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Abstract—The technique of hiding secret messages within
seemingly harmless covertext to evade examination by censors
with rigorous security proofs is known as provably secure
steganography (PSS). PSS evolves from symmetric key steganog-
raphy to public-key steganography, functioning without the
requirement of a pre-shared key and enabling the extension
to multi-party covert communication and identity verification
mechanisms. Recently, a public-key steganography method based
on elliptic curves was proposed, which uses point compression
to eliminate the algebraic structure of curve points. However,
this method has strict requirements on the curve parameters
and is only available on half of the points. To overcome these
limitations, this paper proposes a more general elliptic curve
public key steganography method based on admissible encoding.
By applying the tensor square function to the known well-
distributed encoding, we construct admissible encoding, which
can create the pseudo-random public-key encryption function.
The theoretical analysis and experimental results show that the
proposed provable secure public-key steganography method can
be deployed on all types of curves and utilize all points on the
curve.

Index Terms—Public-key steganography, elliptic curve cryp-
tography, admissible encoding, provable security.

I. INTRODUCTION

STEGANOGRAPHY [1], [2], [3] is a covert communi-
cation method by embedding confidential data within

ordinary media such as text, images, audio, and video. It
protects the confidentiality of the information and conceals
the presence of communication. The essence of steganography
involves the steganographer placing secret data into common
media to produce stegotext, aiming for these stegotext to be
indifferent from the original media. Conversely, the attacker’s
task [4], referred to as steganalysis [5], is to identify the subtle
differences between the original media and the stegotext [6].

Previous digital steganography techniques, such as least
significant bit (LSB) replacement [7], exploiting modification
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direction (EMD) [8] and minimum distortion steganography
[9], [10], primarily focused on empirical security without
theoretical validation. These methods often fail against deep
learning-based steganalysis attacks [11], [12].

A natural question arises: can steganography achieve a
level of security comparable to that of cryptography? To
address this question, Cachin [13] proposed the perfect secu-
rity of steganography within an information-theoretic model,
measured by the KL divergence DKL (Pc‖Ps), which remains
an ideal model unachievable in practice. Hopper et al. [14]
introduced a provably secure steganography based on com-
putational complexity theory, aiming to prove that attackers
with real-world capabilities cannot computationally distinguish
between covertext and stegotext.

In Hopper’s theory, he envisioned the concept of a per-
fect sampler, which has the capability of arbitrary sampling
from the covertext distribution. Although this concept was
not attainable then, with the development of deep learning
and generative models [15], [16], [17] it has now become
achievable. Researchers discovered that deep generative mod-
els can serve as perfect samplers, using data generated by these
models as covertext to conceal information, thus constructing
provably secure steganography. Several efforts have been made
to use generative models with provably secure steganography,
including AC [18], [19], ADG [20], Meteor [21], MEC [22]
and Discop [23]. These works focus on the specific construc-
tion of embedding under the symmetric setting.

Recent research has increasingly focused on public-key
steganography for many reasons. For instance, it does not rely
on the assumption of a pre-shared key and offers significant
efficiency advantages in multi-party covert communications
[1], [14]. Furthermore, they can be extended to include
identity verification mechanisms, further ensuring the security
of communications. This paradigm shift marks a profound
transition in steganography theory—from focusing on the
design of individual methods to developing comprehensive
communication protocols.

Following the conceptual framework of public-key
steganography introduced by von Ahn and Hopper [24], Zhang
et al. [25] advanced this domain by proposing a novel public-
key steganography method based on elliptic curves. Their
method leverages point compression to eliminate the algebraic
structure of curve points, rendering the ciphertext produced
by elliptic curve public-key encryption indistinguishable
from random bit strings. This method not only addresses
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the challenge of embedding curve points directly into
steganographic covertext but also presents advantages over
the integer finite field-based methods proposed by von Ahn
and Hopper [24] in terms of computational efficiency and
encoding ciphertext size.

However, Zhang et al.’s method exhibits two limitations.
First, it is constrained to work only on curves with a par-
ticular set of parameters, limiting its applicability across the
broader range of elliptic curve parameters. This specificity
allows attackers to potentially restrict the use of such curves.
Second, the method is capable of utilizing only about half
of the available curve points, necessitating the exclusion of
the remaining points in practical applications. This restriction
limits the deployment of algorithms and protocols that require
the complete set of points, such as pairing-based methods
[26], [27] and deterministic cryptographic protocols like BLS
[28]. Consequently, this narrows the scope of public-key
steganography for broader applications.

A. Our Method

Inspired by the concept of admissible encoding in elliptic
curve hash schemes [29], [30], [31], we introduce a more
general elliptic curve public-key steganography method based
on admissible encoding. This encoding method possesses
excellent properties, allowing not only for a surjection over
the entire set of elliptic curve points but also enabling the
derivation of a distribution indistinguishable from the uniform
distribution over a finite field when its sampleable inverse
function is provided. Despite its appealing attributes, finding
admissible encoding that works across a broad spectrum
of elliptic curves presents a significant challenge. However,
by applying the tensor square function to the known well-
distributed encoding, we construct admissible encoding whose
properties are suitable for creating the pseudo-random public-
key encryption function.

We have discovered that well-distributed encodings which
can be strengthened to admissible encodings are widely
present across all types of curves. Through the tensor square
detailed in the main text, we confirm that our proposed method
can be effectively applied to all commonly used curves.
To illustrate this, we utilize Icart encoding [29] on curves
where p = 2 mod 3, SWU encoding [32] on curves where
p = 3 mod 4, and SW [31] encoding on BN-like curves.
We instantiate these three types of well-distributed encod-
ings, construct their efficient sampleable inverse functions,
and construct the corresponding public-key steganography
schemes based on admissible encoding. Both our theoretical
and experimental results prove the effectiveness and security
of this scheme.

Furthermore, in Appendix A, we list a plethora of elliptic
curve well-distributed encoding methods that can be applied
within our framework to construct public-key steganography.
Through the tensor exponent function, our scheme can be
extended to even work on hyperelliptic curves.

Contributions. The main contributions of this paper can be
summarized as follows:
• Universal Applicability to All Types of Curve. The

new provable secure public-key steganography method

we propose is deployable across all types of curves,
significantly expanding the applicability of elliptic curve
public-key steganography.

• Full Utilization of Curve Points: Our method utilizes all
available points on the curve compared to the approach
by Zhang et al. [25]. This comprehensive utilization
facilitates the implementation of complex algorithms and
protocols, including pairing operations and deterministic
cryptographic protocols like the BLS signature scheme,
all requiring access to the full set of curve points.

• Efficient Instances of Commonly Used Curves. In our
instantiated schemes, we construct efficient sampleable
inverse functions for the Icart, SW, and SWU methods.
The corresponding public-key steganography instances
operate on P-384, secp256k1, and P-256, respectively.
Extensive statistical tests and steganalysis experiments
validate the security of our constructions.

II. RELATED WORK

A. Provably Secure Steganography

Provably secure steganography offers mathematically ver-
ifiable security to the steganography scheme, unlike its
experience-based counterpart. It starts by defining a system
model—symmetric or asymmetric, two-party or multi-party
and then constructs a formal adversary model based on poten-
tial threats, mimicking real-world attacks. The approach uses
rigorous math to reduce system security to some complex
computational problems, ensuring the security is provable
under assumptions.

Hopper et al. [14], [33] first introduced a framework of
provably secure steganography by defining a probabilistic
game named chosen plaintext attack (CPA), which models the
scenario of a passive attack where the attacker hijacks the
steganography encoder, which is also the working scenario
for most steganalysis.

Following the definition, Hopper et al. proposed their con-
struction, which is based on rejection sampling using a perfect
sampler defined over the channel distribution and an unbiased
function. Define a channel as a distribution with timestamp:
C = ((c1, t1), (c2, t2), . . .), the perfect sampler is an oracle OC

providing exactly the distribution of Ch, where h is noted
as history. A function f : C → R is called ε − biased if
|Prx←C[ f (x) = 0] − 1/|R|| ≤ ε. f is unbiased if ε = 0. Given
hiddentext m, the rejection sampling is defined as follows:

sample x from OC until f (x) = m.

Hopper et al. [14], [24] proved the security of their method
against chosen plaintext attacks (CPA) by relying on the
assumption of a perfect sampler and an unbiased function.
However, the perfect sampler was not found at that time.

B. Generative Model and Provably Secure Steganography

With the development of deep learning and generative
models, researchers discovered that deep generative models
can serve as perfect samplers, using data generated by these
models as carriers to conceal information, thus constructing
provably secure steganography.
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Fig. 1. Diagram of the public-key steganography system.

Numerous provably secure steganography methods have
been devised. Yang et al. [34] pioneered provably secure
steganography using autoregressive generative models and
arithmetic coding (AC). Chen et al. [19] extended this to text-
to-speech and text-generation tasks, respectively. Zhang et al.
[20] introduced a method based on adaptive dynamic grouping
(ADG) for provable security. Kaptchuk et al. [21] proposed
Meteor to address randomness reuse in AC-based methods.
Ding et al. [23] presented Discop, a more efficient method
based on distribution copies. De Witt et al. [22] showed
that maximal transmission efficiency in perfect security equals
solving a minimum entropy coupling (MEC) problem. These
works emphasize the specific construction of embedding in the
symmetric, two-party setting and show potential extensions to
the asymmetric, multi-party setting using public-key steganog-
raphy.

C. Provable Secure Public-Key Steganography

Recent research has shifted the focus from these symmet-
ric steganography methods to asymmetric methods, namely
public-key steganography. This approach operates without the
need for a pre-shared key and allows expansion to multi-party
covert communication and identity verification mechanisms.

1) Definition: As illustrated in Fig. 1, a public-key
steganography system [24] comprises three probabilistic algo-
rithms S S = (S G, S E, S D). The algorithm S G(1k) generates a
key pair (PK, S K) from a random bitstream during the initial
phase. The encoding function S E(PK,m, h), using the public
key PK, a hidden message m, and the history-based channel
distribution Ch, outputs stegotext s1, s2, . . ., sl sampled from
Ch. The decoding function SD takes the secret key SK, a
sequence of stegotext s1, s2, . . ., sl, and the message history
h, and returns the hidden message m. Both SE and SD have
access to the channel Ch.

2) Existing Constructions: Hopper et al. [35] refined the
definition of the chosen plaintext attack (CPA, see Def. 9) for
public-key steganography and pointed out that constructing
public-key encryption functions that output pseudorandom
ciphertexts is the core to creating public-key steganography.
Building on this concept, they proposed pseudorandom public-
key encryption methods based on RSA and Elgamal over
integer finite fields, employing the probabilistic bias removal
method (PBRM) to eliminate non-random probability biases.

To address the computational and encoding inefficiencies of
Hopper’s method, Zhang et al. [25] proposed an elliptic
curve public-key steganography based on point compression.
Specifically, they constructed a bijection from approximately
half of the curve points to a uniform random string on certain
curves.

However, the previous point compression method et al.
faces two major issues: it is only applicable to a small
group of curves with specific parameters, namely, EA,B :
By2 = x3 + Ax2 + x (mod p, p ≡ 1 (mod 4), χ

�
A2 − 4B

�
=

−1, A B
�
A2 − 4B

�
, 0.), which significantly narrows the scope

of their method’s applicability. Furthermore, it can only utilize
about half of the curve points, forcing the exclusion of the
remaining half of the points for practical deployment in public-
key steganography. This limitation hinders the employment of
algorithms and protocols that operate on the complete set of
points, such as pairing [26], [27] and BLS protocol [28], thus
constraining the utility of public-key steganography in a wider
array of applications.

To address the two issues presented above, we found
inspiration in the elliptic curve hash scheme and introduced
the potent notion of admissible encoding. Specifically, we
devised a method that involves constructing a random uniform
mapping from a high-dimensional finite field to an elliptic
curve domain, along with a deterministic inverse mapping.
These mappings are utilized to establish the framework for
public-key steganography.

D. Elliptic Curve Hash and Admissible Encoding

The elliptic curve hash scheme is utilized in numerous
cryptosystems that necessitate hashing an ID or something
similar into an elliptic curve point. Such hash functions can
substitute for any utilized within cryptosystems that rely on
the random oracle model. Brier et al. [32] have established a
sufficient condition for the construction of a hash function into
an elliptic curve to be indistinguishable from a random oracle.
This condition applies to hash functions of the following form:

H(m) = F(h(m)), (1)

where F : S → E
�
Fp
�

is a deterministic encoding, and h is
seen as a random oracle to S. Assuming that h is a random
oracle, the construction is indifferentiable whenever F is an
admissible encoding into E

�
Fp
�
.

1) Admissible Encoding: Admissible encoding is a power-
ful concept integral to the construction of elliptic curve hash
schemes (for a detailed definition, see Def. 5). It has excellent
attributes including computability, regularity, and samplability,
permitting a surjection across the entire set of elliptic curve
points and facilitating the generation of a distribution that is
indistinguishable from the uniform distribution over a higher-
dimensional finite field, especially when its sampleable inverse
function is provided.

We have discovered that by leveraging the properties of
admissible encoding, we can effectively construct public-key
encryption functions that output pseudorandom ciphertexts,
thus addressing the core problem of public-key steganography.
The following sections will detail this scheme and provide
rigorous proof.
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2) Instantiation: In the instantiation of our construction, a
major technical difficulty lies in the fact that admissible encod-
ing can hardly be constructed explicitly. To the best of our
knowledge, only a special class of supersingular curves with
specific parameters has an explicit expression for admissible
encoding [26].

Drawing on the theory by Farashahi et al. [30], by applying
the tensor square function to known well-distributed encoding,
we construct our admissible encoding from a two-dimensional
finite field to the set of elliptic curve points. We employed
various well-distributed encodings to cover commonly used
curve parameters. Specifically, we utilize Icart encoding [29]
on curves where p ≡ 2 mod 3, SWU encoding [32] on curves
where p ≡ 3 mod 4, and SW encoding [31] on BN-like
curves. The corresponding public-key steganography instances
operate on P-384, secp256k1, and P-256, respectively. In
the Appendix, we also provide an extensive list of elliptic
curve well-distributed encoding that can be integrated into
our framework to construct public-key steganography. Through
tensor square or tensor exponentiation, our scheme can be
expanded to also hyperelliptic curves. Thus, we thoroughly
demonstrate that our method can be applied to all types
of curves, and due to the surjective nature of admissible
encoding, our approach can utilize all points on the curve.

III. DEFINITION

Definition 1 (Negligible Function): A function f : N →
[0, 1] is negligible if for any polynomial poly(·), there exists
a natural number N ∈ N, s.t. ∀ n > N, f (n) < 1

poly(n) .
Definition 2 (Statistical Indistinguishable): Let X and Y be

two random variables over a set S. The distributions of X and
Y are ε-statistically indistinguishable if:X

s∈S

|Pr[X = s] − Pr[Y = s]| ≤ ε. (2)

Definition 3 (Basic Provably Secure Steganography
Encoder:) Let Ch denote the data distribution of the generative
model given history h. Let E be a steganography encoder,
with an output of maximum length l, and let D denote the
corresponding decoding method. Assume E is ε-statistically
indistinguishable from the distribution of the channel Ch,
namely:

E : m ∈{0, 1}t → (s1, · · · , sl) ∈ C l
hX

c∈Cl
h

|Pr[Cl
h = (s1, · · · , sl)] − Pr[C l

h = c]| ≤ εl. (3)

The probability is calculated over uniformly distributed t-
bit strings and accounts for all randomness in E . As shown
in [14], there exist constructions of provably secure basic
steganography encoders, such as through rejection sampling.
Additionally, as mentioned in Section II-B, many private-
key steganography methods can achieve negligible ε-statistical
indistinguishability.

Definition 4 (Decisional Diffie-Hellman Assumption in
Elliptic Curve Group:) Let G , EA,B(Fp) be a prime-order
group of elliptic curve points, where g is the generator and
the order of the group is a prime q. Let A be a probabilistic

polynomial-time machine (PPTM) that takes three elements
from the group G as input and outputs a single bit. The
DDH advantage of A over the tuple (G, g, q) is defined
as:

Advddh
G,g,q(A) ,

ˇ̌̌̌
ˇ̌ Pr

a,b

�
A (a · g, b · g, ab · g) = 1

�
− Pr

a,b,c

�
A (a · g, b · g, c · g) = 1

� ˇ̌̌̌ˇ̌ , (4)

where a, b, c are chosen uniformly at random from Zq.
The decisional Diffie-Hellman assumption in the Elliptic

curve group is a computational hardness assumption requir-
ing that InSecddh

G,g,q(t) , maxA∈A(t){Advddh
G,g,q(A)} is negligible

in k.
Definition 5 (Admissible Encoding): [32] A function F :

S → R between finite sets is an ε-admissible encoding if it
satisfies the following properties:
• Computability: F is computable in deterministic polyno-

mial time.
• Regularity: For s uniformly distributed in S, the distri-

bution of F(s) is ε-statistically indistinguishable from the
uniform distribution in R.

• Samplability: exists an efficient randomized algorithm
I such that for any r ∈ R, I(r) induces a distribution
that is ε-statistically indistinguishable from the uniform
distribution in F−1(r).

F is an admissible encoding if ε is a negligible function of
the security parameter.

According to the definition, namely, the regularity gives:X
r∈R

ˇ̌̌̌
Pr
s

[F(s) = r] −
1

#R

ˇ̌̌̌
=
X
r∈R

ˇ̌̌̌
#F−1(r)

#S
−

1
#R

ˇ̌̌̌
≤ ε (5)

where #R, #S , and #F−1(r) correspond to the cardinalities of
the sets R, S , and F−1(r), respectively.

Intuitively, an admissible encoding is a uniform and invert-
ible mapping from the set of preimages to the set of images.
Uniform sampling over the set of preimages, when passed
through the admissible encoding, results in uniform sampling
over the set of images. Given an image, all corresponding
preimages can be determined.

Definition 6 (Well-distributed Encoding): [30] A function
f : Fp → E

�
Fp
�

is said to be B-well-distributed for some
B > 0 if, for all nontrivial characters χ of E(Fp), the following
bound holds:ˇ̌

S f (χ)
ˇ̌
≤ B
√

p, where S f (χ) =
X
u∈Fp

χ( f (u)). (6)

Definition 7 (Tensor Exponent and Tensor Square): Given
the curve E

�
Fp
�

over the finite field Fp, the tensor exponent
function f ⊗s is defined as follow:

f ⊗s : Fs
p → E

�
Fp
�

(u1, · · · , us) 7→ f (u1) + · · ·+ f (us). (7)

Consider for a given element D ∈ E
�
Fp
�
, the number of

preimage of f ⊗s is defined as:

Ns(D) , #
˚
(u1, · · · , us) ∈ Fs

p |

D , f (u1) + · · ·+ f (us) . (8)
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Set s to 2; the function is then referred to as the tensor
square function:

f ⊗2 : F2
p → E

�
Fp
�

(u, v) 7→ f (u) + f (v). (9)

N2(D) , #
˚
(u, v) ∈ F2

p | D , f (u) + f (v)
	
. (10)

Definition 8 (Pseudorandom Public-Key Encryption): Fol-
lowing Hopper’s theory [14], we construct pseudorandom
public-key encryption schemes that are secure in a slightly
nonstandard model, denoted by IND$-CPA, as opposed to the
more standard IND-CPA. The key difference is that IND$-CPA
requires the ciphertext output by the encryption algorithm to
be indistinguishable from uniformly chosen random bits, while
IND-CPA only requires that an adversary cannot distinguish
the encryption of two chosen plaintexts. Importantly, IND$-
CPA implies IND-CPA, but the converse does not hold,
making IND$-CPA a strictly stronger requirement. This higher
standard of security is particularly suitable for applications like
steganography, where indistinguishability from random noise
is critical.

Consider a public-key cryptography system CS = (G, E,D)
and a chosen plaintext attacker A. A is allowed to play a game
described as follows:
• Key generation stage. (PK, S K)← G(1k).
• Learning stage. A sends plaintext mA to the oracle and

returns E(PK,mA). A can perform this stage multiple
times.

• Challenge stage. A sends hiddentext m ∈M \ {mA} to
the oracle, which will flip a coin b ∈ {0, 1}. If b = 0, A
obtains c = E(PK,m); If b = 1, A obtains u← U|E(PK,·)|.

• Guessing stage. A output a bit b′ as a “guess” about
whether it obtains a plaintext or a random string.

Define the Chosen Plaintext Attack (CPA) advantage of A
against S by:

Advcpa
CS (A, k) ,

ˇ̌̌̌
ˇ Pr

PK
[A (PK, c) = 1]

−Pr
PK

[A (PK, u) = 1]

ˇ̌̌̌
ˇ . (11)

A public-key encryption system is indistinguishable from
uniformly random bits under chosen plaintext attack (IND$-
CPA) if InSeccpa

CS (t, l, k) , maxA∈A(t,l) {Advcpa
CS (A, k)} is negligi-

ble in k.
Definition 9 (Chosen Hiddentext Attack): Refer to Hopper

et al. [35] and Zhang et al.’s paper [25], the Threat Model
of public-key steganography is defined as follows:

Consider a public-key steganography system S S =

(S G, S E, S D) and an attacker A. A play a game named chosen
hiddentext attack (CHA) described as follows:
• Key generation stage. (PK, S K)← S G

�
1k
�
.

• Learning stage. A sends hiddentext mA and history hA
and gets return S E(PK,mA, h). A can perform this stage
multiple times.

• Challenge stage. A sends hiddentext m ∈M \ {mA} to
an oracle, which will flip a coin b ∈ {0, 1}. If b = 0, A
obtains s = S E(PK,m, h); if b = 1, A obtains c← Ch.

• Guessing stage. A outputs a bit b′ as its “guess” to deter-
mine whether it has received a stegotext or a covertext.

Define the Chosen Hiddentext Attack (CHA) [14] advantage
of A against SS over channel C by:

Advcha
S S ,C(A, k) ,

ˇ̌̌̌
ˇ Pr

PK
[A (PK, s) = 1]

−Pr
PK

[A (PK, c) = 1]

ˇ̌̌̌
ˇ . (12)

Define the insecurity of SS over channel C by

InSeccha
S S ,C(t, l, k) , max

A∈A(t,l)

{Advcha
S S ,C(A, k)}, (13)

where A(t,l) is the set of all adversaries that send at most l(k)
bits and run in time t(k). l(k) and t(k) are polynomials of k.
SS is secure against CHA if InSeccha

S S ,C(t, l, k) is negligible in
k, i.e., no probabilistic polynomial time (PPT) adversary can
distinguish s and c with nonnegligible probability.

In this passive attack, the adversary A gains control over a
steganographic encoder in the learning phase. A can embed
specific hiddentext mA into various stegotext. During the
challenge phase, A receives a sample that might be either a
stegotext generated with the encoder or a random cover. The
objective in the guessing phase is for A to distinguish between
covertext and stegotext with better accuracy than random
chance. This model highlights the risks in steganography when
the encoder of steganography is compromised, covering a wide
range of steganalysis threats.

IV. OUR PROPOSED METHOD

We will expound on our provably secure public-key
steganography scheme based on admissible encoding through
three sequential steps IV-A, IV-B, and IV-C.

Initially, we will introduce our public-key steganography
framework based on admissible encoding in IV-A. The intu-
ition is as follows: To construct a mapping from elliptic curve
points to pseudorandom bitstrings, the typical approach is
to first map the curve points to a finite field Fp and then
add redundancy. If our curve parameters do not allow for
mapping the curve points to a single finite field, we consider
constructing an admissible encoding to map the curve points
to a two-dimensional or higher-dimensional finite field. In this
section, we will detail how to construct admissible encoding
from well-distributed encoding through tensor square, and
then use admissible encoding to construct provably secure
public-key steganography. Subsequently, we will present com-
prehensive proofs related to the aforementioned construction
in IV-B. We will not only prove the effectiveness of the
admissible encoding construction but also demonstrate that our
final framework can withstand CHA attacks refer to Def. 9
in the random oracle model. Finally, we will explain how we
instantiated our framework in IV-C. We adopted three different
known well-distributed encodings including Icart [29], SW
[31], [36] and SWU [37], constructed efficient sampleable
inverse functions for these three encodings, and deployed our
public-key steganography system on curves of three types
of parameters. Subsequent experiments (V) on these three
instances fully demonstrated the security and effectiveness of
our entire system.
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A. Provably Secure Public-Key Steganography Framework
Based on Admissible Encoding

1) Well-Distributed Encoding Strengthen to Admissible
Encoding: Since the admissible encoding can hardly be
constructed explicitly. Only a special class of supersingular
curves with specific parameters has an explicit expression for
admissible encoding. To construct public-key steganography
that is general to all types of curves, we consider the possibility
of constructing admissible encoding from a two-dimensional
finite field to the finite field of elliptical curves. We utilize the
tensor square function to strengthen well-distributed encoding
on curves with a genus of 1 into admissible encoding (for
constructions on curves not of genus 1, see Appendix).

Given a computable B-well-distributed encoding function
f : Fp → E(Fp), the admissible encoding F from the two-
dimensional finite field F2

p to the finite field of elliptic curves
E(Fp) of genus 1 using the tensor square function as follows:

F : F2
p → E

�
Fp
�

F(u, v) = f ⊗2 = f (u) + f (v). (14)

The complete proof of the admissibility of F(u, v) can be found
in Section IV-B, Lemma 1.

2) Provably Secure Public-Key Steganography Framework
Based on Admissible Encoding: As illustrated in II-C, we will
present a public-key steganography system consisting of three
probabilistic algorithms, denoted as S S = (S G, S E, S D).

Let k be the security parameter. Let E(Fp) be the group of
points on the elliptic curve of genus 1 defined over the finite
field Fp, where p is a k-bit prime number. Let g be a generator
of the group of points on the curve, with order q, where
q is an n-bit prime number. Given f a computable B-well-
distributed encoding function f : Fp → E(Fp) and suppose I
is its sampleable inverse function, namely

I : E(Fp)→ Fp

P→ u ∈ D(P) =
˚
u ∈ Fp | P = f (u)

	
. (15)

Algorithm 1 Public-key Steganography Key Pair Generation
(SG)
INPUT: 1k ∈ U(|k|), (p, E

�
Fp
�
, g, q)

OUTPUT: PK, S K
1: Pick x ∈ [0, q − 1] at random;
2: PK = x · g, S K = x

Suppose k is the security parameter. The public-key
steganography key pair generation (SG) is defined as
Alg. 1:

Define (EK ,DK) as encryption and decryption functions of
a private-key encryption scheme satisfying IND$-CPA, keyed
by κ-bits key (κ ≤ k). Let H be a cryptographically secure
hash function H : {0, 1}k → {0, 1}κ. In theoretical analysis, we
model H as a random oracle, an idealized function that returns
an independently and uniformly distributed value for each
unique input. In practice, H will be instantiated with SHA-256
or another fixed cryptographic hash function. As defined in
Def. 3, let E be a basic provably secure steganography

Algorithm 2 Public-key Steganography Encoder (SE)

INPUT: E , m, (p, E
�
Fp
�
, g, q, PK), ( f , I)

OUTPUT: s1, s2, · · · , s∗
1: ## Key Deriving
2: Pick a ∈ [0, q − 1] at random;
3: P = a · g
4: K = H(a · PK)
5: ## Point Hiding
6: while True do
7: Pick v ∈ Fp at random;
8: D← I(P − f (v));
9: pick i uniformly at random in #D;

10: u← i-th element of D;
11: if u = ∅ continue;
12: else break;
13: end while
14: ## Bias Eliminating
15: Choose t-bit redundancy:
16: Pick r1 ∈

n
0, . . . ,

j
2k+t−u

p

ko
17: Pick r2 ∈

n
0, . . . ,

j
2k+t−v

p

ko
18: (ũ, ṽ) = (u + r1 p, v + r2 p)
19: ## Final Encoding
20: C1 = (ũ, ṽ)
21: C2 = EK(m)
22: s1, s2, · · · , s∗ = E(C1||C2)

encoder that achieves negligible ε-statistical indistinguishabil-
ity. The public-key steganography encoder (SE) is defined as
Alg. 2.

The steganography encoder (SE) consists of four parts. The
first part is the temporary key deriving, which samples a
group element randomly using a generator of the group and
multiplies its order by the receiver’s public key to obtain a
temporary key through the key-derived function. The second
part is point hiding, which involves inverse random sampling
from curve points to the two-dimensional finite field using
a sampleable inverse function f of well-distributed encoding.
During the Point Hiding step, a random index is used to
select one point from these results. If the selected point
is ‘None’, the algorithm resamples a new field element v,
computes f (v), and then calculates the inverse of the differ-
ence P − f (v) using the sampleable inverse function again.
This ensures that a valid point is eventually chosen through
random sampling. Due to the admissible encoding properties,
this part’s expected running time is O(1) field operations,
ultimately yielding two randomly uniform finite field elements,
u, and v. The third part is Bias Elimination, which expands
the finite field to k + t bits through redundant mapping to
reduce the distribution distance after truncation to binary. The
parameter t in the Bias Eliminating step is set to k

4 or k
8

to strike a balance between security and efficiency. Larger t
(e.g., t = k

4 ) leads to a smaller statistical distance between
the encoded field elements and a uniform random bit string,
However, increasing t also adds more bits to the ciphertext,
which in turn increases both storage and transmission require-
ments. The fourth part is the final embedding process of
steganography.
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Fig. 2. The theoretical framework of our public-key steganography system.

Algorithm 3 Public-key Steganography Decoder (SD)

INPUT: D, s1..∗, (p, E
�
Fp
�
, g, n, S K), f

OUTPUT: m
1: Split C = D(s1..∗) into C1, C2;
2: (ũ, ṽ) = C1
3: (u, v) = (ũ mod p, ṽ mod p)
4: P = f (u) + f (v)
5: K = H(S K · P)
6: m = DK(K,C2)

The public-key steganography decoder (SD) is defined as
Alg. 3.

The steganography decoder (SD) is straightforward. It splits
the bit string extracted from the steganography, filters out the
redundant parts using the module q, and decrypts the ciphertext
by mapping the resulting finite field elements to curve points
through admissible encoding.

B. Proof of Security

In this subsection, we will provide detailed proof of the
security of our constructed public-key steganography system
SS = (SG,SE,SD) against CHA attacks as referred to in
Def. 9. As shown in Fig. 2, We will present the proofs of two
lemmas and two theorems. Lemma 1 explains the feasibility
of constructing admissible encodings from well-distributed
encoding via the tensor square method. Lemma 2 explains
the excellent property of admissible encoding having uniform
inverse sampling over the function’s pre-image space. Theo-
rem 1, combined with these two lemmas and DDH assumption,
establishes that the ciphertext steganography encoder used in
our system has the IND$-CPA property in the random oracle
model. Finally, we present the conclusive proof of our system’s
security against CHA attacks in Theorem 2.

Lemma 1: Consider the tensor square function f ⊗2 defined
as Def. 7, if f is a B-well-distributed encoding, and is both
computable and ε′-sampleable, where B is a constant and ε′

is negligible relative to the security parameter, then f ⊗2 is an
admissible encoding from F2

p to E(Fp).

Proof: Refer to Def. 5, We will prove the three criteria of
f ⊗2, namely computability, regularity, and samplability. The
criterion of computability is trivial for the computability of f.

Consider the criterion of regularity, the number of preimage
of f ⊗2 is N2(D) = #

n
(u, v) ∈

�
Fp
�2
| D = f (u) + f (v)

o
. Since

f is a B-well-distributed encoding, according to Lemma 3 and
Lemma 4, the statistical distance between the distribution of
F(u, v) for uniform (u, v) and the uniform distribution on the
curve can be bounded as:X

D∈E(Fp)

ˇ̌̌̌
ˇN2(D)

p2 −
1

#E
�
Fp
� ˇ̌̌̌ˇ ≤ B2

p

q
#E
�
Fp
�

≤
B2

p
(
√

p + 1) ≤ 2B2 p−
1
2 , (16)

which is a negligible function as B is constant. This proves
ε-regularity.

Consider the criterion of samplability, since f is ε′-
sampleable, we denote I as its sampleable inverse function:

I : E(Fp)→ Fp

P→ u ∈ D(P) =
˚
u ∈ Fp | P = f (u)

	
. (17)

To show the samplability of f ⊗2, we construct the sampling
algorithm for f ⊗2 as Alg. 4.

Algorithm 4 Sampling algorithm for f ⊗2

INPUT: P ∈ E(Fp), I
OUTPUT: (u, v) ∈ D2(P) =

˚
(u, v) ∈ (Fp)2 | P = f ⊗2 (u, v)

	
1: while True do
2: Pick v ∈ Fp at random;
3: D← I(P − f (v));
4: pick i uniformly at random in #D;
5: u← i-th element of D;
6: if u = ∅ continue;
7: else return (u, v);
8: end while

For well-distributed encoding, the number of unmapped
points is bounded. Consequently, the number of repetitions
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is polynomially bounded. Given that ε′ is negligible, the
computable algorithm ensures a uniform distribution of D2(P),
thereby demonstrating ε-regularity. �

Lemma 2: Given an ε-admissible encoding F : S → R
between finite sets and its sampleable inverse function I,
for r uniformly distributed in R, the reversed distribution of
s = I(r) is 2ε-statistically indistinguishable from the uniform
distribution in S.

Proof: Our target is to prove that for all randomness in I,
we have statistical distance between reversed distribution and
uniform distribution is bounded as follows:

δ :=
X
s∈S

ˇ̌̌̌
Pr
r

[I(r) = s] −
1

#S

ˇ̌̌̌
≤ 2ε

X
r∈R

X
s∈F−1(r)

1
#R

ˇ̌̌̌
Pr
r

[I(r) = s] −
#R
#S

ˇ̌̌̌
≤ 2ε

X
r∈R

X
s∈F−1(r)

ˇ̌̌̌
Pr
r

[I(r) = s] −
#R
#S

ˇ̌̌̌
≤
X
r∈R

X
s∈F−1(r)

ˇ̌̌̌
Pr
r

[I(r) = s] −
1

#F−1(r)

ˇ̌̌̌
„ ƒ‚ …

δ1

+
X
r∈R

X
s∈F−1(r)

ˇ̌̌̌
1

#F−1(r)
−

#R
#S

ˇ̌̌̌
„ ƒ‚ …

δ2

≤ 2ε, (18)

Since we have δ2

=
X
r∈R

X
s∈F−1(r)

ˇ̌̌̌
1

#F−1(r)
−

#R
#S

ˇ̌̌̌
=
X
r∈R

ˇ̌̌̌
#F−1(r)

#S
−

1
#R

ˇ̌̌̌
=
X
r∈R

ˇ̌̌̌
Pr
s

[ f (s) = r] −
1

#R

ˇ̌̌̌
, (19)

which is the statistical distance between F(s) and uniform
distribution in R. According to the regularity of admissible
encoding defined by Def. 5, we have δ2 ≤ ε.

Regarding δ1, according to the samplability of admissible
encoding, we have:X

s∈F−1(r)

ˇ̌̌̌
Pr
r

[I(r) = s] −
1

#F−1(r)

ˇ̌̌̌
≤ ε

δ1 =
X
r∈R

X
s∈F−1(r)

1
#R

ˇ̌̌̌
Pr
r

[I(r) = s] −
1

#F−1(r)

ˇ̌̌̌
≤ ε (20)

Hence, δ = δ1 + δ2 ≤ 2ε. �
Theorem 1: Let E be a distribution that is ε-statistically

indistinguishable from the distribution of the channel Ch. Let
f be a B-well-distributed encoding that is both computable
and ε′-sampleable, and I be a sampleable inverse function
of f . Let H be a cryptographically secure hash function
H : {0, 1}k → {0, 1}κ which can be modeled as a random oracle.
Under the decisional Diffie-Hellman (DDH) assumption in
the elliptic curve group, the ciphertext C1‖C2 produced by
Algorithm 2 is indistinguishable from uniformly random bits
under a chosen plaintext attack (IND$-CPA security).

Proof: Define H0 , C1||C2 = (ũ, ṽ)||EH(ax·g)(m), where
f (u) + f (v) = a · g.

Fig. 3. The hardness of distinguishing between H0 and H3.

Define H1 as the variant of H0 where ax · g is replaced
by a random element of the group E(Fp), i.e. H1 , C1||C′2 =

(ũ, ṽ)||EH(c·g)(m).
Define H2 as the variant of H1 where H(c · g) is replaced

by a random draw from {0, 1}κ, i.e. H2 , C1||C′′2 =

(ũ, ṽ)||Er∈{0,1}κ (m).
Define H3 as the variant of H2 where C1 is replaced by a

random draw from {0, 1}2(k+t), i.e. H3 , r̃||C′′2 = r̃||Er∈{0,1}κ (m),
where r̃ ∈ {0, 1}2(k+t).

As shown in Fig. 3, We claim that the advantage of
distinguishing between H0 and H1, H1 and H2, H2 and H3, as
well as H3 and random bits, are all negligible in k.

(1) Distinguishing H3 from random bits requires distin-
guishing EK(m) from random bits, which contradicts the
IND$-CPA security of the encryption scheme EK .

(2) Distinguishing H2 from H3 would contradict Lemma 1
and Lemma 2, the reason is as follows:
Consider that C1 = (ũ, ṽ) = (u+r1 p, v+r2 p) represents
the pre-image under the admissible encoding F(u, v),
where F(u, v) = f ⊗2 = f (u) + f (v). This construc-
tion leverages a B-well-distributed encoding f, applied
through the tensor square. Accordingly, the admissibility
of F(u, v) is established as per Lemma 1, rendering
F(u, v) an ε̃-admissible encoding. The value of ε̃ is
determined as ε̃ = max

n
2B2 p−

1
2 , ε′

o
, thereby affirming

the admissibility criteria.
According to Lemma 2, given a sampleable inverse
function of a ε̃-admissible encoding F, the distribution of
the pre-image is 2ε̃-statistically indistinguishable from
the uniform distribution over F2

p. The bias-eliminating
process, as detailed in Algorithm 2, ensures that the
statistical distance between the field Fp and a k-bit
uniform random string is bounded by 2−t, evidenced by
the equation:X

u∈Fp

ˇ̌̌̌
ˇ̌
j

2k+t−u
p

k
+ 1

2k+t −
1
p

ˇ̌̌̌
ˇ̌ ≤ p

2k+t ≤ 2−t, (21)

From this, the statistical distance between C1 and a
2(k+t)-bit uniform random string is limited to 2·2−t+2ε̃.
Moreover, the statistical distance between C2 and l-bit
uniform random string is ε0, assuming the block cipher
EK is semantically secure. Consequently, the overall
statistical distance is constrained by εc = 2 ·2−t+2ε̃+ε0.
For practical applications, selecting t as either k

4 or k
8

ensures that εc is negligible in k.
(3) The advantage of distinguishing H1 from H2 is negli-

gible if H is modeled as a random oracle O, where
the output is independently and uniformly distributed
for each unique input. The reason is as follows:
In H1, the input c · g is assumed to be a uniformly
distributed random element (with c being randomly
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generated and g being a fixed generator). Consequently,
O(c · g) is also uniformly distributed over {0, 1}κ.
In H2, H(c·g) is directly replaced by a uniformly random
value r ∈ {0, 1}κ.
Since the distributions of H(c·g) and r are identical, then
H1 and H2 are indistinguishable in the Random Oracle
Model for any polynomial-time adversary.

(4) Distinguishing H0 from H1 would contradict the Deci-
sional Diffie-Hellman (DDH) assumption in the elliptic
curve group as defined in Def. 4. Suppose there exists
a probabilistic polynomial time algorithm A that can
distinguish between H0 and H1 with non-negligible
probability ε. In that case, we can construct another
probabilistic polynomial time algorithm A′ to break the
DDH assumption.

The construction of A′ is straightforward: when A′ receives
(a · g, b · g, c · g), it sets PK = b · g, computes C1||C ,
(ũ, ṽ)||EH(c·g)(m), then runs A on C1||C and outputs its result.
If c = ab, then C1||C = H0. If c is chosen uniformly at random
from the group, then C1||C = H1.

Thus, A′ achieves at least ε/2 advantage in distinguishing
(a · g, b · g, ab · g) from (a · g, b · g, c · g). �

Theorem 2: Let E be a distribution that is ε-statistically
indistinguishable from the distribution of the channel Ch. Let
f be a B-well-distributed encoding that is both computable
and ε′-sampleable, and I be a sampleable inverse function
of f . Let H be a cryptographically secure hash function H :
{0, 1}k → {0, 1}κ which can be modeled as a random oracle.
Under the decisional Diffie-Hellman (DDH) assumption in the
elliptic curve group, the insecurity of the constructed public-
key steganography system SS = (SG,SE,SD) against chosen
hider attacks (CHA) is negligible.

Proof: Supposed there exists a probabilistic polynomial time
algorithm A that can distinguish between stegotext s and
covertext c with non-negligible probability, We can construct
a probabilistic polynomial time algorithm A′ which plays the
IND$-CPA game: distinguishing C1||C2 from U(2(k+t)).

The construction of A′ is straightforward: A′ first chooses
history hA and a message mA and then runs A to go through
the key generation stage. During the Challenge stage, A′ picks
plaintext m ∈M \ {mA} and sends it to the oracle. The oracle
will flip a coin b, where for b = 0, A′ obtains C1||C2, and for
b = 1, A′ obtains u ← U(2(k+t)). After receiving the oracle’s
return, A′ encodes it into multimedia data using the generated
model and sends it to A to make a guess about the coin flip.
A outputs a bit b′ as its answer, which is also A′’s answer.
The total time of the whole process is t + O(lk).

If b = 0, then s ← E(PK,m, h), so Pr[A′(PK,C1||C2) =

1] = Pr[A(PK, s) = 1]. If b = 1, then c ← U(2(k+t)),
so s is distributed identically to C l

h. Thus, |Pr[A′(PK, u) =

1] − Pr[A(PK, C l
h) = 1]| ≤ εl because E is ε-statistically

indistinguishable from the distribution of the channel Cl
h.

Combining the cases, we have

|Pr[A(PK, s) − Pr[A(PK, C l
h) = 1]|

= |Pr[A′(PK,C1||C2) − Pr[A(PK, C l
h) = 1]|

≤ |Pr[A′(PK,C1||C2) − Pr[A′(PK, u) = 1]|

+ |Pr[A′(PK, u) = 1] − Pr[A(PK, C l
h) = 1]|

≤ Advcpa
CS (A, k) + εl,

i.e. Advcha
S S ,C(A, k) ≤ Advcpa

CS (A′, k) + εl. (22)

Thus, if Advcha
S S ,C(A, k) is non-negligible, then

Advcpa
CS (A′, k) ≥ Advcha

S S ,C(A, k) − εl is also non-negligible,
which contradicts IND$-CPA property proved in Theorem 1.

Hence, we have comprehensively completed the proof. �

C. Instance

To demonstrate the generality of our framework and provide
instances for the practical deployment of public-key steganog-
raphy, we will explain how we instantiated our framework
on commonly used curves. We adopted three different known
well-distributed encodings including Icart [29], SW [31], [36]
and SWU [37], constructed efficient sampleable inverse func-
tions for these three encodings, and deployed our public-key
steganography system on curves of three types of parameters,
namely P-384, secp256k1 and P-256.

1) Icart’s Encoding: Icart et al. [29] proposed an encoding
method that utilizes the cube root of the curve equation,
employing radicals whose degrees are prime relative to the
order of the multiplicative group. Consider the curve Ea,b :
y2 = x3 + ax + b over the field Ea,b

�
Fp
�

where p > 3 and
p = 2 (mod 3). In these finite fields, the function x 7→ x3 is
a bijection with inverse function x 7→ x1/3 = x(2p−1)/3. The
Icart’s encoding is defined as follows:

f : Fp 7→ Ea,b
�
Fp
�

u 7→ (x, y)

where x =

�
v2 − b −

u6

27

�1/3

+
u2

3
,

y = ux + v,

v =
3a − u4

6u
. (23)

The Icart’s encoding is a (12+3p−
1
2 )-well-distributed encod-

ing according to lemma. 5. To construct its sampleable inverse
function I, it is necessary to solve the quartic equation over
a finite field:

u4 − 6u2x + 6uy − 3a = 0. (24)

We use the Berlekamp algorithm [38] to get the solution set,
and I(P, i) return i-th root of the Eq. 24. Solving polynomial
equations of degree d over a finite field can be achieved in
O(d3 + M(d) · log d · log p) scalar operations, where M(d) =

d · log d · log log d. In the case of a degree-4 polynomial (d = 4)
and a k-bit prime p, this complexity becomes O(k) scalar
operations. Since scalar operations such as division, inversion,
squareness check, and square root can be implemented in
O(k3) within the finite field Fp assuming that multiplication
is implemented in O(k2), the overall time complexity of the
algorithm is O(k4).

For our entire public-key steganography system using Icart’s
encoding, we have chosen the P-384 elliptic curve. This curve
is part of the NIST (National Institute of Standards and
Technology) suite of standards for elliptic curve cryptography,
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renowned for its strong security properties and efficiency in
cryptographic operations. The choice of P-384 specifically
offers a good balance between computational efficiency and
security, making it well-suited for the demanding requirements
of public-key steganography. The parameter specifications of
the P-384 curve are as follows:

P-384:

(
p = 2384 − 2128 − 296 + 232 − 1,
y2 = x3 − 3x + b.

(25)

2) SW Encoding: Shallue and van de Woestijne [36] con-
struct an encoding function f : Fp → E

�
Fp
�

based on the
construction of explicit rational curves on a surface associated
with the target curve. It is worth emphasizing that this encod-
ing can be used in any curves that can be expressed in the
Weierstrass form: E : y2 = g(x) = x3 +Ax2 +Bx+C. Here for
simplicity, we consider SW encoding applied to a BN curve
[39] with E : y2 = g(x) = x3 + b. The SW encoding is defined
as follows:

f : Fp 7→ E
�
Fp
�

t 7→
�

xi, χp(t) ·
p

g (xi)
�

x1(t) =
−1 +

√
−3

2
−

√
−3 · t2

1 + b + t2 ,

x2(t) =
−1 −

√
−3

2
+

√
−3 · t2

1 + b + t2 ,

x3(t) = 1 −

�
1 + b + t2

�2

3t2 . (26)

where for each t, i ∈ {1, 2, 3} is the smallest index such that
g(xi) is a square in Fp.

Algorithm 5 Sampleable Inverse Function I for SW Encoding
INPUT: (x, y) = P ∈ E(Fp) : y2 = x3 + b (mod p)
OUTPUT: D(P) =

˚
u ∈ Fp | P = f (u)

	
1: c1 =

√
−3, c2 = (c1 − 1)/2, c3 = (−c1 − 1)/2

2: z = 2x + 1
3: s1 = (1 + b)(c1 − z)/(c1 + z)
4: s2 = (1 + b)(c1 + z)/(c1 − z)
5: s3 = (z +

p
(z2 − 16(b + 1)2))/4

6: s4 = (z −
p

(z2 − 16(b + 1)2))/4
7: If c2 −

c1 s1
1+b+s1

is square then s2 = s3 = s4 =⊥;
8: If c3 +

c1 s2
1+b+s2

is square then s3 = s4 =⊥;
9: u1, u2, u3, u4 =

√
s1,
√

s2,
√

s3,
√

s4
10: set ui = −ui if is odd(ui) , is odd(y),∀i ∈ 1..4
11: return: D(P) = {u1, u2, u3, u4}

The SW encoding is a (62 + O
�

p−
1
2

�
)-well-distributed

encoding according to lemma. 6. To construct its sampleable
inverse function I, we need to solve for t when given a curve
point (x, y). Accordingly, we present Alg. 5 as follows:

In Alg. 5, we search for a feasible solution for t2 using
the formulas for x1(t), x2(t), and x3(t) one by one. For each
formula, we check whether t2 is a square in Fq. Since i ∈
{1, 2, 3} is the smallest index such that g(xi) is a square in
Fq, we only take the first t2 that satisfies this condition as
our solution. Therefore, the correctness of the algorithm is
established.

As for complexity, the algorithm we provided performs
a series of calculations and checks to determine whether
t2 is a square in Fp for each of the three possible cases:
x1(t), x2(t), and x3(t). Since each step (including addition,
subtraction, multiplication, inversion, square root calculation,
and squareness checking) requires a constant number of field
operations, the algorithm’s complexity is primarily determined
by the most computationally expensive operations: square
root calculation and squareness checking. The overall time
complexity of the algorithm is O(k3).

For our entire public-key steganography system using SW
encoding, we have chosen curves with characteristics similar
to BN curves, including widely used ones like secp256k1,
due to their potential suitability for pairing deployment. The
parameter specifications of the P-384 curve are as follows:

secp256k1:

(
p = 2256 − 232 − 997,
y2 = x3 + 7.

(27)

D. SWU Encoding

Ulas [37] enhanced the SW encoding to diminish its com-
plexity for curves defined by the equation E : y2 = g(x) =

x3 + ax + b where a, b , 0 and p = 3( mod 4). The SWU
encoding is defined as follows:

f : Fp 7→ E
�
Fp
�

t 7→
�

xi, χp(t) ·
p

g (xi)
�

x1(t) =
−b
a

�
1 +

1
t4 − t2

�
,

x2(t) =
bt2

a

�
1 +

1
t4 − t2

�
. (28)

where for each t, i ∈ {1, 2} is the smallest index such that g(xi)
is a square in Fp.

Algorithm 6 Sampleable Inverse Function I for SWU Encod-
ing
INPUT: (x, y) = P ∈ E(Fp) : y2 = x3 + b (mod p)
OUTPUT: D(P) =

˚
u ∈ Fp | P = f (u)

	
1: δ1 = 1 − 4b

ax+b

2: δ2 =
� ax

b + 1
�2
− 4

� ax
b + 1

�
3: s1 =

1−
√
δ1

2 , s2 =
1+
√
δ1

2
4: s3 =

� ax
b + 1 −

√
δ1
�
/2, s4 =

� ax
b + 1 +

√
δ1
�
/2

5: If −b
a

�
1 + 1

(s1)2−s1

�
is square or −b

a

�
1 + 1

(s2)2−s2

�
is square

then s3 = s4 =⊥;
6: u1, u2, u3, u4 =

√
s1,
√

s2,
√

s3,
√

s4
7: set ui = −ui if is odd(ui) , is odd(y), ∀i ∈ 1..4
8: return: D(P) = {u1, u2, u3, u4}

The SWU encoding is a
�

52 + 151p−
1
2

�
-well-distributed

encoding according to lemma. 7. To construct its sampleable
inverse function I, we need to solve for t when given a curve
point (x, y). Accordingly, we present Alg. 6 as follows:

In Alg. 6, we search for a feasible solution for t2 using
the formulas for x1(t) and x2(t). For each formula, we check
whether t2 is a square in Fp. Since i ∈ {1, 2} is the smallest
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index such that g(xi) is a square in Fp, we only take the first
t2 that satisfies this condition as our solution. Therefore, the
correctness of the algorithm is established.

As for complexity, since each step (including addition,
subtraction, multiplication, inversion, square root calculation,
and squareness checking) requires a constant number of field
operations, the algorithm’s complexity is primarily determined
by the most computationally expensive operations: square
root calculation and squareness checking. The overall time
complexity of the algorithm is O(k3).

For our entire public-key steganography system using SWU
encoding, we have chosen the P-256 elliptic curve. This curve
is part of the NIST suite of standardized curves. The parameter
specifications of the P-256 curve are as follows:

P-256:

(
p = 2256 − 2224 + 2192 + 296 − 1,
y2 = x3 − 3x + b.

(29)

Comparing the algorithmic complexities of these three
methods, SWU may offer better efficiency in terms of run-
time due to its fewer field operations and deployment on
smaller finite fields, and Icart generally requires the most
field operations, which could lead to relatively the slowest
performance. However, the key strength of these three methods
lies in their applicability to different types of elliptic curves,
ensuring that our approach can be extended to a wide range of
curve parameters. This flexibility underscores the robustness
and versatility of our methods in diverse elliptic curve settings.

Up to now, we have instantiated our public-key steganogra-
phy framework on three categories of commonly used curves,
employing three distinct methods of well-distributed encod-
ing to develop admissible encodings, which has effectively
demonstrated the versatility and efficiency of our proposed
framework.

V. EXPERIMENTS

In this section, we evaluate the pseudorandomness of the
proposed elliptic curve pseudorandom public-key encryption
algorithm through statistical tests. Additionally, we validate the
security of our proposed public-key steganography instance1

through steganalysis experiments.

A. Statistical Test for Pseudorandomness

To evaluate the pseudorandomness of our elliptic curve
pseudorandom public-key encryption algorithm, we utilized
the NIST SP 800-22 test suite.2

A key pair was generated by Alg. 1, and we generated the
ciphertext C1||C2 by Alg. 2. This process is repeated to compile
a binary string exceeding 108 bits, then segmented into 100
equal-length streams for 15 statistical tests. This procedure was
replicated with various key pairs, yielding consistent results.
Below in Tab. I, we detail the outcomes from a representative
trial:

1Our code can be found on https://github.com/XinZhang1999/Public-key-
Discop

2You can download the NIST SP 800-22 test suite directly from https://
csrc.nist.gov/projects/random-bit-generation/documentation-and-software

TABLE I
STATISTICAL TESTS FOR PSEUDORANDOMNESS OF CIPHERTEXT C1 ||C2 IN

ALG. 2 USING ICART’S, SW, AND SWU METHODS

To assess the randomness of the encrypted data, we eval-
uated the proportion of sequences that passed a specific
statistical test. Using a significance level of α = 0.01 and
considering n = 100 sequences, we determined the acceptable
range of proportions using the confidence interval formula

p̂± 3
q

p̂(1−p̂)
n , where p̂ = 1−α. If the proportion falls outside

of this interval, it suggests evidence of nonrandomness.
For n = 100 and α = 0.01, the calculated confidence interval

is 0.99±3
q

p̂(1− p̂)
n = 0.99±0.0298 (i.e., the proportion should

be greater than 0.9602).
Based on Table I, the ciphertext generated by our designed

public-key steganography encoder SE based on three meth-
ods have all successfully passed 15 types of tests in the
NIST SP 800-22 suite. This ensures that the stegotext and
covertext produced through this ciphertext steganography are
indistinguishable, confirming the effectiveness of our approach
in maintaining the indistinguishability between stegotext and
covertext and the universality of our framework.

B. Steganalysis Experiments

Although we have proven the security of the public-
key steganography framework in Theorem 2, we continue
to engage in steganalysis to differentiate between covers
(generated by random sampling) and stegotext (generated
by steganographic sampling), ensuring the integrity of this
research. Steganalysis is a technology used to discern stegotext
from covertext, primarily relying on binary classifiers:

F(X) =

(
0, if Φ(X) < 0.5
1, if Φ(X) ≥ 0.5,

(30)

where Φ(X) ∈ [0, 1] represents the probability that the input X
is covertext (F = 0) or stegotext (F = 1). A false alarm occurs
when X is a covertext while F = 1, and a missed detection
occurs when X is a stegotext while F = 0. False alarm and
missed detection are defined as follows, respectively:

PFA = Pr{F(X) = 1 | X ∈ C}, (31)
PMD = Pr{F(X) = 0 | X ∈ S}. (32)
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TABLE II
AN EXAMPLE OF COVERTEXT AND STEGOTEXT PAIRS UNDER TRUNCA-

TION PARAMETER p = 0.95

TABLE III
STEGANALYSIS RESULTS FOR THREE PUBLIC-KEY STEGANOGRAPHY

INSTANCES

Here, C and S represent the covertext set and the stegotext
set, respectively. Then, the overall performance is determined
by the probability of detection error computed from PFA and
PMD as follows:

PE =
PFA + PMD

2
. (33)

We instantiated our public-key steganography framework
based on admissible encoding using Discop [23] with Llama-
2-7B on P-384, secp256k1, and P-256, respectively. Covertext
and stegotext were generated in pairs with identical contexts,
and all covertext and stegotext were generated with a trun-
cation parameter of p = 0.95. To establish the dataset, we
randomly selected various short sentences as contexts and
generated 10,000 covers and 10,000 stegotext. The example
of covertext and stegotext pairs are shown in Tab. II. We then
employed three linguistic steganalyzers, including FCN [40],
R-BiLSTM-C [41], and BiLSTM-Dense [42]. The steganalysis
experiments were conducted on a dataset of 10,000 samples of
stegotext and covertext, divided into training, validation, and
test sets in ratios of 3:1:1. The result of steganalysis for our

provably secure public-key steganography based on admissible
encoding is shown in Tab. III.

The results are presented in Tab. III, which reveals that
even under such a large scale, the detection error rates are
still close to 50%. The false alarm rate and missed detection
rate are also consistently near 50%. These results suggest that
it is challenging to distinguish between the distribution of
stegotext with secret information and the randomly sampled
covertext.

Through the steganalysis of these three instances, we have
demonstrated that our framework can be safely deployed
on all commonly used curves, greatly increasing the appli-
cability of public-key steganography. Furthermore, due to
the regularity property of admissible encoding, in algorithm
Alg. 2, the Point Hiding step will terminate the loop in
O(1) time for any sampled curve point. In other words,
our public key steganography can efficiently cover all curve
points.

Furthermore, in Appendix A, we list a plethora of elliptic
curve well-distributed encoding methods that can be applied
within our framework to construct public-key steganogra-
phy and present the algorithm for hyperelliptic curves with
genus larger than 1. Through the tensor exponent function,
our scheme can be extended to even work on hyperelliptic
curves.

VI. CONCLUSION

In this paper, we propose a general and complete public-
key steganography framework based on admissible encoding
which can be employed on all types of curves and utilize
all points on the curve. Due to the strict requirements of
existing point compression methods on curve parameters, and
the inability to establish a surjective mapping from all curve
points to a one-dimensional finite field, we consider establish-
ing mappings on two-dimensional or even higher-dimensional
finite fields. By utilizing some imperfect but well-distributed
encoding techniques through the tensor square (on genus 1
curves) or tensor exponent (on curves with genus larger than
1), we construct the powerful tool called admissible encoding.
This encoding forms a surjection onto the set of curve points,
and under the premise of constructing suitable sampleable
inverse functions, it can decode corresponding curve points
from multidimensional finite fields. These properties provide
theoretical and algorithmic foundations for achieving provably
secure public-key steganography.

The significance of the work described in this paper
lies in our achievement of extending almost all provably
secure steganography methods to the public-key setting while
removing all restrictions on curve parameters and allowing
encoding for all points. This provides the most universal inter-
face for deploying related higher-level protocols. Subsequent
researchers can utilize our work to consider the implementa-
tion and deployment of covert protocols on social networks,
such as secret sharing or group key agreement, which is a very
interesting topic.

Moreover, we aim to broaden the scope of steganography by
incorporating additional communication protocols into covert
application scenarios [43]. Looking ahead, we envision the
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potential to create a parallel environment within large-scale
applications. In this parallel world, we would have commu-
nication tools akin to those in the real world, yet remain
undetectable to external observers.

Algorithm 7 Public-key Steganography Encoder (SE)
Extended to Hyperelliptic Curves

INPUT: E , m, (p, E
�
Fp
�
, g, q, PK), ( f , I)

OUTPUT: s1, s2, · · · , s∗
1: ## Key Deriving
2: Pick a ∈ [0, n − 1] at random;
3: P = a · g
4: K = H(a · PK)
5: ## Point Hiding
6: while True do
7: Pick v1 · · · vd ∈ Fp at random;
8: D← I(P − f (v1) − f (v2) − · · · − f (vd));
9: pick i uniformly at random in #D;

10: vd+1 ← i-th element of D;
11: if u = ∅ continue;
12: else break;
13: end while
14: ## Bias Eliminating
15: Choose r-bit redundancy:
16: Pick r1, r2, · · · , rd+1 ∈

n
0, . . . ,

j
2k+r−vi

q

ko
17: ṽi = vi + r1 p, ∀ i ∈ {1 · · · d + 1}
18: ## Final Encoding
19: C1 = ṽ1||ṽ2|| · · · || ˜vd+1
20: C2 = EK(K,m)
21: s1, s2, · · · , s∗ = E(C1||C2)

Algorithm 8 Public-key Steganography Decoder (SD)
Extended to Hyperelliptic Curves

INPUT: D, s1..∗, (p, E
�
Fp
�
, g, n, S K), f

OUTPUT: m
1: Split C = D(s1..∗) into C1, C2;
2: (ṽ1, ṽ2, · · · , ṽd+1) = C1
3: vi = ṽi mod p, ∀ i ∈ {1, · · · , d + 1}
4: P = f (v1) + f (v2) + · · ·+ f (vd+1)
5: K = H(S K · P)
6: m = DK(K,C2)

APPENDIX

A. Generalization to Hyperelliptic Curves

The previous public-key steganography encoder (SE), as
defined in Algorithm 2, and the public-key steganography
decoder (SD), as defined in Algorithm 3, are specifically
designed for deployment on curves of genus 1. To adapt
these algorithms for use on hyperelliptic curves, which have
a higher genus, it is necessary to transition from employing
the tensor square function to utilizing the tensor exponent
function.

Let the curve E(Fp) of genus d defined on finite field Fp

and f is its computable B-well-distributed encoding. Other
definitions are similar to those mentioned previously. We list
below the provably secure public-key steganography encoder

(SE, Alg. 7) and decoder (SD, Alg. 8) algorithms that can be
deployed on hyperelliptic curves.

According to Lemma 4, we can prove the admissibility of
the tensor exponent function in a manner similar to Lemma 1.
With the remaining parts unchanged, our public-key steganog-
raphy scheme can withstand CHA.

The algorithm is largely similar to the one described above,
with the sole distinction being in the Point Hiding part, where
we utilize a tensor square construction of admissible encoding
with s = d + 1. As a result, the first d finite field elements
are generated by random sampling, and the last element
is obtained through sampling using the sampleable inverse
function of f. Hence, the length of C1 is a bit sequence of
d + 1 segments.

We have listed a plethora of elliptic curve well-distributed
encoding method in Tab. IV that can be applied within our
framework to construct public-key steganography. Through the
tensor exponent function, our scheme can be extended to even
work on hyperelliptic curves.

B. List of Key Lemmas

Lemma 3 (Hasse Bound) [44] For curve E
�
Fp
�

of genus 1
defined over finite field Fp, we have:

|#E
�
Fp
�
− p − 1| ≤ 2

√
p (34)

Lemma 4 ([30], Corollary 4): If f : Fp → E
�
Fp
�

is
a B-well-distributed encoding into a curve E

�
Fp
�
, then the

statistical distance between the distribution defined by a tensor
exponent function f ⊗s on E

�
Fp
�

and the uniform distribution
is bounded as:X

D∈E(Fp)

ˇ̌̌̌
ˇNs(D)

ps −
1

#E
�
Fp
� ˇ̌̌̌ˇ ≤ Bs

ps/2

q
#E
�
Fp
�
, (35)

Lemma 5 ([30], Theorem 8): Let f be Icart’s encoding
function (23). For any nontrivial character χ of E

�
Fp
�
, the

character sum S f (χ) given by (6) satisfies:ˇ̌
S f (χ)

ˇ̌
≤ 12

√
p + 3. (36)

In other words, Icart’s encoding is a (12 + 3p−
1
2 )-well-

distributed encoding.
Lemma 6: [[31], SectionV] Let f be SW encoding function

(26). For any nontrivial character χ of E
�
Fp
�
, the character

sum S f (χ) given by (6) satisfies:ˇ̌
S f (χ)

ˇ̌
≤ 62

√
p + O(1). (37)

In other words, Icart’s encoding is a (62 + O
�

p−
1
2

�
)-well-

distributed encoding.
Lemma 7 ([30], Theorem 15): Let f be the SWU encoding

function (28). For any nontrivial character χ of E
�
Fp
�
, the

character sum S f (χ) given by (6) satisfies:ˇ̌
S f (χ)

ˇ̌
≤ 52

√
p + 151. (38)

In other words, SWU encoding is a
�

52 + 151p−
1
2

�
-well-

distributed encoding.
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TABLE IV

KNOWN DETERMINISTIC WELL-DISTRIBUTED ENCODINGS TO COMMONLY USED ELLIPTIC CURVES AND HYPERELLIPTIC CURVES
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