red means the worst case. The
results are reported when the accuracy is the highest among the points in the Pareto Frontier for each
method. The results show that our method is always the best or second best in improving fairness.

Adult Logistic Regresesion
Acc. ∆DP ∆EOd

Fair-Mixup 0.8373±0.0221 0.1333±0.0117 0.0954±0.0116
FAAP 0.8473±0.0012 0.1848±0.0127 0.1922±0.0234
FDR 0.8425±0.0003 0.1608±0.0018 0.0635±0.0015

TabFairGAN 0.8378±0.0004 0.1983±0.0025 0.3043±0.0084
Fair-CDA 0.8461±0.0003 0.1794±0.0010 0.1870±0.0040

Ours 0.8336±0.0012 0.1703±0.0032 0.0945±0.0065

Adult MLP
Acc. ∆DP ∆EOd

Fair-Mixup 0.8469±0.0032 0.1228±0.0084 0.0539±0.0180
FAAP 0.8502±0.0013 0.1501±0.0164 0.1025±0.0418
FDR 0.8367±0.0001 0.2160±0.0005 0.2191±0.0011

TabFairGAN 0.8366±0.0065 0.1586±0.0072 0.1209±0.0225
Fair-CDA 0.8501±0.0016 0.1650±0.0031 0.1421±0.0164

Ours 0.8398±0.0009 0.1405±0.0034 0.0936±0.0092

COMPAS Logistic Regresesion
Acc. ∆DP ∆EOd

Fair-Mixup 0.6261±0.0255 0.0274±0.0176 0.0866±0.0284
FAAP 0.6586±0.0035 0.2529±0.0204 0.4888±0.0451
FDR 0.6676±0.0035 0.0304±0.0187 0.1069±0.0393

TabFairGAN 0.6112±0.0229 0.0776±0.0633 0.1579±0.1169
Fair-CDA 0.6589±0.0004 0.2712±0.0019 0.5260±0.0045

Ours 0.6696±0.0017 0.0093±0.0072 0.0571±0.0140

COMPAS MLP
Acc. ∆DP ∆EOd

Fair-Mixup 0.6620±0.0036 0.0562±0.0155 0.0735±0.0214
FAAP 0.6751±0.0039 0.1246±0.0196 0.1925±0.0391
FDR 0.6690±0.0007 0.0363±0.0070 0.0231±0.0088

TabFairGAN 0.6701±0.0094 0.0603±0.0224 0.0759±0.0397
Fair-CDA 0.6622±0.0025 0.2372±0.0140 0.4468±0.0310

Ours 0.6701±0.0009 0.0173±0.0079 0.0276±0.0189
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German Logistic Regresesion
Acc. ∆DP ∆EOd

Fair-Mixup 0.7530±0.0087 0.0669±0.0100 0.2145±0.0333
FAAP 0.7205±0.0266 0.1006±0.0642 0.3152±0.1086
FDR 0.7450±0.0160 0.0206±0.0210 0.1443±0.0404

TabFairGAN 0.7445±0.0220 0.0624±0.0339 0.2511±0.0622
Fair-CDA 0.7885±0.0071 0.0609±0.0199 0.2952±0.0612

Ours 0.7955±0.0076 0.0103±0.0077 0.1252±0.0174

German MLP
Acc. ∆DP ∆EOd

Fair-Mixup 0.7615±0.0180 0.1137±0.0382 0.1644±0.0431
FAAP 0.7855±0.0101 0.0379±0.0235 0.2251±0.0814
FDR 0.7650±0.0000 0.0284±0.0000 0.2036±0.0000

TabFairGAN 0.7335±0.0136 0.0676±0.0317 0.2274±0.0878
Fair-CDA 0.7385±0.0147 0.0655±0.0287 0.2582±0.0882

Ours 0.7370±0.0060 0.0129±0.0006 0.1766±0.0021

Drug Logistic Regresesion
Acc. ∆DP ∆EOd

Fair-Mixup 0.6634±0.0096 0.1670±0.0458 0.2728±0.0403
FAAP 0.6605±0.0134 0.3225±0.0788 0.5616±0.1664
FDR 0.6714±0.0068 0.2328±0.0110 0.3726±0.0234

TabFairGAN 0.5772±0.0903 0.2125±0.1002 0.4187±0.1179
Fair-CDA 0.6679±0.0081 0.3288±0.0366 0.5707±0.0769

Ours 0.6607±0.0870 0.0812±0.0209 0.1160±0.0410

Drug MLP
Acc. ∆DP ∆EOd

Fair-Mixup 0.6310±0.0179 0.0265±0.0235 0.1336±0.0450
FAAP 0.6682±0.0107 0.2467±0.0137 0.4049±0.0284
FDR 0.6485±0.0040 0.2310±0.0016 0.4007±0.0053

TabFairGAN 0.6316±0.0203 0.1704±0.0373 0.2708±0.0695
Fair-CDA 0.6753±0.0060 0.3534±0.0216 0.6227±0.0419

Ours 0.6416±0.0073 0.0603±0.0286 0.0655±0.0451

H DATASET DETAILS

UCI Adult Dataset. Adult dataset (Dua et al., 2017) contains 48,842 individuals’ information about
income obtained from the 1994 US Census database. The target label is binarized to determine
whether the income exceeds $50K/yr. Similar to (Mroueh et al., 2021) and (Yurochkin et al., 2019),
samples including missing values are dropped so that the number of available samples is 45,222.
The sex feature is used as a sensitive attribute.

CelebA ResNet-18
Smile Acc. ∆DP ∆EOd

Fair-Mixup 0.9092 0.1473 0.0575
FAAP 0.9270 0.1721 0.0735
FDR 0.9214 0.1537 0.0385
Ours 0.9213 0.1529 0.0377

CelebA ResNet-18
Hair Acc. ∆DP ∆EOd

Fair-Mixup 0.7887 0.3849 0.6369
FAAP 0.8180 0.3551 0.5702
FDR 0.8181 0.3691 0.4149
Ours 0.8230 0.3477 0.4080
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COMPAS Dataset. COMPAS dataset (Jeff Larson & Angwin, 2016) contains 7,214 samples about
criminal defendants and risk of recidivism with 8 attributes. It aims to classify whether a person
commits a crime in the two years after they were scored. The sex feature is used as a sensitive
attribute.

German Credit Dataset. German dataset (Dua et al., 2017) contains the credit profiles for 1,000
individuals with 20 attributes such as accounts, income, properties, and gender. The prediction goal
is to classify whether a person has good or bad credit risks. The gender feature is used as a sensitive
attribute.

Drug Consumption Dataset. Drug Consumption dataset (Dua et al., 2017) contains records from
1,885 respondents about drug consumption. Each data point has 12 attributes including the level of
education, age, gender, and so on. The original task is multi-classification for 7 classes of whether
and when respondents experienced drugs, but our prediction goal is abridged whether they consumed
cocaine or not. The gender feature is used as a sensitive attribute.

CelebA Dataset. CelebA dataset (Liu et al., 2018) contains more than 200,000 celebrity face im-
ages, each coupled with 40 human-annotated binary characteristics such as gender. From these
characteristics, we specifically choose smile and wavy hair, utilizing them to establish three binary
classification assignments, with gender regarded as the sensitive attribute. We select these particu-
lar attributes as, in every task, a sensitive group is present which has a higher number of positive
samples compared to the other.

Table 3: Features used from the Adult, COMPAS, German Credit, and Drug Consumption datasets.

Adult

age workclass education-num marital-status
occupation relationship race sex
capital-gain capital-loss hours-per-week

COMPAS

sex age cat race juv fel count
juv misd count juv other count priors count c charge degree

German

Checking Account Duration Credit history Purpose
Credit amount Savings account Employment Installment rate

Gender Debtors/guarantors Residence Property
Age Installment plans Housing Existing credits
Job Liability Telephone Foreigner credits

Drug

Age Gender Education Country
Ethnicity Nscore Escore Oscore
Ascore Cscore Impulsive SS
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I ADDITIONAL EXPERIMENTS

I.1 MULTI-LABEL CLASSIFICATION SCENARIO

We clarify that ALFA can be applied to the multi-label classification with binary-protected features
as it can be seen in multiple binary classification scenarios having individual decision boundaries. In
this case, the fairness loss is newly defined as covariance between a sensitive attribute and the mean
of the signed distances, Lfair = Cov(a, 1

T

∑T
t=1 gt(zt + δt)) where T is the number of targeted

prediction.

Luckily, one of our datasets, the Drug Consumption dataset (Dua et al., 2017) has multiple labels.
To further investigate the feasibility of our framework for the multi-label classification, we conduct
additional experiments on the Drug Consumption dataset choosing four prediction goals, Cocaine,
Benzodiazepine, Ketamine, and Magic Mushrooms while only Cocaine is considered as a prediction
goal in the manuscript. The experimental result shows that ALFA effectively mitigates biases in the
multi-label classification.

Accuracy Cocaine Benzos Ketamine Mushrooms

Logistic Regression 0.7057 ± 0.0099 0.6689 ± 0.0113 0.6989 ± 0.0267 0.7223 ±0.0094
Logistic Regression + ALFA 0.6816 ± 0.0114 0.6643 ± 0.0122 0.7505 ± 0.0023 0.7307 ±0.0082

MLP 0.6802 ± 0.0144 0.6527 ± 0.0138 0.7551 ± 0.0094 0.7053 ±0.0114
MLP + ALFA 0.6701 ± 0.0057 0.6138 ± 0.0036 0.7343 ± 0.0031 0.6587 ±0.0057

∆DP Cocaine Benzos Ketamine Mushrooms

Logistic Regression 0.2691 ± 0.0232 0.3597 ± 0.0298 0.2478 ± 0.1140 0.4151±0.0372
Logistic Regression + ALFA 0.0986 ± 0.0289 0.2666 ± 0.0424 0.0248 ± 0.0070 0.3993±0.0425

MLP 0.2183 ± 0.0222 0.3179 ± 0.0278 0.0903 ± 0.1320 0.4072±0.0206
MLP + ALFA 0.0760 ± 0.0114 0.1808 ± 0.0137 0.0368 ± 0.0103 0.2384±0.0099

∆EOd Cocaine Benzos Ketamine Mushrooms

Logistic Regression 0.4411 ± 0.0483 0.6448 ± 0.0635 0.5184 ± 0.2320 0.7096 ±0.0732
Logistic Regression + ALFA 0.1234 ± 0.0471 0.4498 ± 0.0858 0.0689 ± 0.0158 0.6621±0.0911

MLP 0.3505 ± 0.0449 0.5601 ± 0.0597 0.2492 ± 0.0385 0.6912±0.0441
MLP + ALFA 0.0963 ± 0.0249 0.2971 ± 0.0193 0.1215 ± 0.0153 0.3628±0.0185

Table 4: Experimental results for multi-label classification

I.2 MULTIPLE SENSITIVE ATTRIBUTE SCENARIO

In the binary classification with multi-protected features, the Differential Fairness (DF) is measured
by binarization of each multi-protected features. For example, Foulds et al. (2020) defined DF

DF = max
i,j∈S

(
max(

∣∣log P (y = 1|a = i)

P (y = 1|a = j)

∣∣, ∣∣ log P (y = 1|a = i)

P (y = 1|a = j)

∣∣)
where i, j ∈ S, and S denotes the set of the multiple sensitive attributes. Therefore, in the multi-
protected feature case, we can define ’unfair region’ by finding a particular sensitive attribute pro-
voking the maximum mistreatment and reducing the misclassification rate of the unfair region as
well as the binary sensitive attribute case.

For the multiple sensitive attribute setting, we adopt COMPAS dataset and MEPS dataset. MEPS
(Bellamy et al., 2018) data consists of 34,655 instances with 41 features(e.g. demographic infor-
mation, health services records, costs, etc.) Among all the features, only 42 features are used. The
sum of total medicare visiting is used as a binary target label. When the total number of visiting is
greater or equal to 10, a patient is labeled as 1, otherwise 0. And ‘race’ is used as multiple sensitive
attributes, 0 for White, 1 for Black, and 2 for others. The experimental result shows that ALFA is
also applicable to the multiple sensitive attributes scenario.
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COMPAS Acc. DF

MLP 0.6875±0.0048 1.7500±0.5794
MLP + ALFA 0.6895±0.0023 1.3960±0.0892

MEPS Acc. DF

MLP 0.6208±0.0137 0.2900±0.0700
MLP + ALFA 0.6860±0.0024 0.1985±0.0226

Table 5: Experimental results for multiple sensitive attributes fairness

I.3 MULTI-CLASS CLASSIFICATION SCENARIO

For the multi-class classification, the decision boundaries are not linear, so our framework might not
be directly applicable. However, multi-class classification can indeed be conceptualized as multiple
binary classifications in a certain strategy called **One-Vs-All**. In this approach, for a problem
with N classes, we can create N different binary classifiers. Each classifier is trained to distinguish
between one of the classes and all other classes combined.

As each classifier can be seen as a binary classification task, we can utilize ALFA for the multi-class
classification scenario by detecting unfair regions and recovering the region by fairness attack. The
evaluation metric for multi-class fairness takes maximum Demographic Parity across the classes
(Denis et al., 2021). In details,

∆DPmulti = max
k∈[K]

∣∣P (Ŷ = k|a = 1)− P (Ŷ = k|a = 0)
∣∣

where Ŷ is the predicted class, and k ∈ [K] denotes each class k in the multi-class classification.

Among existing datasets for fairness research, Drug dataset can be used for multi-class classification.
In fact, the original labels of the Drug dataset are multi-class settings, from ‘CL0’ to ‘CL6’ indicating
the frequency of drug abuse. We have binarized them as ‘never used’ and ‘ever used’ regardless of
the frequency in the main paper. However, for the multi-class classification setting, we adopt the
original multi-class setting and report the mean accuracy and ∆DPmulti with MLP.

Drug Multi-class Acc. ∆DPmulti

MLP 0.5196±0.0032 0.1930±0.0132
MLP + ALFA 0.4960±0.0219 0.1733±0.0287

Table 6: Experimental results for multi-class classification

I.4 MORE COMPLEX MODEL

To verify the effectiveness of our framework on the tabular dataset, we extend the experiment using
1) a ResNet-like backbone, and 2) a Transformer-like backbone designed for tabular datasets both
proposed in (Gorishniy et al., 2021). The figures of Pareto Frontier show that ALFA is applicable to
more complex model.

I.5 MORE COMPLEX DATASET (NLP)

Moreover, we further explore the adaptability of the proposed method to the Natural Language Pro-
cessing (NLP) dataset. We utilize Wikipedia Talk Toxicity Prediction (Thain et al., 2017) which is
a comprehensive collection aimed at identifying toxic content within discussion comments posted
on Wikipedia’s talk pages, produced by the Conversation AI project. In this context, toxicity is
defined as content that may be perceived as “rude, disrespectful, or unreasonable.” It consists of
over 100,000 comments from the English Wikipedia, each meticulously annotated by crowd work-
ers, as delineated in their associated research paper. A challenge presented by this dataset is the
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Figure 6: Pareto Frontier for ResNet (Gorishniy et al., 2021).
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Figure 7: Pareto Frontier for FT-Transformer (Gorishniy et al., 2021).

underrepresentation of comments addressing sensitive subjects such as sexuality, religion, gender
identity, and race. In this paper, the existence of sexuality terms such as ’gay’, ’lesbian’, ’bisexual’,
’homosexual’, ’straight’, and ’heterosexual’ is used as the sensitive attribute, 1 for existing, and 0
for absence.

For the NLP dataset, we use a pre-trained word embedding model, Glove (Pennington et al., 2014)
to produce input data and use MLP and LSTM network (Hochreiter & Schmidhuber, 1997) for the
experiments.

J ANOTHER FAIRNESS CONSTRAINT

In this part, we show that ALFA can adopt any types of fairness constraint during the fairenss attack.
As an alternative of (Zafar et al., 2017), we present (Wu et al., 2019) below.
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Toxicty Accuracy ∆DP ∆EOd

MLP 0.9345 ± 0.0043 0.1735 ± 0.0066 0.0734 ± 0.0145
MLP + ALFA 0.9349 ± 0.0002 0.1684 ± 0.0019 0.0500 ± 0.0049

LSTM 0.9294 ± 0.0007 0.1922 ± 0.0053 0.0806 ± 0.0095
LSTM + ALFA 0.9280 ± 0.1001 0.1872 ± 0.0001 0.0607 ± 0.0004

Table 7: Experimental results for NLP dataset

Let’s say f(X) is a logit of binary classifier given data X and define indicator functions 1(·) where
· denotes each condition for the indicator function.

The empirical DP Gap is

∆DP (f) =
1

|1(a = 1)|
∑
a=1

1(f(X) > 0)− 1

|1(a = 0)|
∑
a=0

1(f(X) > 0).

and can be rewritten in the expected form as

∆DP (f) = E
[1(a = 1)

p1
1(f(X) > 0)− (1− 1(a = 0)

1− p1
1(f(X) < 0))

]
where p1 = p(a = 1).

Moreover, the relaxed form replacing the indicator function to real-valued function is written as

∆DP (f) = E
[1(a = 1)

p1
f(X)− (1− 1(a = 0)

1− p1
f(X))

]
.

In (Wu et al., 2019), f(X) is replaced again to construct a convex form using two different surrogate
functions to use ∆DP as a fairness constraint,

∆DPκ(f) = E
[1(a = 1)

p1
κ(f(X))−

(
1− 1(a = 0)

1− p1
κ(−f(X))

)]
∆DPδ(f) = E

[1(a = 1)

p1
δ(f(X))−

(
1− 1(a = 0)

1− p1
δ(−f(X))

)]
where κ is a convex surrogate function κ(z) = max(z + 1, 0) and δ is a concave surrogate function
δ(z) = min(z, 1) as proposed in (Wu et al., 2019). If ∆DP (f) ≥ 0, we directly use ∆DPκ(f) as
a fairness constraint, otherwise use ∆DPδ(f),

Lfair =


∆DPκ(f) if ∆DP ≥ 0

∆DPδ(f) if ∆DP < 0.

Also, it can be extended to use ∆EOD directly as a fairness constraint, by conditioning ∆DP for
each y ∈ {0, 1}.

∆EOD =
[ 1

|1(a = 1, y = 1)|
∑

a=1,y=1

1(f(x) > 0)− 1

|1(a = 0, y = 1)|
∑

a=0,y=1

1(f(x) > 0)
]

+
[ 1

|1(a = 1, y = 0)|
∑

a=1,y=0

1(f(x) > 0)− 1

|1(a = 0, y = 0)|
∑

a=0,y=0

1(f(x) > 0)
]
,

and can be rewritten in the expected form as

∆EOD(f) = E
[1(a = 1, y = 1)

p1,1
1(f(X) > 0)−

(
1− 1(a = 0, y = 1)

π − p1,1
1(f(X) < 0)

)]
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+E
[1(a = 1, y = 0)

p1,0
1(f(X) > 0)−

(
1− 1(a = 0, y = 0)

1− π − p1,0
1(f(X) < 0)

)]
since 1 = E[1(a=0,y=1)

p0,1
] = E[1(a=0,y=1)

π−p1,1
] = E[1(a=0,y=1)

π−p1,1
1(f(X) < 0) + 1(a=0,y=1)

π−p1,1
1(f(X) >

0)] and 1 = E[1(a=0,y=0)
p0,0

] = E[1(a=0,y=0)
1−π−p1,0

] = E[1(a=0,y=0)
1−π−p1,0

1(f(X) < 0) + 1(a=0,y=0)
1−π−p1,0

1(f(X) >

0)], π = p(y = 1) and p(y = 0) = 1− π where p1,1 = P (a = 1, y = 1) and p1,0 = P (a = 1, y =
0). ∆EOD can be expressed as a convex form,

∆EODκ(f) = E
[1(a = 1, y = 1)

p1,1
κ(f(X))−

(
1− 1(a = 0, y = 1)

π − p1,1
κ(−f(X))

)]
+E

[1(a = 1, y = 0)

p1,0
κ(f(X))−

(
1− 1(a = 0, y = 0)

1− π − p1,0
κ(−f(X))

)]

∆EODδ(f) = E
[1(a = 1, y = 1)

p1,1
δ(f(X))−

(
1− 1(a = 0, y = 1)

π − p1,1
δ(−f(X))

)]
+E

[1(a = 1, y = 0)

p1,0
δ(f(X))−

(
1− 1(a = 0, y = 0)

1− π − p1,0
δ(−f(X))

)]
.

where

Lfair =


∆EODκ(f) if ∆EOD ≥ 0

∆EODδ(f) if ∆EOD < 0.

Therefore, different from the covariance (Zafar et al., 2017) between prediction and sensitive at-
tribute, the convex fairness constraint takes into account the empirical outputs considering all poten-
tial dependencies, not focusing on a particular attribute.

K ANALYSIS ON SYNTHETIC DATA

Figure 8: Decision boundary before (left) and after (right) the fairness attack. The blue and orange
points indicate the original data distribution. The cyan and magenta points indicate the perturbed
data from the original distribution. The decision boundary is rotated from black to red line.
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Figure 9: The impact of perturbation magnitude δ on the misclassification rate of each subgroup
(upper) and the EOd (FPR gap + TPR gap). We can show that there exists a δ such that improves
fairness while maintaining accuracy.

Figure 10: Structure assumption before (left) and after (right) the debiasing.
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Figure 11: The effect of λ on three datasets with Logistic Regression. Compared to the baseline(λ =
0), any λ improve fairness.
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