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Abstract
Massive false rumors emerging along with001
breaking news or trending topics severely hin-002
der the truth. Exiting rumor detection ap-003
proaches achieve promising performance on004
the yesterday’s news, since there is enough005
corpus collected from the same domain for006
model training. However, they are poor at de-007
tecting rumors about unforeseen events such008
as COVID-19 due to the lack of training data009
and prior knowledge (i.e., low-resource ru-010
mors). In this paper, we propose an adver-011
sarial contrastive learning framework to de-012
tect low-resource rumors by adapting the fea-013
tures learned from well-resourced rumor data014
to that of the low-resourced. Our model ex-015
plicitly overcomes the restriction of both do-016
main and language usage via language align-017
ment and contrastive training. Moreover, we018
develop an adversarial augmentation mech-019
anism to further enhance the robustness of020
low-resource rumor representation. Extensive021
experiments conducted on two low-resource022
datasets collected from real-world microblog023
platforms demonstrate that our framework024
achieves much better performance than state-025
of-the-art methods and exhibits a superior ca-026
pacity for detecting rumors at early stages.027

1 Introduction028

With the proliferation of social media such as Twit-029

ter and Weibo, the emergency of breaking events030

is richly endowed by nature for the breeding and031

spreading of rumors, which is difficult to be identi-032

fied due to limited domain expertise and relevant033

data. For instance, along with the unprecedented034

COVID-19 emergency, a false rumor claims that035

“everyone who gets the vaccine will die or suffer036

from auto-immune diseases."1. Such rumor was037

translated into many languages and spread at light-038

ning speed on social media, which seriously con-039

fuse the public and destroy the achievements of040

1https://www.bbc.com/news/
uk-wales-58103604

epidemic prevention in related countries or regions 041

of the world. Although some recent work focuses 042

on collecting social media posts corresponding to 043

COVID-19 (Chen et al., 2020a; Zarei et al., 2020; 044

Alqurashi et al., 2020), existing rumor detection 045

methods perform poorly without a large-scale qual- 046

ified training corpus. Thus it is urgent to develop 047

automatic approaches to identify such low-resource 048

rumors especially amid breaking events. 049

Social psychology literature defines a rumor as a 050

story or a statement whose truth value is unverified 051

or deliberately false (Allport and Postman, 1947). 052

Recently, techniques using deep neural networks 053

(DNNs) (Ma et al., 2018; Khoo et al., 2020; Bian 054

et al., 2020) have achieved promising results for 055

detecting rumors on microblogging websites by 056

learning rumor-indicative features from sizeable 057

rumor corpus with veracity annotation. However, 058

existing DNN-based models are purely data-driven 059

and demonstrate state-of-the-art performance when 060

the domains and languages used of the detected 061

rumors are covered by the training data. On an- 062

other hand, rumors emerging along with breaking 063

news are low-resourced which may concern un- 064

precedented domains and/or be presented in differ- 065

ent languages. Previous studies have shown that 066

cross-domain datasets have distinctive topic cov- 067

erage and word distribution (Silva et al., 2021). 068

Therefore, existing rumor detection models that 069

are well-trained on public benchmarks (Ma et al., 070

2016; Zubiaga et al., 2016; Ma et al., 2017) gener- 071

ally struggle with emerging events in low-resource 072

regimes (Janicka et al., 2019). 073

In this paper, we assume that the close correla- 074

tions between the well-resourced rumor and the 075

low-resourced rumor could break the barriers of 076

domain and language, substantially boosting low- 077

resource rumor detection. Taking the breaking 078

event COVID-19 as an example, we collect rumor 079

and non-rumor claims corresponding to COVID- 080

19 from Twitter and Sina Weibo which are the 081
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(a) TWITTER (Rumor) (b) Twitter-COVID19 (Rumor) (c) Weibo-COVID19 (Rumor)

(d) TWITTER (Non-rumor) (e) Twitter-COVID19 (Non-rumor) (f) Weibo-COVID19 (Non-rumor)
Figure 1: Word clouds of rumor and non-rumor claims generated from TWITTER, Twitter-COVID19, and Weibo-
COVID19 datasets, where the size of terms corresponds to the word frequency. Both TWITTER and Twitter-
COVID19 are presented in English while Weibo-COVID19 in Chinese.

most popular microblogging websites in English082

and Chinese, respectively. Figure 1 illustrates083

the word clouds of rumor and non-rumor claims084

from an open domain benchmark (i.e., TWITTER085

(Ma et al., 2017)) and two COVID-19 datasets086

(i.e., Twitter-COVID19 and Weibo-COVID19). It087

can be seen that both TWITTER and Twitter-088

COVID19 contain denial opinions towards rumors,089

e.g., “fake", “joke", “stupid" in Figure 1(a) and090

“wrong symptom", “exactly sick", “health panic"091

in Figure 1(b). In contrast, supportive opinions to-092

wards non-rumors can be drawn from Figure 1(d)–093

1(e). Moreover, considering that COVID-19 is094

a global disease, massive misinformation could095

be widely propagated under different languages096

such as Arabic (Alam et al., 2020), Indic (Kar097

et al., 2020), English (Cui and Lee, 2020) and Chi-098

nese (Hu et al., 2020). Similar identical patterns099

can be observed in Chinese on Weibo from Fig-100

ure 1(c) and Figure 1(f). Although the COVID-19101

data tend to use expertise words or language-related102

slang, we argue that aligning the representation103

space of identical patterns of different domains104

and/or languages could adapt the features captured105

from well-resourced rumor data to that of the low-106

resourced data.107

To this end, inspired by contrastive learning (He108

et al., 2020; Chen et al., 2020b,c), we propose an109

Adversarial Contrastive Learning approach for low-110

resource rumor detection (ACLR), to encourage111

effective alignment of rumor-indicative features in112

the well-resourced and low-resourced data. More113

specifically, we first transform each microblog post114

into a language-independent vector by semantically115

aligning the source and target language in a shared 116

vector space. The diffusion of rumors generally 117

follows a propagation tree that provides valuable 118

clues on how a claim is transmitted. We thus re- 119

sort to a structure-based neural network (Ma et al., 120

2018; Bian et al., 2020) for representation learning. 121

We then propose a supervised contrastive learning 122

framework to minimize the intra-class variance of 123

source and target instances with same veracity, and 124

maximize inter-class variance of instances with dif- 125

ferent veracity. To further enhance the adaption of 126

feature learning, we exploit adversarial attacks (Ku- 127

rakin et al., 2016) to plenish noise to the original 128

event, forcing the model to learn non-trivial but ef- 129

fective features. Extensive experiments conducted 130

on two real-word low-resource datasets confirm 131

that (1) our model yields outstanding performances 132

for detecting rumors of low-resourced domains 133

and/or languages over the state-of-the-art baselines 134

with a large margin; and (2) our method performs 135

particularly well on early rumor detection which is 136

crucial for timely intervention and debunking espe- 137

cially for breaking events. The main contributions 138

of this paper are of three-fold: 139

• To our best knowledge, we are the first to 140

present a radically novel adversarial con- 141

trastive learning method to study the low- 142

resource rumor detection on social media. 143

• We propose a supervised contrastive learning 144

framework for feature adaption between dif- 145

ferent domains and languages. We further em- 146

ploy an adversarial augmentation mechanism 147

to enhance the model generation. 148
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• We constructed two low-resourced microblog149

datasets corresponding to COVID-19 with150

propagation tree structure, respectively gath-151

ered from English tweets and Chinese mi-152

croblog posts. Experimental results show that153

our model achieves superior performance for154

both rumor classification and early detection155

tasks under low-resource settings. We will156

make our resources publicly available.157

2 Related Work158

Pioneer studies for automatic rumor detection focus159

on learning a supervised classifier utilizing features160

crafted from post contents, user profiles, and prop-161

agation patterns (Castillo et al., 2011; Yang et al.,162

2012; Liu et al., 2015). Subsequent studies then163

propose new features such as those representing164

rumor diffusion and cascades (Kwon et al., 2013;165

Friggeri et al., 2014; Hannak et al., 2014). Zhao166

et al. (2015) alleviate the engineering effort by us-167

ing a set of regular expressions to find questing168

and denying tweets. DNN-based models such as169

recurrent neural networks (Ma et al., 2016), con-170

volutional neural networks (Yu et al., 2017), and171

attention mechanism (Guo et al., 2018) are then172

employed to learn the features from the stream of173

social media posts. However, these approaches sim-174

ply model the post structure as a sequence while175

ignoring the complex propagation structure.176

To extract useful clues jointly from content177

semantics and propagation structures, some ap-178

proaches propose kernel-learning models (Wu et al.,179

2015; Ma et al., 2017) to make a comparison be-180

tween propagation trees. Tree-structured recursive181

neural networks (RvNN) (Ma et al., 2018) and182

transformer-based models (Khoo et al., 2020) are183

proposed to generate the representation of each post184

along a propagation tree guided by the tree struc-185

ture. More recently, graph neural networks (Bian186

et al., 2020) have been exploited to encode the con-187

versation thread for higher-level representations.188

Despite the apparent success of structure-based189

models, they fail in the low-resource rumor detec-190

tion task. In this paper, we propose a novel frame-191

work considering the effective structural features192

to adapt existing models for detecting rumors from193

different domains and/or languages.194

To facilitate low-resource rumor detection or195

few-shot fact-checking tasks, domain adaption tech-196

niques are utilized to detect fake news (Wang et al.,197

2018; Yuan et al., 2021; Zhang et al., 2020; Silva198

et al., 2021) by learning features from multi-modal 199

data such as texts and images. Lee et al. (2021) 200

proposed a simple way of leveraging the perplexity 201

score obtained from pre-trained language models 202

(LMs) for the few-shot fact-checking task. Dif- 203

ferent from existing works of adaption on multi- 204

modal data and transfer learning of LMs, we focus 205

on language and domain adaptation to detect low- 206

resourced rumors on social media corresponding 207

to breaking events. 208

Contrastive learning aims to enhance representa- 209

tion learning by maximizing the agreement among 210

the same types of instances and distinguishing from 211

the others with different types (Wang and Isola, 212

2020). In recent years, contrastive learning has 213

achieved great success in unsupervised visual rep- 214

resentation learning (Chen et al., 2020b; He et al., 215

2020; Chen et al., 2020c). Besides computer vi- 216

sion, recent studies suggest that contrastive learn- 217

ing is promising in the semantic textual similar- 218

ity (Gao et al., 2021; Yan et al., 2021), stance de- 219

tection (Mohtarami et al., 2019), abstractive sum- 220

marization (Liu and Liu, 2021), out-of-domain de- 221

tection (Tan et al., 2019; Lin et al., 2021) and short 222

text clustering (Zhang et al., 2021), etc. Inspired by 223

their works, we propose a supervised contrastive 224

learning framework to model adaptive features of 225

the conversation structure for low-resource rumor 226

detection. 227

3 Problem Statement 228

In this work, we define the low-resource rumor 229

detection task as: Given a well-resourced dataset 230

as source, classify each event in the target low- 231

resourced dataset as a rumor or not, where the 232

source and target data are from different do- 233

mains and languages. Specifically, we define a 234

well-resourced source dataset for training as a 235

set of events Ds = {Cs
1 , C

s
2 , · · · , Cs

M}, where 236

M is the number of source events. Each event 237

Cs = (y, c, T (c)) is a tuple representing a given 238

claim c which is associated with a veracity la- 239

bel y ∈ {rumor, non-rumor}, and ideally all its 240

relevant responsive microblog post in chronolog- 241

ical order, i.e., T (c) = {c, xs1, xs2, · · · , xs|C|}
2, 242

where |C| is the number of responsive tweets in 243

the conversation thread. For the target dataset 244

with low-resourced domains and/or languages, 245

we consider a much smaller dataset for training 246

Dt = {Ct
1, C

t
2, · · · , Ct

N}, where N(N � M) 247

2c is equivalent to xs
0.
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is the number of target events and each Ct =248

(y, c′, T (c′)) has the similar composition structure249

of the source dataset.250

We formulate the task of low-resource rumor de-251

tection as a supervised classification problem that252

trains a domain/language-agnostic classifier f(·)253

adapting the features learned from source datasets254

to that of the target events, that is, f(Ct
j |Ds)→ ŷtj .255

Note that although the tweets are notated sequen-256

tially, there are connections among them based on257

their responsive relationships. So most previous258

works represent the conversation thread as a di-259

rected tree structure (Ma et al., 2017, 2018; Bian260

et al., 2020).261

4 Our Approach262

In this section, we introduce our adversarial con-263

trastive learning framework to adapt the features264

captured from the well-resourced data to detect low-265

resourced rumors, which considers cross-lingual266

and cross-domain alignment. Figure 2 illustrates267

an overview of our proposed model, which will be268

depicted in the following subsections.269

4.1 Cross-lingual Sentence Encoder270

Given a post in an event that could be either from271

source or target data, to map it into a shared se-272

mantic space where the source and target lan-273

guages are semantically aligned, we utilize XLM-274

RoBERTa (Conneau et al., 2019) (XLM-R) to275

model the context interactions among tokens in276

the sequence for the sentence-level representation:277

278

x̄ = XLM-R(x) (1)279

where x is the original post, and we obtain the280

post-level representation x̄ using the output state of281

the <s> token in XLM-RoBERTa. We thus denote282

the representation of posts in the source event Cs283

and the target event Ct as a matrix Xs and Xt284

respectively: X∗ = [x̄∗0, x̄
∗
1, x̄
∗
2, ..., x̄

∗
|X∗|−1]

>; ∗ ∈285

{s, t}, where Xs ∈ Rm×d and Xt ∈ Rn×d, d286

is the dimension of the output state of the XLM-287

RoBERTa encoder.288

4.2 Propagation Structure Representation289

On top of the sentence encoder, we represent the290

propagation of each claim with the graph convo-291

lutional network (GCN) (Kipf and Welling, 2016),292

which achieves state-of-the-art performance on cap-293

turing both structural and semantic information for294

rumor classification (Bian et al., 2020). It is worth295

noting that the choice of propagation structure rep- 296

resentation is orthogonal to our proposed frame- 297

work that can be easily replaced with any existing 298

structure-based models without any other change 299

to our contrastive learning architecture. 300

Given an event and its initialized embedding ma- 301

trixC∗, X∗; ∗ ∈ {s, t}, We model the conversation 302

thread of the event as a tree structure T = 〈V,E〉, 303

where V consists of the event claim and all its rele- 304

vant responsive posts as nodes and E refers to a set 305

of directed edges corresponding to the response re- 306

lation among the nodes in V . Inspired by Ma et al. 307

(2018), here we consider two different propagation 308

trees with distinct edge directions: (1) Top-Down 309

tree where the edge follows the direction of infor- 310

mation diffusion. (2) Bottom-Up tree where the 311

responsive nodes point to their responded nodes, 312

similar to a citation network. 313

Top-Down GCN. We treat the Top-Down tree 314

structure as a graph and transform the edge E 315

into an adjacency matrix A ∈ {0, 1}|V |×|V |, where 316

Ai,j = 1 if xi has a response to xj or i = j, else 317

Ai,j = 0. Then we utilize a layer-wise propagation 318

rule to update the node vector at the l-th layer: 319

H(l+1) = ReLU(Â ·H(l) ·W (l)) (2) 320

where Â = D−1/2AD−1/2 is the symmetric nor- 321

malized adjacency matrix, D denotes the degree 322

matrix of A. W (l) ∈ Rd(l)×d(l+1)
is a layer-specific 323

trainable transformation matrix. H(0) is initialized 324

as X∗. For a GCN model with L-layers, we obtain 325

the final node representation HTD w.r.t H(L). 326

Bottom-Up GCN. We also leverage the struc- 327

ture of Bottom-Up tree to encode the informative 328

posts. Similar to Top-Down GCN, we update the 329

hidden representation of nodes in the same manner 330

as Eq. 2 and finally get the output node states HBU 331

at the L-th graph convolutional layer. 332

The Overall Model. Finally, we concatenate 333

HTD and HBU via mean-pooling to jointly cap- 334

ture the opinions expressed in both Top-Down and 335

Bottom-Up trees: 336

o = mean-pooling([HTD;HBU ]) (3) 337

where o ∈ R2d(L)
is the event-level representation 338

of the entire propagation thread, d(L) is the output 339

dimension of GCN and [·; ·] means concatenation. 340

4.3 Contrastive Training 341

To align the representation space of rumor- 342

indicative signals from different domains and lan- 343

guages, we present a novel training paradigm to 344
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Sentence Encoder XLM-R

Structure-based Network

Adversarial Contrastive Training Paradigm

Post-level 

representation

Original post

Event-level 

representation
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Push apartPush apart

Adversarial augmentationAdversarial augmentation

Source samplesSource samples

Target samplesTarget samples

Augmented samplesAugmented samples

...

Conversation thread

rrrr

x1 x2

x11 x21 x22

x1 x2

x11 x21 x22

Figure 2: The overall architecture of our proposed method. For source and small target training data, we first
obtain post-level representations after cross-lingual sentence encoding, then train the structure-based network with
the adversarial contrastive objective. For target test data, we extract the event-level representations to detect rumors.

exploit the labeled data including rich sourced data345

and small-scaled target data to adapt our model on346

target domains and languages. The core idea is347

to make the representations of source and target348

events from the same class closer while keeping349

representations from different classes far away.350

Given an event Cs
i from the source data, we351

firstly obtain the language-agnostic encoding for352

all the involved posts (see Eq. 1) as well as the353

propagation structure representation osi (see Eq. 3)354

which is then fed into a softmax function to make355

rumor predictions. Then, we learn to minimize the356

cross-entropy loss between the prediction and the357

ground-truth label ysi :358

LsCE = − 1

N s

Ns∑
i=1

log(pi) (4)359

whereN s is the total number of source examples in360

the batch, pi is the probability of correct prediction.361

To make rumor representation in the source events362

be more dicriminative, we propose a supervised363

contrastive learning objective to cluster the same364

class and separate different classes of samples:365

LsSCL = − 1

N s

Ns∑
i=1

1

Nysi
− 1

Ns∑
j=1

1[i 6=j]1[ysi=ysj ]

log
exp(sim(osi , o

s
j)/τ)

Ns∑
k=1

1[i 6=k]exp(sim(osi , o
s
k)/τ)

(5)

366

where Nysi
is the number of source examples with367

the same label ysi in the event Cs
i , and 1 is the indi-368

cator. sim(·) denotes the cosine similarity function369

and τ controls the temperature.370

For an event Ct
i from the target data, we also 371

compute the classification loss LtCE in the same 372

manner as Eq. 4. Although we projected the source 373

and target languages into the same semantic space 374

after sentence encoding, rumor detection not only 375

relies on post-level features, but also on event- 376

level contextual features. Without constraints, the 377

structure-based network can only extract event- 378

level features for all samples based on their fi- 379

nal classification signals while these features may 380

not be critical to the target domain and language. 381

We make full use of the minor labels in the low- 382

resource rumor data by parameterizing our model 383

according to the contrastive objective between the 384

source and target instances in the event-level repre- 385

sentation space: 386

LtSCL = − 1

N t

Nt∑
i=1

1

Nyti

Ns∑
j=1

1[yti=ysj ]

log
exp(sim(oti, o

s
j)/τ)

Ns∑
k=1

exp(sim(oti, o
s
k)/τ)

(6) 387

where N t is the total number of target examples 388

in the batch and Nyti
is the number of source ex- 389

amples with the same label yti in the event Ct
i . As 390

a result, we project the source and target samples 391

belonging to the same class closer than that of dif- 392

ferent categories, for feature alignment with minor 393

annotation at the target domain and language. 394

4.4 Adversarial Data Augmentation 395

Data augmentation has been previously shown im- 396

provements for contrastive learning models (Chen 397

et al., 2020b). However, there is no simple and 398
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Algorithm 1 Adversarial Contrastive Learning
Input: A small set of events Ct

i in the target domain and
language; A set of events Cs

i in the source domain and
language.

Output: Assign rumor labels y to given unlabeled target data.
1: for each mini-batch N t of the target events Ct

i do:
2: for each mini-batch Ns of the source events Cs

i do:
3: Pass C∗

i to the sentence encoder and then structure-
based network to obtain its event-level feature o∗i , where
∗ ∈ {s, t}.

4: Compute the classification loss L∗
CE for source and

target data, respectively.
5: Adversarial augmentation for target data and update
Lt

CE .
6: Compute the supervised contrastive loss L∗

SCL.
7: Compute the joint loss L∗ as Eq. 8.
8: Jointly optimize all parameters of the model using

the average loss L = mean(Ls + Lt).

effective augmentation strategy for event-level fea-399

tures in rumor detection and related research fields,400

which requires massive handcrafted features or401

rules. In this section, we introduce adversarial402

attacks to generate pseudo target samples at the403

event-level latent space to increase the diversity of404

views for model robustness in the contrastive learn-405

ing manner. Specifically, we apply Fast Gradient406

Value (FGV) (Miyato et al., 2016; Vedula et al.,407

2020) to approximate a worst-case perturbation as408

a noise vector:409

õt
noise = ε

g

||g||
; where g = ∇otLtCE (7)410

where the gradient is the first-order differential of411

the classification loss LtCE for a target sample, i.e.,412

the direction that rapidly increases the classification413

loss. We perform normalization and use a small ε to414

ensure the approximate is reasonable. Finally, we415

can obtain the pseudo augmented sample otadv =416

ot+õt
noise in the latent space to enhance our model.417

4.5 Model Training418

We jointly train the model with the cross-entropy419

and supervised contrastive objectives:420

L∗ = (1− α)L∗CE + αL∗SCL; ∗ ∈ {s, t} (8)421

where α is a trade-off parameter, which is set422

to 0.5 in our experiments. Algorithm 1 presents423

the training process of our approach. We set the424

number L of the graph convolutional layer as 2,425

the temperature τ as 0.1, and the adversarial per-426

turbation norm ε as 1.5. Parameters are updated427

through back-propagation (Collobert et al., 2011)428

with the Adam optimizer (Loshchilov and Hutter,429

2018). The learning rate is initialized as 0.0001,430

and the dropout rate is 0.2. Early stopping (Yao431

et al., 2007) is applied to avoid overfitting.432

5 Experiments 433

5.1 Datasets 434

To our knowledge, there are no public benchmarks 435

available for detecting low-resource rumors with 436

propagation tree structure. In this paper, we con- 437

sider breaking events about COVID-19 and col- 438

lect relevant rumors and non-rumors respectively 439

from Twitter in English and Sina Weibo in Chi- 440

nese. For Twitter-COVID19, we resort to a raw 441

COVID-19 rumor dataset (Kar et al., 2020) which 442

only contains the textural claim without its propa- 443

gation thread. We then collected all the propagation 444

threads using the Twitter academic API with the 445

twarc2 package3. For Weibo-COVID19, we gather 446

a set of rumorous claims from the Sina commu- 447

nity management center4 and non-rumorous claims 448

by randomly filtering out the posts that are not re- 449

ported as rumors. We then utilize Weibo API to 450

collect all the repost/reply messages towards each 451

claim. The full statistics of the resulting datasets 452

are shown in Appendix. 453

5.2 Experimental Setup 454

We compare our model and several state-of-the- 455

art baseline methods described below. 1) CNN: 456

A CNN-based model for misinformation identifi- 457

cation (Yu et al., 2017) by framing the relevant 458

posts as a fixed-length sequence; 2) RNN: A RNN- 459

based rumor detection model (Ma et al., 2016) 460

with GRU for feature learning of relevant posts 461

over time; 3) RvNN: A rumor detection approach 462

based on tree-structured recursive neural networks 463

(Ma et al., 2018) that learn rumor representations 464

guided by the propagation structure; 4) PLAN: A 465

transformer-based model (Khoo et al., 2020) for ru- 466

mor detection to capture long-distance interactions 467

between any pair of involved tweets; 5) BiGCN: 468

A GCN-based model (Bian et al., 2020) based on 469

directed conversation trees to learn higher-level 470

representations (see Section 4.2); 6) DANN-*: We 471

employ and extend an existing domain-adversarial 472

neural network (Ganin et al., 2016) based on the 473

structure-based model where * could be RvNN, 474

PLAN, and BiGCN; 7) ACLR-*: our proposed ad- 475

versarial contrastive learning framework on top of 476

RvNN, PLAN, or BiGCN. 477

To facilitate real-world low-resource rumor de- 478

tection, we adopt the cross-domain and cross- 479

3https://twarc-project.readthedocs.io/
en/latest/twarc2_en_us/

4https://service.account.weibo.com/
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Target (Source) Weibo-COVID19 (TWITTER) Twitter-COVID19 (WEIBO)

Model Acc. Mac-F1
Rumor Non-rumor Acc. Mac-F1

Rumor Non-rumor
F1 F1 F1 F1

CNN 0.445 0.402 0.476 0.328 0.498 0.389 0.528 0.249
RNN 0.463 0.414 0.498 0.329 0.510 0.388 0.533 0.243
RvNN 0.514 0.482 0.538 0.426 0.540 0.391 0.534 0.247
PLAN 0.532 0.496 0.578 0.414 0.573 0.423 0.549 0.298
BiGCN 0.569 0.508 0.586 0.429 0.616 0.415 0.577 0.252
DANN-RvNN 0.583 0.498 0.591 0.405 0.577 0.482 0.648 0.317
DANN-PLAN 0.601 0.507 0.606 0.409 0.593 0.471 0.574 0.369
DANN-BiGCN 0.629 0.561 0.616 0.506 0.618 0.510 0.676 0.344
ACLR-RvNN 0.778 0.716 0.843 0.589 0.653 0.616 0.710 0.521
ACLR-PLAN 0.824 0.769 0.842 0.696 0.709 0.648 0.752 0.544
ACLR-BiGCN 0.873 0.861 0.896 0.827 0.765 0.686 0.766 0.605

Table 1: Rumor detection results on the target test datasets.

lingual settings concurrently for model training.480

When the target dataset is Weibo-COVID19, we481

use the well-resourced TWITTER dataset (Ma482

et al., 2017) as the source data. When the tar-483

get dataset is Twitter-COVID19, we use the well-484

resourced WEIBO dataset (Ma et al., 2016) as the485

source data. We use accuracy and macro-averaged486

F1 score, as well as class-specific F1 score as the487

evaluation metrics. To conduct five-fold cross-488

validation on the target datasets in our low-resource489

settings, we use each fold (about 80 samples) in490

turn for training, and test on the rest data. More491

implementation details are provided in Appendix.492

5.3 Rumor Detection Performance493

Table 1 shows the performance of our proposed494

method versus all the compared methods on the495

Weibo-COVID19 and Twitter-COVID19 test sets496

with pre-determined training datasets. It is ob-497

served that the performances of the baselines in498

the first group are obviously poor due to ignoring499

intrinsic structural patterns. To make fair compar-500

isons, all baselines are employed with the same501

cross-lingual sentence encoder of our framework502

as inputs. Other state-of-the-art baselines exploit503

the structural property of community wisdom on504

social media, which confirms the necessity of prop-505

agation structure representations in our framework.506

Among the structure-based baselines in the sec-507

ond group, due to the representation power of508

message-passing architectures and tree structures,509

PLAN and BiGCN outperform RvNN with only510

limited labeled target data for training. The third511

group shows the results for DANN-based meth-512

ods. It improves the performance of structure-513

based baselines in general since it extracts cross-514

domain features between source and target datasets515

via generative adversarial nets (Goodfellow et al., 516

2014). Different from that, we use the adversarial 517

attacks to improve the robustness of our proposed 518

contrastive training paradigm, which explicitly en- 519

courages effective alignment of rumor-indicative 520

features from different domains and languages. 521

In contrast, our proposed ACLR-based ap- 522

proaches achieve superior performances among 523

all their counterparts ranging from 21.8% (13.4%) 524

to 30.0% (17.7%) in terms of Macro F1 score 525

on Weibo-COVID19 (Twitter-COVID19) datasets, 526

which suggests their strong judgment on low- 527

resource rumors from different domains/languages. 528

ACLR-BiGCN performs the best among the three 529

ACLR-based methods by making full use of the 530

structural property via graph modeling for conver- 531

sation threads. This also justifies the good perfor- 532

mance of DANN-BiGCN and BiGCN. The results 533

also indicate that the adversarial contrastive learn- 534

ing framework can effectively transfer knowledge 535

from the source to target data at the event level, 536

and substantiate our method is model-agnostic for 537

different structure-based networks. 538

5.4 Ablation Study 539

We perform ablation studies based on our best- 540

performed approach ACLR-BiGCN. As demon- 541

strated in Table 2, the first group shows the results 542

for the backbone baseline BiGCN. We observe that 543

the model performs best if pre-trained on source 544

data and then fine-tuned on target training data 545

(i.e., BiGCN(S,T)), compared with the poor per- 546

formance when trained on either minor labeled 547

target data only (i.e., BiGCN(T)) or well-resourced 548

source data (i.e., BiGCN(S)). This suggests that 549

our hypothesis of leveraging well-resourced source 550

data to improve the low-resource rumor detection 551
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Model
Weibo-COVID19 Twitter-COVID19
Acc. Mac-F1 Acc. Mac-F1

BiGCN(T ) 0.569 0.508 0.616 0.415
BiGCN(S) 0.578 0.463 0.611 0.425
BiGCN(S, T ) 0.693 0.472 0.617 0.471
DANN-BiGCN 0.629 0.561 0.618 0.510
CLR-BiGCN 0.844 0.804 0.719 0.618
ACLR-BiGCN 0.873 0.861 0.765 0.686

Table 2: Ablation studies on our proposed model.
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Figure 3: Early detection performance at different
checkpoints of posts count (or elapsed time) on Weibo-
COVID19 (left) and Twitter-COVID19 (right) datasets.

on target data is feasible. In the second group,552

the DANN-based model makes better use of the553

source data to extract domain-agnostic features,554

which further leads to performance improvement.555

Our proposed contrastive learning approach CLR556

without adversarial augmentation mechanism, has557

already achieved outstanding performance com-558

pared with other baselines, which illustrates its559

effectiveness on domain and language adaptation.560

We further notice that our ACLR-BiGCN consis-561

tently outperforms all baselines and improves the562

prediction performance of CLR-BiGCN, suggest-563

ing that training model together with adversarial564

augmentation on target data provide positive guid-565

ance for more accurate rumor predictions, espe-566

cially in low-resource regimes. More qualitative567

analyses of hyper-parameters, training data size and568

alternative source datasets are shown in Appendix.569

5.5 Early Detection570

Early alerts of rumors can prevent the wide-571

spreading of rumorous contents. By setting detec-572

tion checkpoints of “delays" that can be either the573

count of corresponding posts or the time elapsed574

since the first posting, only contents posted no later575

than the checkpoints is available for model eval-576

uation. The performance is evaluated by Macro577

F1 score obtained at each checkpoint. To satisfy578

each checkpoint, we incrementally scan test data579

in order of time until the target time delay or post580

volume is reached.581

Figure 3 shows the performances of our ap-582
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Figure 4: Visualization of target event-level representa-
tion distribution.

proach versus DANN-BiGCN, BiGCN, PLAN, and 583

RvNN at various deadlines. Firstly, we observe 584

that our proposed ACLR-based approach outper- 585

forms other counterparts and baselines throughout 586

the whole lifecycle, and reaches a relatively high 587

Macro F1 score at a very early period after the ini- 588

tial broadcast. One interesting phenomenon is that 589

the early performance of some methods may fluctu- 590

ate more or less. It is because with the propagation 591

of the claim there is more semantic and structural 592

information but the noisy information is increased 593

simultaneously. Our method only needs about 50 594

posts on Weibo-COVID19 and around 4 hours on 595

Twitter-COVID19, to achieve the saturated perfor- 596

mance, indicating the remarkably superior early 597

detection performance of our method. 598

5.6 Feature Visualization 599

Figure 4 shows the PCA visualization of learned 600

target event-level features on BiGCN (left) and 601

ACLR-BiGCN (right) for analysis. The left figure 602

represents training with only classification loss, and 603

the right figure uses ACLR for training. We observe 604

that (1) due to the lack of sufficient training data, 605

the features extracted with the traditional training 606

paradigm are entangled, making it difficult to detect 607

rumors in low-resource regimes; and (2) our ACLR- 608

based approach learns more discriminative repre- 609

sentations to improve low-resource rumor classifi- 610

cation, reaffirming that our training paradigm can 611

effectively transfer knowledge to bridge the gap be- 612

tween source and target data distribution resulting 613

from different domains and languages. 614

6 Conclusion 615

In this paper, we propose a novel Adversarial 616

Contrastive Learning framework to bridge low- 617

resource gaps for rumor detection by adapting fea- 618

tures learned from well-resourced data to that of the 619

low-resourced breaking events, without restrictions 620

on specific domain/language usage. The results on 621

two real-world benchmarks confirm the advantages 622

of our model in low-resource rumor detection task. 623
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A Datasets 864

To our knowledge, there is no public dataset avail- 865

able for classifying propagation trees in tweets 866

about COVID-19, where we need the tree roots 867

together with the corresponding propagation struc- 868

ture, to be appropriately annotated with ground 869

truth. In this paper, we organize and construct two 870

datasets Weibo-COVID19 and Twitter-COVID19 871

for experiments. For Twitter-COVID19, the origi- 872

nal dataset (Kar et al., 2020) of tweets was released 873

with just the source tweet without its propagation 874

thread. So we collected all the propagation threads 875

using the Twitter academic API with the twarc2 876

package5 in python. Finally, we annotated the 877

source tweets by referring to the labels of the events 878

they are from. For Weibo-COVID19, we gather 879

a set of rumorous claims from the Sina commu- 880

nity management center6 and non-rumorous claims 881

by randomly filtering out the posts that are not 882

reported as rumors. Both Weibo-COVID19 and 883

Twitter-COVID19 contain two binary labels: Ru- 884

mor and Non-rumor. For Weibo-COVID19 as the 885

target dataset, we use the TWITTER dataset (Ma 886

et al., 2017) as the source data in our low-resource 887

(i.e., cross-domain and cross-lingual) settings; In 888

terms of Twitter-COVID19 as the target dataset, 889

we use Weibo (Ma et al., 2016) as the source data. 890

We will release all the datasets and make codes 891

available after the anonymity period. The statistics 892

of the four datasets are shown in Table 3. 893

B Implementation Details 894

We set the number L of the graph convolutional 895

layer as 2, the trade-off parameter α as 0.5, and 896

the adversarial perturbation norm ε as 1.5. The 897

temperature τ is set to 0.1. Parameters are updated 898

through back-propagation (Collobert et al., 2011) 899

with the Adam optimizer (Loshchilov and Hutter, 900

2018). The learning rate is initialized as 0.0001, 901

and the dropout rate is 0.2. Early stopping (Yao 902

et al., 2007) is applied to avoid overfitting. We 903

run all of our experiments on one single NVIDIA 904

Tesla T4 GPU. We set the total batch size to 64, 905

where the batch size of source samples is set to 906

32, the same as target samples. The hidden and 907

output dimensions of each node in the structure- 908

based network are set to 512 and 128, respectively. 909

Since the focus in this paper is primarily on better 910

5https://twarc-project.readthedocs.io/
en/latest/twarc2_en_us/

6https://service.account.weibo.com/
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Cross-Domain&Lingual Settings Source Target Source Target
Statistics TWITTER Weibo-COVID19 WEIBO Twitter-COVID19
# of events 1154 399 4649 400
# of tree nodes 60409 26687 1956449 406185
# of non-rumors 579 146 2336 148
# of rumors 575 253 2313 252
Avg. time length/tree 389 Hours 248 Hours 1007 Hours 2497 Hours
Avg. depth/tree 11.67 4.31 49.85 143.03
Avg. # of posts/tree 52 67 420 1015
Domain Open COVID-19 Open COVID-19
Language English Chinese Chinese English

Table 3: Statistics of Datasets in Cross-Domain and Cross-Lingual Settings.
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Figure 5: Effect of Adversarial Perturbation Norm ε.

leveraging the contrastive learning for domain and911

language adaptation on top of event-level represen-912

tations, we choose the XLM-RBase (Layer number913

= 12, Hidden dimension = 768, Attention head914

= 12, 270M params) as our sentence encoder for915

language-agnostic representations at the post level.916

We use accuracy and macro-averaged F1 score,917

as well as class-specific F1 score as the evalua-918

tion metrics. Unusually, to conduct five-fold cross-919

validation on the target dataset in our low-resource920

settings, we use each fold (about 80 claim posts921

with propagation threads in the target data) in turn922

for training, and test on the rest of the dataset. The923

average runtime for our approach on five-fold cross-924

validation in one iteration is about 3 hours. The925

number of total parameters is 1,117,954 for our926

model. We implement our model with pytorch7.927

C Qualitative Analysis928

C.1 Effect of Adversarial Perturbation Norm929

Figure 5 shows the effect of adversarial perturba-930

tion norm on rumor detection performance. The931

X-axis denotes the value of ε, where ε = 0.0 in the932

line means no adversarial augmentation. In gen-933

7pytorch.org
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Figure 6: Effect of trade-off parameter α.

eral, the adversarial augmentation contributes to 934

the improvements and ε ∈ [1.0, 2.0) achieves bet- 935

ter performances. For the Weibo-COVID19 dataset, 936

our proposed approach ACLR with a smaller ad- 937

versarial perturbation can still obtain better results 938

but lower than the results with an optimal range 939

of perturbation, while large norms tend to damage 940

the effect of ACLR. In terms of Twitter-COVID19, 941

our method still performs well with a broad range 942

of adversarial perturbations and the performance 943

tends to stabilize as the norm value increases. 944

C.2 Effect of Trade-off Parameter between 945

Classification and Contrastive Objectives 946

To study the effects of the trade-off hyper- 947

parameter in our training paradigm, we conduct 948

ablation analysis under ACLR architecture (Fig- 949

ure 6). We can see that α = 0.5 achieves the best 950

performance while the point where α = 0.3 also 951

has good performance. Looking at the overall trend, 952

the performance fluctuates more or less as the value 953

of α grows. We conjecture that this is because the 954

supervised contrastive objective, while optimizing 955

the representation distribution, compromises the 956

mapping relationship with labels. Multitask means 957

optimizing two losses simultaneously. This setting 958
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Figure 7: Effect of target training data size.

leads to mutual interference between two tasks,959

which affects the convergence effect. This phe-960

nomenon points out the direction for our further961

research in the future.962

C.3 Effect of Target Training Data Size.963

Figure 7 shows the effect of target training data964

size. We randomly choose training data with a cer-965

tain proportion from target data and use the rest966

set for evaluation. We use the cross-domain and967

cross-lingual settings concurrently for model train-968

ing, the same as the main experiments. Results969

show that with the decrease of training data size,970

the performance gradually decreases. Especially971

for Weibo-COVID19, it will be greatly affected.972

However, even when only 20 target data are used973

for training, our model can still achieve more than974

approximately 60% and 65% rumor detection per-975

formance (Macro F1 score) on two target data sets976

Weibo-COVID19 and Twitter-COVID19 respec-977

tively, which further proves ACLR has strong ap-978

plicability for improving low-resource rumor de-979

tection on social media.980

C.4 Discussion about Low-Resource Settings981

In this section, we evaluate our proposed frame-982

work with different source datasets to discuss the983

low-resource settings in our experiments. Consid-984

ering the cross-domain and cross-lingual settings985

in the main experiments, we also conduct an ex-986

periment in cross-domain settings. Specifically,987

for the Weibo-COVID as the target data, we uti-988

lize the WEIBO dataset as the source data with989

rich annotation. In terms of Twitter-COVID19, we990

set the TWITTER dataset as the source data. Ta-991

ble 4 depicted the results in different low-resource992

settings. It can be seen from the results that our993

model performs generally better in cross-domain994

Target Weibo-COVID19 Twitter-COVID19
Settings Acc. Mac-F1 Acc. Mac-F1

Cross-D&L 0.873 0.861 0.765 0.686
Cross-D 0.884 0.855 0.737 0.623

Table 4: Rumor detection results of our proposed
framework in different low-resource settings. Cross-
D&L denotes the cross-domain and cross-lingual set-
tings and Cross-D denotes the cross-domain settings.

and cross-lingual settings concurrently than that 995

only in cross-domain settings, which demonstrates 996

the key insight to bridge the low-resource gap is to 997

relieve the limitation imposed by the specific lan- 998

guage resource dependency besides the specific do- 999

main. Our proposed adversarial contrastive learn- 1000

ing framework could alleviate the low-resource is- 1001

sue of rumor detection as well as reduce the heavy 1002

reliance on datasets annotated with specific domain 1003

and language knowledge. 1004

D Future Work 1005

We will explore the following directions in the fu- 1006

ture: 1007

1. We are going to explore the pre-training 1008

method with contrastive learning and then 1009

finetune the model with classification loss, 1010

which may further improve the performance 1011

and stability of the model. 1012

2. Considering that our model has explicitly over- 1013

come the restriction of both domain and lan- 1014

guage usage in different datasets, we plan 1015

to evaluate our model on the datasets about 1016

more breaking events in low-resource do- 1017

mains and/or languages by leveraging existing 1018

datasets with rich annotation. We believe that 1019

our work could provide new guidance for fu- 1020

ture rumor detection about breaking events on 1021

social media. 1022
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