
Published as a conference paper at ICLR 2024

MERGE, THEN COMPRESS: DEMYSTIFY EFFICIENT
SMOE WITH HINTS FROM ITS ROUTING POLICY

Pingzhi Li1 Zhenyu Zhang2 Prateek Yadav1 Yi-Lin Sung1 Yu Cheng3

Mohit Bansal1 Tianlong Chen1,4,5

1The University of North Carolina at Chapel Hill 2The University of Texas at Austin
3The Chinese University of Hong Kong 4MIT 5Harvard University
{pingzhi,praty,ylsung,mbansal,tianlong}@cs.unc.edu
zhenyu.zhang@utexas.edu chengyu@cse.cuhk.edu.hk

ABSTRACT

Sparsely activated Mixture-of-Experts (SMoE) has shown promise to scale up the
learning capacity of neural networks, however, they have issues like: (a) High
Memory Usage, due to duplication of the network layers into multiple copies as
experts; and (b) Redundancy in Experts, as common learning-based routing poli-
cies suffer from representational collapse. Therefore, vanilla SMoE models are
memory inefficient and non-scalable, especially for resource-constrained down-
stream scenarios. In this paper, we ask: Can we craft a compact SMoE model by
consolidating expert information? What is the best recipe to merge multiple ex-
perts into fewer but more knowledgeable experts? Our pilot investigation reveals
that conventional model merging methods fail to be effective in such expert merg-
ing for SMoE. The potential reasons are: (1) redundant information overshadows
critical experts; (2) appropriate neuron permutation for each expert is missing to
bring all of them in alignment. To address these challenges, we propose a novel
merging algorithm for SMoE, i.e., M-SMoE, which leverages routing statistics
to guide expert merging. Specifically, it starts with neuron permutation align-
ment for experts; then, dominant experts and their “group members” are formed
based on routing policies; lastly, every expert group is merged into a single expert
by utilizing each expert’s activation frequency as their weight for merging, thus
diminishing the impact of insignificant experts. Moreover, we draw an interest-
ing observation that our proposed merging promotes a low dimensionality in the
merged expert’s weight space, naturally paving the way for additional compres-
sion. Hence, our final method, MC-SMoE (i.e., Merge, then Compress SMoE),
further decomposes the merged experts into low-rank and structural sparse alter-
natives. Extensive experiments across 8 benchmarks validate the effectiveness of
our proposals. For instance, our MC-SMoE achieves up to 80% memory and a
20% FLOPs reduction, with virtually no loss in performance.1

1 INTRODUCTION

0.5 1.0 1.5 2.0

Model Size (B)

55

60

65

A
cc

ur
ac

y
(%

)

MC-SMoE

M-SMoE

SMoE

Baselines

Figure 1: Accuracy (%) on the
COPA with the switch-base-32 SMoE.
MC-SMoE reaches up to an 80% mem-
ory saving with only a negligible com-
promise in performance.

Transformers (Vaswani et al., 2023) have become the de facto
network architecture in various natural language processing
(NLP) scenarios (Devlin et al., 2019; Yang et al., 2019; Liu
et al., 2019; Raffel et al., 2020; Fedus et al., 2022; Wei et al.,
2022), and even for computer vision applications (Dosovitskiy
et al., 2021; Touvron et al., 2021; Mao et al., 2022; Zheng
et al., 2021; Liu et al., 2021). Nowadays, the parameter counts
of such models are commonly measured in billions rather
than millions. It is mainly because certain empirical scaling
laws (Kaplan et al., 2020) reveal a power-law relationship be-
tween the final model quality and the amount of {data, model
capacity, and computing time}. Unfortunately, it poses infea-
sible requirements for computational resources, e.g., training a
GPT-based model (Brown et al., 2020) typically leads to thou-

1Our code is provided at https://github.com/UNITES-Lab/MC-SMoE.

1

https://github.com/UNITES-Lab/MC-SMoE

Published as a conference paper at ICLR 2024

sands of GPU days. Sparse Mixture-of-Experts (SMoE) (Shazeer et al., 2017) was then proposed
to trim down the computing cost while enabling efficient scaling of network capacity. For pre-
dictions of a given input, it leverages input-dependent conditional computation to sparsely activate
(i.e., routing) the relevant model pieces (i.e., experts). Hence, the network parameter counts/capac-
ity can be amplified with minimal extra training cost. For instance, Fedus et al. (2022) scales the
T5-Base (Raffel et al., 2020) dense model to a 35× larger Switch-Base SMoE model, with roughly
the same training FLOPS.

However, several crucial limitations persist in SMoE for expanding the capacity of large language
models. Firstly, SMoE trades space for FLOPs2, which introduces substantial memory overheads
and constrains its practical usage in real-world resource-restricted platforms, especially for down-
stream deployment and inference. Secondly, SMoE has a poor utilization of its capacity. The
prevalent learning-based routing policy in SMoE suffers from representation collapse issues, since
it encourages token embeddings to be clustered around expert centroids (Chi et al., 2022) and re-
sults in redundant experts (Mittal et al., 2022; Chen et al., 2022). A recent investigation (Chen et al.,
2023) also points out a similar observation that the “effective capacity” in conventional SMoEs is
low. To address these drawbacks and fully unleash the power of SMoE, one possible solution is con-
solidating information from insignificant experts, aiming to establish a more compact SMoE without
hurting performance. Nevertheless, naively combining existing model merging mechanisms leads
to substandard results in the SMoE scenarios, as demonstrated in our pilot studies in Section 4.2.
The potential reasons could be: ① Critical experts are prone to be overshadowed by redundant
information during merging, ② Experts are usually initialized and trained along with diverse opti-
mization trajectories, thus an expert permutation can play an essential role in bringing them into
alignment (Ainsworth et al., 2022). These primary challenges drive us to ask:

(Q) How to effectively consolidate the redundant experts of SMoE into a selected few ones
without sacrificing vital knowledge?

In this paper, we systematically investigate the above research question (Q), and target a compact
and high-quality SMoE on downstream fine-tuning/inference scenarios. We discover that the rout-
ing policies from SMoE contain the “clues” for effective expert merging. To be specific, (1) the
activation frequency of experts indicates its utilization and can be regarded as a great proxy for its
importance. It enables an automatic way to determine how many and which experts should be kept
in each SMoE layer; (2) The routing decision measures how similar are the experts to each other,
in terms of the relevance to given input samples. It helps in associating redundant experts with dif-
ferent dominant experts. Based on these insights, we proposed a novel M-SMoE method for SMoE
merging. Furthermore, we find that the merged experts from M-SMoE lie in a low dimensional
parameter space, which seems to suggest that an appropriate merging reduces the potential noisy
weight signals (Han et al., 2016). We utilize this additional benefit of expert merging to design our
MC-SMoE (Merge, then Compress SMoE) method that organically integrates low-rank decomposi-
tion techniques for further expert compression. Our main contributions are as follows:

• We propose a novel framework MC-SMoE, i.e., Merge, then Compress SMoE, for SMoE
efficiency at the downstream scenarios, including fine-tuning and zero-shot evaluation.

• We design an innovative merging approach (M-SMoE) based on the guidance from routing
policies. Specifically, it begins with a customized permutation alignment for experts, then
identifies the dominant experts globally along with their “group members” within SMoE
layers, and concludes with a weighted averaging according to their activated frequency.

• We observe that resultant experts from M-SMoE inherently exhibit a lower weight dimen-
sionality. This interesting phenomenon paves the way for additional compression, enabling
our MC-SMoE method to further boost memory and parameter efficiency.

• Extensive experiments across eight benchmarks validate the effectiveness of our MC-SMoE.
An example is presented in Figure 1. Notably, M-SMoE yields up to a 60% reduction in
memory overhead with even slightly improved performance. MC-SMoE achieves up to 80%
memory and 20% FLOPs reduction, with only marginal performance drops.

2FLOPs means the floating point operations per second. Note that the vanilla design of SMoE does not
necessarily bring running time benefits. Instead, to mitigate the extra latency costs from routing and diverse
experts, it usually requires specialized parallelism (Rajbhandari et al., 2022; Fedus et al., 2022; He et al., 2021;
2022) and hardware designs (Fan et al., 2022).

2

Published as a conference paper at ICLR 2024

...

...

Routing Policy

...

Expert 1 Expert 2 Expert NExpert k... ...

Token
Embeddings

(a) Expert Routing of SMoE

Expert IndexR
ou

te
d

Fr
eq

ue
nc

y

Grouping

Dominant Expert
Non-Dominant Expert

......

SMoE Layer 1

SMoE Layer 2

SMoE Layer 3

SMoE Layer M-1

SMoE Layer M

Frequency-Aware Expert Merging

......

Merged Layer 1

Merged Layer 2

Merged Layer 3

Merged Layer M-1

Merged Layer M

(b) R
outing H

ints of SM
oE M

erging
Ex

pe
rt
i

Ex
pe

rt
j

Merged Expert k

(c) Merging Encourages Low Dimensionality

Compressing

Figure 2: The overview of our proposed MC-SMoE pipeline. (a) In the conventional SMoE, each token
embedding is directed to a small number of relevant experts. (b) The routing policy inspires expert merging.
Across all SMoE layers, M-SMoE identifies the most frequently activated experts as dominant ones, groups
the other non-dominant experts, and then merges them within each group in a frequency-weighted fashion. (c)
After merging, the weight space of resulted experts tends to exhibit lower dimensionality, paving the way for
additional compression. It clarifies the design of our MC-SMoE.

2 RELATED WORKS

Sparse Mixture-of-Experts (SMoE). The benefits of scaling model size are widely acknowledged,
which usually offers increased learning capacity and enhanced generalization (Brown et al., 2020;
Kaplan et al., 2020; Chung et al., 2022; Chowdhery et al., 2022). SMoE is an efficient approach to
train larger models with negligible additional overhead, which has been broadly studied in Shazeer
et al. (2017); Lepikhin et al. (2021); Fedus et al. (2022). SMoE models activate different pieces of
the model for different input tokens as opposed to utilizing the full network parameters. For instance,
GShard (Lepikhin et al., 2021), an SMoE model scales up a Transformer-based model from 2B to
600B parameters with training cost being lower than a 100B dense model. Recently, Fedus et al.
(2022) created a T5 (Raffel et al., 2020) based SMoE model with trillion parameters.

Efficiency Concerns in SMoE and Existing Solutions. SMoE models require huge memory to
host experts, moreover, many experts have low utilization during inference. To address this, Chen
et al. (2022); Kim et al. (2021); Koishekenov et al. (2023) prune experts based on their utilization
to save memory, however, this leads to lower performance. In contrast, Gao et al. (2022) uses a
tensor decomposition method to share the central tensor’s parameters across experts and keep dif-
ferent auxiliary tensors for each expert. Moreover, some works employ knowledge distillation (KD)
(Rajbhandari et al., 2022; Artetxe et al., 2022; Fedus et al., 2022) to create either a smaller dense
model or SMoE model with fewer layers. However, they also overlook the existing redundancy
within SMoE layers. Moreover, Yadav et al. (2023a) show that experts can be compressed to a huge
degree without any performance loss.

Model Merging in Language Models. The abundance of open-source models necessitates har-
nessing these existing models to create superior ones. Network ensembling (Zhu et al., 2019; Ortega
et al., 2022) emerges as an intuitive solution, however, its computational burden during inference
increases proportionally with the inclusion of more models. Recent literature has increasingly em-
phasized the concept of model merging (Yadav et al., 2023b; Cai et al., 2023; Ilharco et al., 2022b;
Matena & Raffel, 2022; Jin et al., 2022; Don-Yehiya et al., 2022; Rame et al., 2023). Yet, most of
these studies assume that the merged models originate from the same initialization (Yadav et al.,
2023b; Ilharco et al., 2022a; Wortsman et al., 2022), narrowing the pool of potential source models
suitable for merging. However, this assumption might not be applicable to SMoE models. Typically,
different experts within SMoE start with distinct random parameter initializations, and each expert

3

Published as a conference paper at ICLR 2024

Figure 3: Distribution of expert activation frequencies in the switch-base-32 model, encompassing 12
SMoE layers with 32 experts per layer. The top of the heatmap is the first MoE layer while the bottom is
the last. The left two tasks, COPA and SQuAD, are characterized by answer-generation prompts. The right
two tasks, WikiQA and SST2, are typified by answer-selection prompts. SMoE models fine-tuned on answer-
selection tasks demonstrate a more skewed distribution in their transformer decoder layers, wherein a significant
portion of experts remain inactivated all the time.

is optimized with only a subset of the training data, as determined by the routing networks. These
characteristics make the task of merging experts in SMoE more challenging.

To tackle these challenges, numerous investigations resort to mode connectivity (Draxler et al., 2018;
Frankle et al., 2020; Freeman & Bruna, 2016; Garipov et al., 2018) as a metric to measure the intri-
cacy of merging between two experts. The underlying premise is that models within the same loss
basin are mergeable. Additionally, some works employ permutation invariance (Ainsworth et al.,
2022; Jordan et al., 2022; Peña et al., 2023) to transfer models in different error basins into the same
one without affecting their functionality. Jolicoeur-Martineau et al. (2023) applies regularization
terms during training to enhance the mergeability of models, and Gueta et al. (2023) systematically
analyzes how training tasks, datasets, and recipes influence the difficulty of merging. A concurrent
work, SMEAR (Muqeeth et al., 2023) dynamically merges various experts into a single one during
the training process to avoid discrete routing. Note that this approach doesn’t offer any memory
reduction and necessitates retaining the whole SMoE during inference.

3 METHODOLOGY

In this section, we present the details of our proposed MC-SMoE method. Section 3.1 introduces the
expert merging technique M-SMoE and how it is guided by the routing policy. In Section 3.2, we
illustrate the extra benefit of merged experts and how it leads to further compression. The whole
procedure of MC-SMoE is provided at the end in Algorithm 1.

3.1 ROUTING POLICY GUIDES EXPERTS MERGING

Experts Permutation Alignment. Our M-SMoE method begins with the alignment of expert
weight permutations since merging without it could potentially lead to the inferior fusion of mis-
matched neurons. In our case, the target experts operate in the same input-output space, which
makes the merging more feasible. The experts are 2-layer feed-forward networks, where Win and
Wout denote two weight matrices of input and output layers, respectively. x is the input vector and
act(·) represents the activation function. Then, a feed-forward network is defined as a mapping
F : x → Wout(act(Winx)). Ainsworth et al. (2022) tells us that for any arbitrary permutation matrix
P, the following equation Wout(act(Winx)) = WoutP

T(act(PWinx)) always holds. In other words, P
preserves the function F .

We follow the weight matching optimization in Ainsworth et al. (2022) to align experts without
altering their functionalities. For example, given two experts Ei and Ej with weight matrices Wi and
Wj , it try to locate the optimal Pi and Pj by minimizing the ℓ2 distance between their corresponding
permutated weights W′i and W′j . Details are included in A2. This process provides a beneficial first
step for merging.

Routing Policies Reflect the Expert Similarity. One of the main challenges in SMoE expert
merging comes from the expert specialization (Mittal et al., 2022) cultivated during the joint train-
ing of experts and routers. Although representation collapse happens (Chi et al., 2022) and massive
redundancies exist among experts, Figure 3 demonstrates that the utilization of several (more than
one) experts is significantly larger compared to the rest. Therefore, it is challenging to merge all ex-
perts within an SMoE layer into a single dense expert. Instead, we divide them into multiple groups
based on their similarity, and keep all dominant (most used) experts to preserve the performance. To

4

Published as a conference paper at ICLR 2024

Figure 4: Experts are more compressible after merging. We calculate the average stable-rank change
ratio (after−before

before) of all dominant experts within each layer of the switch-base-32 SMoE model, reflecting the
difference before and after merging. These mostly negative values throughout the SMoE layers emphasize a
lower dimensionality achieved through the merging process.

meet the goal, our M-SMoE method exploits the implicit guidance from SMoE’s routing policy: (1)
Similar rows (output channel) in a router weight matrix tend to feed similar input tokens to their cor-
responding experts, pushing these experts to be trained in a similar fashion; (2) Intuitively, experts
that are similar tend to exhibit similar router logits across the majority of input tokens. Based on this,
we can either use the rows in a router weight matrix or the router logits vector derived from a batch of
input tokens, to measure expert similarity. Detailed comparisons are provided in Section 4.3 and we
describe the superior one here, i.e., router logits, and leave the other to Appendix A2. Specifically,
the similarity Sim(·, ·) between experts Ei and Ej in an SMoE layer is computed by:

H = Wr(X
T), Sim(Ei, Ej) = cosine(Hi,∗, Hj,∗), (1)

where X is an input embedding, Wr is the router weight, Hi,∗ and Hj,∗ are row vectors in logits H.

Dominant Experts, Expert Grouping, and Frequency-Based Merging. Based on the expert
utilization as depicted in Figure 3, we first treat the most commonly active experts as dominant
experts. Such expert utilization is calculated by inputting and routing a randomly picked subset of
training data. Then, as demonstrated in Figure 2 (b), each non-dominant expert gravitates toward
and joins the group led by its most similar dominant expert, using the similarity function defined by
Equation 1. After grouping, each group consists of a few non-dominant and one dominant expert.
Lastly, for a group of k experts {E1, · · · , Ek}, a frequency-based merging is performed as follows:

Emerged =

∑k
i=1 αiEi∑k
i=1 αi

, (2)

where αi is the usage frequency of expert Ei. The superiority of emphasizing the dominant experts
is detailed and validated in our ablation study (Section 4.3).

Adaptive Layer-Wise Merging Ratio. As shown in Figure 3, the activated frequency of each
expert varies across different SMoE layers, suggesting a diverse number of dominant experts and
corresponding groups. To consider this phenomenon, we normalize the frequencies within each
SMoE layer and select the dominant experts in a global manner across all layers3. Take an extreme
case as an example, if the expert routing is uniform in one SMoE layer, then all experts will be
treated as dominant ones, echoing our intuitions.

3.2 MERGING ENCOURAGES EXPERT DECOMPOSITION

Merging Encourages Low-Rank Weights. We observe that M-SMoE promotes a lower dimen-
sionality in the weight space of merged experts, naturally facilitating additional compression. We
adopt the metric from Wang et al. (2023) to measure the rank of weight spaces. This metric has
proved to be practical as it primarily remains unswayed by minuscule singular values, providing a
rank estimation for the weight matrix W from a network layer. It is defined below:

stable-rank(σ) =
Σiσ

2
i

max σ2
i

, (3)

where σ denotes the singular value vector of W. Figure 4 showcases several stable-rank change
ratio instances of SMoEs fine-tuned on various tasks. We measured the stable-rank’s change
after merging by calculating the ratio of its difference to its initial value. We see that the aver-
aged stable-rank change ratio of all experts is consistently non-positive, i.e. stable-rank
decreases, over most of the SMoE layers, after merging. It inspires us to conduct post-merging
compression, as illustrated in Figure 2 (c).

3To ensure computational stability, we adjust the frequency of the most active expert in each SMoE layer to
1.0. In this way, at least one expert will be labeled as dominant. However, our experiments show that there are
always at least two dominant experts in each SMoE layer.

5

Published as a conference paper at ICLR 2024

Post-Merging Compression of MC-SMoE. To enjoy the extra benefits from merging, we tailor the
previous SoTA decomposition methods (Chen et al., 2021; Li et al., 2023) for SMoE, and propose
an upgraded algorithm MC-SMoE for further memory and parameter efficiency. To be specific, the
weight matrix W of a merged expert is decomposed into UV+ S. Here, the product of U ∈ Rd1×r and
V ∈ Rr×d2 represents a low-rank approximation, where r is a much smaller rank compared to the
full dimensionality of W. S contains the incoherent part of weights in W, and will be further pruned in
a structural manner. An importance score of a weight si,j is computed as I(si,j) = |si,j · ∇si,jL|,
where L indicates the training objective of SMoEs. To trim down S, the weight columns with the
lowest cumulative scores

∑
i I(si,j) will be removed, which is determined across all S weights and

naturally leads to a layer-wise adaptive compression ratio. As a summary, Algorithm 1 presents the
full procedures of our proposed MC-SMoE framework.

Algorithm 1 The Overall Procedures of MC-SMoE.
1: Initialize: A modelM with l SMoE layers, training dataset T with b tokens, the total number of original

experts n, and the number of the remaining experts k.
2: Let H ∈ Rl×b×n and A ∈ Rl×n denote the router logits and activated frequencies, respectively
3: Let D represents the set of dominant experts
4: H, A← forward(M, T); D ← top (k,row-normalize(A))
5: for layer t = 1, . . . , l do
6: for expert i = 2, . . . , n

l
do

7: Eti ← weight-matching(Eti, E
t
1) ▷ Expert Permutation Alignment

8: end for
9: Q(i) := argmaxj∈Dtcosine (Ht,∗,i, Ht,∗,j) ▷ Group Label Assignment

10: for d ∈ Dt do
11: G ← {i | Q(i) == d}; Etd ←

∑
i∈G At,iE

t
i∑

i∈G At,i
▷ Merging based on Activated Frequencies

12: Etd → UtdV
t
d + Std ▷ Then compress

13: end for
14: for i /∈ D do
15: Dropping Eti fromM
16: end for
17: end for
18: Return: A compact SMoE produced from MC-SMoE.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Table 1: Two SMoE models and their corresponding
dense model checkpoints. act-size: number of activated
parameters for each token, size: total number of param-
eters, l: the number of transformer layers, h: hidden
dimension, e: the number of number of experts, arch:
the type of transformer architecture.

Model Identifier act-size size l h e arch

t5-base 220M 220M 12 768 1 enc-dec
switch-base-32 220M 2.0B 12 768 32 enc-dec

fairseq-dense-125m 125M 125M 12 768 1 dec
fairseq-moe-15b 125M 15B 12 768 512 dec

Datasets and Network Backbones. Our ex-
periments adopt the two open-source large lan-
guage model families with their SMoE vari-
ants: (a) the Switch Transformers (Fedus et al.,
2022) and (b) Meta’s GPT-based SMoE mod-
els (Artetxe et al., 2022). A summary of the
specific model configurations is provided in Ta-
ble 1. We use eight popular NLP tasks for
supervised fine-tuning and evaluation: SST-
2 (Socher et al., 2013) for sentiment classifi-
cation, MRPC (Dolan & Brockett, 2005) for
paraphrase identification, MultiRC (Khashabi et al., 2018) for multiple-choice QA, COPA (Gor-
don et al., 2012) for sentence completion, WinoGrande (Sakaguchi et al., 2019) for conference
resolution, SQuAD v1.1 (Rajpurkar et al., 2016) for extractive QA, WikiQA (Yang et al., 2015)
and HotpotQA (Yang et al., 2018) for closed-book QA. For zero-shot evaluation, we pick three
representative benchmarks: MRPC in GLUE (Wang et al., 2019), WinoGrande for reasoning, and
OpenBookQA (Mihaylov et al., 2018) for QA.

Comparison Baselines. We compare our proposals to six baselines including two pruning and
four merging methods. Firstly, we consider the “task-specific” expert pruning method from Chen

6

Published as a conference paper at ICLR 2024

Table 2: Performance evaluations on the switch-base-32 model with 32 experts in each SMoE layer,
as well as its comparative dense model t5-base. We found the first SMoE layer has a profound impact
on the model’s performance, and merging it results in more significant performance degradation
compared to other layers. Thus for all merging/compression mechanisms, the first SMoE layer is
skipped following Ma et al. (2023), and it maintains an average of 8 experts in other SMoE layers.
We report exact-match/F1-score for SQuAD and HotpotQA, F1-score for MultiRC, and accuracy
for other tasks. For each task, we highlight the best performance over all baselines in blue , and
mark the performance no worse than full SMoE in bold.

Methods Model Size TFLOPs SST-2 MRPC MultiRC COPA WinoGrande SQuAD WikiQA HotpotQA
Dense 220M 4.65 94.61 88.97 74.25 58.00 58.72 63.65/83.76 96.12 66.13/83.45
Full SMoE 2.0B 4.65 95.75 90.20 76.19 68.00 61.80 65.39/85.81 96.45 67.55/84.60

Pruning 733M 4.65 94.50 88.97 75.13 63.00 61.64 64.80/85.13 96.27 67.39/84.56
Task-Specific 733M 4.65 91.28 82.04 53.63 52.00 58.56 54.40/78.00 95.24 64.70/82.76

Averaging 733M 4.65 92.66 88.73 74.04 62.00 59.59 64.49/84.75 96.19 67.36/84.61
ZipIt 733M 4.65 93.12 91.18 75.26 65.00 60.38 65.01/85.06 96.05 67.59/84.70
REPAIR 733M 4.65 92.89 90.44 74.44 65.00 61.48 64.67/84.84 96.27 67.67/84.77
Git Re-basin 733M 4.65 93.35 88.24 74.25 65.00 59.25 64.61/84.92 96.23 67.29/84.46

M-SMoE 733M 4.65 94.50 90.69 75.57 68.00 61.80 65.66/85.49 96.34 67.91/84.83
MC-SMoE 381M 3.83 93.35 89.22 73.98 67.00 59.52 65.41/85.30 96.08 67.64/84.77

et al. (2022), which gradually drops non-active experts during fine-tuning. Additionally, we evaluate
the one-shot pruning of non-dominant experts as a sanity check. Secondly, given the absence of prior
work on expert merging, we directly adapt Averaging (Choshen et al., 2022), ZipIt (Stoica et al.,
2023), REPAIR (Jordan et al., 2022) and Git Re-basin (Ainsworth et al., 2022) merging methods to
our SMoE scenarios as strong baselines for comparison.

Training and Evaluation Details. For the encoder-decoder models, including the switch-base-32
SMoE model and the t5-base dense model, we report supervised fine-tuning results. For each task,
we first undertake a comprehensive hyper-parameter search. This encompasses batch sizes from {8,
16, 32, 64}, learning rates from {3×10−4, 1×10−4, 3×10−5, 1×10−5}, and epoch counts spanning
{3, 5, 10, 20}, to pinpoint the optimal fine-tuned models. Further fine-tuning hyper-parameters are
fixed, as shown in Appendix Table A15. After merging and compression, we proceed to fine-tune
the condensed model to restore its performance. Further, we apply knowledge distillation (KD) to
compel the M-SMoE and MC-SMoEmodels to imitate the outputs generated by the full SMoE model
on the training dataset. The hyper-parameters in the added KD loss are fixed for all tasks, please
refer to Appendix A2 for more details. As for the decoder-only models, including the fairseq-moe-
15b SMoE model and the fairseq-dense-125m dense model, we report zero-shot results, i.e. without
undergoing any further training. For the compression phase in MC-SMoE, we set the sparse ratio to
0.1 and the low-rank factor to 32, following Li et al. (2023). The model size and the number of tera
floating point operations (TFLOPs) are reported to measure the efficiency. The TFLOPs is evaluated
by a batch of the first 64 samples in the SQuAD dataset, with the input sequence length of 329 and
the target sequence length of 13. All experiments are conducted with PyTorch and DeepSpeed on
NVIDIA A100 and A6000.

4.2 COMPETITIVE PERFORMANCE AND SUPERIOR EFFICIENCY OF MC-SMOE

Table 2 presents the performance comparisons among M-SMoE, MC-SMoE, and eight baselines in a
supervised fine-tuning manner on {SST2, MRPC, MultiRC, COPA, WinoGrande, SQuaD, WikiQA,
HotpotQA} datasets. Note that all the compared methods activate the same number of parameters.
From Table 2, the following observations can be drawn: ❶ M-SMoE achieves 60% memory reduc-
tion while retaining performance on {MRPC, COPA, WinoGrande, SQuAD, HotpotQA}, and even
obtains {0.49, 0.25, 0.41} (%) extra performance improvement on {MRPC, SQuAD, HotpotQA}
over the full SMoE model, respectively. Although M-SMoE shows a marginal drop in performance
for the memory efficiency on {SST2, MultiRC, WikiQA} benchmarks, however, it still outperforms
all other pruning and merging baselines. These impressive results validate the superiority of our
M-SMoE in consolidating the redundant experts. ❷ MC-SMoE is performed on top of the expert
merging from M-SMoE. The resulting model achieves up to 80% in memory and 20% in FLOPs sav-
ing, while the performance degradation remains less than 1% on {MRPC, COPA, SQuAD, WikiQA,
HotpotQA}. ❸ In addition, the zero-shot learning comparisons between ours and baselines with the
fairseq-moe-15b SMoE and fairseq-dense-125m dense models are included in Appendix A1.1.

7

Published as a conference paper at ICLR 2024

4.3 ABLATION STUDY AND EXTRA INVESTIGATION

Table 3: Comparison between Uniform
and Adaptive (ours) merging ratio with the
switch-base-32 model on four datasets.

Merging Ratio Uniform Adaptive

MultiRC 74.48 75.57
COPA 63.00 68.00
MRPC 90.44 90.69
SQuAD 64.36/84.56 65.66/85.49

Ablation on Different Merging Ratio Designs. To tes-
tify whether our adaptive merging ratio is effective or
not, we conduct an ablation study on different merging
ratios, i.e., uniform (constant ratio per layer) v.s. adap-
tive (ours). Experimental results are produced with the
switch-base-32 backbone on four datasets, as shown in
Table 3. Our adaptive ratio presents a consistent advan-
tage in terms of merging performance, compared to the
uniform ratio. It is within expectation since the pilot study
in Figure 3 reveals that the number of frequently utilized
experts is different across different transformer blocks.

Table 4: Comparison between router-logits (ours) and
seven other similarity functions for grouping experts.

Representations MultiRC COPA MRPC SQuAD
Random 74.69 62.00 89.95 64.97/84.96
Expert-weight 75.29 63.00 89.46 64.98/85.18
Expert-weight-feature 74.96 62.00 89.95 64.98/85.19
Expert-gradient 75.50 59.00 89.22 64.93/85.01
Expert-feature 74.74 60.00 89.95 65.03/85.21
Expert-feature.abs 75.20 65.00 89.22 64.90/85.15
Router-weight 75.01 59.00 88.73 64.99/85.02

Router-logits (Ours) 75.57 68.00 90.69 65.66/85.49

Ablation on Different Grouping Methods.
A pivotal component of our M-SMoE frame-
work is to compute the similarity among ex-
perts by router output logits, i.e. router-logits,
which directly determines their grouping sta-
tuses. Here, we carry out an ablation study
for comparing our router-logits with seven
other similarity functions: (i) random, which
generates a random vector for each expert;
(ii) expert-weight, using the flattened weight of
each expert’s feed-forward network; (iii) expert-weight-feature, leveraging the product of the ex-
pert’s weight and the L2 norm of its associated features; (iv) expert-gradient, utilizing the flattened
gradients of each expert’s feed-forward network; (v) expert-feature, adopting the average input hid-
den states of each expert; (vi) expert-feature.abs, using the average of absolute values of each ex-
pert’s input hidden states; (vii) router-weight, adopting the corresponding row vector from the router
weight matrix; and our (viii) router-logits, which uses the router output logits vector corresponding
to the expert after feeding a batch to the SMoE model. Experimental results with the switch-base-32
model across four datasets are presented in Table 4. We observe that our router-logits consistently
outperforms all other similarity variants. The strength of router-logits lies in its ability to directly
reflect the routing decision distribution of input samples. During the training, experts with a similar
routing decision are optimized with a similar subset of data, leading to potential redundancy.

Table 5: Comparison between fine-
tuning M-SMoE w.o. and w. (ours) KD
with the switch-base-32 model.

Methods w.o. kD w. kD

MultiRC 74.77 75.57
COPA 64.00 68.00
MRPC 89.22 90.69
SQuAD 63.25/84.03 65.66/85.49

Contribution from Knowledge Distillation. Knowledge
distillation (KD) has been proven to be effective in inherit-
ing information from large models. Therefore, we by default
use KD for all merged and compressed SMoEs, including our
M-SMoE, MC-SMoE, and all baselines. To show its contribu-
tion, we perform an ablation study comparing M-SMoE w. and
w.o. the inclusion of KD loss during fine-tuning. Experimen-
tal results presented in Table 5, with the switch-base-32 SMoE
model across four datasets, underscore the advantages derived
from the application of KD.

Table 6: Comparison between M-SMoE
w.o. and w. permutation alignment (PA)
with the switch-base-32 model.

Methods M-SMoE w.o. PA M-SMoE w. PA

MultiRC 74.84 75.57
COPA 66.00 68.00
MRPC 89.95 90.69
SQuAD 64.73/84.73 65.66/85.49

Contribution from Expert Permutation Alignment.
Consider an expert with two feed-forward layers with an
intermediate dimension of d, there are d! kinds of per-
mutation possibilities to match and merge two experts.
Next, we present an ablation study to compare M-SMoE
w. and w.o. alignment to assess the effectiveness of ex-
pert permutation alignment. In Table 6, we present results
with the switch-base-32 SMoE model on four datasets. It
demonstrates a clear performance improvement when ap-
plying the expert permutation alignment before merging. Therefore, without proper permutation
alignment, expert merging could result in an inferior fusion of mismatched neurons.

8

Published as a conference paper at ICLR 2024

Table 7: Comparison among M-SMoE that only merges,
C-SMoE that only compresses, and MC-SMoE that merges
and then compresses. Experiments are conducted with the
switch-base-32 model. We highlight the better performance
between C-SMoE and MC-SMoE in bold for each task.

Methods SMoE M-SMoE C-SMoE MC-SMoE

Model Size 2.0B 733M 570M 381M
TFLOPs 4.65 4.65 3.83 3.83

COPA 68.00 68.00 64.00 67.00
MRPC 90.20 90.69 88.97 89.22
SQuAD 65.39/85.81 65.66/85.49 64.78/84.93 65.41/85.30

Impact of Merging vs. Decomposition.
To quantify the extra benefit of the low
dimensionality arising from M-SMoE, we
look at the effects of merging experts and
compressing SMoEs separately. We con-
sider the evaluation of three tasks using
the switch-base-32 SMoE model and com-
pare M-SMoE that only merges experts,
C-SMoE that only compresses, and with
MC-SMoE that does both merging and
compression. From Table 7, we observe:
❶ M-SMoE reduces the model size while maintaining or boosting performance. In contrast, C-SMoE
(i.e., compression only) leads to a significant performance drop. It suggests that merging is a su-
perior option to pursue memory efficiency and maintain model quality. ❷ The success of M-SMoE
paves the way for further compression. This is supported by MC-SMoE outperforming C-SMoE
with even fewer parameter counts.

Table 8: Comparison among different averaging strategies
of Uniform, Fisher-weighted and Frequency-weighted (ours),
evaluated with the switch-base-32 SMoE models.

Methods Uniform Fisher-weighted Frequency-weighted

MultiRC 75.11 73.77 75.57
COPA 64.00 65.00 68.00
MRPC 89.95 89.46 90.69
SQuAD 64.55/84.85 63.99/84.44 65.66/85.49

Ablation on Different Merging Strate-
gies. To examine the effectiveness of our
proposed frequency-aware expert merg-
ing, an ablation study on different merg-
ing strategies is needed. Specifically,
we investigate uniform (Wortsman et al.,
2022), fisher-weighted (Matena & Raf-
fel, 2022), and frequency-weighted (ours)
merging methods with the switch-base-32
model across four datasets. As detailed in Table 8, we see that our frequency-weighted merging
consistently reaches the best performance. A possible reason is that merging based on activation
frequencies suppresses the impact of less significant experts. In contrast, the uniform approach
tends to give inappropriate prominence to redundant information, overshadowing critical experts
during the merging process. As for the fisher-weighted merging strategy, which relies on gradient
magnitude for expert re-weighting, does not quite hit the mark, since in our case, the experts have
already been well pre-trained before merging.

Figure 5: Ratio of remaining parameters after further compress-
ing the dominant experts from MC-SMoE.

Visualization of Compact SMoEs
from MC-SMoE. We visualize the
distribution of dominant experts in the
switch-base-32 SMoE model produced
by M-SMoE, and their compressed ver-
sions from MC-SMoE in Figure 5. Each
grid box denotes a dominant expert,
and the darker color indicates more
remaining parameters in that expert.
Later SMoE layers, at the bottom of the
heatmap, seem to be more mergeable
and compressible.

5 CONCLUSIONS

Sparse Mixture-of-Experts (SMoE) is a promising framework to scale up the model capacity, which
enjoys roughly unchanged training and inference FLOPs at the cost of significantly increased mem-
ory overheads. The memory requirements and expert redundancy highly limit its practical usage.
In this work, we propose an innovative SMoE merging approach, i.e., M-SMoE, based on the hints
from routing policies, to consolidate expert information into fewer but more knowledgeable ones.
Moreover, such merged experts are demonstrated to be more compressible. our proposed, MC-SMoE
methods pursue superior memory and parameter efficiency with competitive performance. We con-
duct comprehensive experiments to support the effectiveness of our proposals. Future works mainly
lie in the extension of multi-modality scenarios and co-designs with hardware platforms.

9

Published as a conference paper at ICLR 2024

6 REPRODUCIBILITY STATEMENT

To encourage reproducibility, we have made our source code available at our GitHub repository,
https://github.com/UNITES-Lab/MC-SMoE, including the data pre-processing, SMoE merging/-
compression/pruning, and evaluation scripts. The hyperparameter details are provided in Ap-
pendix A2 and the detailed pseudo-code about SMoE expert merging is provided in Appendix A3.
We also provide clear and concise Algorithm 1 for our MC-SMoE pipeline.

REFERENCES

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. arXiv preprint arXiv:2209.04836, 2022.

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Victoria
Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, Giri Anantharaman, Xian Li, Shuohui
Chen, Halil Akin, Mandeep Baines, Louis Martin, Xing Zhou, Punit Singh Koura, Brian O’Horo,
Jeff Wang, Luke Zettlemoyer, Mona Diab, Zornitsa Kozareva, and Ves Stoyanov. Efficient large
scale language modeling with mixtures of experts. arXiv preprint arXiv:2112.10684, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

Ruisi Cai, Zhenyu Zhang, and Zhangyang Wang. Robust weight signatures: Gaining robustness as
easy as patching weights? arXiv preprint arXiv:2302.12480, 2023.

Tianlong Chen, Zhenyu Zhang, Ajay Jaiswal, Shiwei Liu, and Zhangyang Wang. Sparse moe as the
new dropout: Scaling dense and self-slimmable transformers. arXiv preprint arXiv:2303.01610,
2023.

Tianyu Chen, Shaohan Huang, Yuan Xie, Binxing Jiao, Daxin Jiang, Haoyi Zhou, Jianxin Li,
and Furu Wei. Task-specific expert pruning for sparse mixture-of-experts. arXiv preprint
arXiv:2206.00277, 2022.

Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Chen, Zhangyang Wang, and Ahmed Hassan
Awadallah. Dsee: Dually sparsity-embedded efficient tuning of pre-trained language models.
arXiv preprint arXiv:2111.00160, 2021.

Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, Shuming Ma, Barun Patra, Saksham Singhal,
Payal Bajaj, Xia Song, and Furu Wei. On the representation collapse of sparse mixture of experts.
arXiv preprint arXiv:2204.09179, 2022.

Leshem Choshen, Elad Venezian, Noam Slonim, and Yoav Katz. Fusing finetuned models for better
pretraining. arXiv preprint arXiv:2204.03044, 2022.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways.
arXiv preprint arXiv:2204.02311, 2022.

10

https://github.com/UNITES-Lab/MC-SMoE

Published as a conference paper at ICLR 2024

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pel-
lat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin,
Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language
models. arXiv preprint arXiv:2210.11416, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. ArXiv, abs/1810.04805, 2019.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005. URL
https://aclanthology.org/I05-5002.

Shachar Don-Yehiya, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem
Choshen. Cold fusion: Collaborative descent for distributed multitask finetuning. arXiv preprint
arXiv:2212.01378, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. ArXiv, abs/2010.11929, 2021.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers
in neural network energy landscape. In International conference on machine learning, pp. 1309–
1318. PMLR, 2018.

Zhiwen Fan, Rishov Sarkar, Ziyu Jiang, Tianlong Chen, Kai Zou, Yu Cheng, Cong Hao, Zhangyang
Wang, et al. M3vit: Mixture-of-experts vision transformer for efficient multi-task learning with
model-accelerator co-design. Advances in Neural Information Processing Systems, 35:28441–
28457, 2022.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022. URL http://jmlr.org/papers/v23/21-0998.html.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
nectivity and the lottery ticket hypothesis. In International Conference on Machine Learning, pp.
3259–3269. PMLR, 2020.

C Daniel Freeman and Joan Bruna. Topology and geometry of half-rectified network optimization.
arXiv preprint arXiv:1611.01540, 2016.

Ze-Feng Gao, Peiyu Liu, Wayne Xin Zhao, Zhong-Yi Lu, and Ji-Rong Wen. Parameter-
efficient mixture-of-experts architecture for pre-trained language models. arXiv preprint
arXiv:2203.01104, 2022.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information pro-
cessing systems, 31, 2018.

Andrew Gordon, Zornitsa Kozareva, and Melissa Roemmele. SemEval-2012 task 7: Choice of
plausible alternatives: An evaluation of commonsense causal reasoning. In *SEM 2012: The First
Joint Conference on Lexical and Computational Semantics – Volume 1: Proceedings of the main
conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop
on Semantic Evaluation (SemEval 2012), pp. 394–398, Montréal, Canada, 2012. Association for
Computational Linguistics. URL https://aclanthology.org/S12-1052.

Almog Gueta, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem Choshen.
Knowledge is a region in weight space for fine-tuned language models. arXiv preprint
arXiv:2302.04863, 2023.

11

https://aclanthology.org/I05-5002
http://jmlr.org/papers/v23/21-0998.html
https://aclanthology.org/S12-1052

Published as a conference paper at ICLR 2024

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2016.

Jiaao He, Jiezhong Qiu, Aohan Zeng, Zhilin Yang, Jidong Zhai, and Jie Tang. Fastmoe: A fast
mixture-of-expert training system. arXiv preprint arXiv:2103.13262, 2021.

Jiaao He, Jidong Zhai, Tiago Antunes, Haojie Wang, Fuwen Luo, Shangfeng Shi, and Qin Li.
Fastermoe: Modeling and optimizing training of large-scale dynamic pre-trained models. In
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’22, pp. 120–134, New York, NY, USA, 2022. Association for Com-
puting Machinery. ISBN 9781450392044. doi: 10.1145/3503221.3508418. URL https:
//doi.org/10.1145/3503221.3508418.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022a.

Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Si-
mon Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by interpo-
lating weights. Advances in Neural Information Processing Systems, 35:29262–29277, 2022b.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
merging weights of language models. arXiv preprint arXiv:2212.09849, 2022.

Alexia Jolicoeur-Martineau, Emy Gervais, Kilian Fatras, Yan Zhang, and Simon Lacoste-Julien.
Population parameter averaging (papa). arXiv preprint arXiv:2304.03094, 2023.

Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. Repair: Renor-
malizing permuted activations for interpolation repair. arXiv preprint arXiv:2211.08403, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. Looking be-
yond the surface: A challenge set for reading comprehension over multiple sentences. In Proceed-
ings of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 252–262, New Or-
leans, Louisiana, 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1023.
URL https://aclanthology.org/N18-1023.

Young Jin Kim, Ammar Ahmad Awan, Alexandre Muzio, Andres Felipe Cruz Salinas, Liyang Lu,
Amr Hendy, Samyam Rajbhandari, Yuxiong He, and Hany Hassan Awadalla. Scalable and effi-
cient moe training for multitask multilingual models. arXiv preprint arXiv:2109.10465, 2021.

Yeskendir Koishekenov, Alexandre Berard, and Vassilina Nikoulina. Memory-efficient NLLB-200:
Language-specific expert pruning of a massively multilingual machine translation model. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 3567–3585,
Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
acl-long.198. URL https://aclanthology.org/2023.acl-long.198.

Harold W. Kuhn. The Hungarian Method for the Assignment Problem. Naval Research Logistics
Quarterly, 2(1–2):83–97, March 1955. doi: 10.1002/nav.3800020109.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. {GS}hard: Scaling giant models with condi-
tional computation and automatic sharding. In International Conference on Learning Represen-
tations, 2021. URL https://openreview.net/forum?id=qrwe7XHTmYb.

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
Losparse: Structured compression of large language models based on low-rank and sparse ap-
proximation. arXiv preprint arXiv:2306.11222, 2023.

12

https://doi.org/10.1145/3503221.3508418
https://doi.org/10.1145/3503221.3508418
https://aclanthology.org/N18-1023
https://aclanthology.org/2023.acl-long.198
https://openreview.net/forum?id=qrwe7XHTmYb

Published as a conference paper at ICLR 2024

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10012–10022, October
2021.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. arXiv preprint arXiv:2305.11627, 2023.

Zhiyuan Mao, Ajay Jaiswal, Zhangyang Wang, and Stanley H. Chan. Single frame atmospheric
turbulence mitigation: A benchmark study and a new physics-inspired transformer model. ArXiv,
abs/2207.10040, 2022.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances
in Neural Information Processing Systems, 35:17703–17716, 2022.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Sarthak Mittal, Yoshua Bengio, and Guillaume Lajoie. Is a modular architecture enough? Advances
in Neural Information Processing Systems, 35:28747–28760, 2022.

Mohammed Muqeeth, Haokun Liu, and Colin Raffel. Soft merging of experts with adaptive routing.
arXiv preprint arXiv:2306.03745, 2023.

Xiaonan Nie, Pinxue Zhao, Xupeng Miao, Tong Zhao, and Bin Cui. Hetumoe: An efficient trillion-
scale mixture-of-expert distributed training system. arXiv preprint arXiv:2203.14685, 2022.

Luis A Ortega, Rafael Cabañas, and Andres Masegosa. Diversity and generalization in neural net-
work ensembles. In International Conference on Artificial Intelligence and Statistics, pp. 11720–
11743. PMLR, 2022.

Fidel A Guerrero Peña, Heitor Rapela Medeiros, Thomas Dubail, Masih Aminbeidokhti, Eric
Granger, and Marco Pedersoli. Re-basin via implicit sinkhorn differentiation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20237–20246,
2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2020.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale. arXiv preprint arXiv:2201.05596, 2022.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ ques-
tions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp. 2383–2392, Austin, Texas, 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1264. URL https://aclanthology.
org/D16-1264.

Alexandre Rame, Kartik Ahuja, Jianyu Zhang, Matthieu Cord, Léon Bottou, and David Lopez-Paz.
Model ratatouille: Recycling diverse models for out-of-distribution generalization. arXiv preprint
arXiv:2212.10445, 2023.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

Victor Sanh, Thomas Wolf, and Alexander M. Rush. Movement pruning: Adaptive sparsity by
fine-tuning, 2020.

13

https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264

Published as a conference paper at ICLR 2024

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, Seattle, Washington, USA, 2013. Association for Computational Lin-
guistics. URL https://aclanthology.org/D13-1170.

George Stoica, Daniel Bolya, Jakob Bjorner, Taylor Hearn, and Judy Hoffman. Zipit! merging
models from different tasks without training. arXiv preprint arXiv:2305.03053, 2023.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Herv’e J’egou. Training data-efficient image transformers & distillation through attention. In
ICML, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762,
2023.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2019.

Hongyi Wang, Saurabh Agarwal, Pongsakorn U-chupala, Yoshiki Tanaka, Eric P. Xing, and Dim-
itris Papailiopoulos. Cuttlefish: Low-rank model training without all the tuning. arXiv preprint
arXiv:2305.02538, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning, pp. 23965–23998. PMLR,
2022.

Prateek Yadav, Leshem Choshen, Colin Raffel, and Mohit Bansal. Compeft: Compression for
communicating parameter efficient updates via sparsification and quantization, 2023a.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Resolving interfer-
ence when merging models. In NeurIPS, New Orleans, USA, 2023b. Proceedings of Machine
Learning Research.

Yi Yang, Wen-tau Yih, and Christopher Meek. WikiQA: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 2013–2018, Lisbon, Portugal, 2015. Association for Computational Lin-
guistics. doi: 10.18653/v1/D15-1237. URL https://aclanthology.org/D15-1237.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question an-
swering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language

14

https://aclanthology.org/D13-1170
https://aclanthology.org/D15-1237

Published as a conference paper at ICLR 2024

Processing, pp. 2369–2380, Brussels, Belgium, October-November 2018. Association for Com-
putational Linguistics. doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/
D18-1259.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural
information processing systems, 32, 2019.

Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen, and Moshe Wasserblat. Prune once for all:
Sparse pre-trained language models, 2021.

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, and
Tuo Zhao. Platon: Pruning large transformer models with upper confidence bound of weight
importance, 2022.

Minghang Zheng, Peng Gao, Renrui Zhang, Xiaogang Wang, Hongsheng Li, and Hao Dong. End-
to-end object detection with adaptive clustering transformer. ArXiv, abs/2011.09315, 2021.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression, 2017.

Shilin Zhu, Xin Dong, and Hao Su. Binary ensemble neural network: More bits per network or
more networks per bit? In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

15

https://aclanthology.org/D18-1259
https://aclanthology.org/D18-1259

Published as a conference paper at ICLR 2024

APPENDIX

A1 MORE EXPERIMENTAL RESULTS

A1.1 ZERO-SHOT EVALUATION RESULTS

We compare our proposed M-SMoE, MC-SMoE with one-shot pruning of non-dominant experts and
the “task-specific” expert pruning method, in a zero-shot learning manner. Our M-SMoE consis-
tently outperforms the baseline methods, as shown in Table A9. The performance might be further
improved if only we can fine-tune the routers, given that our M-SMoE highly leverages routing
information during the merging phase.

Table A9: Performance evaluation on the fairseq-moe-15b model with 512 experts in each SMoE layer, as
well as its comparative dense model fairseq-dense-125m. Different from the fine-tuned switch-base-32 model,
we apply pruning/merging methods on every SMoE layer here and maintain an average of 16 experts. We
highlight the best performance over all baselines in bold.

Methods Model Size TFLOPs MRPC OpenBookQA WinoGrande
Dense 125M 5.08 37.75 34.00 49.49
Full SMoE 15B 5.08 60.54 36.80 51.78

Pruning 552M 5.08 52.20 30.60 48.46
Task-Specific 552M 5.08 40.19 23.60 48.38

M-SMoE 552M 5.08 52.69 34.40 50.43
MC-SMoE 166M 4.45 47.55 34.60 49.09

A1.2 EFFICIENCY DISCUSSIONS AND LIMITATIONS

Latency Limitations Despite the {dense, SMoE, M-SMoE, MC-SMoE} models sharing the same
theoretical TFLOPs, they do not necessarily produce the same latency. This is because the vanilla de-
sign of SMoE in the real world suffers from significant extra latency costs introduced by routing (Nie
et al., 2022). Our proposed M-SMoE and MC-SMoE achieve impressive memory and TFLOPs effi-
ciency for SMoE. However, they do not improve latency. Ideally, the merging process is supposed to
reduce the number of classes managed by the router classifier due to the reduction in the number of
experts in each layer. However, in practical implementation, we face a challenge: explicitly creating
a new router for the merged experts is non-trivial. To address this issue, we adopt the following
strategy as shown in Appendix A3: within each group, we retain a representative expert and let
other routers point towards this representative. Yet, all such routing decisions into this group will
now be directed towards a single new merged expert. This implies that, although the count of ex-
perts reduces, the number of classes managed by the router remains constant, i.e. the routing latency
costs remain constant. Thus, if we manage to prune the router output channels without affecting its
functionality, we can realize a notable improvement in latency efficiency.

To examine the potential efficiency from router pruning upon M-SMoE, we conduct experiments
with the switch-base-32 backbone on batch size {32, 256, 512} and compare inference latency of
these four models: ① dense, ② SMoE, ③ M-SMoE, ④ M-SMoE w. pruning router. Notably, results
in Table A10 across three batch size settings demonstrate a latency ordering of ②≈③>④>①. This
indicates the latency limitation and encourages future work for router pruning.

Table A10: Latency analysis of the switch-base-32 model on SQuAD task inference with BF16.

Models BSZ=32 BSZ=256 BSZ=512

TFLOPs Latency (s) TFLOPs Latency (s) TFLOPs Latency (s)

Dense 2.33 0.08 25.51 0.85 59.32 2.33
Full SMoE-32 2.33 0.18 25.51 1.02 59.32 2.50

M-SMoE-8 2.33 0.17 25.51 0.99 59.32 2.48
M-SMoE-8 w. pruning router 2.33 0.13 25.51 0.93 59.32 2.38

Potential Specialization for Inference Implementation We first present a comprehensive inves-
tigation of the inference cost of our full SMoE, M-SMoE, and MC-SMoE models, focusing on both
computational and memory efficiency. Our investigation covers latency, throughput, and FLOPs for

A16

Published as a conference paper at ICLR 2024

computational aspects, along with model size and memory cost for memory aspects. As shown in
Table A11, the underscored results demonstrate the marginal inference gain from M-SMoE, which
confirms our analysis in the first paragraph of Appendix A1.2. On the other hand, the throughput
of MC-SMoE is lower than that of M-SMoE, despite it consuming less memory and FLOPs. This
is due to our lack of specialized sparse matrix support software or hardware for MC-SMoE, which
encourages our future work.

Table A11: Computational and memory efficiency evaluation on our full SMoE, M-SMoE, and MC-SMoE
models without specialized implementation. All performance is produced using the same input size, including
{throughput (token per ms), latency (ms), GFLOPs, memory, model size (number of parameters)}

Models Throughput Latency GFLOPs Memory Model Size
Full SMoE 4.47 114.3 232 3895MB 2.0B
M-SMoE 4.82 106.2 232 1456MB 733M
MC-SMoE 2.71 189.0 186 715MB 381M

However, theoretical speedup exists. This is because, in conventional SMoE implementation, the
routing process involves two drawbacks of throughput: (1) a layout transform of the tensors (to
arrange tokens targeting the same experts into a continuous memory buffer) and its reverse opera-
tion (Nie et al., 2022), and (2) breaking down one large matrix block GEMM operation into many
smaller matrix block GEMM operations (each corresponding to an individual expert), leading to
less efficient utilization of modern computational hardware’s advantages. These factors lead to a
decrease in real throughput for the sparsely activated computation in SMoE when the number of
experts rises, a topic that remains an open area for research (Nie et al., 2022) and is earmarked for
exploration in our future studies. While our M-SMoE confronts the first challenge due to the diffi-
culty of pruning the router’s output channels, we are capable of optimizing the inference speed from
the second challenge.

We conduct an extended evaluation of computational and memory costs for a specialized inference
design. Our approach involves gathering tokens routed to all experts of one group and processing
them through one single expert, leveraging the shared weights within the group. This strategy is
designed to take advantage of the parallel processing capabilities of hardware accelerators, typically
GPUs. The underscored results presented in Table A12 clearly illustrate the enhanced throughput
and latency performance of our M-SMoE and MC-SMoE models post-implementation of this opti-
mization technique. We believe these promising initial results will catalyze additional exploration
and research.
Table A12: Computational and memory efficiency evaluation on our full SMoE, M-SMoE, and MC-SMoE
models with specialized implementation. All performance is produced using the same input size, including
{throughput (token per ms), latency (ms), GFLOPs, memory, model size (number of parameters)}

Models Throughput Latency GFLOPs Memory Model Size
Full SMoE 4.47 114.3 232 3895MB 2.0B
M-SMoE 7.91 64.7 232 1456MB 733M
MC-SMoE 6.27 81.6 186 715MB 381M

A1.3 COMPUTATIONAL COST DISCUSSION OF M-SMOE

We present a detailed computational cost analysis for each stage of our merging procedure. The
M-SMoE merging approach encompasses three principal stages: ①aligning expert permutations,
②grouping experts, and ③merging expert weights. To begin with, aligning expert permutations is
performed separately in each SMoE layer, which results in the computational costs being linearly
correlated with the number of SMoE layers. Secondly, expert grouping involves model inference to
assess activation frequencies and router logits, followed by calculating pair-wise similarity among
experts. Owing to the sparse activation computations inherent in SMoE, the model’s inference costs
remain unchanged regardless of the number of SMoE layers, leading to the similarity computa-
tions within each SMoE layer being the main contributors to linear increase in computational costs.
The final stage, merging expert weights within each SMoE layer, also adds to this linear increase
in computational demands. To sum up, while some aspects of our approach maintain a constant
computational load, our overall cost analysis indicates a trend of linear growth in these demands.

A17

Published as a conference paper at ICLR 2024

To validate our analysis, we conduct extra experiments for the computational costs of merging.
We evaluate the switch-base-32 model’s computation time costs of ①expert permutation alignment,
②expert grouping, and ③expert weight merging respectively. We maintained a constant (24) total
number of Transformer layers while varying the number of SMoE layers. The results shown in
Table A13 confirm our analysis, indicating that the primary bottleneck in terms of time cost is
rooted in the expert permutation alignment, while the bulk of memory cost is attributed to model
inference.
Table A13: Computational costs of our M-SMoE merging method, evaluated with the switch-base-32 on the
COPA task. We maintain a constant total number of Transformer layers of 24 and vary the number of SMoE
layers from 2 to 12. The three principal stages of M-SMoE are evaluated separately, including Permutation
Alignment (PA), Expert Grouping (EG), and Weight Merging (WM).

Stage Metric SMoE-2 SMoE-4 SMoE-6 SMoE-8 SMoE-10 SMoE-12

PA Time Cost 2.35 min 4.61 min 6.54 min 8.40 min 10.30 min 12.30 min

Memory Cost 1.23 GB 2.36 GB 3.48 GB 4.61 GB 5.73 GB 6.86 GB

EG Time Cost 8.0 s 8.2 s 8.2 s 8.3 s 8.2 s 8.2 s

Memory Cost 4.19 GB 5.29 GB 6.39 GB 7.48 GB 8.58 GB 9.68 GB

WM Time Cost 23 ms 44 ms 66 ms 87 ms 109 ms 139 ms

Memory Cost 1.33 GB 1.83 GB 2.32 GB 2.82 GB 3.31 GB 3.81 GB

A1.4 COMPARISON BETWEEN DIFFERENT PRUNING RATIO SCHEDULES

Table A14: MC-SMoE performance eval-
uation on the switch-base-32 model with
{linear, quadratic, cubic (ours)} schedules
of pruning ratio. We highlight the best per-
formance over all baselines in bold.

Methods COPA MultiRC
Linear 59.00 73.83
Quadratic 61.00 73.92
Cubic (ours) 67.00 73.98

Our compression method for MC-SMoE uses a cubic
schedule of pruning ratio, which is widely applied in
many existing methods (Zhang et al., 2022; Zhu & Gupta,
2017; Sanh et al., 2020; Zafrir et al., 2021). We con-
duct extended comparison experiments with two other
pruning ratio schedules, including linear and quadratic
schedules, on the COPA and MultiRC tasks. The out-
comes, shown in A14, illustrate a performance ordering
of cubic (ours)>quadratic>linear schedules. This is po-
tentially because, in the early stages of pruning, an ag-
gressive pruning schedule is less likely to lose useful information in the weights; while it is the
opposite in the later stages of pruning.

A2 MORE TECHNIQUE DETAILS

Supervised Fine-Tuning Hyper-Parameters Besides {batch size, learning rate, epoch counts}
which vary for each task, we keep other hyper-parameters of supervised fine-tuning fixed for all
tasks. These are shown in Table A15.

Table A15: Fine-tuning hyper-parameters of the switch-base-32 model.

Hyper-Parameters Values

Optimizer ADAMW
Adam ϵ 1e−6
Adam β (0.9, 0.98)
Warm-up steps 16
Weight decay 0.01
LR scheduler LINEAR DECAY

KD α 0.2
KD T 2.0

Details in Zero-Shot Learning We evaluate our approaches and baselines with the fairseq-moe-
15b model in the zero-shot learning setting. Specifically, We use the language model to separately
score each label choice, and pick the one with the highest score as the prediction. Although we
utilize the training sets, they are only incorporated when essential in merging/compression, such as

A18

Published as a conference paper at ICLR 2024

when calculating the expert usage frequency. In short, no optimization occurs at any stage of the
process, i.e. no fine-tuning at all.

Compression Hyper-Parameters For M-SMoE, we randomly pick 256 samples from training
data to calculate both expert usage frequency and router-logits similarity for all tasks. For the com-
pression phase in MC-SMoE, following Li et al. (2023), we adopt the cubic pruning ratio scheduler
to control the S pruning process:

Pt =

1 0 ≤ t < Ti,

PT + (1− PT)
(
1− t−Ti−Tf

T −Ti−Tf

)3

Ti ≤ t < T − Tf ,
PT o.w.

,

where T is the total steps. Ti is the number of initial warm-up steps. Tf is the number of final
cold-down steps. We set T to 10000, Ti to 400 and Tj to 1600 for all tasks.

Knowledge Distillation In this paragraph we illustrate the detail of knowledge distillation (KD)
applied in the supervised fine-tuning setting on all merged and compressed SMoE models for per-
formance recovery, including our M-SMoE, MC-SMoE and all baselines. The goal is to force them,
i.e. the students, to imitate the outputs from the full SMoE model, i.e. the teacher. Specifically, the
training objective can be formulated as:

min
Θ

E(x,y)∼D [L(x; Θ) + αLKD(x; Θ)] ,

where the value of α is fixed at 0.2 for all tasks. L is the cross-entropy loss between predictions
and the given hard labels, LKD is the KL divergence loss between the predictions and the full SMoE
model’s soft labels:

LKD = KL
[
P
(
y |x ; Θ(full)

)
∥ P (y |x ; Θ)

]
.

Moreover, we employ a temperature T in the KL divergence to control the smoothness of the output
distribution for both student and teacher models, defined as:

pi = exp(zi/T),

where zi is the logit score for class j, and the T is fixed at 2 for all tasks.

The Router-Weight Similarity Function We provide a detailed description of the router-weight
similarity function in this paragraph, which is inferior to our adopted router-logits in Section 3.1.
Specifically, the similarity Sim(·, ·) between experts Ei and Ej in an SMoE layer is computed by:

Sim(Ei, Ej) = cosine(Wi,∗r , Wj,∗r),

where Wr is the router weight, and Wi,∗r and Wj,∗r are row vectors in it.

Expert Permutation Alignment We provide a detailed description of our expert permutation
alignment here.

First, we introduce the permutation matrix P, which is a square matrix where each row and column
has exactly one element of 1, with all other elements being 0. It perseveres the functionality of the
expert, a feed-forward network consisting of two linear layers Win, Wout, and an activation function
act(·). This is because the equation Wout(act(Winx)) = WoutP

T(act(PWinx)) always holds.

Second, we minimize the L2 distance between two experts to align them. Consider the first layer
weights, denoted as Win, each of its rows corresponds to an individual hidden feature. Suppose two
rows of this matrix are identical; in that case, they would generate the same feature, disregarding any
bias for now. Furthermore, if we have [W

(1)
in]i,: similar to [W

(2)
in]j,:, it logically follows that neurons i

and j would have a connection or association. Applying this concept to the second layer, Wout, this
observation leads us to consider an optimization approach:

argminP

∥∥∥vec([W(1)in , W
(1)
out])− vec([PW

(2)
in , W

(2)
out P

T])
∥∥∥2 = argmaxP

〈
W
(1)
in , PW

(2)
in

〉
F
+
〈
W
(1)
out , W

(2)
out P

T
〉

F

Finally, this optimization constitutes a “linear assignment problem” (LAP), which can be efficiently
and practically solved by the Hungarian Algorithm (Kuhn, 1955). The Python-style pseudo code is
included in A3.

A19

Published as a conference paper at ICLR 2024

A3 MORE IMPLEMENTATION DETAILS

We show some pseudocode to demonstrate the implementation of our proposed M-SMoE in a
PyTorch-like style.

Details of Merging Experts in an SMoE Feed-Forward Layer In our experiments, the final step
of merging involves replacing one expert in a group with the derived weight. Instead of pruning
the other experts, we redirect the remaining ones in that group to the newly substituted expert. This
implementation ensures that the routing functionality remains consistent. Below is the PyTorch-style
pseudo code:

def merge_ffn_experts(
ffn: SwitchTransformersSparseMLP,
group_labels: torch.LongTensor,
usage_frequencies: torch.FloatTensor,

) -> SwitchTransformersSparseMLP:
Each expert has a group label and a usage frequency
assert len(group_labels) == len(usage_frequencies) == len(ffn.experts)

for label in group_labels.unique():
expert_indices = torch.where(group_labels == label)[0]
with torch.no_grad():

Step 1. Calculate usage-frequency-weighted averaging
fc1_weight = torch.sum(torch.stack(

[ffn.experts[f"expert_{expert_idx}"].fc1.weight *
usage_frequencies[expert_idx] for expert_idx in

expert_indices], dim=0
), dim=0) / torch.sum(usage_frequencies[expert_indices], dim=0)
fc2_weight = torch.sum(torch.stack(

[ffn.experts[f"expert_{expert_idx}"].fc2.weight *
usage_frequencies[expert_idx] for expert_idx in

expert_indices], dim=0
), dim=0) / torch.sum(usage_frequencies[expert_indices], dim=0)

Step 2. Copy weight to the first expert in the group
first_expert = ffn.experts[f"expert_{expert_indices[0]}"]
first_expert.fc1.weight.copy_(fc1_weight)
first_expert.fc2.weight.copy_(fc2_weight)

Step 3. Redirect other merged experts to the first one
for expert_idx in expert_indices[1:]:

ffn.experts[f"expert_{expert_idx}"] =
ffn.experts[f"expert_{expert_indices[0]}"]

return ffn

Details of Solving Expert Permutation Alignment The optimal permutation matrix for align-
ing two experts is computed by minimizing the L2 distance between the expert weight matrices,
which constitutes a linear assignment problem. We utilize SciPy (Virtanen et al., 2020) to solve this
optimization problem, and the Python-style pseudo code is shown below:

def compute_switch_permutation_by_weight_matching(
reference_mlp: SwitchTransformersDenseActDense,
target_mlp: SwitchTransformersDenseActDense,

) -> torch.Tensor:
lsa_cost_matrix = torch.mm(

reference_mlp.wi.weight.data, target_mlp.wi.weight.data.t()
) + torch.mm(

reference_mlp.wo.weight.data.t(), target_mlp.wo.weight.data)
_, perm = linear_sum_assignment(

lsa_cost_matrix.cpu().numpy(), maximize=True)
return torch.from_numpy(perm).to(lsa_cost_matrix.device)

A20

Published as a conference paper at ICLR 2024

A4 SUPPLEMENTARY EXPERIMENT RESULTS

A4.1 GROUPING RESULTS OF M-SMOE

We provide expert grouping results of the switch-base-32 model on all eight tasks including {SST2,
MRPC, MultiRC, COPA, WinoGrande, SQuAD, WikiQA, HotpotQA} here, as shown in Fig-
ure A6 A7 A8 A9 A10 A11 A12 A13 respectively.

1 2 3 4 5 6 7 8 9 10 11
Layer Index

0

2

4

6

8

10

12

14

G
ro

up
In

de
x

Expert Grouping in SMoE Layers - SST2

Figure A6: Expert grouping results of the switch-base-32 model on the SST2 task.

1 2 3 4 5 6 7 8 9 10 11
Layer Index

0

2

4

6

8

10

12

14

G
ro

up
In

de
x

Expert Grouping in SMoE Layers - MRPC

Figure A7: Expert grouping results of the switch-base-32 model on the MRPC task.

1 2 3 4 5 6 7 8 9 10 11
Layer Index

0

2

4

6

8

10

12

14

16

18

G
ro

up
In

de
x

Expert Grouping in SMoE Layers - MultiRC

Figure A8: Expert grouping results of the switch-base-32 model on the MultiRC task.

A21

Published as a conference paper at ICLR 2024

1 2 3 4 5 6 7 8 9 10 11
Layer Index

0

2

4

6

8

10

G
ro

up
In

de
x

Expert Grouping in SMoE Layers - COPA

Figure A9: Expert grouping results of the switch-base-32 model on the COPA task.

1 2 3 4 5 6 7 8 9 10 11
Layer Index

0

2

4

6

8

10

12

14

16

18

G
ro

up
In

de
x

Expert Grouping in SMoE Layers - WinoGrande

Figure A10: Expert grouping results of the switch-base-32 model on the WinoGrande task.

1 2 3 4 5 6 7 8 9 10 11
Layer Index

0

2

4

6

8

10

12

G
ro

up
In

de
x

Expert Grouping in SMoE Layers - SQuAD

Figure A11: Expert grouping results of the switch-base-32 model on the SQuAD task.

1 2 3 4 5 6 7 8 9 10 11
Layer Index

0

2

4

6

8

10

12

14

16

G
ro

up
In

de
x

Expert Grouping in SMoE Layers - WikiQA

Figure A12: Expert grouping results of the switch-base-32 model on the WikiQA task.

A22

Published as a conference paper at ICLR 2024

1 2 3 4 5 6 7 8 9 10 11
Layer Index

0

2

4

6

8

10

12

G
ro

up
In

de
x

Expert Grouping in SMoE Layers - HotpotQA

Figure A13: Expert grouping results of the switch-base-32 model on the HotpotQA task.

A23

	Introduction
	Related Works
	Methodology
	Routing Policy Guides Experts Merging
	Merging Encourages Expert Decomposition

	Experiments
	Implementation Details
	Competitive Performance and Superior Efficiency of MC-SMoE
	Ablation Study and Extra Investigation

	Conclusions
	Reproducibility Statement
	More Experimental Results
	Zero-Shot Evaluation Results
	Efficiency Discussions and Limitations
	Computational Cost Discussion of M-SMoE
	Comparison Between Different Pruning Ratio Schedules

	More Technique Details
	More Implementation Details
	Supplementary Experiment Results
	Grouping Results of M-SMoE

