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Abstract

Epistemic uncertainty, which stems from what a learning algorithm does not know,
is the natural signal for exploration. Capturing and exploiting epistemic uncer-
tainty for efficient exploration is conceptually straightforward for model-based meth-
ods. However, it is computationally ruinous, prompting a search for model-free ap-
proaches. One of the most seminal and venerable such is Bayesian Q-learning, which
maintains and updates an approximation to the distribution of the long run returns
associated with state-action pairs. However, this approximation can be rather se-
vere. Recent work on distributional reinforcement learning (DRL) provides many
powerful methods for modelling return distributions, which offer the prospect of
improving upon Bayesian Q-learning’s parametric scheme, but have not been fully
investigated for their exploratory potential. Here, we examine the characteristics
of a number of DRL algorithms in the context of exploration and propose a novel
Bayesian analogue of the categorical temporal-difference algorithm. We show that
this works well, converging appropriately to a close approximation to the true return
distribution.

1 Introduction

Efficient exploration remains a challenging problem in reinforcement learning (RL). Optimal solu-
tions to the explore-exploit trade-off involve planning in continuous belief spaces (Kaelbling et al.,
1998) whereby the long-run costs and benefits of acquiring information are calculated and balanced
off against exploitation of the current knowledge. Belief states correspond to full probability distri-
butions which characterise the epistemic state of knowledge of a learning algorithm, indicating what
it knows it knows and what it knows it does not know. The incentive for exploration thus naturally
arises from the resulting opportunity for learning that there might be a better alternative.

However, computing this incentive is notoriously challenging (Gittins, 1979; Deisenroth et al., 2009;
Silver & Veness, 2010; Guez et al., 2012). Heuristic approaches typically collapse such distributional
information onto single statistics, such as constraints on action values associated with the popular
upper confidence bound policy (Auer, 2002). However, representing epistemic uncertainty with a
full distribution, rather than a single statistic, allows exploration to be directed to the precise task
of reward-efficient policy improvement. That is, one can calculate the value of perfect information
(Howard, 1966) that one expects to gain through exploring a given action, and balance this against
the expected cost of doing so. This provides an (admittedly myopic) guarantee that exploration is
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directed towards improving the subsequent behaviour of the algorithm, and can thus be employed
when appropriate.

Along these lines, Dearden et al. (1998) proposed the seminal Bayesian Q-learning (BQL) algorithm
which maintains a full (albeit approximate) belief distribution over the possible long-run expected
values of actions. BQL makes a number of strong assumptions, including that the return distribution
is Gaussian; however, it performs very well, with highly sample-efficient exploration informed by a
rich representation of subjective uncertainty.

Distributional RL (Bellemare et al., 2023) offers a formal framework for learning the whole distribu-
tion over returns. In this work, however, the uncertainty in the return is of the objective rather than
subjective kind: it comes from the aleatoric nature of the environment, and is therefore irreducible.
Here, we examine both the merits and perils of maintaining and using such distributional repre-
sentations for exploration. We derive a novel Bayesian distributional RL algorithm which explicitly
models its subjective uncertainty and, as a result, exhibits stable learning and efficient exploration.

2 Background

2.1 Setting

We consider the setting in which an agent interacts with an environment modelled as a Markov
decision process (MDP). An MDP is defined as a tuple ⟨S,A, P,R, γ⟩ where S is the state space,
A is the action space, R : S × A → R is a stochastic reward function, T : S × A × S → [0, 1] is
a stochastic transition kernel, and γ ∈ [0, 1) is the discount factor. The agent is equipped with a
policy π : S ×A → [0, 1] which, for any given state, outputs a probability distribution over actions.

The random return Zs,a
1 is defined as the discounted cumulative reward collected by the agent

conditioned on starting in state s and executing action a, that is Zs,a =
∑∞

t=0 γ
tRt | S0 = s,A0 = a.

The value of a given policy π is given by the state-action value function Qπ : S ×A → R, defined as
the expected return accrued when choosing action a in state s and following π thereafter, Qπ(s, a) =
E[Zs,a].

One main goal of an RL agent is to learn an optimal policy which maximises the expected return for
all state-action pairs, that is π∗ = argmaxπ E[Zs,a] ∀ (s, a) ∈ S ×A. The state-action value function
for such an optimal policy is denoted by Qπ∗ . The main difficulty lies in the agent not knowing R
and T , as well as having a limited interaction with the environment. Throughout this paper, we
focus on model-free algorithms which learn the Q-values without learning R and T .

2.2 Exploration

The strategy that the agent uses to select actions is critical for its performance, since an appropriate
amount of initial exploration is necessary to learn a good policy. Directed exploration is typically
achieved by selecting actions based on their current value estimates with an additional exploration
bonus. For instance, upper confidence bound (Auer, 2002) is a popular count-based heuristic which
estimates an upper bound on the action values given the number of sampled experiences.

On the other hand, if one had access to the full probability distribution over action values, p(Q),
one could calculate a more informative exploration bonus. Here, we consider an exploration bonus
based on the value of perfect information (Howard, 1966; Dearden et al., 1998).

2.3 Value of Perfect Information

The utility of exploration can be formalised with the notion of value of perfect information (VPI)
which quantifies how much more reward one expects to accrue if one were to change one’s policy in
the light of learning the true value, q∗(a), associated with the outcome of an action. The gain from

1We use notation consistent with the distributional RL literature.
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learning the true value is defined as:

Gains,a(q∗(a)) =


E[Q(s, a2)]− q∗(a) if a = a1 and q∗(a) < E[Q(s, a2)]
q∗(a)− E[Q(s, a1)] if a ̸= a1 and q∗(a) > E[Q(s, a1)]
0 otherwise

(2.1)

where a1 is the action currently estimated to be best, and a2 is the action currently estimated to be
second-best. Of course, the agent has to calculate the gain (2.1) before finding out the true value
q∗(a); it does this by calculating the expected gain under its current belief. The value of perfect
information is thus V PI(s, a) =

∫∞
−∞ Gains,a(x)p(Q(s, a) = x)dx. The myopic VPI exploratory

policy at state s is therefore to select an action as a = argmaxb [E[Q(s, b)] + V PI(s, b)].

2.4 Bayesian Q-learning

Dearden et al. (1998) proposed a Bayesian variant of Q-learning (Watkins & Dayan, 1992) which
maintains uncertainty about the return distribution associated with taking an action at a state.
Bayesian Q-learning (BQL) assumes that the return has a Gaussian distribution with an unknown
mean and precision; that is, Zs,a ∼ N (µs,a, τ

−1
s,a ). The bivariate normal-gamma distribution is a

conjugate prior for the Gaussian likelihood implied by this assumption, and therefore BQL models
its prior belief as p(µs,a, τs,a) = NG(µs,a, αs,a, βs,a, λs,a). We can see that µs,a = E[Zs,a] = Q(s, a),
and therefore the marginal distribution p(µs,a) corresponds to epistemic uncertainty about action
values. The choice of representation makes it possible to derive VPI for BQL in closed form.2

BQL updates its prior belief with every experience, ⟨s, a, r, s′⟩, sampled from the environment. Notice
that the belief specifies a distribution over the full return, whereas in an online setting the agent only
has access to local rewards and its belief at the next state. Dearden et al. (1998) define the mixture
posterior pmix(µs,a, τs,a) =

∫∞
−∞ p(µs,a, τs,a | r + γx)p(Zs′,a′ = x)dx, where a′ = argmaxb E[Qs′,b].

Since the mixture posterior is not a member of the normal-gamma family, it is approximated by
a projection which corresponds to the closest normal-gamma distribution in Kullback-Leibler (KL)
divergence. Projections are, of course, a common thread in distributional RL.

2.5 Distributional reinforcement learning

Instead of learning the expected return, distributional RL algorithms (Bellemare et al., 2023) also
attempt to learn the entire distribution of the random return, which we denote by η(s, a) = D(Zs,a).
Various algorithms have been proposed, which differ most in the way they represent the return
distribution. In this paper, we focus on the categorical (Bellemare et al., 2017) and quantile rep-
resentations (Dabney et al., 2018). Put crudely, regular distributional RL maintains and updates
parameters associated with these representations. Our form of Bayesian distributional RL maintains
and updates simple distributions over these parameters, and thereby captures epistemic uncertainty.
Through appropriate learning, the uncertainty about these parameters vanishes, leaving certain
knowledge of the return distributions.

2.5.1 Categorical representation

The categorical representation for each state-action pair (s, a) consists of a finite set of
M regularly-spaced locations (or atoms) and the probabilities associated with each location:
{(θs,a

1 , ps,a
1 ), ..., (θs,a

M , ps,a
M )}.3 The return distribution is then a weighted mixture of Dirac deltas at

the represented locations, written as η(s, a) =
∑M

m=1 p
s,a
m δθs,a

m
where 0 ≤ ps,a

m ≤ 1 and
∑M

m=1 p
s,a
m = 1.

The true return, however, need not be categorical. This requires an additional projection step to
find the closest approximation within the representational class to the required return distribution.

2Note that our result, with derivations appearing in Appendix A, and consistent with extensive simulations, slightly
differs from that reported by Dearden et al. (1998).

3The superscripts will occasionally be omitted for brevity.
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For a probability atom at g, the categorical projection operator, ΠC , is defined as

ΠC(δg) =


δθ1 if g ≤ θ1

θm+1−g
θm+1−θm

δθm
+ g−θm

θm+1−θm
δθm+1 if θm < g < θm+1

δθM
if g ≥ θM

(2.2)

In response to the sample experience ⟨s, a, r, s′⟩, the categorical Q-learning (CatQL) algorithm up-
dates its return distribution estimate as:

η(s, a)← η(s, a) + α

[
M∑

m=1
ps,a

m ΠC

(
δ

r+γθs′,a′
m

)
− η(s, a)

]

where a′ = argmaxb E[Zs′,b] and α ∈ [0, 1] is a learning rate parameter.

2.5.2 Quantile representation

The quantile representation consists of a finite set of M evenly spaced quantile levels, τm = 2m−1
2M ,

and the corresponding quantiles: {(θs,a
1 , τs,a

1 ), ..., (θs,a
M , τs,a

M )}. In general, the τ th ∈ (0, 1) quantile of
a random variable Z is defined as inf{z ∈ R : FZ(z) ≥ τ} where FZ is the distribution function of Z.
Moreover, with the uniform spacing of quantile levels, the return distribution is a uniform mixture
of quantiles, written as η(s, a) = 1

M

∑M
m=1 δθs,a

m
.

An equivalent of CatQL can be derived for the quantile representation, which we abbreviate as
QQL. We use the quantile projection introduced by Dabney et al. (2018), which finds a quantile
representation which minimises the 1-Wasserstein distance to an arbitrary return distribution.

3 Bayesian Categorical Q-learning

In this section we present our algorithm, Bayesian Categorical Q-learning (BCQL), which extends
the idea of maintaining epistemic uncertainty whilst learning a return distribution using a more
flexible, categorical return representation.

3.1 Dirichlet prior for the categorical return

BCQL uses the categorical return representation described in 2.5.1. That is, the support locations
{θs,a

1 , ..., θs,a
M } are fixed and the problem is to learn the associated return probabilities {ps,a

1 , ..., ps,a
M }.

Given the categorical representation, a Dirichlet distribution over the return probabilities is a natural
choice for capturing epistemic uncertainty about the return distribution. Thus, BCQL’s prior belief
state for each state-action pair is p(ps,a

1 , ..., ps,a
M ) = Dir(αs,a

1 , ..., αs,a
M ). Together with the fixed

locations, we write BCQL’s representation as {(θs,a
1 , αs,a

1 ), ..., (θs,a
M , αs,a

M )}.

3.2 Epistemic uncertainty in the expected return

The prior belief of BCQL corresponds to uncertainty over the return probabilities, which in turn im-
plies epistemic uncertainty in the expected return. Unfortunately, there is no closed-form expression
for the distribution of the expected return. In practice, we approximate it with a Gaussian centred at
the expected return,

∑M
m=1 θmE[Pm], and whose variance is given by

∑M
m=1

∑M
n=1 θmθnCov(Pm, Pn).

Note that although BCQL approximates its epistemic uncertainty with a Gaussian distribution, its
underlying return representation is more flexible than BQL (Dearden et al., 1998), allowing it to
learn a better approximation to the true return distribution and thus a better approximation of the
epistemic uncertainty. Furthermore, with this approximation, the expression for VPI can be reduced
to closed form.
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Proposition 1. Assuming that the Bayesian Categorical Q-learning algorithm approximates its
epistemic uncertainty as Q(s, a) ∼ N (E[Q(s, a)], V ar[Q(s, a)]), V PI(s, a) is equal to

V PI(s, a) =
{

(E[Q(s, a2)]− E[Q(s, a)])p(Q(s, a) < E[Q(s, a2)]) + c(a2) if a = a1

(E[Q(s, a)]− E[Q(s, a1)])p(Q(s, a) > E[Q(s, a1)]) + c(a1) if a ̸= a1

where c(b) =
√
V ar[Q(s, a)]p(Q(s, a) = E[Q(s, b)]).

In Fig E1 we present simulation results which show that the quality of such an approximation
improves as the number of categories, M , increases.

3.3 Distributional updates

BCQL faces a similar problem to BQL: namely, the prior belief is specified for the full return, but
the agent only ever observes local sample rewards and its own beliefs. We approach it in the same
way as Dearden et al. (1998) by defining a mixture posterior resulting from the possible posterior
distributions under the current belief over the corresponding return realisations. Moreover, because
of the discrete categorical representation, BCQL’s mixture posterior is a sum rather than an integral:

pmix(ps,a
1 , ..., ps,a

M ) =
M∑

m=1
p
(
ps,a

1 , ..., ps,a
M | ΠC

(
δ

r+γθs′,a′
m

))
E[p(Zs′,a′ = θs′,a′

m )] (3.1)

where ΠC is the categorical projection defined in (2.2).

Since the mixture posterior (3.1) does not belong to the Dirichlet family, we find the best Dirichlet
approximation which minimises the KL divergence to the true mixture posterior distribution.
Theorem 1. Let P1, ..., PM be jointly distributed random probabilities with a density measure p.
Then, the parameters of the Dirichlet distribution q(p1, ..., pM ) = Dir(α1, ..., αM ) which minimise
the KL divergence DKL(p||q) are given by:

αm = ψ−1

(
ψ

(
M∑

i=1
αi

)
+ Ep[logPm]

)

where ψ(x) = Γ′(x)
Γ(x) is the digamma function and ψ−1(y) is its inverse.

Two caveats arise which are in essence identical to those in BQL (Dearden et al., 1998). The first
is that Theorem 1 does not give a closed-form solution for the parameters of the approximating
distribution. Minka (2000) derived an iterative procedure for a numerical solution, which we em-
ployed in our simulations. The second is that one has to calculate expectations of logPm with
respect to the mixture posterior pmix, which requires another approximation by instead using the
sufficient statistics of the projected Dirichlet distribution, which take a particularly simple form.
We provide a pseudocode for BCQL’s distributional updates in Algorithm C1, which details all
the necessary approximations involved. Moreover, we demonstrate empirically that BCQL’s belief
state converges appropriately to a close approximation to the true return distribution in a simple
evaluation environment (Fig E2).

4 Results

To compare learning and exploration capacities of the distributional agents, we performed simula-
tions in a modified version of the loop environment (Watkins, 1989; Dearden et al., 1998) shown in
Figure 1. Here, all transitions are deterministic, and what makes this environment challenging for
exploration is that along the left loop, one of the available actions in each state brings the agent
back to the start state with zero reward. This means that insufficient exploration would likely result
in suboptimal policies favouring the right loop even when its expected reward is lower.
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Environment structure

s0

a0, 0s5
a0, 0

s6

a0, 0

s7

a0, 0
s8

a1, a0, rb

a1, 0a1, 0

a1, 0

a1, 0 s1
a1, a0, 0

s2

a1, a0, 0

s3

a1, a0, 0
s4

a1, a0, ru

Generative model
π µ1 σ1 σ0

rb

rb∼πN (µ1,σ2
1)+(1−π)N (10−µ1,σ2

2)

σ3

ru

ru∼N (5,σ3
1)

Meta-prior

Figure 1: Modified loop environment from Watkins (1989). The starting state is s0. In the right
loop, both actions a0 and a1 in each state deterministically transition the agent towards the starting
state. In the left loop, the transitions are also deterministic but the two actions in each state can
either progress the agent further along the loop (a0) or bring it back to the start state (a1). The
reward for each action is 0 except for the actions from states s4 and s8. For the former, ru is
sampled from a unimodal Gaussian and for the latter rb is sampled from a bimodal Gaussian. The
generative model of the environment is shown to the right of the transition structure. The prior
was π ∼ Beta(1, 1), µ1 ∼ Uniform([0, 10]), σi ∼ Gamma(3) for i = 1, ..., 3. In addition, we show
the meta-prior for the optimal return distribution in this environment, accounting for the possible
realisations of the generative model.

We introduced a number of modifications to this environment to make it even more challenging, and
to take full advantage of the representational capacity of distributional agents. First, the reward
at the end of the left loop followed a bimodal Gaussian distribution, and the reward at the end of
the right loop had a unimodal Gaussian distribution (Fig 1). Second, we noticed that the agents
could cheat by choosing high learning rates in the cases where the expected reward from the bimodal
loop was lower and effectively collapsing their distributional estimates at occasional samples from
the lower mode. To avoid this, we specified a prior distribution over the parameters of the two
reward functions which included their means, variances, and mixing coefficient for the bimodal
reward function (Fig 1). This resulted in environment samples for which such a collapse would have
been catastrophic, and thus enforced more gradual learning. The free parameters of all agents were
optimised on environments sampled from this distribution, and the performance was subsequently
evaluated on unseen environment samples from the same distribution.

The prior return distributions for all agents were initialised to the average true optimal return dis-
tribution under the specified prior over the environments (which we refer to as the ’meta-prior’; Fig
1). This was done to reduce the number of free parameters to optimise, as well as to make a fair
comparison of the learning process and eliminate confounds associated with lucky prior initialisa-
tions.

We report a number of performance measures in Fig 2. These include reward-based measures, such
as i) discounted reward-to-go until the end of the run, calculated for each trial t as

∑T
i=t γ

i−tri where
T = 4000 (Fig 2A); and ii) total reward collected in the first 2000 and second 2000 trials (Fig 2C).
Because of the high variance of reward distributions in the sampled environments, these reward-
based measures were also highly variable (Fig 2A,C). Thus, we additionally report a performance
measure based on the fraction of trials in which the agents executed the optimal sequence of actions
from the start state (Fig 2B,D). According to this measure, BCQL and CatQL agents scored highest
in their ability to discover optimal paths (Fig 2B,D).
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A B

C
1st phase 2nd phase

Agent Mean Std Mean Std
QQL 2090.4 738.8 2353.5 532.3
BQL 2178.0 432.9 2212.0 446.2

CatQL 2276.8 591.4 2360.1 507.1
BCQL 2093.5 735.4 2377.9 512.5

D
Proportion

Agent Mean Std
QQL 0.80 0.25
BQL 0.74 0.41

CatQL 0.93 0.11
BCQL 0.84 0.20

Figure 2: Exploration performance. A) Discounted reward-to-go for each agent averaged over 40
simulations. Each agent was simulated in the same 40 environment samples. The shaded areas
show standard error of the mean. B) Proportion of optimal episodes executed by each agent. The
individual dots show the total fraction of times an agent executed the optimal trajectory from the
start state in that environment sample. The height of the bar indicates the average fraction over
the same 40 simulations. C) Total reward collected by each agent in the first and second 2000 trials,
averaged over the same 40 simulations. D) Summary of C).

The performance of CatQL and BCQL did not differ substantially, most likely because our modified
loop environment was insufficiently challenging. To gain a deeper insight into the learning processes,
we examined the underlying learning by simulating all agents on the same stream of experience in
the same environment sample (Fig 3). This revealed some of the pathological modes of learning in
the non-Bayesian distributional algorithms which we had expected would affect their performance
(Fig 3). First, due to the non-adaptive nature of their learning rates, we observed large fluctuations
in the distributional estimates in response to sample experiences (Fig 3A). This concerned both the
estimated mean (Fig 3A; left), VPI (Fig 3B), and variance of the expected return distribution (Fig
3; right). BCQL and BQL did not suffer from such fluctuations since, being Bayesian algorithms,
they are able to adapt their learning rates optimally.

Second, the non-Bayesian distributional algorithms consistently overestimated VPI (Fig 3A; middle)
because of the irreducible aleatoric uncertainty in the return distribution (Fig 3B,C). By contrast,
BCQL and BQL correctly calculated VPI based on their epistemic uncertainty which reduced with
experience, as reflected in the vanishing values of VPI (Fig 3A; middle).

Lastly, BQL learnt the worst approximation to the true return distribution (Fig 3B,C) because
of its assumption that the return had a Gaussian distribution, whereas it was actually bimodal
(Fig 3C; bottom). On the other hand, BCQL correctly learnt the bimodal structure of the return
distribution (Fig 3B,C), with the learning being most stable across all the other algorithms. All of
these observations are even more apparent when one considers the immediately rewarding action in
state s8 (Fig E3).
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A

B C

Figure 3: Learning distributional representations. A) Left: expected Q-values at the start state
s0 for the optimal action a0 as estimated by each agent. The black dotted line denotes the true
optimal Q-value. Middle: Value of perfect information for the same action. Notice how VPI for the
Bayesian agents drops to nearly zero, whereas for the other agents it keeps fluctuating at relatively
high values. Right: variance of the estimated expected return distribution. B) Final distributions
learnt by the agents for the same action at the end of the run. The solid black lines for the
BCQL agent indicate standard deviation (i.e., epistemic uncertainty) for each return category. C)
Top: Wasserstein distance between the estimated expected return distribution and the true return
distribution (bottom) over the course of learning.

5 Discussion

We present a novel Bayesian distributional RL algorithm, Bayesian Categorical Q-learning. BCQL
improves on the seminal Bayesian Q-learning algorithm (Dearden et al., 1998) by relaxing the as-
sumption that the return distribution is Gaussian. This is indeed often violated. Instead, BCQL
represents the return distribution using a more flexible, categorical representation, which allows it
to learn a better approximation to the true return distribution. Moreover, BCQL is significantly
faster than BQL because its return representation assumes discrete support which replaces expensive
numerical integration with finite sums.

The main difference between our Bayesian approach and regular distributional RL (Bellemare et al.,
2023) is the notion of subjective, or epistemic, uncertainty, captured by the prior belief about the
return distribution. BCQL models its epistemic uncertainty using a Dirichlet prior over return prob-
abilities, which it updates incrementally with every experience by approximating optimal Bayesian
updates. This uncertainty is exactly what model-free algorithms should exploit to arrange for effi-
cient exploration, insofar as it provides rich signals for learning opportunities.

We used a challenging exploration task to compare the exploration abilities of BCQL and BQL to
two regular distributional RL algorithms which used categorical and quantile return representations.
The Bayesian agents were significantly more competent learners, manifested in their ability to adapt
their learning rates optimally as a function of their uncertainty about the learnt distributions. As
a result, the learning of distributional representations was smoother and more stable. One could
equally imagine a decaying learning rate schedule for the regular distributional RL algorithms, which
is in fact needed for convergence; however, such a schedule would need to be heuristically fine-tuned
to each environment.
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Prior work has suggested the use of distributional information for exploration (Tang & Agrawal,
2018; Mavrin et al., 2019), albeit without exploiting the full richness of learnt distributions and still
relying on count-based heuristics. Here, we operationalised exploration by means of value of perfect
information (Howard, 1966; Dearden et al., 1998). We showed that the Bayesian agents correctly
calculated VPI. This allowed them to learn efficiently up to the point when all subjective uncertainty
was reduced to certainty, yielding policies which could be efficiently exploited. By contrast, regular
distributional RL algorithms overestimated VPI because of the objective, irreducible uncertainty in
their learnt distributional representations. Thus the resulting policies tended to favour exploration
that continued even after the optimal paths had been discovered.

The myopic nature of VPI means that it does not explicitly account for the statistical interactions be-
tween the whole collection of state-action pairs. However, the propagation of subjective uncertainty
via experience and learning does implicitly capture at least a part of this dependency structure.
Extending our methods to DYNA-like architectures (Sutton, 1991) could be a powerful means of
arranging for efficient presbyopic exploration.

Distributional RL has uncovered powerful algorithms for learning rich representations of uncertainty
useful in a wide array of applications including, for instance, risk-sensitive control (Gagne & Dayan,
2021; Shen & Dayan, 2024). Combined with general function approximators, these have furthermore
shown substantial performance gains on challenging control tasks relative to classic RL methods (Lyle
et al., 2019). In this work, we have examined the use of distributional information for exploration,
and argued that capturing a different source of uncertainty, which is subjective in nature, is critical
for efficient and stable learning.
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A Derivations

In this Appendix, we provide some useful derivations which will be used in supplying proofs. More-
over, we show how VPI was calculated for the non-Bayesian agents by expressing it in terms of
their representations (since the non-Bayesian agents incorrectly used the objective uncertainty in
the return distribution).

A.1 VPI

We first repeat the definition of the Value of Perfect Information. The gain from learning the true
value is defined as:

Gains,a(q∗(a)) =


E[Q(s, a2)]− q∗(a) if a = a1 and q∗(a) < E[Q(s, a2)]
q∗(a)− E[Q(s, a1)] if a ̸= a1 and q∗(a) > E[Q(s, a1)]
0 otherwise

where a1 is the action currently estimated to be best, and a2 is the action currently estimated to be
second-best. The value of perfect information is thus V PI(s, a) =

∫∞
−∞ Gains,a(x)p(Q(s, a) = x)dx

which can be written out for each case individually:

V PI(s, a) =
{
E[Q(s, a2)]p(Q(s, a) < E[Q(s, a2)])−

∫ E[Q(s,a2)]
−∞ xp(Q(s, a) = x)dx if a = a1∫∞

E[Q(s,a1)] xp(Q(s, a) = x)dx− E[Q(s, a1)]p(Q(s, a) > E[Q(s, a1)]) if a ̸= a1
(A.1)
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A.2 VPI for the Quantile representation

Consider the case that a = a1. We can re-write the integral which appears in the definition of VPI
by using the following fact:∫ E[Q(s,a2)]

−∞
p(Q(s, a) < x)dx = [xp(Q(s, a) < x)]E[Q(s,a2)]

−∞ −
∫ E[Q(s,a2)]

−∞
xp(Q(s, a) = x)dx

= E[Q(s, a2)]p(Q(s, a) < E[Q(s, a2)])−
∫ E[Q(s,a2)]

−∞
xp(Q(s, a) = x)dx

And therefore we get:∫ E[Q(s,a2)]

−∞
xp(Q(s, a) = x)dx = E[Q(s, a2)]p(Q(s, a) < E[Q(s, a2)])−

∫ E[Q(s,a2)]

−∞
p(Q(s, a) < x)dx

Plugging this into the expression for VPI we obtain:

V PI(s, a) =
∫ E[Q(s,a2)]

−∞
p(Q(s, a) < x)dx

The calculations for the case when a ̸= a1 are similar. Overall, we can express VPI as:

V PI(s, a) =
{∫ E[Q(s,a2)]

−∞ p(Q(s, a) < x)dx if a = a1∫∞
E[Q(s,a1)] p(Q(s, a) > x)dx if a ̸= a1

We use this expression to approximate VPI for the QQL agent numerically, since it learns the inverse
of the distribution function.

A.3 VPI for the Categorical representation

Since the categorical representation has a discrete support, VPI for the CQL agent was calculated
as:

V PI(s, a) =
M∑

m=1
Gains,a(θm(s, a))pm(s, a)

A.4 VPI for Bayesian Q-learning

Lemma 3.2 from Dearden et al. (1998) establishes that, if p(µ, τ) = NG(µ0, λ, α, β), then the
marginal density of µ is:

p(µ) =
√

λ

2πβ
α Γ(α+ 1

2 )
Γ(α)

(
β + 1

2λ(µ− µ0)2
)−(α+ 1

2 )

and the marginal distribution of µ is:

p(µ < x) = T ((x− µ0)

√
λα

β
: 2α)

where T (x : d) is the cumulative t-distribution with d degrees of freedom:

T (x : d) =
Γ
(

d+1
2
)

Γ
(

d
2
)√

dπ

∫ x

−∞

(
1 + y2

d

)− d+1
2

dy

We consider the case when a = a1 and focus on the integral in (A.1). By plugging in the marginal
density, we can write:∫ E[Q(s,a2)]

−∞
xp(Q(s, a) = x)dx =

√
λ

2πβ
α Γ(α+ 1

2 )
Γ(α)

∫ E[Q(s,a2)]

−∞
x

(
β + 1

2λ(x− E[Q(s, a)])2
)−(α+ 1

2 )
dx
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Next, we make the substitution u(x) = (x− E[Q(s, a)])
√

λα
β , which leads to:∫ E[Q(s,a2)]

−∞
xp(Q(s, a) = x)dx =

√
λ

2πβ
α Γ(α+ 1

2 )
Γ(α)

∫ u(E[Q(s,a2)])

−∞
u

(
β + 1

2λ
(
u2β

λα

))−(α+ 1
2 )√

β

λα
du

=
Γ(α+ 1

2 )
Γ(α)

√
2πα

∫ u(E[Q(s,a2)])

−∞

(
u

√
β

λα
+ E[Q(s, a)]

)(
1 + u2

2α

)−(α+ 1
2 )

du

=
Γ(α+ 1

2 )
Γ(α)

√
2πα

∫ u(E[Q(s,a2)])

−∞
u

√
β

λα

(
1 + u2

2α

)−(α+ 1
2 )

du

+ E[Q(s, a)]
Γ(α+ 1

2 )
Γ(α)

√
2πα

∫ u(E[Q(s,a2)])

−∞

(
1 + u2

2α

)−(α+ 1
2 )

du

In the last line we recognise the distribution function p(Q(s, a) < E[Q(s, a2)]). As for the other
integral, we again solve it by substitution, this time using h(u) = 1 + u2

2α :

Γ(α+ 1
2 )
√
β

Γ(α)α
√

2πλ

∫ u(E[Q(s,a2)])

−∞
u

(
1 + u2

2α

)−(α+ 1
2 )

du =
Γ(α+ 1

2 )
√
β

Γ(α)α
√

2πλ

∫ h(u(E[Q(s,a2)]))

−∞
αh−(α+ 1

2 )dh

=
Γ(α+ 1

2 )
√
β

Γ(α)α
√

2πλ

[
αh

1
2 −α

1
2 − α

]h(u(E[Q(s,a2)]))

−∞

= −
Γ(α+ 1

2 )
√
β

(α− 1
2 )Γ(α)

√
2πλ

[(
1 + u2

2α

) 1
2 −α

]u(E[Q(s,a2)])

−∞

= −
Γ(α+ 1

2 )
√
β

(α− 1
2 )Γ(α)

√
2πλ

(
1 +

(E[Q(s, a2)]− E[Q(s, a)])2 λα
β

2α

) 1
2 −α

= −
Γ(α+ 1

2 )
√
β

(α− 1
2 )Γ(α)

√
2πλ

(
1 + (E[Q(s, a2)]− E[Q(s, a)])2λ

2β

) 1
2 −α

Performing similar algebraic manipulations for the case when a ̸= a1 gives the following final ex-
pression for VPI:

EV PI(s, a) =
{

(E[Q(s, a2)]− E[Q(s, a)])p(Q(s, a) < E[Q(s, a2)]) + c(a2) if a = a1

(E[Q(s, a)]− E[Q(s, a1)])p(Q(s, a) > E[Q(s, a1)]) + c(a1) if a ̸= a1

where

c(b) =
Γ(α+ 1

2 )
√
β

(α− 1
2 )Γ(α)Γ( 1

2 )
√

2λ

(
1 + (E[Q(s, b)]− E[Q(s, a)])2λ

2β

) 1
2 −α

B Proofs

Proposition 1. Assuming that the Bayesian Categorical Q-learning algorithm approximates its
epistemic uncertainty as Q(s, a) ∼ N (E[Q(s, a)], V ar[Q(s, a)]), V PI(s, a) is equal to

V PI(s, a) =
{

(E[Q(s, a2)]− E[Q(s, a)])p(Q(s, a) < E[Q(s, a2)]) + c(a2) if a = a1

(E[Q(s, a)]− E[Q(s, a1)])p(Q(s, a) > E[Q(s, a1)]) + c(a1) if a ̸= a1
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where c(b) =
√
V ar[Q(s, a)]p(Q(s, a) = E[Q(s, b)]).

Proof of Proposition 1. Consider the case where a = a1 in (A.1) and focus on the integral. To
ease the notation, let µs,a = E[Q(s, a)] and σ2

s,a = V ar[Q(s, a)] where the subscripts index a state
and an action. Assuming the Gaussian approximation, the random expected return is Q(s, a) ∼
N (µs,a, σ

2
s,a). We can re-write it as the following transformation:

Q(s, a) = σs,aZ + µs,a

where Z is the standard normal variable with cdf Φ(z) and pdf ϕ(z). Furthermore, by letting
t = µs,a2 −µs,a

σs,a
, we can write the distribution of the random expected return Q(s, a) in terms of the

distribution of Z:
p(Q(s, a) ≤ µs,a2) = p(Z ≤ t) = Φ(t)

Now consider the following conditional expectation:

E[Q(s, a) | Q(s, a) ≤ µs,a2 ] =E[σs,aZ | Z ≤ t] + E[µs,a | Z ≤ t]

=
σs,a

∫ t

−∞ zϕ(z)dz + µs,a

∫ t

−∞ ϕ(z)dz
Φ(t)

=
−σs,a

∫ t

−∞ ϕ′(z)dz + µs,aΦ(t)
Φ(t)

=µs,a − σs,a
ϕ(t)
Φ(t)

where the first equality is due to the linearity of conditional expectations, and in the third line we
used the fact that ϕ(z) = −zϕ′(z). We can now write out the original integral using this expression
for the conditional expectation:∫ E[Q(s,a2)]

−∞
xp(Q(s, a) = x)dx =E[Q(s, a) | Q(s, a) ≤ µs,a2 ]p(Q(s, a) ≤ µs,a2)

=
(
µs,a − σs,a

ϕ(t)
Φ(t)

)
Φ(t)

=µs,aΦ(t)− σs,aϕ(t)

which, in terms of our original notation, can be written as∫ E[Q(s,a2)]

−∞
xp(Q(s, a) = x)dx = E[Q(s, a)]p(Q(s, a) ≤ E[Q(s, a2)])−

√
V ar[Q(s, a)]p(Q(s, a) = E[Q(s, a2)])

The calculations for the case with a ̸= a1 are similar. Finally, this leads to:

V PI(s, a) =
{

(E[Q(s, a2)]− E[Q(s, a)])p(Q(s, a) < E[Q(s, a2)]) + c(a2) if a = a1

(E[Q(s, a)]− E[Q(s, a1)])p(Q(s, a) > E[Q(s, a1)]) + c(a1) if a ̸= a1

where c(y) =
√
V ar[Q(s, a)]p(Q(s, a) = E[Q(s, y)]).

Theorem 1. Let P1, ..., PM be jointly distributed random probabilities with a density measure p.
Then, the parameters of the Dirichlet distribution q(p1, ..., pM ) = Dir(α1, ..., αM ) which minimise
the KL divergence DKL(p||q) are given by:

αm = ψ−1

(
ψ

(
M∑

i=1
αi

)
+ Ep[log pm]

)

where ψ(x) = Γ′(x)
Γ(x) is the digamma function and ψ−1(y) is its inverse.
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Proof of Theorem 1. The Kullback-Leibler (KL) divergence between two distributions p and q is
defined as DKL(p||q) = Ep[log p/q]. To minimise the divergence, we find the parameters of q so
that dDKL(p||q)/dq = 0. Notice further that DKL(p||q) = Ep[log p] − Ep[log q]. The first term
does not depend on q, and so we only need to differentiate Ep[log q]. Moreover, d{Ep[log q]}/dq =
Ep[d{log q}/dq], and so we can first differentiate the log-density and then take the expectation.

The Dirichlet density q(p1, ..., pM ) = Dir(α1, ..., αM ) is defined as:

q(p1, ..., pM ) =
Γ
(∑M

i=1 αi

)
∏M

i=1 Γ (αi)

M∏
i=1

pαi−1
i

The log-density is therefore:

log q(p1, ..., pM ) = log Γ
(

M∑
i=1

αi

)
−

M∑
i=1

log Γ (αi) +
M∑

i=1
(αi − 1) log pi

We can now take the partial derivatives to obtain:

∂ log q(p1, ..., pM )
∂αm

= ∂

∂αm
log Γ

(
M∑

i=1
αi

)
− ∂

∂αm

M∑
i=1

log Γ (αi) + ∂

∂αm

M∑
i=1

(αi − 1) log pi

= ∂

∂αm
log Γ

(
M∑

i=1
αi

)
− ∂

∂αm
log Γ (αm) + log pm

=ψ
(

M∑
i=1

αi

)
− ψ(αm) + log pm

where ψ(x) = d log Γ(x)
dx is the digamma function.

Setting the derivatives to zero and taking the expectation, we get

αm = ψ−1

(
ψ

(
M∑

i=1
αi

)
+ Ep[log pm]

)

as required.

C Pseudocode

The pseudocode for BCQL mixture posterior update appears in Algorithm C1.
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Algorithm C1 Bayesian Categorical Q-learning (BCQL) mixture belief update

Input: Current state s, prior belief state of BCQL {(θs′,a′

1 , αs′,a′

1 ), ..., (θs′,a′

M , αs′,a′

M )} for each (s′, a′),
discount factor γ, tolerance threshold ϵ

1: procedure BeliefUpdate(s, a, g)
2: if r ≤ θ1 then ▷ If g lies outside of the support
3: αs,a

1 ← αs,a
1 + 1

4: else if r ≥ θM then
5: αs,a

M ← αs,a
M + 1

6: else ▷ Dirichlet prior update with ΠC projection
7: i∗ ← argmaxi∈{1,...,M}{θi : θi ≤ g}
8: ζ ← r−θi∗

θi∗+1−θi∗

9: αs,a
i∗ ← αs,a

i∗ + 1− ζ
10: αs,a

i∗+1 ← αs,a
i∗+1 + ζ

11: return {αs,a
m }m=1,...,M

12: procedure MixtureBeliefUpdate(s, a, r, s′)
13: if s′ == goal state then
14: {αs,a

m }m=1,...,M ← BeliefUpdate(s, a, r)
15: else ▷ Mixture update
16: a′ ← argmaxb E[Q(s′, b)]
17: Ep[logPm]← 0 for each m = 1, ...,M
18: for each i in m = 1, ...,M do
19: for each j in m = 1, ...,M do
20: {αs,a

m }m=1,...,M ← BeliefUpdate(s, a, r + γθj)
21: Ep[logPi]←

[
ψ(αs,a

i )− ψ
(∑M

k=1 α
s,a
k

)]
αs′,a′

j /
∑M

k=1 α
s′,a′

k

22: δ ← 1
23: αs,a

m,old ← αs,a
m for each m = 1, ...,M

24: αs,a
m,new ← 0 for each m = 1, ...,M

25: while δ ≥ ϵ do
26: for each i in m = 1, ...,M do
27: αs,a

m,new ← ψ−1
(
ψ
(∑M

k=1 α
s,a
k,old

)
+ Ep[logPm]

)
28: δ ← maxm=1,...,M (|αs,a

m,new − α
s,a
m,old|)

29: αs,a
m,old ← αs,a

m,new for each m = 1, ...,M
30: for each i in m = 1, ...,M do
31: if αs,a

m,old < 1 then
32: αs,a

m,new ← 1
33: else
34: αs,a

m,new ← αs,a
m,old

35: return {αs,a
m,new}m=1,...,M

36: a← argmaxb {E[Q(s, b)] + V PI(s, b)}
37: Sample next state s′ and reward r
38: {αs,a

m }m=1,...,M ←MixtureBeliefUpdate(s, a, r, s′)

The digamma inverse function ψ−1 in line 27 of Algorithm C1 was implemented with Newton’s
method (with a tolerance of 10−5) using its analytical derivative. To spare computation and speed
up convergence, recent evaluations of this inverse were memoized. For values which had not been
memoized, the initial point was chosen as a lower bound on ψ−1 (Batir, 2017). The additional
constraint on the Dirichlet hyperparameters in lines 30-34, namely α ≥ 1, was added to enforce the
maximal uncertainty of the algorithm to correspond to the uniform distribution, and to counteract
the approximation errors of the numerical procedures.



RLJ | RLC 2024

D Simulation Details

D.1 Parameter optimisation

The prior distributions for all algorithms were initialised as described in D.2. The remaining free
parameters of all algorithms except BQL were optimised using the gp_minimize Bayesian optimi-
sation routine from Python’s scikit-optimize package. For each parameter sample, we ran each
algorithm on 40 random environment samples, and took the average total reward collected as the
maximisation objective.

The learning rates of the regular distributional RL algorithms were restricted to α ∈ (0, 1). For
CatQL and QQL we additionally optimised for the number of atoms and number of quantiles re-
spectively, both of which were limited to the interval [10, 50]. The return support represented by
CatQL was limited to the interval [−5, 15], as described in D.2.

For BCQL, the number of atoms and the return support were limited to the same range as for
CatQL. BCQL had an additional parameter, N ∈ [1, 10], which controlled the initial amount of
epistemic uncertainty about the prior return distribution. This was operationalised by multiplying
the hyperparameters of the Dirichlet prior by this constant number.

BQL’s parameters were optimised by performing grid search. We specified 40 regularly-spaced
variance values for the algorithm’s epistemic uncertainty about the expected return, which ranged
from 0.1 to 10 (this corresponded to the same range of uncertainties as for BCQL). BQL’s prior
is specified by 4 parameters, µs,a, λs,a, αs,a, βs,a, where µs,a corresponds to the mean of the return
distribution, which was always initilised to the mean of the meta-prior (D.2). The remaining pa-
rameters, λs,a, αs,a, βs,a, were chosen by solving a minimisation problem such that the variance of
the marginal return distribution, V ar[p(Zs,a)], where p(Zs,a) =

∫
p(Zs,a | µs,a, τs,a)p(µs,a, τs,a)dµdτ

was as close as possible to the variance of the meta-prior. The minimisation was implemented using
the minimize routine from Python’s SciPy package.

The final optimised parameters for all algorithms are reported in Table D1. Due to space constraints,
we only report optimised parameters for BQL for one state-action pair; however, the procedure
described above was applied to all state-action pairs.

Agent Parameter Value
QQL Number of quantiles 23

α 0.57
CatQL Number of atoms 10

α 0.17
BCQL Number of atoms 12

N 1.02
BQL V ar[µs0,a0 ] 6.45

µs0,a0 4.59
λs0,a0 2.95
αs0,a0 1.51
βs0,a0 9.68

Table D1: Optimised parameter values.

The discount factor for all algorithms and in all simulations was set to γ = 0.99. Moreover, the
tolerance threshold for BCQL’s mixture posterior updates was set to ϵ = 10−5.



RLJ | RLC 2024

D.2 Prior initialisations

The prior distributions of all algorithms were initialised to the ’meta-prior’, which was obtained
by averaging the true optimal return distributions for 1000 environment samples, repeated for each
state-action pair. Each environment sample corresponded to sampling the parameters of the reward
distributions in the loop environment (Fig 1).

The optimal return distribution at each state-action pair was found for each environment sample
using categorical dynamic programming (CDP) (Bellemare et al., 2023). That is, we ran CDP for
each integer number of atoms in the range [10, 50], where the atoms were regularly-spaced on a
grid ranging from −5 to 15 (we empirically verified that this covered most of the support of the
meta-prior; this can be seen in Fig 1). The resulting optimal return distributions were then averaged
across the environment samples (more specifically, we averaged the estimated probabilities for each
atom) and re-normalised to obtain the meta-prior for the optimal return distribution.

The prior for the QQL algorithm was obtained by performing quantile regression over the resulting
categorical meta-prior with 50 atoms (Dabney et al., 2018).

The prior for CatQL was simply set to the meta-prior with the same number of atoms as came out
of the optimisation procedure.

The prior for BCQL was set in the same way as for CatQL, but we additionally divided it by the
smallest probability so that the smallest Dirichlet hyperparameter was equal to 1. However, this
was then multiplied by the fit parameter N as described in D.1.

E Supplementary Figures

Figure E1: Quality of the Gaussian approximation to BCQL’s epistemic uncertainty. The left column
shows BCQL’s prior belief over return distributions for various number of locations (M = 3, 15, 50 top
to bottom), as well as the Dirichlet parameters ({αm}m=1,...,M , which are written on top of the bars).
The individual bars show the expected probabilities and the vertical black lines show 1 standard
deviation above and below the mean (that is, BCQL’s epistemic uncertainty). The second column
shows the empirical probability distribution of the Q-value associated with the return distribution
in the previous column obtained by sampling from the prior over the return distributions and taking
the mean for each sample. The next column shows a Gaussian approximation to this distribution,
which was obtained as described in 3.2. Finally, the last column compares V PI for the action
associated with this prior belief based on the empirical and Gaussian approximations to the true
distribution over the Q-values, as a function of the expected Q-value of an alternative action. As
expected, the Gaussian approximation improves with increasing the number of locations M .
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Prior 500 moves 2000 moves

Figure E2: Evaluation of the return distribution by BCQL. The diagram on the left shows the simple
3-state Markov chain in which the agent was simulated. There was a single action a0 available in
each state which occasioned a deterministic transition to the next state. The reward was zero for
executing this action in every state except s2, where it was distributed according to a bimodal
Gaussian distribution, that is r ∼ 0.5N (0, 0.5) + 0.5N (4, 0.5). The plots to the right show the
evolution of BCQL’s belief state over the course of learning in this environment. In each plot,
the height of the bars shows the expected return probabilities for the associated locations. The
vertical black lines show BCQL’s epistemic uncertainty, namely 1 standard deviation around the
mean value. The rows show BCQL’s belief about the return distribution for states s0, s1, s2 (top
to bottom, on the same level as in the chain diagram). We see that after 2000 moves BCQL’s
belief state corresponds to a close approximation to the true return distribution in this environment.
Moreover, its epistemic uncertainty is reduced appropriately with experience, as can be seen from
the variance of the expected return (approximated as described in 3.2).

A

B C

Figure E3: Learning distributional representations at the final state. The layout is the same as in
Fig 3 but here we show learning in state s8. The Wasserstein distance in C) as well as in Fig 3C)
was computed using the available method in SciPy.


