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Abstract

Bayesian optimization is a methodology to optimize black-box functions. Tra-
ditionally, it focuses on the setting where you can arbitrarily query the search
space. However, many real-life problems do not offer this flexibility; in particular,
the search space of the next query may depend on previous ones. Example chal-
lenges arise in the physical sciences in the form of local movement constraints,
required monotonicity in certain variables, and transitions influencing the accuracy
of measurements. Altogether, such transition constraints necessitate a form of
planning. This work extends classical Bayesian optimization via the framework of
Markov Decision Processes. We iteratively solve a tractable linearization of our
utility function using reinforcement learning to obtain a policy that plans ahead
for the entire horizon. This is a parallel to the optimization of an acquisition
function in policy space. The resulting policy is potentially history-dependent
and non-Markovian. We showcase applications in chemical reactor optimization,
informative path planning, machine calibration, and other synthetic examples.

1 Introduction

Many areas in the natural sciences and engineering deal with optimizing expensive black-box
functions. Bayesian optimization (BayesOpt) [1H3], a method to optimize these problems using a
probabilistic surrogate, has been successfully applied to a myriad of examples, e.g. hyper-parameter
selection [4]], robotics [15], battery design [|6], laboratory equipment tuning [[7]], and drug discovery
[8]. However, state-of-the-art algorithms are often ill-suited when physical sciences interact with
potentially dynamic systems [9]]. In such circumstances, real-life constraints limit our future decisions
while depending on the prior state of our interaction with the system. This work focuses on transition
constraints influencing future choices depending on the current state of the experiment. In other
words, reaching certain parts of the decision space (search space) requires long-term planning in
our optimization campaign. This effectively means we address a general sequential-decision problem
akin to those studied in reinforcement learning (RL) or optimal control for the task of optimization.
We assume the transition constraints are known a priori to the optimizer.

Applications with transition constraints include chemical reaction optimization [10-H12], environ-
mental monitoring [13H17], lake surveillance with drones [18H20]], energy systems [21]], vapor
compression systems [22]], electron-laser tuning [23]] and seabed identification [24]]. For example,
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Figure[I]depicts an application in environmental monitoring where autonomous sensing vehicles must
avoid obstacles (similar to Hitz et al. [18]). Our main focus application are transient flow reactors
[25H27]]. Such reactors allow efficient data collection by obtaining semi-continuous time-series data
rather than a single measurement after reaching the steady state of the reactor. As we can only change
the inputs of the reactor continuously and slowly to maintain quasi-steady-state operation, allowing
arbitrary changes, as in conventional BayesOpt, would result in measurement sequences which are
not possible due to physical limitations.

Problem Statement. More formally, we design an algorithm to identify the optimal configuration
of a physical system governed by a black box function f, namely, * = arg max,cx f(x). The set
X summarizes all possible system configurations, the so called search space. We assume that we
can sequentially evaluate the unknown function at specific points x in the search space and obtain
noisy observations, y = f(z) + ¢(z), where € has a known Gaussian likelihood, which is possibly
heteroscedastic. We assume that f can be modeled probabilistically using a Gaussian process prior
that we introduce later. Importantly, the order of the evaluations is dictated by known, potentially
stochastic, dynamics modeled by a Markov chain that limits our choices of z € X.

BayesOpt with a Markov Decision Processes. The problem of maximizing an unknown function
could be addressed by BayesOpt, which typically chooses to query f(z) by sequentially maximizing
an acquisition function, u:
2441 = arg max u(x|Xy), (1
reX

depending on all the past data at iteration ¢, X;. Eq. (I)) arises as a greedy one-step approximation
whose overall goal is to minimize e.g. cumulative regret, and assumes that any choice of point in
the search space X is available. However, given transition constraints, we must traverse the search
space according to the system dynamics. This work extends the BayesOpt framework and provides a
method that constructs a potentially non-Markovian policy by myopically optimizing a utility as,
w41 = arg max U (m|Xy), )
well
where U is the greedy utility of the policy 7 and X, encodes past trajectories through the search
space. In the following sections, we will show how to tractably formulate the overall utility, how to
greedily maximize it, and how to adapt it to admit policies depending on the full optimization history.

Contributions. We present a BayesOpt framework that tractably plans over the complete experimen-
tation horizon and respects Markov transition constraints, building on active exploration in Markov
chains [[17]. Our key contributions include:

* We identify a novel utility function for maximum identification as a function of policies, and
greedily optimize it. The optimization is tractable, and does not scale exponentially in the
policy horizon. In many cases, the problem is convex in the natural representation.

* We provide exact solutions to the optimization problems using convex optimization for
discrete Markov chains. For continuous Markov chains, we propose a reparameterization
by viewing our problem as an instance of model predictive control (MPC) with a non-
convex objective. Interestingly, in both cases, the resulting policies are history-dependent
(non-Markovian).

* We analyze the scheme theoretically and empirically demonstrate its practicality on problems
in physical systems, such as electron laser calibration and chemical reactor optimization.

2 Background

Because our contributions address experimental design of real-life systems by intersecting design
of experiments, BayesOpt and RL, we review each of these of components. Refer to Figure [5in
Appendix [A] for a visual overview of how we selected the individual components for tractability
of the entire problem.

Gaussian Processes To model the unknown function f, we use Gaussian processes (GPs) [28]].
GPs are probabilistic models that capture nonlinear relationships and offer well-calibrated uncertainty
estimates. Any finite marginal of a GP, e.g., for inputs (21, ..,x,), the values {f(x;)};_,, are
normally distributed. We adopt a Bayesian approach and assume f is a sample from a GP prior with
a known covariance kernel, k, and zero mean function, f ~ GP(0, k). Under these assumptions,

the posterior of f, given a Gaussian likelihood of data, is a GP that is analytically tractable.
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Figure 1: Representative task of finding pollution in a river while following the current. (a) Problem
formulation: The star represents the maximizer and the arrows the Markov dynamics. (b) Objective
formulation: Orange balls represent potential maximizers, with size corresponding to model uncer-
tainty. (c) Optimization: Deploy a potentially stochastic policy that minimizes our objective.

2.1 Maximum Identification: Experiment Design Goal

Classical BayesOpt is naturally myopic in its definition as a greedy one-step update (see (I)), but
has the overall goal to minimize, e.g., the cumulative regret. Therefore u needs to chosen such that
overall non-myopic goals can be achieved, usually defined as balancing an exploration-exploitation
trade-off. In this paper we follow similar ideas; however, we do not focus on regret but instead on
gathering information to maximize our chances to identify z*, the maximizer of f.

Maximum Identification via Hypothesis testing. Maximum identification can naturally be expressed
as a multiple hypothesis testing problem, where we need to determine which of the elements in X is
the maximizer. To do so, we require good estimates of the differences (or at least their signs) between
individual queries f(z;) — f(x;); z;, ¢; € X. For example, if f(z;) — f(x;) < 0, then x; cannot be
a maximizer. Given the current evidence, the set of arms which we cannot rule out are all potential
maximizers, Z C X. At termination we report our best guess for the maximizer as:

xr = argmax ur(z), where pr is the predictive mean at termination time 7.
rEZ

Suppose we are in step ¢t out of 7', then let X, be the set of previous queries, we seek to identify
new Xy that when evaluated minimize the probability of returning a sub-optimal arm at the
end. For a given function draw f, the probability of returning a wrong maximizer z # 7 is

P(ur(2) — pr(x}) = 0[f). We can then consider the worst-case probability across potential

maximizers, and taking expectation over f we obtain a utility through an asymptotic upper-bound on
the log-probability, indeed for large T" we obtain:

(f(2) = f(z3))?

2€2\{z}} kx,ux, 0 (z,m})

: 1
E;| sup 1ogP<uT<z>—uT<x;>zO|f>] < 5K, 3)

ZGZ\{Q?;}

The expectation is on the current prior (posterior up to X;), the kernel % is the posterior kernel given
observations X; U Xy,ew. Since we consider the probability of an error, it is more appropriate to
talk about minimizing instead of ‘maximizing the utility’ but the treatment is analogous. Further,
note the intuitive interpretation of the bound: the probability of an error will be minimized if the
uncertainty is small or if the values of f(z) and f(z}) are far apart. The non-trivial distribution of
f(x*) [29] renders the utility intractable; therefore we employ a simple and tractable upper bound on
the objective (3) which can be optimized by minimizing the uncertainty among all pairs in Z:
U(Xpew) =  max  Var[f(2) — f(2)|X¢ U Xpew]- “4)
2!, z€Z z#2"
Such objectives can be solved greedily in a similar way as acquisition functions in Eq. (1) by
minimizing U over X,.y. Note that Fiez et al. [30] derive this objective for the same problem with
linear bandits, albeit they consider the frequentist setting and (surprisingly) a different optimality
criterion: minimizing 7' for a given failure rate. For their setting, the authors prove that it is an
asymptotically optimal objective to follow. They do not consider any Markov chain structure.
Derivation of the Bayesian utility and its upper bound in Eq.() can be found in Appendix [C.IHC.2}

Utility with kernel embeddings. For illustrative purposes, consider a special case where the kernel
k has a low rank due to existence of embeddings ®(z) € R™, i.e., k(z,y) = ®(z) " ®(y). Such
embeddings can be, e.g., Nystrom features or Fourier features [33]]. While not necessary,



these formulations make the objectives considered in this work more tractable and easier to expose
to the reader. With the finite rank assumption, the random function f becomes,

f(x)=@(@)"0 and 6~ N(0,Lnxm) Q)
where 0 are weights with a Gaussian prior. We can then rewrite the objective Eq. (@) as:
_ "2
U(Xpew) = Jnax, |®(2) — ®(2 )II( oo, T ) (6)

This reveals an essential observation that the utility depends only on the visited states; not their
order. This suggests a vast simplification, where we do not to model whole trajectories, and Markov
decision processes sufficiently describe our problem. Additionally, numerically, the objective
involves the inversion of an m x m matrix instead of |X'| x |X| (see Sec. ). Appendix [D.1]provides
a utility without the finite rank-assumptions that is more involved symbolically and computationally.

2.2 Markov Decision Processes

To model the transition constraints, we use the versatile model of Markov Decision processes
(MDPs). We assume an environment with state space X' and action space .4, where we interact
with an unknown function f : X x A — R by rolling out a policy for H time-steps (horizon) and
obtain a trajectory, 7 = (zg, ag, 1, a1, ..., LH—1,ag—1). From the trajectory, we obtain a sequence
of noisy observations y(7) := {y(zo,a0), ..., y(Tg—1,am-1)} s.t. y(zn) = f(zn,an) + e(xn, an),
where €(xy, ap,) is zero-mean Gaussian with known variance which is potentially state and action
dependent. The trajectory is generated using a known transition operator P(xy+1|zp, ap). A Markov
policy 7(ap|xp) is a mapping that dictates the probability of action ay, in state . Hence, the
state-to-state transitions are P(xp11,%n) = Y _,c 4 Th(a|zn)P(Thy1|Th, a). In fact, an equivalent
description of any Markov policy 7 is the corresponding distribution giving us the probability of
visiting a state-action pair under the policy, which we denote d,. € D, where

D= {\m € [H] dy | di(z,a) 20, Y du(z,a) =1, Y du(a',a) = Zdh_l(x,a)p(x'|:c,a)}

a,r a

We will use this polytope to reformulate our optimization problem over trajectories. Any d € D
can be realized by a Markov policy 7 and vice-versa. We work with non-stationary policies, meaning
the policies depend on horizon count h. The execution of deterministic trajectories is only possible
for deterministic transitions. Otherwise, the resulting trajectories are random. In our setup, we repeat
interactions 7' times (episodes) to obtain the final dataset of the form X7 = {7;} 7 ;.

2.3 Experiment Design in Markov Chains

Notice that the utility U in Eq. [f|depends on the states visited and hence states of the trajectory. In
our notation, X; will now form a set of executed trajectories. With deterministic dynamics, we could
optimize over trajectories, but this would lead to an exponential blowup (i.e. |X|). In fact, for
stochastic transitions, we cannot pick the trajectories directly, so instead we work in the space of
distributions. For a given policy, through sampling, we are able to create an empirical distribution
of all the state-action pairs visited during policy executions, dy (z, a), which assigns equal mass
to each state-action visited during our trajectories. This allows us to focus on the expected utility
over the randomness of the policy and the environment, namely,

Z/[(dﬂ") = U(EﬂNﬂ'l,mTtN‘ﬂ't [Jﬂ]) (7)

This formulation stems from Mutny et al. [[17]] who try to tractably solve such objectives that arise
in experiment design by performing planning in MDPs. They focus on learning linear operators
of an unknown function, unlike identifying a maximum, as we do here. The key observation they
make is that any policy 7 induces a distribution over the state-action visitations, d,. Therefore we
can reformulate the problem of finding the optimal policy, into finding the optimal distribution over
state-action visitations as: ming_ep U(d;), and then construct policy 7 via marginalization. We refer
to this optimization as the planning problem. The constraint D encodes the dynamics of the MDP.

2.4 Additional Related Works

The most relevant prior work to ours is exploration in reinforcement learning through the use of
Markov decision processes as in Mutny et al. [17]] and convex reinforcement learning of Hazan et al.
[34], Zahavy et al. [35] which we will use to optimize the objective. Other related works are:



Pure exploration bandits objectives. Similar objectives to ours have been explored for BayesOpt.
Li and Scarlett [36] use the G-allocation variant of our objective for batch BayesOpt, achieving
good theoretical bounds. Zhang et al. [37] and recently Han et al. [38]] take advantage of possible
maximizer sets to train localized models, while Salgia et al. [39] show that considering adaptive
maximization sets yields good regret bounds under random sampling. Contrary to them, motivation
and derivation in terms of a Bayesian decision rule do not appear elsewhere according to our best
knowledge. We also recognize that we can relax the objective and optimize it in the space of policies.

Optimizing over sequences. Previous work has focused on planning experimental sequences for
minimizing switching costs [11} 21} 40, 41]] however they are only able adhere to strict constraints
under truncation heuristics [20, 22| 42]]. Recently, Qing et al. [43]] also tackle Bayesian optimization
within dynamical systems, with the focus of optimizing initial conditions. Concurrent work of Che
et al. [44] tackles a constrained variant of a similar problem using model predictive control with a
different goal.

Regret vs Best-arm identification. Most algorithms in BayesOpt focus on regret minimization.
This work focuses on maximizer identification directly, i.e., to identify the maximum after a certain
number of iterations with the highest confidence. This branch of BayesOpt is mostly addressed in
the bandit literature [45]. Our work builds upon prior works of Soare et al. [46], Yu et al. [47]], and
specifically upon the seminal approach of Fiez et al. [30] to design an optimal objective via hypothesis
testing. Novel to our setting is the added difficulty of transition constraints necessitating planning.

Non-myopic Bayesian Optimization. Look-ahead BayesOpt [48154] seeks to improve the greedy
aspect of BayesOpt. Such works also use an MDP problem formulation, however, they define the
state space to include all past observations (e.g. [55,156]). This comes at the cost of simulating
expensive integrals, and the complexity grows exponentially with the number of look-ahead steps
(usually less than three steps). Our work follows a different path, we maintain the greedy approach
to control computational efficiency (i.e. by optimizing over the space of Markovian policies), and
maintain provable and state-of-art performance. Even though the optimal policy through non-myopic
analysis is non-Markovian, in Sec. i we show that adaptive resampling iteratively approximates this
non-myoptic optimal policies in a numerically tractable way via receeding horizon planning. In our
experiments we comfortably plan for over a hundred steps.

3 Transition Constrained BayesOpt

This section introduces BayesOpt with transition constraints. We use MDPs to encode constraints.
Namely, the Markov dynamics dictates which inputs we are allowed to query at time-step h + 1
given we previously queried state xj,. This mean that the transition operator is P(zp,1|xp,a) =0
for any transition z;, — x5+ not allowed by the physical constraints.

Motivated by our practical experiments with chemical reactors, we distinguish two different types
of feedback. With episodic feedback we can be split the optimization into episodes. At the end of
each episode of length H, we obtain the whole set of noisy observations. On the other hand, instant
feedback is the setting where we obtain a noisy observation immediately after querying the function.
Asynchronous feedback describes a mix of the previous two, where we obtain observations with
unspecific a delay.

3.1 Expected Utility for Maximizer Identification

In section 2.T] we introduced the utility for maximum identification. Using the same simplifying
assumption (finite rank approximation of GPs in Sec.[2.1] Eq. (@), we can show that the expected
utility U/ can be rewritten in terms of the state-action distribution induced by Xey:

_ . N2
U(ds) = max [[9() = () ®

where V(d,) = (Zz,anxA d“(x’a)%zzf’(w’“)T + ﬁI) The variable d(x, a) is a state-action

visitation, ®(z) are e.g. Nystrom features of the GP. We prove that the function is additive in terms of
state-action pairs in Lemma [D.T]in Appendix [D] a condition required for the expression as a function
of state-action visitations [17]. Additionally, by rewriting the objective in this form, the dependence
and convexity with respect to the state-action density d, becomes clear as it is only composition of
a linear function with an inverse operator. Also, notice that the constraint set is a convex polytope.
Therefore we are able to use convex optimization to solve the planning problem (see Sec. [).



Algorithm 1 Transition Constrained BayesOpt via MDPs

Input: Procedure for estimating sets of maximizers, initial point xg, initial set of maximizer
candidates Z R
Initialize the empirical state-action distribution dy = 0
fort=0to1 — 1do
forh =0to H — 1do

Upp(dr) « U(dr & dip| Zin, Ten) // define the objective, see eq. (§))
Tep = ArgMil g cp, Uy pn(dr) // solve MDP planning problem
T p1 = Ton(Ze,n) // deploy policy
if feedback is immediate then
Yeht1 = f(@ent1) +€nn // obtain observation
GPih, Zin < Update(Xy p, Yy p) // update model and maximizer candidate set

CZtJH_l(:c) — citvh & 0(z¢,pt1,x) // update empirical state-action distribution, see eq. (1)
if feedback is episodic then
Yin=fXeg)+é. // obtain observations
GPit1,:, Ziy1,. < Update(Xy g, Y 1) // update model and maximizer candidate set
Return: Estimate of the maximum using the GP posterior’s mean &, = arg max, ¢ y pr ()

Set of potential maximizers Z. The definition of the objective requires the use of a set of
maximizers. In the ideal case, we can say a particular input x, is not the optimum if there exists x’
such that f(a’) > f(z) with high confidence. We formalize this using the GP credible sets (Bayesian
confidence sets) and define:

Zy={r € X : UCB(f(x)|X;) > sup. LCB(f(2")|X4)} )

z'e

where UCB and LCB correspond to the upper and lower confidence bounds of the GP surrogate
with a user specified confidence level defined via the posterior GP with data up to X;.

3.2 Discrete vs Continuous MDPs.

Until this point, our formulation focused on discrete S and A for ease of exposition. However, the
framework is compatible with continuous state-action spaces. The probabilistic reformulation of
the objective in Eq. (7) is possible irrespective of whether X" (or .A) is a discrete or continuous subset
of RY. In fact, the convexity of the objective in the space of distributions is still maintained. The
difference is that the visitations d are no longer probability mass functions but have to be expressed
as probability density functions d.(z, a). To recover probabilities in the definition of V, we need to

d(.]?) b (z,0)P(x,a) " dc(.lf, a) b (z,a)P(z,a) " .

replace sums with integrals i.e. > o (z.0)° — fzeX acA o(z.0)?

r€X,a€A

In the Eq. we need to approximate a maximum over all input pairs in Z. While this can
be enumerated in the discrete case without issues, it poses a non-trivial constrained optimization
problem when X is continuous. As an alternative, we propose approximating the set Z using a
finite approximation of size K which can be built using Thompson Sampling [57, 58] or through
maximization of different UCBs for higher exploitation (see Appendix [E.I). In Appendix [E.5] we
numerically benchmark reasonable choices of K, and show that the performance is not significantly
affected by them.

3.3 General algorithm and Theory

The general algorithm combines the ideas introduced so far. We present it in Algorithm[I] Notice
that apart from constructing the current utility, keeping track of the visited states and updating
our GP model, an essential step is planning, where we need to find a policy that maximizes the
utility. As this forms the core challenge of the algorithm, we devote Sec.[d]to it. In short, it solves
a sequence of dynamic programming problems defined by the steps of the Frank-Wolfe algorithm.
From a theoretical point of view, under the assumption of episodic feedback, the algorithm provably
minimizes the utility as we show in Proposition|C.1]in Appendix [C.4]

4 Solving the planning problem

The planning problem, defined as ming,_ep U(d, ), can be thought of as analogous to optimizing
an acquisition function in traditional BayesOpt, with the added difficulty of doing it in the space of



policies. See the bottom half of Figure [5]in Appendix [A]for a breakdown of the different components
of our solution. Following developments in Hazan et al. [34] and Mutny et al. [17], we use the
classical Frank-Wolfe algorithm [59]]. It proceeds by decomposing the problem into a series of
linear optimization sub-problems. Each linearization results in a policy, and we build a mixture
policy consisting of optimal policies for each linearization myix , = {(c;, )}, and o; step-sizes
of Frank-Wolfe. Conveniently, after the linearization of ¢/ the subproblem on the polytope D
corresponds to an RL problem with reward VI for which many efficient solvers exist. Namely, for
a single mixture component we have,
dr,,, = argmin Z VU(dr,, ) (2, a)dp(z, a). (10)
dep

Due to convexity, the state-action distribution follows the convex combination, d,,. . = > ., ®idy,.

The optimization produces a Markovian policy due to the subproblem in Eq. being optimized
by one. We now detail how to construct a non-Markovian policies by adaptive resampling.

4.1 Adaptive Resampling: Non-Markovian policies.

A core contribution of our paper is receding horizon re-planning. This means that we keep track
of the past states visited in the current and past trajectories and adjust the policy at every step h
of the horizon H in each trajectory indexed by ¢. At h, we construct a Markov policy for a reward
that depends on all past visited states. This makes the resulting policy history dependent. While
in episode ¢ and time-point h we follow a Markov policy for a single step, the overall policy is a
history-dependent non-Markov policy.

We define the empirical state-action visitation distribution,

. 1 ¢
din=rg7 QD e+ D dua) (a1

j=1lz,a€T; z,aE€ETL|p

—_———

visited states in past trajectories  states at ep. t up to h

where 0, , denotes a delta mass at state-action (, a). Instead of solving the objective I(d) as in Eq.
(TO), we seek to find a correction to the empirical distribution by minimizing,

1 (H—-h tH+h
Upn(d) =U d d . 12
() (H(1+t + h>) (12)
We use the same Frank-Wolfe machinery to optimize this objective: dr, , = argming, .z U n(dx).

The distribution d, , represents the density of the policy to be deployed at trajectory ¢ and horizon
counter 4. We now need to solve multiple (n due to FW) RL problems at each horizon counter h.
Despite this, for discrete MDPs, the sub-problem can be solved extremely efficiently to exactness using
dynamic programming. As can be seen in Appendix our solving times are just a few seconds,
even if planning for very long horizons. The resulting policy 7 can be found by marginalization
mp(alx) = dr p(x,a)/ Y, drn(x,a), abasic property of MDPs [60].

4.2 Continuous MDPs: Model Predictive Control

With continuous search space, the sub-problem can be solved using continuous RL solvers. However,
this can be difficult. The intractable part of the problem is that the distribution d, needs to be
represented in a computable fashion. We represent the distribution by the sequence of actions taken
{ah}f=1 with the linear state-space model, x;,+1 = Axj + Bay. While this formalism is not as
general as it could be, it gives us a tractable sub-problem formulation common to control science
scenario [61]] that is practical for our experiments and captures a vast array of problems. The optimal
set of actions is solved with the following problem, where we state it for the full horizon H:

H
argmin > Vs o(dr,,,) (Th, an) (13)
@05 @H —q
such that ||ap|| < @max,xn € X, and xp41 = Axp + Bayp, where the known dynamics serves
as constraints. Notice that instead of optimizing over the policy d,, we directly optimize over
the parameterizations of the policy {ah}thl. In fact, this formulation is reminiscent of the model
predictive control (MPC) optimization problem. Conceptually, these are the same. The only caveat
in our case is that unlike in MPC [62], our objective is non-convex and tends to focus on gathering
information rather than stability. Due to the non-convexity in this parameterization, we need to solve
it heuristically. We identify a number of useful heuristics to solve this problem in Appendix
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Figure 2: The Knorr pyrazole synthesis experiment. On the left, we show the quantitative results.
The line plots denote the best prediction regret, while the bar charts denote the percentage of runs that
correctly identify the best arm at the end of each episode. On the right, we show ten paths in different
colours chosen by the algorithm. The underlying black-box function is shown as the contours, and
we can see the discretization as dots. We can see four remaining potential maximizers (in orange),
which includes the true one (star). Notice all paths are non-decreasing in residence time, following
the transition constraints.

5 Experiments

Sections [5.1]—[5.3] showcase real-world applications under physical transitions constraints, using the
discrete version of the algorithm. Section [5.4]benchmarks against other algorithms in the continuous
setting, where we consider the additive transition model of Section@with A = B =1. Weinclude
additional results in Appendix [B] For each benchmark, we selected reasonable GP hyper-parameters
and fixed them during the optimization. These are summarized in Appendix[E:2] As we are interested
maximizer identification, in discrete problems, we report the proportion of reruns that succeed at
identifying the true maximum. For continuous benchmarks, we report inference regret at each
iteration: Regret, = f(z.) — f(x,+), where z,, ; = argmax,c » p+(x). All statistics reported are
over 25 different runs.

Baselines. We include a naive baseline that greedily optimizes the immediate reward to showcase a
method with no planning (Greedy-UCB). Likewise, we create a baseline that replaces the gradient in
Eq. (T0) with Expected Improvement [63] (MDP-EI), a weak version of planning. In the continuous
settings, we compare against truncated SnAKe (TrSnaKe) [42]], which minimizes movement distance,
and against local search region-constrained BayesOpt or LSR [22] for the same task. We compare
two variants for approximating the set of maximizers, one using Thompson Sampling (MDP-BO-TS)
and one using Upper Confidence Bound (MDP-BO-UCB).

5.1 Knorr pyrazole synthesis

1.0 1.0
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(a) Monitoring Lake Ypacarai. (b) Free-electron laser tuning.

Figure 3: Results for Ypacarai and free electron-laser tuning experiments. On the left, the line plots
denote the best prediction regret, while the bar charts denote the percentage of runs that correctly
identify the best arm at the end of each episode. On the right, We plot the regret and compare against
standard BO without accounting for movement-dependent noise.
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Figure 4: Results of experiments on the asynchronous and synchronous benchmarks. We plot the
median predictive regret and the 10% and 90% quantiles. For the asynchronous experiments, we can
see that the paths taken by MDP-BO-TS are more consistent, and the final performance is comparable
to TrSnAKe. While in the asynchronous setting, we found creating the maximization set using
Thompson Sampling gave a stronger performance, in the synchronous setting, UCB is preferred. LSR
gives a very strong performance, comparable to MDP-BO-UCB in almost all benchmarks.

Our chemical reactor benchmark synthetizes Knorr pyrzole in a transient flow reactor. In this
experiment, we can control the flow-rate (residence time) 7 and ratio of reactants B in the reactor.
We observe product concentration at discrete time intervals and we can also change inputs at these
intervals. Our goal is to find the best parameters of the reaction subject to natural movement
constraints on B, and 7. In addition, we assume decreasing the flow rate of a reactor can be easily
achieved. However, increasing the flow rate can lead to inaccurate readings [64]. A lower flow rate
leads to higher residence time, so we impose that 7 must be non-decreasing.

The kernel. Schrecker et al. [27] indicate the reaction can be approximately represented by simple
kinetics via a differential equation model. We use this information along with techniques for
representing linear ODE as constraints in GP fitting [[65] |66]] to create an approximate ODE kernel
koge through the featurization:

®oue(r, B) = (1 - 8(B))y"M (7, B) + S(B)y? (r, B)

where 3% (7, B) are equal to:

(i) | (i) |
7i(B) <'>A2 (‘)ehg)T_ <'>Al <‘>6A(2)T+1
AD )\ TG

for ¢ = 1, 2, where /\gl) and )\g) are eigenvalues of the linearized ODE at different stationary points,
71(B) = B, y2(B) =1 — B, and S(z) := (1 + e~ is(*=0-5))~1 5 a sigmoid function. Appendix
[Hholds the details and derivations which may be of independent interest. As the above kernel is only
an approximation of the true ODE kernel, which itself is imperfect, we must account for the model
mismatch. Therefore, we add a squared exponential term to the kernel to ensure a non-parametric
correction, i.e.: k(7, B) = todekode (T, B) + arpp (T, B).

We report the examples of the trajectories in the search space in Figure[2] Notice that all satisfy
the transition constraints. The paths are not space-filling and avoid sub-optimal areas because of
our choice of non-isotropic kernel based on the ODE considerations. We run the experiment with
episodic feedback, for 10 episodes of length 10 each, starting each episode with (7x, B) = (0,0).
Figure [2]reports quantitative results and shows that the best-performing algorithm is MDP-BO.

5.2 Monitoring Lake Ypacarai

Samaniego et al. [20] investigated automatic monitoring of Lake Ypacarai, and Folch et al. [[11]] and
Yang et al. [40]] benchmarked different BayesOpt algorithms for the task of finding the largest con-
tamination source in the lake. We introduce local transition constraints to this benchmark by creating
the lake containing obstacles that limit movement (see Figure[I2]in the Appendix). Such obstacles



in environmental monitoring may include islands or protected areas for animals. We add an initial
and final state constraint with the goal of modeling that the boat has to finish at a maintenance port.

We focus on episodic feedback, where each episode consists of 50 iterations. Results can be seen in
Figure[3al MDP-EI struggles to identify the maximum contamination for the first few episodes. On
the other hand, our method correctly identifies the maximum in approximately 50% of the runs by
episode two and achieves better regret.

5.3 Free-electron laser: Transition-driven corruption

Apart from hard constraints, we can apply our framework to state-dependent BayesOpt problems
involving transitions. For example, the magnitude of noise e may depend on the transition. This occurs
in systems observing equilibration constraints such as a free-electron laser [23]]. Using the simplified
simulator of this laser [67], we use our framework to model heteroscedastic noise depending on the
difference between the current and next state, 02 (x, z') = s(1 + w||x — 2'||2). By choosing A = X,
we rewrite the problem as o(s,a) = s(1 + w||z — a||2). The larger the move, the more noisy the
observation. This creates a problem, where the BayesOpt needs to balance between informative
actions and movement, which can be directly implemented in the objective via the matrix
V(dz) =3, acx dr(z, a)%@(w)@(z)—r + L. Figure[3b|reports the comparison between
worst-case stateless BO and our algorithm. Our approach substantially improves performance.

5.4 Synthetic Benchmarks

We benchmark on a variety of classical BayesOpt problems while imposing local movement
constraints and considering both immediate and asynchronous feedback (by introducing an
observation delay of 25 iterations). We also include the chemistry SnAr benchmark, from Summit
[68]], which we treat as asynchronous as per Folch et al. [11]]. Results are in Figure E} In the
synchronous setting, we found using the UCB maximizer criteria for MDP-BO yields the best results
(c.f. Appendix for details of this variant). We also found that LSR performs very competitively on
many benchmarks, frequently matching the performance of MDP-BO. In the asynchronous settings
we achieved better results using MDP-BO with Thompson sampling. TrSnAKe baseline appears
to be competitive in all synthetic benchmarks as well. However, MDP-BO is more robust having
less variance in the chosen paths as seen in the quantiles. It is important to highlight that SnAKe
and LSR are specialist heuristic algorithms for local box-constraints, and therefore it is not surprising
they perform strongly. Our method can be applied to more general settings and therefore it is very
encouraging that MDP-BO is able to match these SOTA algorithms in their specialist domain.

6 Conclusion

We considered transition-constrained BayesOpt problems arising in physical sciences, such as chemi-
cal reactor optimization, that require careful planning to reach any system configuration. Focusing on
maximizer identification, we formulated the problem with transition constraints using the framework
of Markov decision processes and constructed a tractable algorithm for provably and efficiently
solving these problems using dynamic programming or model predictive control sub-routines. We
showcased strong empirical performance in a large variety of problems with physical transitions, and
achieve state-of-the-art results in classical BayesOpt benchmarks under local movement constraints.
This work takes an important step towards the larger application of Bayesian Optimization to
real-world problems. Further work could address the continuous variant of the framework to deal
with more general transition dynamics, or explore the performance of new objective functions.
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A Visual abstract of the algorithm

In Figure[5|we summarize how our algorithm creates non-Markovian policies for maximizer identifi-
cation and the corresponding connections to other works in the literature.

Transition Constrained BO Problem Formulation

L 4
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Figure 5: Visual abstract of the work. In black we show the method presented in this paper, with
literature connections shown in blue. In red we show solutions which we did not pursue due to
intractability. The problem creates the (a) need to plan ahead. To do this, we take inspiration
from hypothesis testing and focus on (b) the variance reduction in a set of maximizers, which
leads to our (c) acquisition function. The objective is the same as Fiez et al. [30] introduced in
the linear bandits literature from a frequentist perspective. To optimize it, we follow developments
in Mutny et al. [17], Hazan et al. [34] by (d) relaxing the acquisition function to the space of
state-action distributions and (e) solving the planning problem using the Frank-Wolfe algorithm.
This consists of iteratively solving tractable (f) reinforcement learning sub-problems which give us
optimal Markov policies. We then apply adaptive resampling to obtain (g) non-Markovian policies.
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Figure 7: Knorr pyrazole synthesis with immediate feedback

B Additional Empirical Results

B.1 Constrained Ypacarai

We also run the Ypacarai experiment with immediate feedback. To increase the difficulty, we used
large observation noise, 2 = 0.01. The results can be seen in Figure @ The early performance of
MDP-EI is much stronger, however, it gets overtaken by our algorithm from episode three onwards,
and gives the worst result at the end, as it struggles to identify which of the two optima is the global
one.

B.2 Knorr pyrazole synthesis

We also include results for the Knorr pyrazole synthesis with immediate feedback. In this case we
observe very strong early performance from MDP-BO, but by the end MDP-EI is comparable. The
greedy method performs very poorly.

B.3 Additional synthetic benchmarks

Finally, we also include additional results on more synthetic benchmarks for both synchronous and
asynchronous feedback. The results are shown in Figures [§|and[9] The results back the conclusions
in the main body. All benchmarks do well in 2-dimensions while highlighting further that MDP-
BO-UCB and LSR can be much stronger in the synchronous setting than Thompson Sampling
planning-based approaches (with the one exception of the Levy function).

Table 1: Average acquisition function solving times for each practical benchmark. We give the
solving times to the nearest second, and provide the size of the state-space, |S|, the maximum number
of actions one can take from a specific state, |.A(.5)|, and the planning horizon. In all benchmarks we
are able to solve the problem in a few seconds.

Benchmark | Solve Time | [S] | Maximum [A(S)] | Planning horizon
Knorr pyrazole Is 00 6 10
Ypacarai 3s 100 8 50
Electron laser 15s 100 100 100
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Figure 8: Additional asynchronous results.
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Figure 9: Additional synchronous results.

B.4 Computational study

We include the average acquisition function solving time for each of the discrete problems. For
the continuous case the running time was comparable to Truncated SnAKe [42] since most of the
computational load was to create the set of maximizers using Thompson Sampling. The times
were obtained in a simple 2015 MacBook Pro 2.5 GHz Quad-Core Intel Core i7. The bulk of the
experiments was ran in parallel on a High Performance Computing cluser, equipped with AMD
EPYC 7742 processors and 16GB of RAM.

B.5 Median plots for Ypacarai and reactor experiments

In Figures[I0]and [TT] we give the median and quantile plots for the Knorr pyrazole synthesis and the
Ypacarai experiment, which were not included in the main paper to avoid cluttering the graphics.
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(a) Episodic feedback results (b) Immediate feedback results

Figure 10: Median and 10th/90th quantile plots for Knorr pyrazole synthesis experiment.

C Utility function: Additional Info

We describe the utility function in complete detail using the kernelized variant that allows to extend
the utility beyond the low-rank assumption in the main text.

C.1 Derivation of the Bayesian utility

Suppose that our decision rule is to report the best guess of the maximizer after the 1" steps as,

xp = argmax pp ().
r€EZ
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Figure 11: Median and 10th/90th quantile plots for Ypacarai experiment.

We call this the selection the recommendation rule. We focus on this recommendation rule as this
rule is interpretable to the facilitator of the analysis and experimenters. In this derivation we use that
f = 6T ®(x). More commonly, the notation (#, ®(x)) is used, where the inner product is potentially
infinite dimensional. We use use T notation for simplicity for both cases. Same is true for any other
functional estimates, e.g., for the posterior mean estimate, we use () = ®(x) " ;. The inner
product is in the reproducing kernel Hilbert space associated with the kernel k.

Now, suppose there is a given f (we will take expectation over it later), then there is an x € X
achieving optimum value, denoted m} (suppose unique for this development here). Hence, we would
like to model the risk associated with predicting a fixed z 7 7, which is still in Z at time 7. Suppose
we are at time ¢, we develop the utility to gather additional data X, on top of the already acquired
data X;. These should improve the discrepancy of the true answer, and the reported value the most.

Suppose there are two elements in Zgimple = {2, x}} We will generalize to a composite hypothesis
later. In two-element case, the probability of the error in incurred due to selecting z is:

P(ur(2) — pr(x}) > 0[f)

. The randomness here is due to the observations y = f(Xyew) + € that are used to fit the estimator
pr(z). Namely due to € ~ N(0,02). Given f (equivalently 6), the distribution of our estimator
(namely the posterior mean) is Gaussian. Hence, given f:

pr ~ N((Vr +Ty) 7'Vrb,6*(Vr + L) "'V (Ve + I) ™),

where V = ZiT:1 %fb(xi)cb(xi)T is an operator on the reproducing kernel Hilbert space due to k
as H — H, and Iy the identity operator on the same space.

This is the posterior over the posterior mean as a function. A
posterior ~ over  the  specific  evaluation is  pr(z) —  pr(a}) ~
N@OT (Vo + 1) 'V (®(2) — ®(2})),0%(®(2) — @(«}) (Ve + 1) 'V (Ve + Ipy) " H(®(2) — (2F))).

a b2

We can now bound the probability of making an error using a Gaussian tail bound inequality:

Plur(2) — pr(a®) > 0) = Plur(2) — pr(a®) > a, + (—a,)) < e 52

with the caveat that the inequality only holds when the a, is negative. However note that a, —
f(z) = f(z*) < 0as T — oo therefore it will hold once T is large enough. From this we can take
logarithms and then the expectation across the randomness in the GP:

a2
Ej~gp [log P(ur(2) — pr(z")|f)] < _%EfNGP [zﬂ}

which is called the log Bayes’ factor and is expected log failure rate for the set of potential maximizers
Zgmple- The expectation is over the posterior including the evaluations X (or prior at the very
beginning of the procedure). In fact, we can think of the posterior as being the new prior for the future
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at any time point. Now assuming that Z has more than one additional element, we want to ensure the
failure rate is small for all other failure modes, all other hypothesis. Technically this means, we have
an alternate hypothesis, which is composite — composed of multiple point hypotheses. We take the
worst-case perspective as its common with composite hypotheses. In expectation over the prior, we
want to minimize:

minlEs
XI’]CXI

sup log P(pr(2) — pr(z}) = Of)] : (14)
€2\ {z}}

For moderate to large 7' >> 0, we can upper bound this objective via elegant argument to yield a very
transparent objective:

‘ (f(2) = f(=}))°

sup o+

2e2\{o}} KX, UKo (2,7F)
(15)

-1
minE; | sup log P(ur(z) — pr(z}) > 0[f)| < -3 minE
Xnext ZGZ\{I;} Xnext

where we have used an lower and upper bound on the a, and b,, respectively as follows:
a (0T (Vr + 1) "'V (0(2) - @(a})))?

0T (Vr + 1) N (Ve + Iy — Ip) (®(2) — o(z%)))?

(07 (2(2) = @(2})) = 0T (Vr +Tp) 71 (2(2) — (27)))?

(07 (2(2) = ®(2})))* = (f(2) = f(a}))?

0*(®(2) = @(@}) T (Vr + L)'V (Ve + 1) ~H(D(2) — D(aF)

o2 (®(2) — @(x}))T(VT +Iy) Y (®(2) — (%)) = kx (2, 7%).

In the last line we have used the same identity as in Eq. (23]). We will explain how to eliminate the
expectation in Section|C.2]

T30
2 _
b; =
<

C.2 Upper-bounding the objective: Eliminating I ; for large 7.

The objective Eq. (I3) is intractable due to the expectation of the prior and which involves expec-
tation over the maximum f (a:}), which is known to be very difficult to estimate. Interestingly, the
denominator is independent of f if we adopt the worst-case perspective over the 2, and hence the
only dependence is through the set Z as well as the denominator. Given all current prior information,
we can determine Z, and hence split the expectation. Let us now express

At any time point, we can upper-bound the denominator by the minimum as done by Fiez et al. [30].
Even if Z decreases, as we get more information, the worst-case bound is always proportional to the
smallest gap gap(f) between two arms in X'. Hence, we can upper bound the objective as:

B (f(2) = f(x3))? B Ef [gap(f)]
B 22\ (w3} FXUXpe (2, 77) = zeg\lﬁ } kXUX e (2, 277)
< —Eflgap(f)] sup !

s€2\ (2} Var [£(2) = f(27)1 X0 U Xpew |

As the constant in front of the objective does not influence the optimization problem, we do not need
to consider it when defining the utility. Furthermore, in order to minimise the probability of an error
we can just minimise the variance in the denominator instead (since arg min, —g(x) is equivalent to
arg min, ﬁ when g(x) > 0). However, the non-trivial distribution of f(z*) [29] renders the utility

intractable; therefore we employ a simple and tractable upper bound on the objective by minimising
the uncertainty among all pairs in Z:

U(Xpew) = e Var[f(z) — f(2")|Xs U Xiew]- (16)

Surprisingly, this objective coincides with the objective from Fiez et al. [[30] which has been derived
as lower bound to the best-arm identification problem (maximum identification) with linear bandits.
Their perspective is however slightly different as they try to minimize 7" for a fixed J failure rate.
Perhaps it should not be surprising that the dual variant, consider here, for fixed 7" and trying to
minimize the failure rate leads to the same decision for large 7" when log(b,) can be neglected.
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C.3 Approximation of Gaussian Processes
Let us now briefly summarize the Nystrom approximation [31} [69]. Given a kernel (-, -), and a

data-set X, we can choose a sub-sample of the data Z, ..., Z,,,. Using this sample, we can create a
low r-rank approximation of the full kernel matrix

K, = K,K'K,

where Ky = [k(zi, Z;)] N xm. K = (k(&i,25)]mxm and K1 denotes the pseudo-inverse operation.
We can then define the Nystrom features as:

bn(x) = DIYV2VT (k(2, 1), ..o k(2 2m)) (17)

where D, is the diagonal matrix of non-zero eigenvalues of K, and V, the corresponding matrix of
eigenvectors. It follows that we obtain a finite-dimensional estimate of the GP:

fz) =~ ®(z)70 (18)
where ®(z) = (¢1(2), ... ¢m(z))T, and 6 are weights with a Gaussian prior.

C.4 Theory: convergence to the optimal policy

The fact that our objective is derived using Bayesian decision theory makes it well-rooted in theory.
In addition to the derivation of Section|[C.I] we can prove that our scheme is able to converge in terms
of the utility.

Notice that the set of potential maximizers is changing over time, and hence we add a time subscript
to Z as Z;. Let us contemplate for a second what could the optimal policy. As the set of Z; is
changing, we follow the line of work of started by Russo [70]] and introduce an optimal algorithm
that knows the true x for each possible realization of the prior f. In other words, its an algorithm
that any time ¢, would follow:

d; =minE max k. (z,2%)|,
¢ deD f z€2:\{z}} di@d( f)

where in the above d; @ d represents the weighted sum as in the main Algorithm that scales the
distributions properly according to ¢ and 7’, so to make the sum of them a valid distribution. Notice
that in contrast to our objective, it does not take the maximum over z’ € Z, but fixes it to the value a:}
that the hypothetical algorithm has privileged access to. To eliminate the cumbersome notation, we
will refer to the objectives as U (d| Z:, Z;) as the objective used by our algorithm (real execution) and
U(d|Z,{z}}), as the objective that the privileged algorithm is optimizing which serves as theoretical
baseline.

The visitation of d} represents the best possible investment of the resources (of the size T — t) to
execute at time ¢ had we known the z’; instead of only Z;. This is interpreted as if the modeler knows
x’;, and sets up an optimal curriculum that is being shown to an observer in order to convince him/her
of that z7 is the optimal value. He or she is using statistical testing to elucidate it from execution

of the policy. Like the algorithm, the optimal policy changes along the optimization procedure due
to changes in Z;. Hence, our goal is to show that we are closely tracking the performance of these
optimal policies in time ¢, and eventually there is little difference between our sequence of executed

policies (visitations) d; and the algorithm optimal dj.

In order to prove the theorem formally, we need to assume that Z; is decreasing. The rate at which
this set is decreasing determines the performance of the algorithm to a large extent. Namely, we
assume that given two points in time, having the same empirical information d;. Given, f, suppose

sup |d " (VU(dy| 2y, 2¢) — VU(de| 2y, {z] }))| < Ct. (*)
deD
As we gather information in our procedure the, {x}} C Zy C Z;_4, but the exact decrease depends

on how Z, is constructed. We leave the particular choice for C; to make the above hold for future
work. We conjecture that this is decreasing as C; =~ %, where ~; is the information gain due to

Srinivas et al. [71]. We are now ready to state the formal theorem along with its assumptions.
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Proposition C.1. Assuming episodic feedback, and suppose that for any Z,
1. U is convex on D
2. B-locally Lipschitz continuous under || - || norm

3. locally smooth with constant L, i.e,

Ly
U+ ah) <U) +VU) Th+ =2 |h]5- (19)

fora € (0,1)andn,h € Ap, L :=max, o Ly o
4. condition in () holds with Bayesian posterior inference,

we can show that the Algorithmsatisﬁed for the sequences of iterates {cit}thl:
T—1 T—1

1 * * LlogT B 1
T Zu(dt‘zh{xf}) Udy|2e,{z3}) <O ( ZC} ﬁlog (6>> ,

with probability 1 — § on the sampling from the Markov chain. The randomness on the confidence set
is captured by Assumption in Eq. (%)

The previous proposition shows that as the budget of the experimental campaign 7' is increasing, we
are increasingly converging to the optimal allocation of the experimental resources on average also on
the objective that is unknown to us. In other words, our algorithm is becoming approximately optimal
also under the privileged information setting representing the best possible algorithm. Despite having
a limited understanding of potential maximizers at the beginning by following our procedure, we
show that we are competitive to the best possible allocation of the resources. Now, we prove the
Proposition. The proof is an extension of the Theorem 3 in [[17]. Whether the objective satisfied the
above conditions depends on the set X. Should the objective not satisfy smoothness, it can be easily
extended by using the Nesterov smoothing technique as explained in the same priorly cited work.

Proof of Proposition The proof is based on the proof of Frank-Wolfe convergence that appears
Appendix B.4 in Thm. 3. in Mutny et al. [17].

Let us start by notation. We will use the notation that If; is the privileged objective U (d|Z;, {z]}),
while the original objective will be specified as U(d| Z;, Z;).

First, what we follow in the algorithm:

¢: = arg min VU(th |24, Zt)Td (20)
deD

The executed visitation is simply generated via sampling a trajectory from ¢;. Let us denote the
empirical visiation of the trajectory as d;,

O ~ Gt 2
For the analysis, we also need the best greedy step for the unknown (privileged) objective I/ as

AT
z; = arg min VU, (dt) d. (22)
deD

Let us start by considering the one step update:

. . 1 .

Ut(dt+1) = Z/{t <dt + ﬁ((st - dt)>
P ud YU, (d)T (5, — d L s, dl
(t)‘*‘m t(t)(t_t)+m t — Q¢

N bounded ~ L

U(dty1) < Uy (dy) + mvut(dt) (0 —di) + a+02
~ ANT ~ 1 SNT L
= Uy (dy) + mvut(dt) (qe —dy) + 1 VU (di) (—q: + 0¢) +m

€t
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We will now carefully insert and subtract two set of terms depending on the real objective so that we
can bound them using ()):

. 1 : ;
—  U(d) + mwut(dt) = VU(di|Z1, 22) )@ = 2) + 75U (de) T (2 = )
SR S
1+t (1+1t)2
Using * ~ 1 5 7 1 L
< +2—— dg) " (2 —
< Unld) + 1+t0t ) (= d) et

Carrying on,

. @ . 1 L
Uy(diyr) < u(dt)+—vut(dt) (dy —d) + €+

i1 L+t (1+1)2
T ) — i ) UG + T s + T
o) ~Ud]) < Ul ~U]) ~ g Q) ~Uld) + e+ T+ O
< %th (Ut(cit) —Ut(dt*)> + 1_1H6t T (1 ft)Q + 141—tct
= 1%% (ut(cit) —ut(dt*)> + liﬁ T ft)z - 1j1LtClt

Now multiplying by ¢ + 1 both sides, and summing on ﬁ ZtT;ll. Using the shorthand pt(cit) =
Mt((ft) — U (d}) we get:

L T2 1T1 L T2
— t 1 d t — C, L/(1+t
T; + 1)pey1(disr) ; pe(d +T;(6t+ t+ L/(1+1))

First notice that ﬁ thfll g < % log(1/6) by Lemma in Mutny et al. [I7] due to ¢; being

martingale difference sequence. The other term is the sum on ﬁ >~ C: which appears in the
main result. The sum on Z;T:_ll l%rt < L%. The rest is eliminated by the reccurence of the terms,
and using that U(d| Z;, {z}} < U(d|Z;—1,{x}}) for any d. This is due to set Z; decreasing over
time. We report the result in asymptotic notation as function of 7" and log(1/9). O

D Objective reformulation and linearization

For the main objective we try to optimize over a subset of 7" trajectories X = {r; € X7 }T_ . Let
XH be the set of sequences of inputs 7 = (z1, ..., 7z7) where they consist of states in the search
space X'. Furthermore, assume there exists, in the deterministic environment, a constraint such that
Zpy1 € C(xp) forall h = 1,..., H — 1. Then we seek to find the set X, consisting of T trajectories
(possibly repeated), such that we solve the constrained optimization problem:

X, = argmin max Var[f(z) — f(2")|X] st  @p41 €C(xp) VE=1,..,h—1 (23)
XecXTH 2,2/ €Z

We define the objective as:

U(X) = max Var[f(z) = f(')[X] (24)
z,z2' €
Our goal is to show that optimization over sequences can be simplified to state-action visitations as
in Mutny et al. [17]. For this, we require that the objective depends additively involving terms z, a
separately. We formalize this in the next result. In order to prove the result, we utilize the theory of
reproducing kernel Hilbert spaces [[72].
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Lemma D.1 (Additivity of Best-arm Objective). Let X be a collection of t trajectories of length
H. Assuming that f ~ GP(0,k). Assuming that k has Mercer decomposition as k(z,y) =

>k Ak ()b (y)-
m) = Z ¢;€($)9k 9k ~ N(O, )\k)~
k

Let dx be the visitation of the states-action in the trajectories in X, as dx = ﬁ 23:1 ZI acr 03,0

where the 6, o represent delta function supported on x, a. Then optimization of the objective Eq. 23)
can be rewritten as:

1 12
Udx) = s e [18(2) — ()
where V(d) = >2,>", .. d(z, a)®(z)®(z)" +10%/(TH) is a operator V(d) : Hy — Hy, the
norm is RKHS norm, and ®(z), = ¢r(z).

Proof. Notice that the posterior GP of any two points z,z2 is (f(2),f(z") =
N((u(z), u(2")), K, ), where K. ./ is posterior kernel (consult Rasmussen and Williams [28]] for
details) defined via a posterior kernel kx (z, 2') = k(z, 2') — k(z, X)(K(X, X) + 02I) " *k(X, 2').

Utilizing k(z, 2’) = ®(z) " ®(z) (RKHS inner product) with the Mercer decomposition we know
that k:(z) = ®(X)¢(z). Applying the matrix inversion lemma, the above can be written as using

V= Zzzl Zzefrt (I)(l‘)(I)(x)T + 0'2]:’;.[.

kx(z,2") = E(z,2) — ki (2) T (Kx x + 0°T) "1k (2)
MET 0(2) () - 0(2) T(X) T (B(X)R(X) T +021) T B(X)D()
B a()Ta () — 2(2) TV TV ~10)2()
= B(2) ' VIIVE(Y) — 0(2) ' VIV - T6H) ()
= O(2) ' VIV =V +15%)d(2)
Leading finally to:
-1
kx(z,2') = (ZZ +021Hk> (). (25)

Let us calculate Var[f(z) — f(z")|X]. The variance does not depend on the mean. Hence,

Var [f(2) — f(z")|X]
Var(f(z)) — Var(f(2)) — 2Cov(f(2), f(z"))
kx(z,2) + kx(2',2") — 2kx(z, %)

B () (z ¥ w0t + IH) @)~ o)
- —1
= (®(z2) - <§:Z Z #(z € m)P(x)®(x)" + U2Iﬂk> (®(2) — @(2"))
t=1xeX
to arrive at:

z) — &2 2 -
var [f(2) - f(z)[x] = (LD (Z AX) ()0 () + TH%) (®(2) ~ #(=)) @6)

The symbol # counts the number of occurrences. Notice that we have been able to show that the
objective decomposes over state-action visitations as dx decomposes over their visitations O
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Note that the objective equivalence does not imply that optimization problem in Eq. (23)) is equivalent
to finding,
d, = argmin max_|[|®(z) — ®(2')||v(a,)-1- (27)
d.€D #%2'€Z

In other words, optimization over trajectories and optimization over d, € D is not equivalent. The
latter is merely a continuous relaxation of discrete optimization problems to the space of Markov
policies. It is in line with the classical relaxation approach addressed in experiment design literature
with a rich history, e.g., Chaloner and Verdinelli [73]]. For introductory texts on the topic, consider
Pukelsheim [[74] for the statistical perspective and Boyd and Vandenberghe [75] for the optimization
perspective. However, as Mutny et al. [17] points out, reducing the relaxed objective does reduce the
objective as Eq. as well. In other words, by optimizing the relaxation with a larger budget of
trajectories or horizons, we are able to decrease Eq. (23)) as well.

For completeness, we state the auxiliary lemma. We make use of the Sherman-Morrison-Woodbury
(SMW) formula, [[76]:

Lemma D.2 (Sherman-Morrison-Woodbury (SMW)). Let A € R"*? and D € R?*1 then:
(ATDA + 1) L = p 21— p24T(D1p> + AAT) 1A, (28)
Here we do the opposite, and invert an n X n matrix instead of a q X q one.
to show the following.
Lemma D.3 (Matrix Inversion Lemma). Let A € R™*? then
ATAAT + ) = (ATA 4+ ) TAT, (29)
Note that instead of inverting n X n matrix, we can invert a ¢ X q matrix.

Proof.
AT(AAT +p21)_1 SMw AT(p—QI_p—QA(p2I+ATA)—1AT)
= (P —p2ATA(YI+ATA)HAT
= (P 2P T+ATA)—p2ATA) (P T+ ATA) AT
= (ATA+p)'AT

D.1 Objective formulation for general kernel methods

The previous discussion also allows us to write the objective in terms of the general kernel matrix
instead of relying on finite dimensional embeddings. The modification is very similar and relies again
on Sherman-Mirrison-Woodbury lemma.

We now work backwards from , and first write the objective in terms of features of arbitrarily
large size. Using the shorthand, 62 = 02/TH, let us define a diagonal matrix that describes the
state-action distribution D = diag({d,, : © € X'}) of the size |X'| x | X|, and ®(X’) which corresponds
to the unique (possibly infinite-dimensional) embeddings of each element in X, ordered in the same
way as D.

-1
52 (Z d(z)®(2)®(x) + 152) =52 (2(X)"DD(X) +162)
reX
=I-3X) 7D+ 0(X)B(X) ) 1P(X)
If we then pre-multiply by ®(z) " and ®(z’) we obtain:
kx(z,2') = ®(2) T®(2') — @(2) " @(X) T (5°D ! + &(X)D(X) ") (X)) D(2)

Finally giving:

kx(z,2") = k(2,2) — k(2, X)(6°D™ + k(X, X)) k(X, 2) (30)
which allows us to calculate the objective for general kernel methods at the cost of an |X'| x |X|
inversion. Upon identifying the z, 2’ that maximize the above, we can use them in an optimization
procedure. This holds irrespective of whether the state space is discrete or continuous. In continuous
settings however, we again require a parametrization of the infinite dimensional probability distribu-

tion by some finite means such as claiming that Dy contains some finite dimensional simplicity. This
is what we do with the linear system example in Section 4.2}
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D.2 Linearizing the objective

To apply our method, we find ourselves having to frequently solve RL sub-problems where we try
to maximize ), , d(z,a)VF(x,a). To approximately solve this problem in higher dimensions, it
becomes very 1mp0rtant to understand what the linearized functional looks like.

Remark D.4. Assume the same black-box model as in Lemma [D.T} and further assume that we
have a mlxture of policies myix With density d such that there exists a set X« satisfying
d

Tmix ?

=% erxm 0, for some integer N. Then:

VF (A (@, a) o = (Cov[f(22), (@) Kumin] = Cov[f (L), f(2) Xumix])*
where 2., 2, = argmax, ...z Var[f(z) — f(2')].

Tmix

Proof. To show this, we begin by defining:

zgd_<2q> )+021>

reX

PR arg/m;XH‘I’(Z) — 0|3, ,
z,z'e

Ze=B(24) — (2))

In the definition above we dropped the constant pre-factors since they do not influence the maximizer
of the gradient as they are related by a constant multiplicative factor.

It then follows, by applying Danskin’s Theorem that:
VU(d)(x) = VZ{ T4
=VTr{%:]Syq}
=Tr{%2VSyq}
= —Tr{%.2] 29 a®(2)®(z)" So.q} (asOK ' = K '(OK)K™ 1))
= —Tr{z] L9 q®(2)®(z)" Lp,a%. }
= (z DIPIPLIN x)) (<I) T 297(12*)
= (Cov[f(2), f(x)] = Cov[f(zL), f(2)]) (Cov[f(x), f(2)] = Cov[f(x), f(2)])
= (Cov[f(z), ()] = Cov[f (<), f(a)))”

R
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f
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E Implementation details and Ablation study

In this section we provide implementation details, and show some studies into the effects of specific
hyper-parameters. We note that the implementation code will be made public after public review.

E.1 Approximating the set of maximizers using Batch BayesOpt

We give details of the two methods used for approximating the set of potential maximizers. In
particular, we first focus on Thompson Sampling [58]:

K
zZ0 = {argmaxfi(x) 2 fi gp(/ltﬂt)}
TEXe i=1
where K is a new hyper-parameter influencing the accuracy of the approximation of Z. We found
that the algorithm could be too exploratory in certain scenarios. Therefore, we also propose an
alternative that encourages exploitation by guiding the maximization set using BayesOpt through the
UCB acquisition function [71]]:

K
ZéoUngB) = {arg max pi¢(x) + Bioe(x) : B € B}
rE€Xe i=1

where 5 = linspace(0, 2.5, K) which serves as scaling for the size of set Zc(ffn? ). Both cases
reduce optimization over Z to enumeration as with discrete cases.
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E.2 Benchmark Details

For all benchmarks, aside from the knorr pyrazole synthesis example, we use a standard squared
exponential kernel for the surrogate Gaussian Process:

/(12
PP Eer
rbf (l‘, x ) Urbf €xXp ( 2€be

where 02, 7 is the prior variance of the kernel, and £,y the kernel. We fix the values of all the hyper-

parameters a priori and use the same for all algorithms. The hyper-parameters for each benchmarks
are included in Table

For the knorr pyrazole synthesis example, we further set aoqe = 0.6, apr = 0.001, k1 = 10,
ko = 874, k3 = 19200, avs5g = 5. Recall we are using a finite dimensional estimate of a GP such
that:

M
f(@) = WodePode () + Zwrbf)iq)rbf(.’ll) (31)
i=1

in this case we set a prior to the ODE weight such that w,g. ~ N(0.6,0.0225). This is incorporating
two key pieces of prior knowledge that (a) the product concentration should be positive, and (b) we
expect a maximum product concentration between 0.15 and 0.45.

The number of features for each experiment, M, is set to be M = |X| in the discrete cases and
M = min (25+d7 512) where d is the problem dimensionality.

In the case of Local Search Region BayesOpt (LSR) [22] we set the exploration hyper-parameter to
be v = 0.01 in all benchmarks.

Table 2: Benchmark and hyper-parameter information. A, represents the size of the box constraints
in the traditional benchmarks. For the synchronous benchmarks and for SnAr we used a noise level
of 02 = 0.001. For the asynchronous benchmarks, and the knorr pyrazole example we used
02 = 0.0001. For the Ypacarai example we used 0> = 0.001 and 02 = 0.01 for the episodic and
immediate feedback respectively.

Benchmark Name | A, | Variance o,,; | Lengthscale ¢,
Knorr pyrazole - 0.001 0.1
Constrained Ypacarai - 1 0.2
Branin2D 0.05 0.6 0.15
Hartmann3D 0.1 2.0 0.13849
Hartmann6D 0.2 1.7 0.22
Michalewicz2D 0.05 0.35 0.179485
Michalewicz3D 0.1 0.85 0.179485
Levy4D 0.1 0.6 0.14175
SnAr 0.1 0.8 0.2

E.3 Ypacarai Lake

Samaniego et al. [20] investigated the use of Bayesian Optimization for monitoring the lake quality
in Lake Ypacarai in Paraguay. We extend the benchmark to include additional transition constraints,
as well as initial and end-point constraints. These are all shown in Figure[12}

E.4 Free-electron Laser

We use the simulator from Mutny et al. [67] that optimizes quadrupole magnet orientations for our
experiment with varying noise levels. We use a 2-dimensional variant of the simulator. We discretize
the system on 10 x 10 grid and assume that the planning horizon H = 100. The simulator itself is
a GP fit with v = 0.4, hence we use this value. Then we make a choice that the noise variance is
proportional to the change made as o2(z,a) = s(1 + w||z — al|?), where s = 0.01 and w = 20.
Note that z € [—0.5,0.5] in this modeling setup. This means that local steps are indeed very
desired. We showcase the difference to classical BayesOpt, which uses the worst-case variance
o =sup, , (1 4+ wl|z — al|*) for modeling as it does not take into account the state in which the
system is. We see that the absence of state modeling leads to a dramatic decrease in performance as
indicated by much higher inference regret in Figure
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Figure 12: Lake Ypacari with the added movement constraints. We show one local optimum and one
global one. The constraints of the problem requiring beginning and ending the optimization in the
dark square.

E.5 Ablation Study
E.5.1 Number of mixture components

We investigate the effect number of components used in the mixture policy when optimizing the
Frank-Wolfe algorithm. We tested on the four real-world problem using N = 1,10 and 25. In
the Ypacari example (see Figure[T4) we see very little difference in the results, while in the Knorr
pyrazole synthesis (see Figure[I3)) we observe a much bigger difference. A single component gives a
much stronger performance than multiple ones — we conjecture this is because the optimum is on the
edge of the search space, and adding more components makes the policy stochastic and less likely
to reach the boarder (given episodes are of length ten and ten right-steps are required to reach the
boarder).

Overall, it seems the performance of a single component is better or at worst comparable as using
multiple components. This is most likely due to the fact that we only follow the Markovian policies
for a single time-step before recalculating, making the overall impact of mixture policies smaller.
Based on this, we only present the single-component variant in the main paper.
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(a) Episodic feedback results (b) Immediate feedback results

Figure 13: Ablation study on the number of mixture components on the Knorr pyrazole synthesis
benchmark

E.5.2 Size of batch for approximating the set of maximizers

We explore the effect of the number of maximizers, K, in the maximization sets Zc(fn‘? and ZC(ZSB).
Overall we found the performance of the algorithm to be fairly robust to the size of the set in all

benchmarks, with a higher K generally leading to a little less spread in the performance.
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Figure 14: Ablation study on the number of mixture components on the Ypacarai benchmark
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Figure 15: Ablation study into the size of the Thompson Sampling maximization set in the asyn-
chronous Hartmann3D function. We can see that the performance of the algorithm is very similar for
all values of K = 25,50, 100.
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Figure 16: Ablation study into the size of the UCB maximization set in a variety of benchmarks. We
can see that the performance of the algorithm is very similar for all values of K = 10, 25, 100.

F XY-allocation vs G-allocation

Our objective is motivated by hypothesis testing between different arms (options) z and z’. In
particular,

U(d) = max Var[f(z) — f(2')|dx]- (32)

z',z€Z

One could maximize the information of the location of the optimum, as it has a Bayesian interpretation.
This is at odds in frequentist setting, where such interpretation does not exists. Optimization of
information about the maximum has been explored before, in particular via information-theoretic
acquisition functions [77-779]. However, good results (in terms of regret) have been achieved by
focusing only on yet another surrogate to this, namely, the value of the maximum [80]. This is chiefly
due to problem of dealing with the distribution of f(z*). Defining a posterior value for f(z) is easy.
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Figure 17: Comparison of using X' )-allocation against G-allocation as the basis for the objective. In
both cases the maximization sets were created using Thompson Sampling. Overall the performances
were often similar, however in a few examples, such as Branin2D which we showcase here, G-
allocation performed very poorly. This is consistent with what we can expect from the bandits
literature.

Using, this and the worst-case perspective, an alternative way to approximate the best-arm objective,
could be:

01(d) = max Varf (2) X (33)

What are we losing by not considering the differences? The original objective corresponds to the
X Y-allocation in the bandits literature. The modified objective will, in turn, correspond to the G-
allocation, which has been argued can perform arbitrarily worse as it does not consider the differences,
e.g. see Appendix A in Soare et al. [46]]. We nonetheless implemented the algorithm with objective
(33), and found the results to be as expected: performance was very similar in general, however in
some cases not considering the differences led to much poorer performance. As an example, see
Figure|1/|for results on the synchronous Branin2D benchmark.

G Practical Planning for Continuous MDPs

From remark it becomes clear that for decreasing covariance functions, such as the squared
exponential, VF will consist of two modes around z, and z, The sub-problem seems to find a
sequence that maximizes the sum of gradients, therefore the optimal solution will try to reach one of
the two modes as quickly as possible. For shorter time horizons, the path will reach whichever mode
is closest, and for large enough horizons, the sum will be maximized by reaching the larger of the
two modes.

Therefore we can approximately solve the problem by checking the value of the sub-problem objective
in (T3) for the shortest paths from z;_; — 2. and 2;—1 — 2., which are trivial to find under the
constraints in (I3). Note that the paths might not necessarily be optimal, as they may be improved by
small perturbations, e.g., there might be a small deviation that allows us to visit the smaller mode on
the way to the larger mode increasing the overall value of the sum of gradients, however, they give us
a good and quick approximation.

H Kernel for ODE Knorr pyrazole synthesis

The kernel is based on the following ODE model, which is well known in the chemistry literature and
given in [27]].

Ry = k1y2y3 — kayays (34
Ry = k3ys (35)
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and then:

d
iRy R,
d(iSZR1+R2

Our main goal is to optimize the product concentration of the reaction, which is given by y;. We
do this by sequentially querying the reaction, where we select the residence time, and the initial
conditions of the ODE, in the form yo = [0, A4, B, 0, 0], where A =1 — B.

Due to the non-linearity in Eq. (34) we are unable to fit a GP to the process directly. Instead, we first
linearize the ODE around two equilibrium points. The set of points of equilibrium are given by:

S1={y1=a1,y2 =b1,y3 = 0,54 = 0,y5 = c1]a1,b1,c1 € R}
Sa ={y1 = az,y2 = 0,y3 = bz,ys = 0,y5 = calas, b1, c1 € R}
And the Jacobian of the system is:

0 0 0 ks 0

0 —kiys —kiye kays kaya
J=10 —kiys —kiy kays kaya
0 kiys  kiye  —koys — ks —koys
0 kiys  kiya  —koys + ks —koyy
Giving: ) . )
0 0 0 3 0

0 0 —klbl kQCl 0

Jl = J|S1 =10 O —]ﬁbl k201 0
0 0 klbl —kgcl - kd 0

_O 0 klbl —/ﬂ261 + k’g 0_

[0 0 0 ks 07

0 —]ﬁbg 0 k2c2 0

J2 = J|52 =10 —klbz 0 kQCQ 0
0 klbg 0 —k262 — k’g 0

10 kiba 0 —kpco+ k3 0

Unfortunately, since the matrices are singular, we do not get theoretical results on the quality of the
linearization. However, linearization is still possible, with the linear systems given by:

dy | dy |
— =17 —=J
dt 1Y at 2y

We focus on the first system for now. The matrix has the following eigenvalues:

)\1’2 = (blkl + Cle + k3 + \/b%k% + C%k% + k§ + 2b161k1]€2 - ng(blkl - Clk2)>

1
2
Aza5 =0

Note that the three eigenvalues give us the corresponding solution based on their (linearly separable)
eigenvectors:

vs=[1 0 0 0 0], va=[0 1 0 0 0], vs=[0 0 0 0 1]
§(t) = p3vs + pavs + psvs
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where p; are constants. The behaviour of the ODE when this is not the case will depend on whether
the remaining eigenvalues will be real or not. However, note:

b%]{i% + C%kj% + kg + 2biciki1ko — ng(blkil — Clk‘g) > b%k% + ]4;?2) — 2b1k1ks = (blkﬁl — k‘3)2 >0
and therefore all eigenvalues will always be real. Therefore we can write down the solution as:

At Aot

y(t) = prvie™" + pavge™” + p3vz + pavs + Psvs

where we ignore the case of repeated eigenvalues for simplicity (this is the case where b7k? +
2b1c1kiks + c3k3 — 2k3(biky — c1ko) + k3 is exactly equal to zero). We further note that the
eigenvalues will be non-negative as:

biky + ciky 4 k3 = \/(bk1 + c1ko + k3)?
= \/b%k% + C2]€% + k§ + 2b101k1k2 + 261]€2k2 + leklkg

> \JV2k2 + 23+ kZ 4 2brcakiky + 2enkoky — 26k
therefore:
A <A <0

which means the solutions will always be a linear combination of exponentially decaying functions
of time plus constants.

The eigenvectors have the closed form:

1,
2 (bikr + crks — ks + /b2k2 + 2bycikiks + 2k2 — 2(biky — c1ko)ks + k32 ) /ks, 1,
o= | & (baks + crks — ks + /BRRT T 2brcrhiky + 2R3 — 2(biky — cika)ks + 3 [hs, | — :%g _ t
1 (b1k1 4 erky + ks + /BTRZ T 2bicikiks + kS — 2(biki — cika)ks + k;g) Jks, AlA/lk{Ski )
1 (blkl + erks — 3ks + /02K + 2brerkiks + k2 — 2(biky — cika)ks + kg) Jks
1,
L (byky + erky — ks — /02kZ + 2bycaknky + 2R3 — 2(biky — cika)ks + k2 ) ks, b
vo— | & (baks + erks — ks — /BRRT T 2brcrhiky + 2R3 — 2(biky — cika)ks + 3 [hs, | — :Aszg _q
1 (b1k1 4 erky + ks — /BIRZ + 2bycikiks + kg — 2(biks — cika)ks + k-g) Jks, A?/zk/gki ;

-1 (bﬂcl + 1k — 3ks — \/O2RT + 2b1c1kiks + CORZ — 2(biky — cika)ks + k§) Jks

We are optimizing over initial set of conditions yo = [0, A, B, 0, 0], so solving for the specific values
of the constants gives:

p1f)\1_)\2
p2——)\1_)\2
p3=hB
p4:A—B
p5:23

Finally, since we are setting A = 1 — B and we are only optimizing the first component of i/ we can
obtain it in closed form:

yl(trB) =

/\2 At )\1 Aot
BeMt— 2L peht R
PV Wt Moo T

)\2 it )‘1 Aot
- B it _ 2t 41 36
(Al—Age Mot T (36)
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Figure 18: Comparing the numerical solution against the solutions found in equation (36).

The second ODE is very similar to the first, recall it depends has the following matrix:

0 0 ks 0
7](111)2 0 ]{1262 0
—k‘lbg 0 k‘gCQ 0

klbg 0 7117202 - kg 0
k1bo 0 —koco+ks O

Jo = J|S2 =

(ool en N en e an)

The resulting ODE is symmetric to the alternate linearization giving the same solution:

)\1t >\2t

y(t) = prvie™’ + pavge™’ + pavs + pavg + Psvs

with the only difference being the eigenvectors now are:
vs=[1 0 0 0 0], wg=[0 0 1 0 0], ws=[0 0 0 0 1]

which in turn leads to solutions of the form:

Ao At A Aot
t,B) = AeMt — ———Ae™' + A
yl(? ) )\1_A2 € )\1_)\2 € +

A2 A1t A1 Aot
=A it _ 21
(/\1—)\26 /\1_)\26 N

where A = 1— B. Note that we now have four different eigenvalues, which depend on the linearization
points:

)

1
)\51% — —5 (blk‘l + Clk‘g + ]{)3 + \/b%k% + C%k% + k‘g + 2b101k1k‘2 — 2]€3(b1]€1 — Cﬂi‘g))

1
A = —5 (bzk1 + coko + ks + \/bgk% + c3k3 + k3 + 2bzcoki ko — 2ks(boky — ch2)>

Giving solutions:

(1) (1)
(1) Ay ADy Al AL
v (t,B)=B| —g——p¢" = gy e+ 1
1 )\51) _ )\él) /\51) _ )\él)
(2) (2)
(2) Ag Ay Al APy
Y (t,B)zA —e1 = ——————e"2 " 41
1 )\(12) _ )\52) )\52) B /\gz)

Due to the length of the derivation, we confirm that our analysis is correct by comparing the numerical
solution of the ODE to the exact solution we found in Figure[I8] Finally, we look at interpolating
between the two solutions; so given the solutions y!) (¢, B) and y(® (¢, B) corresponding to the
linearization with stationary point in S7 and Ss respectively, we consider a solution of the form:

y(t, Blk1, ks, ks, a) = (1 — S(B))y ™M (t, B) + S(B)y®(t, B) 37)
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where S(z) := (1 + e~ ®#is(=05))=1 j5 3 sigmoid function centered at B = 0.5 and where we
have introduced a new hyper-parameter ;4. Finally, given Eq. we can obtain the kernel. In
particular, we want to be a feature we are predicting on; therefore the kernel is simply the (dot)
product of the features therefore:

kode((t7B)7 (t/7B/)) = y(thlkh k27k37a) X y(t/7B/|k17k25 kg,Oé)

And because we know we are simply approximating the data we can simply correct the model by
adding an Gaussian Process correction; giving us the final kernel:

kjomt((tv B)? (t/v B/)) = aodekode((tv B)7 (t/, B/)) + abekaf((t’ B), (t/7 B/))

where a4, and o ¢ are parameters we can learn, e.g. using the marginal likelihood.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " " itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:
* Delete this instruction block, but keep the section heading ‘“NeurIPS paper checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: All claims in the abstract are backed up by and developed in the paper.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss limitations in the conclusion: we are restricted to a specific
parameterization in the continuous state-space case.

Guidelines:

The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All proofs are in the Appendix, where we provide full assumptions and proofs,
or cite the relevant results. Specifically see Appendix [C]—[D]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We include all the method and computational details in[G]
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code will be made public upon acceptance, and an anonymized version is
included for the review process.

Guidelines:
» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We include all the method and computational details in[G|
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide regret quantiles in our experiments, reproduce on 25 random seeds
and use a variety of different benchmarks.

Guidelines:
» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See section[B.4l
Guidelines:
* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Upon reading the guidelines, the paper seems to conform to every point in the
NeurIPS Code of Ethics.

Guidelines:
¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There are no broader impacts to discuss, outside of those already established
by research into the area of design of experiments.

Guidelines:
* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There are no risks for misuse of our work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All exisiting assests are cited and the corresponding licenses respected.
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The only new asset will be the code implementation which will be published
upon acceptance.

Guidelines:
* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowd-sourcing or human subjected were used.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: No human subjects were used in this research.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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