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Abstract

Spiking Neural Networks (SNNs) are increasingly
recognized for their biological plausibility and
energy efficiency, positioning them as strong al-
ternatives to Artificial Neural Networks (ANN5)
in neuromorphic computing applications. SNNs
inherently process temporal information by lever-
aging the precise timing of spikes, but balanc-
ing temporal feature utilization with low energy
consumption remains a challenge. In this work,
we introduce Temporal Shift module for Spiking
Neural Networks (TS-SNN), which incorporates
a novel Temporal Shift (TS) module to integrate
past, present, and future spike features within a
single timestep via a simple yet effective shift op-
eration. A residual combination method prevents
information loss by integrating shifted and origi-
nal features. The TS module is lightweight, requir-
ing only one additional learnable parameter, and
can be seamlessly integrated into existing archi-
tectures with minimal additional computational
cost. TS-SNN achieves state-of-the-art perfor-
mance on benchmarks like CIFAR-10 (96.72%),
CIFAR-100 (80.28%), and ImageNet (70.61%)
with fewer timesteps, while maintaining low en-
ergy consumption. This work marks a significant
step forward in developing efficient and accurate
SNN architectures.

1. Introduction

Spiking Neural Networks (SNNs) have emerged as a promis-
ing alternative to traditional Artificial Neural Networks
(ANNs) due to their biological plausibility and energy effi-
ciency. SNNs emulate the behavior of biological neurons,
which communicate through discrete spikes rather than con-
tinuous values. This spiking mechanism allows SNNs to op-
erate with significantly lower power consumption, making
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them ideal for applications in neuromorphic computing and
edge devices where energy efficiency is crucial(Yamazaki
et al., 2022; Taherkhani et al., 2020). In comparison to
ANNSs, which process information in a static and continuous
manner, SNNs inherently incorporate temporal dynamics
by encoding information in the timing of spikes. Although
SNNs are biologically inspired neural networks, there is
still a significant gap between current SNN models and
the actual biological neural networks they aim to emulate.
Neuromodulators like dopamine and norepinephrine are re-
leased in response to previous neural activity and modify
neuronal excitability and synaptic strength, influencing cur-
rent and future activity (Turrigiano & Nelson, 2004; Alcam{
& Pereda, 2019). Additionally, neurons adapt through mech-
anisms such as frequency-dependent synaptic plasticity and
ion channel regulation, which allow them to respond based
on their activity history and present status (Turrigiano &
Nelson, 2004; Alcami & Pereda, 2019). These mechanisms
ensure that synaptic transmission is influenced by both past
and future activity, enabling dynamic adjustments in the
nervous system. Temporal modeling can be employed to
handle the temporal information mentioned above. It is
a well-established technique in sequential data processing.
However, due to the inherent temporal characteristics of
SNNs, there is an overlap with video signal processing.
This suggests that temporal modeling techniques used in
other domains, such as video recognition, can be effectively
applied to SNNs. Although temporal modeling in SNNs
is promising, effectively leveraging temporal information
while maintaining low energy consumption remains a signif-
icant challenge. Previous methods have struggled to balance
these two aspects. A major issue is that many existing
methods either fail to fully exploit the temporal dimension
or introduce substantial computational costs, negating the
energy efficiency advantages of SNNs.

To address this challenge, we propose a novel approach
that integrates temporal shift operations into SNNs, form-
ing Temporal Shift module for Spiking Neural Networks
(TS-SNN). The principle of the TS module is to distort
spike features along the temporal dimension through a shift
operation. This enhances the utilization of temporal infor-
mation in SNNs, reducing the forgetting of past timestep
information and improving the learning of future timestep
information, all while introducing only minimal computa-
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tional cost. By integrating spiking features across different
timesteps, TS-SNN effectively mitigates the impact of initial
timestep information loss and addresses the issue of insuffi-
cient feature extraction at end timesteps. This strengthens
long-term temporal dependencies, thereby improving the
accuracy of SNNs in related tasks. Our main contributions
are summarized as follows:

* We propose a Temporal Shift Module to address the
inherent limitations in the temporal dynamics of tradi-
tional SNNs. This module efficiently integrates past,
present, and future spike features through a simple
shift operation, enhancing SNNs’ temporal modeling
capabilities with minimal additional computation. The
TS module is easily incorporated into any SNN archi-
tecture.

* We introduces a residual combination method for the
TS module, which integrates shifted and original fea-
tures to prevent information loss after shifting. A
penalty factor is utilized to maintain training stabil-
ity, thereby enhancing the network’s ability to capture
temporal dynamics while preserving original features.

* A series of extensive ablation studies were conducted
to optimize the TS module and gain deeper insights
into its effectiveness. The performance of TS-SNN was
then evaluated on various benchmark datasets, demon-
strating state-of-the-art results with fewer timesteps.
Additionally, computational energy consumption anal-
yses were performed to verify the energy efficiency of
TS-SNN.

2. Related Works
2.1. Training of Deep SNNs

SNN training typically follows two approaches: ANN-to-
SNN conversion and direct SNN training. The former con-
version methods enable the utilization of existing ANN
models has been made a lot works (Han & Roy, 2020; Wang
et al., 2023a) but have limitations in fully leveraging the
spatio-temporal information intrinsic to SNNs due to the
inherent absence of this dimension in ANNs (Hu et al.,
2024). Direct SNN training methods, particularly unsu-
pervised learning approaches like Hebbian learning(Hebb,
2005) and Spike-Timing-Dependent Plasticity (STDP)(Bi &
Poo, 1998), are limited in scalability for deep networks and
large datasets. To address this, (Chakraborty et al., 2021)
proposed a hybrid model combining unsupervised STDP
with backpropagation for energy-efficient object detection.

Directly learning SNNs is challenging due to the undif-
ferentiable nature of spike firing. The surrogate gradient
(SG) approach addresses this issue, thereby enhancing the
practicality and applicability of direct SNN training (Neftci

et al., 2019; Lee et al., 2020; Wu et al., 2019; Fang et al.,
2021a). Recent advancements in SNN architectures have in-
troduced several improvement techniques. MPBN approach
(Guo et al., 2023c) incorporates an additional Batch Normal-
ization layer after membrane potential updates to stabilize
training processes, DA-LIF (Zhang et al., 2025a) introduce
an additional learnable decay on conventional LIF. (Duan
et al., 2022) proposed the TEBN method, leveraging dis-
tinct weights at each timestep to enhance learning dynamics,
RSNN (Xu et al., 2024) enhanced spike-based data process-
ing in SNNs. SEW-ResNet (Fang et al., 2021a) introduced a
widely utilized ResNet backbone for SNNs, MS-ResNet (Hu
et al., 2024) reorganizes the construction of Vanilla ResNet
layers. (Zheng et al., 2023) explored spike-based motion
estimation for object tracking through bio-inspired unsuper-
vised learning. (Doutsi et al., 2021) introduced a dynamic
image quantization mechanism enhancing visual perception
quality over time by leveraging both time-SIM and rate-
SIM for encoding spike trains. (Xu et al., 2023a;b; Yu et al.,
2025a) proposed knowledge distillation methods to train
deep SNNs using ANNSs as the teacher model and SNNs as
the student model. These innovations collectively contribute
to the advancement of SNNs, making them more practical
and effective for a wider range of applications. While exist-
ing research addresses various efficient method to enhance
SNNs, the survey indicates the absence of an approach fuse
features across different timesteps in SNNs.

2.2. Temporal Shift Modeling

In deep learning, temporal modeling refers to the process of
analyzing based on sequential data that evolves over time
where the order and timing of data points are important.
Due to the intrinsic temporal characteristics of SNNs, there
is a natural overlap with video signal processing, suggesting
that temporal modeling techniques used in other domains,
such as video recognition, can be effectively applied to
SNNs. Among traditional temporal modeling approaches,
3D CNNss are the most straightforward method(Guo et al.,
2020; 2023a). While they can directly process spatiotempo-
ral features, but they come with a high computational cost.
To address this, (Lin et al., 2019) proposed TSM, which
transforms 3D CNNs into 2D CNNs by shifting a small
portion of channels along the temporal dimension, thereby
achieving the performance of 3D CNNs at the cost of 2D
CNN:ss. Inspired by the principles behind TSM, ACTION-
Net (Wang et al., 2021) introduced a three-path architecture
for enhanced action recognition, while the Learnable Gated
Temporal Shift Module (LGTSM) (Chang et al., 2019) in-
corporated learnable kernels to improve temporal fusion
efficiency. (Wu et al., 2018a) combined the shift operation
with 1 X 1 convolutions as an efficient alternative to 3 x 3
convolutions. Further advancements include the proposal of
learnable active shifts by researchers (Chen et al., 2019; Jeon
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Figure 1. Illustration of Temporal Shift. (a) Initial spike feature representation, where each row represents a different channel and each
column represents a different timestep. (b) Temporal shift operation. Some channel are shifted forward (to the right) along the temporal
dimension, while others are shifted backward (to the left), with the remaining features left unchanged. (¢) To maintain consistent tensor
dimensions after the shift, the empty spaces created by the shift are padded with zeros and excess values are truncated. (d) The shifted
feature provides a fusion of past, present, and future information within each channel.

& Kim, 2018), and (Liu et al., 2021; Zhang et al., 2025b)
implemented a self-attention mechanism through shifting
windows to enhance the performance of vision transformers.
(Yu et al., 2022) combined spatial shifts with multilayer per-
ceptrons to achieve competitive performance in high-level
vision tasks. (Yu et al., 2025b) proposes a spatiotempo-
ral module leveraging frequency characteristics to enhance
network performance. Additionally, (Li et al., 2023) ex-
tended the shift operation to grouped spatial-temporal shifts,
demonstrating its applicability to video restoration tasks.
These advancements in related studies demonstrate the ne-
cessity and effectiveness of temporal modeling. However,
current research on SNNs on this domain is still quite lim-
ited. Our proposed method aims to fill this gap.

3. Methodology

In this section, we first provide a brief overview of the Leaky
Integrate-and-Fire (LIF) model and the training process as
discussed. Following that, we introduce the proposed TS
module. Lastly, we described how to implement the TS
module in SNN.

3.1. Preliminary of the Leaky Integrate-and-Fire Model
and SNN Deep Training

The spiking neuron is a fundamental component of SNNs
and the Leaky Integrate-and-Fire (LIF) neuron is employed
due to its efficiency and simplicity. Mathematically, the
discrete-time and iterative representation of LIF neuron are
described as follows:

Vt’n — f([{t—l,n“)(t,n)7 (1a)
St =0(Vh" — uy), (1b)
Ht’" — VYresel . St,n + Vt,n ® (1 _ St,n). (IC)

The Heaviside step function © is defined as:
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Where H'~1™ represents the membrane potential after a
spike trigger at the previous timestep, X" is the input
feature of the n-th layer at timestep ¢. while V%™ denote the
integrated membrane potential. vy, is the firing threshold to
determine whether the spike S*"™ triggered.

During the network training of SNN, we utilize a spatial-
temporal backpropagation (STBP) (Wu et al., 2018b) al-
gorithm. The independently descriptions of temporal and
spatial aspects are as follows:
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Although the Heaviside Function 2 is non-differentiable,
previous work has successfully overcome this through the
surrogate gradients (SG) method (Neftci et al., 2019):

as 1 a

v 5'319n(|V—‘/2h|<§)7 4)
where both a and Vj;, are hyperparameters usually set to 1.
The gradient takes the value of 1 when V' is within the range
of -0.5 to 0.5, otherwise it takes the value of 0.

3.2. Temporal Shift Module

The TS module enhances temporal dynamics in SNNs by
shifting portions of the feature map along the temporal di-
mension. It divides the input feature tensor into segments
and shifts them: some forward, some backward, and others
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Figure 2. Overview of the TS-SNN Architecture.

unshifted, representing shifts of +1, -1, and O timesteps,
respectively.

The TS module is designed to efficiently model temporal
dynamics within SNN by shifting portions of the feature
map along the temporal dimension. The Temporal Shift
operation splits the input feature tensor into multiple seg-
ments and then assigns two random split points to divide the
original features into three parts. These segments are then
shifted along the temporal dimension: some forward, some
backward, and others unshifted, representing shifts of +1,
-1, and O timesteps, respectively.

Formally, for an input tensor X € RTXCXHXW where T'
is the number of timesteps, C' is the number of channels,
H is the height, and W is the width. First, C' channels
are divided into C}, feature segments, each containing Cy,q
channels, defined as:

Cpoia = C/C. )
Next, the tensor Z after the temporal shift is defined as:
ZT = X[t+1,: g1 Cholds 7]
Z7 ' =X[t-1,91 Croia: g2 Chotas 3] (6)

ZO = X[t,gg . Cfold ty iy Z]

Where g; and g- represent the indices of the feature seg-
ments after random split, with 0 < ¢; < go < Cj and
g1 # go. In Figure 1(a), the initial input spike feature
maps with C channels and T timesteps are depicted. In
Figure 1(b), some channels are shifted forward by an oper-
ation of +1, others backward by an operation of -1, while
the rest remain unshifted along the temporal dimension
demonstrating the process of Equation (6). However, this
shift operation can result in vacancies or excesses at the
edge timesteps where features are shifted away or out. To
maintain consistent tensor dimensions after the shift oper-
ation, vacancies are padded with zeros, and excess values

Algorithm 1 Temporal Shift Module

Input: Channel Folding Factor C}; Input tensor X of
shape [T, C, H, W], where:

T Timesteps, C: Channels, H: Height, W: Width.
Output: Shifted tensor Z.
Method:
Compute fold channel size C,jq = C/Cy.
Generate random indices I for channel groups.
Determine g; and g from I;:

g1 < min(Z¢[0], I4[1]), g2 < max(I¢[0], I;[1]).
Initialize a zero tensor Z with the same shape as X.
Shift a portion of X left:

Z[: —1,: g1 X Cpog, 1, 1] = X[1 21 g1 X Cpoay 2, 2]
Shift a portion of X right:

Z[l L a1 XCfU]d L g2 XCfold> 5 Z] — X[ -1, g1 X Cfgld :
92 % Cpotg ).
Leave the remaining portion of X unchanged:

Z[:592 % Cpota 3,251 = X 1,92 X Cpota 3, 2,1
Reshape Z back to [T, C, H, W].
return shifted tensor Z.

are truncated as shown in Figure 1(c). Figure 1(d) illus-
trates the multi-timestep fused feature matrix after the shift,
indicating how the “past” (previous timesteps), “present”
(current timestep), and “future” (upcoming timesteps) are
fused within a single timestep. This fusion forms a complete
data representation by stacking partial features from differ-
ent timesteps. This TS operation can be performed without
any multiplications or additions, thereby introducing no ad-
ditional computational burden. Compared to traditional 2D
convolution operations, the TS module achieves the most
straightforward form of feature fusion, which aligns well
with the energy-efficient and low-power nature of SNNs.
The detailed Temporal Shift procedure for the TS-SNN is
given in Algorithm 1.
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3.3. Implementation of the TS Module

To integrate the TS module effectively into the network
architecture, a common approach is to directly insert the
module in place. However, this straightforward method can
hinder the model’s ability to learn the original features, es-
pecially when a significant portion of channels is shifted,
resulting in the loss of valuable original information at the
current timestep. To address this issue, as shown in Fig-
ure 2(c), the shifted spike features Z are combined with
the original input X through a residual shift to insert the
TS module, mitigating the information loss caused by the
shifting operation. This residual shift method preserves
the original features while allowing the network to capture
temporal dynamics. Mathematically, the residual shift is
defined as follows:

7' =a0 7+ X, @)

where « is the penalty factor that constrains the temporally
shifted tensor to prevent training instability or excessive
spiking activity, typically set between 0.2 and 0.5. And
® denotes element-wise multiplication. This residual shift
combines original and shifted spike features with a weighted
factor « to prevent information loss, enhancing stability dur-
ing training. It also alleviates the problem of learning degra-
dation in the transmission of spiking temporal features. By
integrating historical and future features through the shifting
operation, this approach emphasizes specific features of the
current timestep. This method ensures that while the tempo-
ral shifts incorporate features from multiple timesteps, the
complete information of the original timestep is preserved,
thereby minimizing the loss of information during spike
transmission.

4. Experiments

To validate the effectiveness of the proposed TS-SNN, we
evaluate its performance across four datasets, and various
network architectures. First, we provide details on the
datasets and implementation specifics. Next, we present
extensive ablation experiments to optimize the TS module.
Subsequently, we compare the performance of TS-SNN
with state-of-the-art methods on static image classification
tasks and event-based vision tasks. Afterward, we evaluate
the generality of the TS module on Transformer-based ar-
chitecture. Finally, we analyze the computational efficiency
of the proposed method. More details on the datasets, hy-
perparameters, additional experiments are provided in the
Appendix.

4.1. Experimental Setup

Datasets. The proposed method was evaluated on four
datasets: CIFAR-10, CIFAR-100, ImageNet, and CIFAR10-
DVS. CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2010)
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Figure 3. Impact of Channel Folding Factor (C) on CIFAR-100
Accuracy with ResNet20 architecture. The accuracy peaks when
Cy is set to 32.

are standard benchmarks for image classification, consist-
ing of 50,000 training images and 10,000 testing images,
all sized 32 x 32. CIFAR-10 comprises 10 classes, while
CIFAR-100 contains 100 classes. ImageNet (Deng et al.,
2009) is a large-scale dataset extensively used for bench-
marking image classification algorithms. It includes 1.2 mil-
lion training images, 50,000 validation images, and 100,000
test images, categorized into 1,000 distinct classes represent-
ing a wide range of objects. CIFAR10-DVS (Li et al., 2017b)
is a neuromorphic dataset derived from the frame-based
CIFAR-10 dataset using a dynamic vision sensor (DVS).
It comprises 10,000 event streams, each sized 128 x 128,
divided into 10 categories with 1,000 samples per class.
We follow the convention of previous studies (Wang et al.,
2023b) by splitting the dataset into training and testing sets
in a 9:1 ratio.

Implementation Details. The entire codebase was imple-
mented in PyTorch in this study. Experiments on CIFAR-10,
CIFAR-100 and CIFAR10-DVS were conducted using an
NVIDIA RTX 3090 GPU, while experiments on ImageNet
were performed using 8 NVIDIA RTX 4090 GPUs. Key
hyperparameters, such as the firing threshold vy,, were set
to 1.0. The channel folding factor C}, was set to 32, and
the shift operations followed the sequence: left, right, no
shift. The default value of the penalty factor « was 0.5.
The optimization process utilized the SGD optimizer with
a momentum of 0.9, an initial learning rate of 0.1, and a
CosineAnneal learning rate adjustment strategy. The total
number of training epochs was set to 500 for CIFAR-10,
CIFAR-100, and CIFAR10-DVS, and 300 for ImageNet.

4.2. Ablation Studies

To optimize the TS module and gain deeper insights into
its effectiveness, we conducted a series of ablation studies.
These experiments were designed to isolate and evaluate the
impact of various components within the TS-SNN architec-
ture, leading to the optimal configuration.
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Impact of Channel Folding Factor on Model Accuracy
The principle of the TS module is to distort spike features
along the temporal dimension. Different levels of distortion
correspond to varying degrees of temporal spike feature
integration. To facilitate block-wise feature movement, we
introduce the channel folding factor, C'y, which controls
the number of feature groups within the channels. The
size of each group is determined by C'/C}. A larger Cy,
results in smaller individual feature blocks, since g; and
go are randomly generated from the group, smaller groups
contain less shifting information. Conversely, a smaller
C}, lead to richer shifting information within each group.
Therefore, selecting an appropriate CY, is crucial for optimal
module performance. We evaluated this impact by testing
the ResNet20 architecture on the CIFAR-100 dataset with a
timestep of 2. The results, presented in Figure 3, show that
varying CY, affects performance by up to 0.96%. Ultimately,
the default channel folding factor is set to 32 in our method.

Temporal Channel Feature Shift Strategy This study
compares two strategies for the temporal feature shift
method: scalable random transformation and fixed-length
transformation. The primary difference between these meth-
ods lies in their approach to splitting and moving feature seg-
ments across timesteps, as depicted in Figure 4. The fixed-
length transformation consistently shifts a uniform number
of features, while the random transformation method varies
the intervals randomly during each shift, leading to differ-
ent fusion ratios between features from adjacent timesteps.
To evaluate their effectiveness, we conducted experiments
on the CIFAR-100 dataset under identical conditions. The
results show that the fixed-length transformation achieved
an accuracy of 71.24%, while the random transformation
outperformed it with an accuracy of 71.63%. These findings
suggest that the random transformation method provides
better accuracy than the fixed-length transformation.

Impact of TS Direction Combinations on Model Accu-
racy The data presented in the Figure 5 above shows the
accuracy results based on various combinations of temporal
shift directions applied to different channel features. Com-
binations correspond to different arrangements of left, right,
and present temporal shifts. The results indicate that the
combination labeled as (L-R-0), which involves the con-
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Figure 6. Accuracy improvement with consistent TS Module ap-
plication across training and inference stages.

figuration of left-right-no shift, yields the highest accuracy
at 72.52%. Consequently, this combination (L-R-0) has
been default shift direction combination in all experiments
conducted in this study.

Impact of Consistent TS Module Application We eval-
uated the effect of applying the TS module solely during
training compared to applying it consistently across both
training and inference stages. As shown in Figure 6, consis-
tent application results in higher accuracy across all three
datasets. For instance, on CIFAR10-DVS, accuracy im-
proves from 81.20% to 83.60%. Notably, this performance
gain does not increase computational costs, as the FLOPs
remain unchanged in both scenarios. These results highlight
the effectiveness of using the TS module in both training and
inference to enhance temporal modeling while maintaining
efficiency.

4.3. Comparisons with Other Methods

Static Image Classification. We evaluated our model on
three static datasets: CIFAR-10, CIFAR-100, and ImageNet.
The TS Module was integrated into ResNet-19 and ResNet-
20 for CIFAR-10 and CIFAR-100, and into ResNet-18 and
ResNet-34 for ImageNet. The results on CIFAR-10/100
are summarized in Table 1, with top-1 accuracy reported as
the mean and standard deviation of 3 trials. On CIFAR-10,
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Table 1. Comparison results with SOTA methods on CIFAR-10/100

CIFAR-10 CIFAR-100
Methods
Architecture Timestep Accuracy Architecture  Timestep Accuracy
RecDis-SNN(2022b) ResNet-19 4 95.53% ResNet-19 4 74.10%
ResNet-19 2 94.16% ResNet-19 2 72.87%
TET(2021) ResNet-19 4 94.44% ResNet-19 4 74.47%
ResNet-19 6 94.50% ResNet-19 6 74.72%
ResNet-19 2 94.41% ResNet-19 2 76.32%
LSG(2023) ResNet-19 4 95.17% ResNet-19 4 76.85%
ResNet-19 6 95.52% ResNet-19 6 77.13%
ResNet-19 2 95.60% ResNet-19 2 76.70%
PFA(2023) ResNet-19 4 95.71% ResNet-19 4 78.10%
ResNet-19 6 95.70% ResNet-19 6 79.10%
. ResNet-20 5 91.78% ResNet-20 5 64.07%
Diet-SNN(2023) ResNet-20 10 92.54% - - i
ResNet-19 2 93.85% - - -
IM-loss(2022a) ResNet-19 4 95.40% - - -
ResNet-19 6 95.49% - - -
ResNet-19 1 96.06% ResNet-19 1 78.71 %
ResNet-19 2 96.47% ResNet-19 2 79.51%
ResNet-19 4 96.52% ResNet-19 4 80.10%
MPBN(2023¢) ResNet-20 ) 92.22% ResNet-20 1 68.41%
ResNet-20 2 93.54% ResNet-20 2 70.79%
ResNet-20 4 94.28% ResNet-20 4 72.30%
ResNet-19 3 95.29% ResNet-19 3 77.21%
IM-LIF(2024) ResNet-19 6 95.66% ResNet-19 6 77.42%
ResNet-19 1 96.50% +0.08% ResNet-19 1 78.61% +0.10%
ResNet-19 2 96.72 % +0.08% ResNet-19 2 80.28 % +0.07%
Ours ResNet-20 1 93.03% +0.12% ResNet-20 1 69.02% +0.11%
ResNet-20 2 94.11% +0.07% ResNet-20 2 71.83% +0.10%
ResNet-20 4 94.71% +0.08% ResNet-20 4 73.46% +0.08%

both ResNet-19 and ResNet-20 achieve the highest accu-
racy across all time steps. For CIFAR-100, our method
surpasses others in all configurations except for ResNet-19
at timestep 1, where it lags behind MPBN. The possible
reason is that at timestep 1, only the no-shift condition is
present, which doesn’t fully leverage dynamic temporal in-
formation, limiting its impact on performance compared to
later timesteps. On the more challenging ImageNet dataset
as summarized in Table 2, ResNet-34 achieves an optimal
accuracy of 70.61% with a timestep of 4, marking a sig-
nificant improvement. These results show that our method
performs excellently with fewer time steps, demonstrating
its effectiveness. The results in Table 1 demonstrate that
when using a single timestep (T=1), TS theoretically should
not exert any functional effect. However, we observe con-
sistent performance improvements under this configuration.
This phenomenon can be attributed to the scaling factor «
in Equation (7). Although temporal shift operations are
nullified in the spiking feature dimension with T=1, the
adaptive scaling mechanism parameterized by « still in-
troduces non-trivial modifications to the spiking features,

which may contribute to the observed performance gains.

Event-based Vision classification. To comprehensively
evaluate the spatiotemporal processing capabilities of TS-
SNN, we tested the model on the CIFAR10-DVS dataset,
which, unlike static datasets, includes a temporal dimen-
sion. The experimental results are summarized in Table 3.
Our model outperformed SOTA methods, achieving an ac-
curacy of 83.90% with 16 timesteps, and 83.80% with
only 10 timesteps, which demonstrate that TS-SNN can
surpass SOTA performance while using significantly fewer
timesteps. More importantly, these results highlight the su-
perior performance of the TS module in handling longer
timesteps, indicating its effectiveness in mitigating informa-
tion loss over long sequences.

4.4. TS Module on Transformer-Based Architectures

To evaluate the generality of the TS module, we integrated
it into Spikeformer-4-384, a transformer-based architec-
ture(Zhou et al., 2022). Experiments on CIFAR-10 and
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Table 2. Comparison results with training based SNN SOTA on
ImageNet. T denotes Timestep.

Table 3. Comparison results with SOTA methods on CIFAR10-
DVS. T denotes timestep.

Methods Architecture T Accuracy Methods Architecture T Accuracy
STBP-tdBN (2021) ResNet34 6 63.72% IM-loss(2022a) ResNet-19 10 72.60%
TET (2021) ResNet34 6 64.79% LSG(2023) ResNet-19 10 77.90%
RecDis-SNN (2022b) ResNet34 6 67.33% MPBN(2023c¢) ResNet-19 10 74.40%
GLIF (2022) ResNet34 4 67.52% MPBN(2023c) ResNet-20 10 78.70%
IM-Loss (2022a) ResNet18 6 67.43% TET(2021) VGGSNN 10 77.30%
Real Spike (2022¢) Ezzgf‘gi i gggggz IM-LIF(2024) VGG-13 10 80.50%
. GLIF(2022) 7B-wideNet 16 78.10%
ResNet18 4 63.03%
RMP-Loss (2023b) ResNe(34 4 65.17% STSA(2023b) STS-Transformer 16 79.93%
MPBN (20230) ResNet18 4 63.14% Spikeformer(2022) Spikeformer 16 80.90%
ResNet34 4 64.71% SEW(2021a) SEW-ResNet 16 74.40%
SEW ResNet (20212) ResNet18 4 63.18% PLIF(2021b) PLIFNet 20 74.80%
ResNet34 4 67.04%
Ours ResNet-20 10 83.80% +0.20%
Ours ResNet18 4  68.18% +0.13% 16 83.90% +0.20%
ResNet34 4 70.61% +0.20%

CIFAR-100 datasets demonstrate its effectiveness, as shown
in Table 4. The TS module enhanced accuracy on both
datasets, with a notable +0.38% gain on CIFAR-100. These
results highlight its ability to integrate temporal features ef-
fectively, even in transformer-based models, demonstrating
its adaptability across diverse neural network architectures.

4.5. Analysis of Computation Efficiency

In this section, the energy cost is estimated based on
the number of operations in 45-nm technology during
single-image inference. The number of multiplication-and-
accumulation operations (MACSs) remains constant for a
given network in ANNs, while in SNNs, computations are
primarily accumulation operations (ACs) triggered by in-
coming spikes. The energy consumption for both ANN
and SNN models is based on the number of MACs and
ACs(Horowitz, 2014), where each of the operation consume
4.6 pJ and 0.9 pJ, respectively(Qiao et al., 2015). The com-
putational energy consumption across three datasets is sum-
marized in Table 5. The method in this experiment is based
on (Chen et al., 2023), where the energy consumption of
SEW ResNet18 is reported to be 13.10 mJ. Notably, Under
the consistent experimental conditions, our proposed TS-
SNN consumes only 5.857 mJ and results for other datasets
are also significantly low. This substantial reduction in
energy consumption may be attributed to the sufficiently
high spiking rate, demonstrating the clear energy efficiency
advantage of our proposed method.

Table 4. Results on CIFAR-10 and CIFAR-100 with and without
TS module on Transformer-based architecture.

Methods Accuracy
CIFAR-10 CIFAR-100

Spikeformer-4-384 95.19% 77.86%

Spikeformer-4-384 with TS~ 95.28% 78.24%

Table 5. Computational consumption for processing a single sam-
ple of CIFAR-100, ImageNet, and CIFAR10-DVS.

Dataset CIFAR-100 CIFAR10-DVS ImageNet
Timestep 4 10 4
Architecture  ResNet20 ResNet20 SEW ResNet18
ACs 141.2M 1.23G 1.62G
MACs 53.99M 514.81M 956.4M
FLOPs 868.36M 8.65G 7.29G
Param 11.3M 11.2M 11.6M
Energy 0.375m] 3.475m] 5.857ml

5. Conclusion

Building on a deep understanding of SNNs and inspired by
temporal modeling and neuroscience, this paper introduces
an novel Temporal Shift Module for SNNs. This mod-
ule achieves a simple yet effective fusion of past, present,
and future spike features within each one timestep through
a shift operation. By introducing minimal computational
cost, it effectively reduces the forgetting of past timestep
information, enables learning from future timesteps, and
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establishes robust long-term temporal dependencies as well.
We conducted experiments on four datasets and performed
extensive ablation studies, demonstrating that the proposed
TS module significantly improves SNN accuracy. As a plug-
and-play module, it shows great potential for widespread
application. Additionally, energy consumption results indi-
cate that TS-SNNs are highly energy-efficient.
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A. Appendix.
A.1. LIF Modal

Mathematically, a LIF neuron can be represented as follows:

du(t)
dt

= —(u(t) — trest) + (1), (®)

where 7 denotes the membrane time constant, u(t) presents the membrane potential at the moment ¢, ... is the resting
potential of the neuron, and I(t) is pre-synaptic input at ¢ moment.

A.2. Datasets Details and Augmentations

CIFAR-10. CIFAR-10 (Krizhevsky et al., 2010) is a widely recognized benchmark dataset for image classification tasks.
It consists of 50,000 training images and 10,000 test images, all sized at 32 x 32. The dataset contains 10 distinct classes,
representing common objects such as airplanes, cars, birds, and cats. CIFAR-10 serves as a standard for evaluating the
performance of image classification algorithms, offering a diverse set of visual challenges. In our approach, we apply data
augmentation techniques including cropping, horizontal flipping, and cutout. Additionally, during training, we introduce
random augmentations by selecting two strategies from contrast enhancement, rotation, and translation. These augmentations
enhance the model’s robustness and its ability to generalize across various visual scenarios.

CIFAR-100. CIFAR-100 (Krizhevsky et al., 2010) is an extension of the CIFAR-10 dataset, designed for more fine-grained
classification tasks. It comprises 50,000 training images and 10,000 test images, all with dimensions of 32 x 32. The
dataset features 100 classes, each belonging to one of 20 superclasses, making it a more challenging benchmark compared
to CIFAR-10. The data augmentation strategy used for CIFAR-100 is consistent with that applied to CIFAR-10, providing a
robust evaluation framework for models across a broader range of object categories.

ImageNet. ImageNet (Deng et al., 2009) is a large-scale image dataset extensively used for benchmarking image
classification algorithms. It includes 1.3 million training images across 1,000 categories, along with 50,000 validation
images. These classes represent a wide range of objects, including animals, vehicles, and everyday items. Compared to
CIFAR-10 and CIFAR-100, ImageNet presents a larger and more complex collection of images, offering a more robust
benchmark for evaluating model performance. In our experiments, we utilize the data augmentation techniques outlined
in (He et al., 2016). Images are randomly cropped from either their original version or a horizontally flipped version to a
size of 224 x 224 pixels, followed by data normalization. For testing samples, images are resized to 224 x 224 pixels and
subject to center cropping, after which data normalization is also applied.

CIFAR10-DVS. CIFARI10-DVS (Li et al., 2017a) is an event-based version of the CIFAR-10 dataset, captured using
a dynamic vision sensor (DVS) camera. This dataset consists of 10,000 event streams, each sized at 128 x 128, derived
from the original CIFAR-10 images. The 10 classes in CIFAR10-DVS each contain 1,000 samples, and the dataset is split
into training and testing sets with a 9:1 ratio. During preprocessing, random horizontal flips (with a probability of 0.5) are
applied, followed by random selection from augmentations such as rolling, rotation, cutout, and shear. These augmentations
enhance the variability and robustness of the dataset(Guan & Zhao, 2022; Guan et al., 2020).

A.3. Experimental Setups

All code implementations were based on the PyTorch framework. The experiments were conducted on a single RTX 3090
GPU for all datasets except ImageNet, which was trained using a configuration of eight RTX 4090 GPUs. In all experiments,
the SGD optimizer with a momentum of 0.9 was used, along with the CosineAnnealing learning rate adjustment strategy.

CIFAR-10/100. For the CIFAR-10 and CIFAR-100 datasets, the initial learning rate was set to 0.1, with a batch size of
128 and the number of training epochs set to 500. The parameter o was initialized at 0.5 and C}, was set at 32.

CIFAR10-DVS. For the CIFAR10-DVS dataset, the initial learning rate was set to 0.1, with a batch size of 32 and 300
training epochs. The parameter C, was set at 32, and « was initialized at 0.2.
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Figure 7. Average Firing Rate of each layer in Vanilla SNN and TS SNN

ImageNet. For the ImageNet dataset, the initial learning rate was set to 0.1, with a batch size of 64 and a total of 320
training epochs. The parameter C, was set at 32, and « was initialized at 0.2.

A.4. Analysis of Computation Efficiency

In ANNSs, each operation involves a multiplication and accumulation (MAC) process. The total number of MAC operations
(#MAC) in an ANN can be calculated directly and remains constant for a given network structure. In contrast, spiking neural
networks (SNNs) perform only an accumulation computation (AC) per operation, which occurs when an incoming spike is
received. The number of AC operations can be estimated by taking the layer-wise product and sum of the average spike
activities, in relation to the number of synaptic connections.

L
#MAC = ) " (#MAC)) )
=1
L
#AC =D (#MAC, x a;) x T (10)

1=2
Here, a; represents the average spiking activity for layer 1. The first, rate-encoding layer of an SNN does not benefit from
multiplication-free operations and therefore involves MACs, while the subsequent layers rely on ACs for computation.
The energy consumption E for both ANN and SNN, accounting for MACs and ACs across all network layers, is given by:
FEsnyy = #MAC, X Eprac + #AC X Exc and Exnyy = #MAC X Epac.

Based on previous studies in SNN research (Yao et al., 2023; Chakraborty et al., 2021), we assume that the operations are
implemented using 32-bit floating-point (FL) on a 45 nm 0.9V chip (Horowitz, 2014), where a MAC operation consumes
4.6 pJ and an AC operation consumes 0.9 pJ. This comparison suggests that one synaptic operation in an ANN is roughly
equivalent to five synaptic operations in an SNN. It is important to note that this estimation is conservative, and the energy
consumption of SNNs on specialized hardware designs can be significantly lower, potentially reduced by up to 12x to 77 fJ
per synaptic operation (SOP) (Qiao et al., 2015).

A.S5. Analysis of Firing Rates

Firing rates play a crucial role in biological neural networks, where they are used to encode information, forming the
basis of neural communication and signal processing. In computational models like SNNs, the firing rate is a key metric
for simulating and analyzing neuronal dynamics, providing insights into the role of neurons in complex behaviors and
information processing tasks. The firing rate quantifies the activity level of a neuron over a specified period, serving as a
vital indicator of the neuron’s responsiveness to input stimuli—higher firing rates typically signify stronger responses.

In our analysis, we compare the firing rates of the proposed TS-SNN with a vanilla SNN model, as summarized in Figure 7.
Firing rates were recorded across four timesteps, with the average firing rate for each layer calculated based on these
timesteps. This comparison highlights the differences in neuronal activity between the two models, providing insights into
their respective processing efficiencies.
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In the context of the overall network, the spike firing rate of the vanilla SNN is 33.06%, while that of the TS-SNN is
35.61%. This suggests that the TS module enhances model performance without substantially increasing spike output,
thereby preserving the inherent sparsity of the original SNN.
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