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ABSTRACT

Out-of-distribution (OOD) data pose a significant challenge to deep learning (DL)
classifiers, prompting extensive research into their effective detection methods.
Current state-of-the-art OOD detection methods usually employ a scoring tech-
nique designed to assign lower scores to OOD samples compared to in-distribution
(ID) ones. Nevertheless, these approaches lack foresight into the configuration
of OOD and ID data within the latent space. Instead, they make an implicit as-
sumption about their inherent separation or force a separation post-training by
utilizing selected OOD data. As a result, most OOD detection methods result in
complicated and hard-to-validate scoring techniques. This study conducts a thor-
ough analysis of the logit embedding landscape, revealing that the ID and OOD
data exhibit a distinct spatial configuration. Specifically, we empirically observe
that the OOD data are drawn to the center of the logit space. In contrast, ID data
are repelled from the center, dispersing outward into distinct, class-wise clusters
aligned along the orthogonal axes that span the logit space. This study highlights
the critical role of the DL vision-based classifier in differentiating between ID and
OOD logits.

1 INTRODUCTION

Deep learning (DL) (vision-based) classifiers perform well at generalizing from large datasets,
achieving superior classification accuracy compared to many alternatives. They deliver highly accu-
rate predictions when the test data aligns with the training data distribution. However, current DL
classifiers are not capable of handling out-of-distribution (OOD) data. This limits their application
in critical fields such as autonomous systems. For instance, in autonomous driving, vision-based
DL classifiers are used to identify traffic signs, vehicles, and pedestrians from camera feeds. At
test time the car may encounter previously unseen objects, e.g., fallen cargo or unusual construc-
tion equipment, which constitute OOD inputs. If the perception module wrongly assigns these novel
obstacles to familiar classes, the planning stack can issue unsafe actions, jeopardising road safety.
Recent OOD detection methods predominantly operate under the assumption that a classifier, when
trained on in-distribution (ID) data, intrinsically maps the logits of OOD samples to a distinct spa-
tial location within the logit landscape, divergent from those of ID instances. Thus, differentiating
OOD instances from ID data typically involves assigning high likelihood values to the logit (or em-
beddings) location of the ID samples (Vyas et al., 2018; Lee et al., 2018; Sun et al., 2022; Gomes
et al., 2022; Liu et al., 2020). Nevertheless, these strategies lack foundational awareness regarding
the specific locational distribution of OOD samples in the embedding space. Consequently, these
techniques attempt complicated and computationally intensive density estimations of the ID logits,
categorizing those samples that fall beneath a certain likelihood threshold as OOD.

Instead, our study demonstrates that a well-trained DL classifier, incorporating non-linearities that
suppress negative values (e.g., ReLU), systematically maps ID data into well-defined, class-specific
clusters with a consistent spatial configuration. These ID clusters are situated along orthogonal axes
within the positively constrained logit space and are notably separated from the logit space’s center.
Additionally, we empirically observe that OOD data are not arbitrarily scattered in the logit space
but always drift toward the center. While prior work has leveraged ID logit to detect OOD data (Lee
et al., 2018; Liu et al., 2020; Choi et al., 2024; Katz-Samuels et al., 2025), these approaches neither
identify nor exploit the expected positioning of ID and OOD data within the logit space. Instead, this
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work showcases empirically where ID and OOD logits are structurally positioned within the logit
space.

The noted positioning of OOD and ID logits lays the groundwork for the possible creation of a
binary classifier (OOD from ID), which could lead to simpler yet more effective OOD detection
models. Key contributions of this study:

1. We showcase empirically that ID class clusters align along orthogonal axes in the positive logit
space, shifted away from the center, while OOD data cluster near the origin.

2. We provide extensive empirical validation across multiple models, supported by an ablation study.

2 RELATED WORK

Although the detection of OODs through ID logits has been extensively studied (Wang et al., 2022;
Liu et al., 2020; Hsu et al., 2020; Lee et al., 2018), existing methods do not consider their spatial
configuration. Conventional OOD detection methods predominantly classify data by first identify-
ing ID samples and subsequently labeling all other samples as OOD by default. A recent empirical
investigation has not only highlighted the transferability of ID training strategies to OOD detec-
tion but also identified a tangible correlation between the robustness of ID training protocols and
OOD detection efficacy (Wenzel et al., 2022). This study suggests that refining ID training methods
could unlock potential pathways for enhancing OOD detection. Another study examines the influ-
ence of pre-trained ViT (Vaswani et al., 2017) on ImageNet and reports notable improvements in
OOD detection performance (Dosovitskiy et al., 2021). Parallel to these observations, another line
of research incorporates outlier data, surrogates for OOD samples, within the training phase. This
is achieved through an auxiliary loss term that sharpens the contrast between ID and outlier inputs,
potentially strengthening OOD detection (Katz-Samuels et al., 2025; Hendrycks et al., 2019; Wang
et al., 2023; Du et al., 2022; Ming et al., 2022). Complementing these approaches, there has been
a significant effort to restrict the classification of ID data into a hyperspherical embedding, which
intrinsically helps OOD detection (Ming et al., 2023). Another line of research assumes an inherent
separation between OOD and ID logits and tries to devise scoring techniques using solely ID logits
or softmax output. The OOD detection works by classifying as OOD anything that is not ID. The ear-
liest work on this front assumes clustering of ID logits into a multimodal Gaussian distribution and
then tries to utilize Mahalanobis distance (Lee et al., 2018). More advanced methods try to upgrade
the Mahalonobis distance with geometric information using the Fisher Information matrix (Gomes
et al., 2022) Other works try to perform a data-driven density estimation using energy-based models
(Liu et al., 2020). Another promising research study demonstrates the utility of enhanced Hopfield
networks in amplifying the distinction between ID and OOD data (Doe et al., 2025). Similarly, an-
other proactive work tries to increase the separability between OOD and ID using kernel principal
component analysis on the OOD and ID embeddings (Fang et al., 2025). Last but not least, (Zhang
etal., 2024) tries to learn the shape of the ID feature space using an online expectation maximization,
which enhances the detection of OOD post-training.

3 METHOD

Underlying assumptions: In exploring ID and OOD data, it is crucial to delineate their distinctions
in relation to DL classifiers. The training dataset is regarded as the optimal empirical representation
of ID data. Under the manifold assumption (Bengio et al., 2013), ID data tend to aggregate into
class-specific regions based on discriminative features corresponding to each class. While the exact
parameterization of this feature space remains unknown, the annotated empirical ID dataset serves
as a practical surrogate. For ID data classification, DL classifiers are optimized to generalize the
distribution of class-specific discriminative features to effectively map the ID data into respective
clusters within the logit vector space. Whenever we encounter data whose features reside outside
the distribution of these class-specific discriminative features, they are considered OOD. The diver-
gence of OOD features can vary, ranging from near-OOD (slightly shifted from ID data) to far-OOD
(highly dissimilar). More concretely, a DL classifier trained to differentiate cats from dogs will en-
counter difficulties with photos of horses and wolves. However, because wolves’ features are more
similar to dogs, wolves represent near-OOD data compared to horses, which are farther from both
trained categories. Consequently, the more distant the OOD features are, the less they resemble the
discriminative features of ID classes, making them less perceptible by the DL classifier.
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Figure 1: Figure 1a shows raw training data sampled from a multimodal Gaussian distribution, uti-
lized to train a simple MLP binary classifier depicted in Appendix B. In this figure, red and green
points denote ID classes for binary classification, and blue points represent OOD data. Figure 1b and
fig. 1c show kernel density estimations (KDE) across logit cells for both OOD and ID data before
and after model training, respectively. In both figures, ’OOD-1" and *OOD-2’ refer to KDEs for
OOD data within the first and second logits, while "ID-1" and 'ID-2’ represent KDEs for ID class
one data in the first logit cell and ID class two data in the second logit cell, respectively.

Allocation of OOD and ID logits pre-train: To visually represent the empirical distributions of
ID and OOD logits before and after the training phase, we employed a binary classification model
using a multilayer perceptron (MLP) model (see table 1 in Appendix B). To minimize any initial
biases, weights of DL classifiers are initialized using a centered Gaussian distribution (Glorot &
Bengio, 2010), while the biases are set to zero. Hence, one can consider the features of both ID
and OOD data distributionally shifted from the initialized weights (see Assumption 1). This shift
manifests as reduced co-variation between the model’s weight parameters and both OOD/ID data
samples, resulting in a negligible expected dot product (see Corollary 1). Because DL classifiers
fundamentally rely on the dot product operations between data input and weights, this result suggests
that the logits of both ID and OOD data are centered around zero in the logit space prior to model
training, as shown in fig. 1b.

Assumption 1 (Distributional Separation). Let input data x ~ P, and model initial weights w ~ P,
be drawn from distinct distributions with

supp(P;) Nsupp(P,,) =0 (1)

Proposition 1 (Covariance Bound). Under Assumption 1, the covariance satisfies:

|Cov(z,w)| <€
Sfor small e > 0.

Proof. The disjoint support in eq. (1) almost surely makes their covariance small. O

Corollary 1. For zero-centered initialization (E[w] = 0 as in (Glorot & Bengio, 2010)):

|Cov(z,w)| <€

E[{z,w)] — E[z] E[w] | <€

S~~~
E[w]=0
[E[(z,w)]] <€

Thus, the expected logit magnitude for an initialized DL classifier is O(¢) small.
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Allocation of ID logits post-train: Assuming that DL classifiers operate as spatial-invariance
pattern-matching algorithms operating over the distribution of class-specific discriminative features,
these models produce high positive logits when the data features exhibit strong alignment with
the feature representations parameterized during training. To do so, DL classifiers rely on con-
volutions and matrix multiplications, which are composed of dot product operations between the
model weights and the input data. Training a DL classifier involves utilizing the cross-entropy loss,

(i.e., HY,Y) = — o V(k) log(ji(k))), to encourage the prediction ()) to closely align with

the ground truth ())). When employing one-hot encoding for both Y and Y, the training objective
simplifies to:

H(Y,Y) = =Y(j)log(¥(j)) — > V(i) log(V(i)) = — log(
%/_’ %/—’
Y(i)=1 LIET T y@)=0

(<>

(1))

Eventually, the minimization of the cross-entropy loss (i.c., min[H(Y, )A))]) equivalues to the maxi-
mum likelihood estimation (MLE) (i.e., min[— log(Y( N

As training progresses, the softmax layer aims to generate a response close to one for the cell (index
J) corresponding to the correct class (z’.e., Y@i) — 1). Additionally, owing to the inherent property
that the softmax output is confined within a simplex (i.e., Y(j) + D it V(i) = 1), the remaining

cells (indexed ¢) are pushed towards values close to zero (i.e., y (0)it; — 0).

Hence, optimization can be conceptualized as the maximization of the softmax cell corresponding
to the correct class and the simultaneous minimization of cells associated with incorrect classes.

This pattern of maximization-minimization is also observed in other classification losses (i.e., Sup-
port Vector Machine (Tang, 2015) and Kullback-Leibler divergence (Cui et al., 2024)), which are
commonly employed in training DL classification models. This maximization-minimization opti-
mization extends from softmax cells directly to the respective logit cells, as softmax maintains the
order of logits. In particular, the logit cell linked to the correct class tries to attain large positive
values (see fig. 1c).

However, when suppressing the negative values in an activation layer, the minimization process
results in logit values near zero rather than approaching negative values of high magnitudes (see
Proposition 2 in Appendix A). Therefore, ID data are projected toward the positive regions of the
logit space (see Proposition 2 in Appendix A). Given that the logits reach their high positive value for
the correct logit cell indicated by the one-hot encoding and approach zero for all other categories, it
is evident that the logits for ID samples cluster by class along orthogonal axes within the logit space
(see Proposition 2 in Appendix A).

This class-wise orthogonality has been previously observed in pre-logit (i.e., £) embeddings (Kotha-
palli, 2023; Papyan et al., 2020). However, since the final layer performs an affine transformation
defined by . = £V, sustaining high classification accuracy requires separation in £ to translate into
L. By applying induction on this affine property, one can show that class-wise orthogonality is not
limited to the embeddings but emerges consistently in the logit space as well.

Allocation of OOD logits post-train: During training, the objective is to align the model’s weights
with the class-specific discriminative features of the ID data. Given the features of OOD and ID data
derived from different distributions, they inherently exhibit a certain level of distributional shift in
the feature space. This shift is also reflected in the distribution of the OOD features in relation to the
model’s parameters since the latter are trained to align with the ID discriminative features. This shift
implies that the alignment between OOD discriminative features and parameters will likely remain
minimal, even post-train. As a result, their expected dot product tends to yield smaller magnitudes.
Therefore, OOD data tend to remain centered within the logit space even after training (see figs. 1b
and 1c). While some of the near-OOD samples might fall within the ID region, the far-OOD samples
remain separated (see fig. 1c).



Under review as a conference paper at ICLR 2026

4 RESULTS

In these experiments, we empirically observe that the OOD logits remain near the center of the logit
space both before and after training. In contrast, ID logits consistently gravitate towards clusters
around class-specific areas in the positive regions of the logit space. Furthermore, we show that
these ID clusters align with the orthogonal axis that spans the logit space embeddings. While the
majority of the experiments focus on far-OOD data, we additionally evaluate on synthesized near-
OOD cases to expose their expected phenomena in the logit space.
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(c) OOD and ID mode (i.e., density peak). (d) Evolution of the ID-out logits during training.

Figure 2: Figure 2a presents the density plot across various epochs for the aggregation of ID-in
across all logits, while fig. 2b displays the density plot across different epochs for the aggregation of
OOD across logits. Similarly, fig. 2d shows the density plot over different epochs for the aggregation
of ID-out across all logits. Since the KDE plots are limited to the first three and the final epochs,
we included fig. 2c to provide a comprehensive view of the entire trajectory, featuring the peak (i.e,
mode) of the density plot for every epoch.

OOD vs ID during training: In fig. 2, we empirically illustrate the distribution of ID and OOD log-
its before and after training. Additionally, we present the evolution of these distributions throughout
the training process. To do so, we employed Resnet-9 (He et al., 2016) with CIFAR-100 (Krizhevsky
et al., a) as the ID data and CIFAR-10 (Krizhevsky et al., b) as the OOD data. Additionally, for cor-
rectly classified ID data, we define: (1) ID-in’ as the logit value of the true class (which must be both
the maximum value across all logits and aligned with its one-hot encoded label), and (2) ID-out: as
all other logit values in the output vector.

We represent the empirical distributions of the logit outputs for both ID and OOD samples via
kernel density estimation (KDE) (Bishop, 2006). At the beginning of training, one can notice that
the densities for both OOD and ID logits are concentrated near zero (see figs. 2a to 2d). While
OOD and ID-out logits maintain their central tendency around zero (see fig. 2c) the ID-in logits
exhibit a shift towards higher positive values (see fig. 2a). Analyzing the peak (i.e., mode) of each
KDE density plot (i.e., ID-in, ID-out, and OOD in fig. 2c), it is evident that ID-in trends towards
positive values over time as anticipated by Proposition 2 . Furthermore, the ID-out and OOD logits
remain centrally positioned, aligning with our analytical predictions. In addition to the density plots
in figs. 2a, 2b and 2d, which illustrate the aggregation of ID-in, ID-out from training data along with
OOD across all logit cells, see Appendix D for a detailed visualization of density plots on individual
logit cells for a more in-depth analysis.

Objective: To empirically validate the persistence of this configuration, we conduct a series of com-
prehensive experiments across diverse settings, including different architectures such as DenseNet,
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ResNet, and Vision Transformers, along with the impact of various activation functions and dropout
rates. Furthermore, to rigorously analyze the distributional properties of ID and OOD logits, we em-
ploy KDE to visualize their densities. This unified visualization framework enables a direct compar-
ison of ID-in (the maximum logit values for correctly classified ID samples), ID-out (the remaining
logit values for correctly classified ID samples), and OOD. By overlaying their KDE plots, we as-
sess the shift between ID-in and OOD, the separation between ID-in and ID-out, and the degree of
overlap between OOD and ID-out distributions.

Effect of batch-normalization: Batch —— OOD-1 w/ BN — ID 1 w/ BN -+---- ID-1 w/o BN

normalization (BN) (Ioffe & Szegedy, ___ 00D 2 w/ BN ID 2 w/ BN ID-2 w/o BN
2015) is widely used in DL to stabi-

lize and accelerate training by center-
ing and scaling activations. However, J
its impact on the separation between 4 - e T
ID and QOD }oglts remains unclgar. 60 —40 —20 0 20 40 60 80
We examine this in a controlled setting .

. . i Logit values [A.U]
using the same experiment as in Fig-
ure 1, while comparing two identical

networks, with and without BN applied _. ) . .
after every layer (see Appendix B for Figure 3: BN on an MLP binary classifier pulls ID log-

1 iIs). When BN i i its toward zero, while OOD logits stay centered as in the
model details) en is applied, baseline (/o BN).

the logits of ID samples are pulled

closer to the center, whereas the logits

of OOD samples remain clustered around the center, just as they were without BN (see fig. 3). The

key driver is the centering step in BN (i.e., ; = \7%) which subtracts the mean p . For ID acti-
UB €

vations, this operation merely recenters values that are already positive, so most of them stay above
zero. In contrast, OOD activations can fall well below pz; after normalization they often become
negative and are subsequently clipped to zero by the activation function.

Additional experiments with different dropout rates and different activation functions are included
in Appendices E and F.
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Figure 4: An analysis of the density over aggregated logits across distinct DenseNet architectures
trained on the CIFAR-10 dataset as the ID data, while the OOD includes {D} \ CIFAR-10. For a
more detailed comparison, check figs. 34 to 41 in Appendix G.

Experiments on different CNN classifiers: The analysis of ID and OOD logits has been expanded
across various DL classifier models. Our study examines various iterations of DenseNet (Huang
et al., 2017), specifically versions 121, 161, 169, and 201, as well as ResNet (He et al., 2016),
encompassing versions 18, 34, 50, 101, and 152. Furthermore, the utilized experimental dataset
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Figure 5: An analysis of the density over aggregated logits across distinct ResNet architectures
trained on the CIFAR-10 dataset as the ID data, while the OOD includes {D} \ CIFAR-10. For a
more detailed comparison check figs. 42 to 51.

comprises {D} = {SVHN, CIFAR-100, CIFAR-10, Tiny ImageNet (Deng et al., 2009a), iSUN (Xu
et al., 2015), LSUN (Yu et al., 2016)}. Densenet and ResNet models are trained using SGD with
a cyclical learning rate starting at Ir = 10~3 with a cosine annealing operation with a periodicity
of 200. Furthermore, the momentum is 0.9 while the weight decay 5 - 10~%. A batch size of 256
is applied for both test and train data, while the number of epochs is 200. ReLU is utilized as
an activation function for every layer. No regularization is applied to the training process, while
the training data are augmented with random flipping and cropping. Each version of Densenet and
ResNet undergoes separate training on CIFAR-10 and SVHN as ID datasets. When CIFAR-10 is
utilized as ID, the remaining datasets are employed as OOD data, specifically {D} without CIFAR-
10 (i.e., {D} \ CIFAR-10) is utilized as OOD. Similarly, when SVHN is utilized as ID, the remaining
datasets are employed as OOD data, specifically {D} without SVHN (i.e., {D} \ SVHN).

Observations indicate that the ID-in logits consistently tend toward higher positive values across var-
ious versions of DenseNet (see fig. 4 and fig. 32 in Appendix G) and ResNet (see fig. 5 and fig. 33 in
Appendix G). Contrarily, ID-out and OOD logits tend to be concentrated around zero. Interestingly,
the spread and the degree of overlap between ID and OOD logits—remain consistent across dif-
ferent model architectures, including both ResNet and DenseNet variants. This suggests that these
properties are largely architecture-agnostic, reinforcing the generalizability of our findings.

Experiments on different vision transformers: Contrary to traditional convolutional neural net-
works (CNN) (e.g., DenseNet, ResNet), which process image patches exclusively on a spatial level,
vision transformers (ViT) incorporate an additional component of interleaved processing among
patches through the attention mechanism (Dosovitskiy et al., 2021). To examine the effects of this
interleaved processing on the arrangement of OOD and ID logits, we carried out experiments with
various ViT configurations, including the base (ViT-B) and large (ViT-L) models, each with two dif-
ferent patch sizes: 16x16 and 32x32 pixels. Furthermore, the utlized experimental dataset comprises
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{D} = { SVHN, CIFAR-100, CIFAR-10, Tiny ImageNet, iSUN, LSUN}. Each model undergoes
separate training on CIFAR-10 and SVHN as ID datasets. The remaining datasets are employed as
OOD data, specifically {D} \ CIFAR-10 and {D} \ SVHN.
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Figure 6: An analysis of the density over aggregated logits across distinct ViT architectures trained
on the CIFAR-10 dataset as the ID data, while the OOD includes {D} \ CIFAR-10. For a more
detailed comparison check figs. 52 to 60 in Appendix H

In fig. 6, one can notice that for all versions of the ViT, ID-in logits converge towards higher posi-
tive values as expected. Contrarily, the logits for both the ID-out and OOD samples predominantly
cluster around the center of the logit space. The persistence of the anticipated logit configurations
for both OOD and ID data empirically observes that, similarly to CNNs, ViTs effectively parame-
terize the discriminative feature distribution of ID data. While CNNs exclusively leverage localized
hierarchical features, ViTs augment these local patterns with global contextual information through
self-attention mechanisms (Vaswani et al., 2017). Since self-attention operates via patch-wise dot
product interactions, it preserves the intrinsic feature structure of the ID data, avoiding spurious fea-
ture generation. Furthermore, varying patch sizes (i.e., 16x16 to 32x32) in ViTs exhibit negligible
impact on the resulting logit distributions, suggesting that even the small patch size is sufficient for
the global context encoding. This invariance underscores that the parameterization of discriminative
features is largely unaffected by patch-wise tokenization, reinforcing the stability of ViTs in mod-
eling ID data distributions. Similarly, scaling the ViT from the base configuration (12 layers, 768
hidden dimensions, 12 attention heads) to the larger variant (24 layers, 1024 hidden dimensions, 16
heads) preserves the overall logit distribution structure. Despite the significantly expanded parame-
ter space, the larger model does not exhibit a substantial improvement in the separability between ID
and OOD samples, suggesting that mere architectural scaling alone is insufficient to enhance OOD
detection performance.

Near-OOD Detection Experiments: While prior work has focused on far-OOD detection (datasets
disjoint from ID data), we investigate the more challenging near-OOD regime. We first synthesize
very near-OOD samples by interpolating between features of distinct ID classes via:

Xpehop =t - X + (1 —t) - X3, 2

near-

such that ¢ € [0, 1], and, ¢; # cq, where ¢ controls the mixing strength (Wang et al., 2022).
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Figure 7: Figure 7a indicates ID-in and ID-out logits for the CIFAR-10 as ID test data when using
Resnet-34. Figure 7b indicates the shift of these logits towards the center when Xmixed " data using
the mixing operation in eq. (2).

Additionally, we perform linear interpolation — ID-in ID-out

with noise, 5
Knaroop =1 X +(1-1)-0. (3 2
such that ¢ € [0,1], and, Q@ ~ N(0,1), to cor-  *
rupt the images to generate synthetic outliers.
¢ . .. . -5 0 S 10 15
Both of these linear mixing operations (see Logit values [A.U]

egs. (2) and (3)) dilute the discriminatory char-
acteristics of the class (see eq. (2)), causing the
resulting samples to exhibit OOD behavior. As
shown in figs. 7b and 8, near-OOD samples are
closer to the origin of the logit space, unlike
ID samples, which form separable class clus-
ters (see fig. 7a). This aligns with our expectation, as class-specific features become diluted during
interpolation, their dot product with the model weights decreases, leading to correspondingly lower
logit values (red KDE density plots in figs. 7b and 8).

Figure 8: Logits for Xm0ise = (see eq. (3)); adding
noise shifts samples toward the origin in logit

space relative to ID.

ImageNet-1K Experiments: To confirm that our observations scale to large-scale settings, we re-
peated our logit-space analysis on ImageNet-1K (Deng et al., 2009b). Using several pretrained mod-
els (see Appendix C), we extracted the distributions of ID-in logits (the maximum logits for cor-
rectly classified samples), ID-out logits (all remaining logits), and OOD logits—here drawn from
the Places (Zhou et al., 2018) and Textures dataset (Cimpoi et al., 2014).

Because ImageNet-1K has 1000 — 00D —— ID-in ID-out
classes, we aggregated all ID-in values —

into one distribution, all ID-out values
into a second, and all OOD logits into
a third (fig. 9).

KDE [A.U]

In every case, ID-in logits remain ‘ J ‘ K;‘ ‘ ‘
strongly positive, whereas OOD log- -10 0 10 20 30 40
its cluster near zero. This result, Logit values [A.U]

consistent across dataset scale and
model depth, demonstrates the ro-
bustness of our logit-based sepa-  Fjgure 9: KDE of the “ID-in” logits and “ID-out” logits
ration. As shown in Appendix C,  acrogs all 1000 ImageNet-1K categories from a pretrained

we evaluate a broad suite of archi-  RegNet-18, overlaid with the density of OOD samples.
tectures—additional ResNet variants,

DenseNet, ResNeXt (Xie et al., 2017),
Wide-ResNet (Zagoruyko & Komodakis, 2016), MobileNet (Howard et al., 2017), and ViT—and
find that the observed behavior is stable across both convolutional models and vision transformers.
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5 CONCLUSION

Although current research on OOD detection focuses on developing new methods that naturally give
higher scores to ID data and, by default, lower scores to OOD samples, this study concentrates on
analyzing the differences between OOD and ID logit distributions.

Specifically, we empirically observed the anticipated configuration of OODs and IDs logits, i.e.,
that ID logits are clustered by class towards the positive region of the logit space, aligning with the
orthogonal axis that spans this space. Additionally, OOD logits remain consistently shifted from ID
logits, drawn around the center of the logit space.

This behavior of OOD and ID logits is consistent across various architectures (i.e., CNN and ViT)
and activation functions tested on a set of large and diverse OOD data.

As a future direction, the observed patterns within OOD, ID-in, and ID-out logits indicate the poten-
tial for a novel approach that leverages ID-out logits as proxies for OOD instances. This approach
will facilitate the development of a binary classifier neural network designed to differentiate between
OOD and ID samples, employing ID-out logits as representative proxies for OOD instances. Con-
sequently, this method addresses OOD detection as a straightforward classification challenge, thus
mitigating the need for threshold-based discrimination methods.

An additional crucial application of the observed logit configuration is the detection of ID data
shifts. Since ID values are typically oriented towards positive values along the corresponding axis,
this characteristic can be utilized to develop a more accurate and scalable approximation of the
Wasserstein distance. Consequently, this enables a more sensitive metric to detect shifts toward the
center of the logit space in the ID test data.
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