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Abstract

While quantum reinforcement learning (RL) has
attracted a surge of attention recently, its theo-
retical understanding is limited. In particular,
it remains elusive how to design provably effi-
cient quantum RL algorithms that can address the
exploration-exploitation trade-off. To this end,
we propose a novel UCRL-style algorithm that
takes advantage of quantum computing for tab-
ular Markov decision processes (MDPs) with S
states, A actions, and horizon H , and establish an
O(poly(S,A,H, log T )) worst-case regret for it,
where T is the number of episodes. Furthermore,
we extend our results to quantum RL with lin-
ear function approximation, which is capable of
handling problems with large state spaces. Specif-
ically, we develop a quantum algorithm based on
value target regression (VTR) for linear mixture
MDPs with d-dimensional linear representation
and prove that it enjoys O(poly(d,H, log T )) re-
gret. Our algorithms are variants of UCRL/UCRL-
VTR algorithms in classical RL, which also lever-
age a novel combination of lazy updating mecha-
nisms and quantum estimation subroutines. This
is the key to breaking the Ω(

√
T )-regret barrier

in classical RL. To the best of our knowledge,
this is the first work studying the online explo-
ration in quantum RL with provable logarithmic
worst-case regret.
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1. Introduction
Reinforcement learning (RL) is ubiquitous with wide ap-
plications (Sutton & Barto, 2018). RL studies how agents
take actions in an environment with the goal of maximizing
cumulative reward. In light of this, a fundamental prob-
lem in RL is the balance between exploration (of uncharted
territory) and exploitation (of current knowledge). This is
typically characterized by the regret defined as the cumula-
tive suboptimality of the policies executed by the algorithm.

One of the most notable models of RL is the Markov de-
cision process (MDP). Among MDPs, a tabular MDP is
arguably the simplest model by storing all state and action
pairs in a table. Tabular MDPs haveO(poly(S,A,H) ·

√
T )

regret (Jaksch et al., 2010; Azar et al., 2017), where S and
A are the number of states and actions, respectively, H is
the length of each episode, and T is the number of episodes.
However, in practice S and A can have formidable or even
infinite sizes. One typical solution is to employ linear func-
tion approximation. For a linear mixture MDP with a d-
dimensional linear representation for the transition kernel,
the regret can be improved to O(poly(d,H) ·

√
T ) (Ayoub

et al., 2020; Cai et al., 2020; Zhou et al., 2021).

Nevertheless, for MDPs in general including tabular MDPs
and linear mixture MDPs, the fundamental difficulty lies in
the Ω(

√
T ) lower bound on their regrets (Jaksch et al., 2010;

Jin et al., 2018; Zhou et al., 2021), and it solicits essentially
novel ideas to break this barrier. This gives rise to quantum
computing, which is known to achieve acceleration for some
relevant problems such as search (Grover, 1997), count-
ing (Brassard et al., 2002; Nayak & Wu, 1999), mean esti-
mation (Montanaro, 2015; Li & Wu, 2019; Hamoudi & Mag-
niez, 2019; Hamoudi, 2021; Cornelissen et al., 2022), etc.

In this paper, we study quantum reinforcement learn-
ing (Jerbi et al., 2022; Meyer et al., 2022), a combination
of reinforcement learning and quantum computing, where
the agent interacts with the RL environment by accessing
quantum oracles. This is in great contrast to classical re-
inforcement learning, where the agent interacts with the
environment by sampling. The quantum oracles enable
us to estimate models or value functions more efficiently
than classical sampling-based algorithms, thus breaking the
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Ω(
√
T ) regret lower bound. For example, Wan et al. (2022)

showed that logarithmic regret is possible in quantum ban-
dits, a simpler task than quantum reinforcement learning.
Currently, whether quantum algorithms can efficiently solve
MDPs remains elusive. The only exception is Wang et al.
(2021a), which developed fast quantum algorithms for solv-
ing tabular MDPs. However, their work requires a gen-
erative model (Kakade, 2003), thus it did not address the
exploration-exploitation trade-off, a core challenge in online
RL. In this work, we focus on online quantum RL and aim
to answer the following question:

Can we design algorithms that enjoy logarithmic
worst-case regret for online quantum RL?

Contributions. We study the exploration problem in quan-
tum reinforcement learning and establish poly(log T ) regret
bound, where T is the number of episodes. In specific,

• For tabular MDPs, we propose a novel algorithm Quantum
UCRL (Algorithm 1) and prove the worst-case regret
guarantee of O(poly(S,A,H, log T )).

• For linear mixture MDPs where the transition kernel per-
mits a d-dimensional linear representation, we develop
the algorithm Quantum UCRL-VTR (Algorithm 2) with
worst-case O(poly(d,H, log T )) regret guarantee.

Hence, we break the Ω(
√
T )-regret barrier in classical RL

as desired. To our best knowledge, we present the first line
of study on exploration in online quantum RL.

Challenges and Technical Overview. Classical RL lower
bound shows that

√
T regret is inevitable and we need to

use quantum tools to achieve speedup. Our key observation
is that quantum computing can achieve speedup in mean
estimation problems (see Lemma 3.1 and Lemma 3.2). Intu-
itively, as quantum mean estimation provides more accurate
estimations, it allows the agent to engage in more conser-
vative exploration, resulting in a more refined regret bound.
There are three main challenges to adapting the quantum
mean estimation subroutines in RL problems:

• The first challenge is how to collect data for the quan-
tum mean estimation subroutines to estimate the model.
In quantum RL, the observation is a sequence of quan-
tum states. However, upon measuring these quantum
states, their collapse ensues, avoiding their utilization in
the model estimation. Conversely, if we abstain from mea-
suring these quantum states, we face the challenge of how
to design strategic exploration policy.

• The second challenge is the difficulty of reusing the quan-
tum samples. As we have explained above, the quantum
samples will collapse after each estimation, which means
that the desired quantum algorithms cannot update model
estimation in each episode similar to the classical UCRL
and UCRL-VTR algorithms.

• Classical linear RL analysis heavily relies on martingale
concentration (Ayoub et al., 2020). However, in quantum
RL, there is no direct counterpart to martingale analysis.

We propose the following novel techniques to resolve the
above challenges, more details and technical comparisons
with existing works are deferred to Appendix A.2.

• For the first challenge, we observe that the quantum ora-
cles are able to imitate the classical sampling at a cost of
an additional H term in the regret (see the CSQA subrou-
tine in Appendix B.2). Thus, we can collect quantum sam-
ples by sampling a classical (s, a) first, and then querying
the transition oracle on |s, a⟩ to obtain a quantum sample
used to estimate the model.

• To mitigate the second challenge, we use the doubling
trick to design lazy-updating algorithms, which address
the challenge of reusing quantum samples by estimating
the model less frequently while still achieving efficient
quantum speedup. Specifically, for tabular MDPs, we pro-
pose the Quantum UCRL algorithm, a variant of UCRL2
(Jaksch et al., 2010), which utilizes the doubling trick to
the visiting times of each state-action pair to ensure the
lazy updating and adopts the quantum multi-dimensional
amplitude estimation (Lemma 3.1) to achieve quantum
speedup. For linear mixture MDPs, we develop the Quan-
tum UCRL-VTR algorithm (Algorithm 2), which is a
variant of UCRL-VTR (Ayoub et al., 2020). The Quan-
tum UCRL-VTR algorithm performs the doubling trick in
the determinant of the covariance matrix to ensure the lazy
updating property. This algorithm design, absent in previ-
ous work onquantum RL with a generative model (Wang
et al., 2021b), connects online exploration in quantum RL
with strategic lazy updating mechanisms.

• We redesign the lazy updating frequency and propose an
entirely new technique to estimate features (Algorithm 4)
for building the confidence set for the model. Our al-
gorithm design and analysis successfully handle some
subtle technical issues like estimating an unknown fea-
ture in each episode up to some accuracy that depends
on the estimated feature itself (cf. (5.5)). To the best
of our knowledge, this algorithm design (Algorithm 4)
and theoretical analysis are entirely novel in the literature
on (classical and quantum) RL theory. See “feature es-
timation” part of Section 5 and Appendix A.2 for more
details.

2. Preliminaries
Episodic Markov Decision Processes. An episodic
finite-horizon Markov decision process (MDP) can be
described by a tupleM = (S,A, H,P = {Ph}h∈[H], R =
{Rh}h∈[H]), where S is the state space, A is the action
space, Ph is the transition kernel at step h, Rh is the reward
function at the h-th step. For simplicity, we assume the
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reward function is known and deterministic. This is a
reasonable assumption since learning transition kernels is
more challenging than learning reward functions and our
subsequent results are ready to be extended to the unknown
stochastic reward functions.

At the beginning of each episode, the agent determines a
policy π = {πh : S 7→ ∆(A)}h∈[H]. Without loss of
generality, we assume that each episode starts from a fixed
state s1 ∈ S1. At each step h, the agent receives a state
sh, takes an action ah ∼ πh(· | sh), receives the reward
rh = Rh(sh, ah), and transits to the next state sh+1 ∼
Ph(· | sh, ah). The episode ends after receiving rH .

Given a policy π, its value function V π
h : S 7→ R at the h-th

step is defined as V π
h (s) = Eπ[

∑H
h′=hRh′(sh, ah) | sh =

s], where the expectation Eπ is taken with respect to the
randomness induced by the transition kernels and policy
π. Correspondingly, given a policy π, we define its h-
th step Q-function Qπ

h : S × A 7→ R as Qπ
h(s, a) =

Eπ[
∑H

h′=hRh′(sh, ah) | sh = s, ah = a]. It is well known
that the value function and the Q-function satisfy the follow-
ing Bellman equation:

Qπ
h(s, a) = Rh(s, a) + [PhV

π
h+1](s, a),

V π
h (s) = ⟨Qπ

h(s, ·), πh(· | s)⟩A, V π
H+1(s) = 0,

(2.1)

for any (s, a) ∈ S ×A. Here, Ph is the operator defined as

(PhV )(s, a) = E [V (s′) | s′ ∼ Ph(· | s, a)] (2.2)

for any function V : S 7→ R. The online exploration prob-
lem in reinforcement learning requires learning the optimal
policy π∗ by interacting with the episodic MDP, which by
definition maximizes the value function, i.e., V π∗

h (s) =
maxπ V

π
h (s) for all s ∈ S and h ∈ [H]. To simplify the

notation, we use the shorthands V ∗
h = V π∗

h and Q∗
h = Qπ∗

h

for all h ∈ [H]. We also use dπh(·) := Prπ(sh = ·) to
denote the occupancy measure over the states.

We use the notion of regret to measure the performance of
the agent. Suppose policy πt is executed in the t-th episode
for t ∈ [T ], then the regret for T episodes is defined as

Regret(T ) =

T∑
t=1

[V ∗
1 (s1)− V πt

1 (s1)].

We aim to design algorithms minimizing the regret.

Linear Function Approximation. To tackle the large state
space, we also consider the function approximation. In
this paper, we focus on the linear mixture MDP (Ayoub
et al., 2020; Modi et al., 2020; Cai et al., 2020), where the
transition kernel is linear in a feature map.

1Our subsequent results can be easily extended to the case
where the initial state is sampled from a fixed distribution.

Definition 2.1 (Linear Mixture MDP). We say an MDP
(S,A, H,P, R) is a linear mixture MDP if there exists a
known feature map ψ : S × A × S → Rd and unknown
vectors {θh ∈ Rd}h∈[H] with ∥θh∥2 ≤ 1 such that

Ph(s
′ | s, a) = ψ(s, a, s′)⊤θh (2.3)

for all (s, a, s′, h) ∈ S ×A× S × [H]. Moreover, for any
(s, a) ∈ S ×A and V : S 7→ [0, 1], we assume that

∥ϕV (s, a)∥2 ≤ 1, (2.4)

where we use the notation that

ϕV (s, a) =

∫
s′
ψ(s, a, s′) · V (s′)ds′. (2.5)

When d = |S|2|A| and the feature map ψ(s, a, s′) being
the canonical basis 1s,a,s′ ∈ R|S|2|A|, linear mixture MDPs
reduce to the tabular MDP. Also, linear mixture MDPs in-
clude another linear type MDPs proposed by Yang & Wang
(2020) as a special case. Finally, we remark that Yang &
Wang (2019); Jin et al. (2020) study the linear MDP, which
is different from the linear mixture MDP. Linear mixture
MDPs and linear MDPs are incomparable in the sense that
one cannot include the other as the special case.

3. Quantum Reinforcement Learning
In this section, we introduce basic concepts about quantum
computing and quantum-accessible reinforcement learning.
Further explanations are also given in Appendix B.

3.1. Quantum Computing

Basics. Consider a classical system that has d different
states, indexed from 0 to d − 1. We call these states
|0⟩, . . . , |d− 1⟩, where |i⟩ is identical to the classical state i.
A quantum state |v⟩ is a superposition of the classical states

|v⟩ =
d−1∑
i=0

vi|i⟩ (3.1)

where vi ∈ C is called the amplitude of |i⟩, |v⟩ is normalized
and

∑d−1
i=0 |vi|2 = 1.

Mathematically, |0⟩, . . . , |d−1⟩ forms an orthonormal basis
of a d-dimensional Hilbert space. As an example, a classical
state s ∈ S is related to a quantum state |s⟩ ∈ S̄ in quantum
reinforcement learning, where S̄ is a large Hilbert space
containing all the superposition of classical states. We call
{|s⟩}s∈S as the computational basis of S̄. Quantum states
from different Hilbert spaces can be combined with tensor
product. For notation simplicity, we use |v⟩|w⟩ or |v, w⟩ to
denote the tensor product |v⟩ ⊗ |w⟩. Operations in quantum
computing are unitaries, i.e., a linear transformation U such
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that U†U = UU† = I (U† is the conjugate transpose of
U ).

Information transfer between quantum and classical
computers. The information in a quantum state cannot
be “seen” directly. Instead, to observe a quantum state |v⟩,
we need to perform a quantum measurement on it. The
measurement gives a classical state i with probability |vi|2,
and the measured quantum state becomes |i⟩, losing all its
information. As an example, a measurement for quantum
state |i⟩ returns i with probability exactly 1.

Quantum access to the input data is encoded in a unitary op-
erator called quantum oracle. There are different common
input models in quantum computing, such as the probabil-
ity oracle (Definition B.1) and the binary oracle (Defini-
tion B.2). By quantum oracles the input data can be read in
superposition, i.e., they allow us to efficiently obtain a quan-
tum state |ϕ⟩ =

∑
s∈S as|s⟩ defined in (3.1), and perform

operations on these |s⟩ “in parallel”, which is the essence of
quantum speedups.

In our algorithm, we consider the query complexity as the
number of queries to the quantum oracles.

Quantum multi-dimensional amplitude estimation and
multivariate mean estimation. To achieve quantum
speedup, we exploit two standard quantum subroutines:
the quantum multi-dimensional amplitude estimation (van
Apeldoorn, 2021) and quantum multivariate mean estima-
tion (Cornelissen et al., 2022) stated below.

Lemma 3.1 (Quantum multi-dimensional amplitude es-
timation, Rephrased from Theorem 5 of van Apeldoorn
2021). Assume that we have access to the probability oracle
Up : |0⟩ →

∑n−1
i=0

√
pi|i⟩|ϕi⟩ for an n-dimensional proba-

bility distribution p and ancilla quantum states2 {|ϕi⟩}n−1
i=0 .

Given parameters ε > 0, δ > 0, an approximation p̃ such
that ||p − p̃||1 ≤ ε can be found with probability ≥ 1 − δ
using O(n log(n/δ)/ε) quantum queries to Up and its in-
verse.

Lemma 3.2 (Quantum multivariate mean estimation,
Rephrased from Theorem 3.3 of Cornelissen et al. 2022).
Let X : Ω → Rd be a d-dimensional bounded variable on
probability space (Ω, p) such that ||X||2 ≤ C for some
constant C. Assume that we have access to (i) the prob-
ability oracle Up : |0⟩ →

∑
ω∈Ω

√
p(ω)|ω⟩|ϕω⟩ for an-

cilla quantum states {|ϕω⟩}ω∈Ω; and (ii) the binary ora-
cle UX : |ω⟩|0⟩ → |ω⟩|X(ω)⟩, ∀ω ∈ Ω. Given two re-
als δ ∈ (0, 1) and ε > 0, there exists a quantum algo-
rithm outputs a mean estimate µ̃ of µ = E[X] such that
∥µ̃∥2 ≤ C and ∥µ̃− µ∥2 ≤ ε with probability ≥ 1− δ, us-

2Ancilla quantum states help and broaden the scope of quantum
computing tasks. The simplest case is that all states |ϕi⟩ are
identical and we can remove this state. In general, Lemma 3.1 and
Lemma 3.2 hold for any such oracle Up.

ing O(C
√
d log(d/δ)/ε) quantum queries to Up, UX , and

their inverses.

3.2. Quantum-Accessible Environments

In this paper, we hope to study the online exploration prob-
lem in quantum reinforcement learning by leveraging pow-
erful tools in quantum computing. To this end, we introduce
the quantum-accessible RL environments in this section.

Suppose we have two Hilbert spaces S̄ and Ā that contain
the superpositions of the classical states and actions. We
use {|s⟩}s∈S and {|a⟩}a∈A as the computational basis in
S̄ and Ā, respectively. Following the quantum-accessible
environments studied by previous works (Wang et al., 2021a;
Jerbi et al., 2022; Wiedemann et al., 2022), we use two
quantum oracles to access the episodic MDPM for each
step h ∈ [H]:

• The transition oracle P̄ = {P̄h}Hh=1 that returns the su-
perposition over next states according to the transition
probability Ph, which is a quantum probability oracle.

P̄h : |sh, ah⟩|0⟩ (3.2)

→ |sh, ah⟩ ⊗
∑
sh+1

√
Ph(sh+1 | sh, ah)|sh+1⟩.

• The reward oracle R̄ = {R̄h}Hh=1 that returns the binary
representation of the reward.3

R̄h : |sh, ah⟩|0⟩ → |sh, ah⟩|Rh(sh, ah)⟩. (3.3)

As long as a classical RL task can be written as a computer
program with source code, we can perform our quantum
RL algorithm with these quantum oracles and their inverse.
This is because such classical programs can in principle
be written as a Boolean circuit whose output follows the
distribution sh+1 ∼ Ph(· | sh, ah), and it is known that
any classical circuit with N logic gates can be converted
to a quantum circuit consisting of O(N) logic gates that
can compute on any quantum superposition of inputs (see
for instance Section 1.5.1 of (Nielsen & Chuang, 2002)
and (Wang et al., 2021a)), which gives the quantum state√
Ph(sh+1 | sh, ah)|sh+1⟩ in (3.2). On the other hand, we

also note that our oracle is a quantum counterpart for the
online setting in RL, which is weaker than the generative
setting: at a known state sh, ah we can apply the transition in
superposition, but we do not necessarily know how to apply
transition in superposition for any state. See Section 3.3 for
more details.

In classical RL environments, the agent interacts with any
MDP M by determining a stochastic policy π = {πh :

3Note that we have assumed that the reward R is known for
simplicity. It is straightforward to extend to the unknown reward
setting with quantum access to R̄ (Auer et al., 2008).
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S 7→ ∆(A)}h∈[H]. Analogously, we introduce quantum-
evaluation of a policy in quantum-accessible RL environ-
ments (Wiedemann et al., 2022; Jerbi et al., 2022). The
quantum evaluation of a classical policy π is H unitaries
Π = {Πh}Hh=1 such that

Πh : |s⟩|0⟩ → |s⟩
∑

a

√
πh(a | s)|a⟩ ∀h ∈ [H]. (3.4)

The unitary Πh quantizes the randomness of πh into the
quantum state

√
πh(a | s)|a⟩. Any policy that is classically

computable can be converted to such unitaries in quantum
computation efficiently (Grover & Rudolph, 2002; Jerbi
et al., 2022).

Quantum probability oracles are more powerful than clas-
sical sampling in the sense that we can simulate classical
sampling of sh ∼ dπh by quantum oracles using the Classical
Sampling via Quantum Access (CSQA) subroutine (Algo-
rithm 6) for an input policy π and target step h. The CSQA
subroutine computes a quantum state φh =

∑
s

√
dπh(s)|s⟩

using one call to P̄h′ and Πh′ for each h′ < h (the classical
sampling requires one sample from Ph′ and πh′ correspond-
ingly). Therefore, it suffices to measure φh to obtain a
classical sample sh ∼ dπh.

3.3. Quantum Exploration Problem

In the classical exploration problem, the agent interacts with
the environment by executing policy πh to take an action
ah ∼ πh(· | sh) based on the current state sh, and then
transiting to sh+1 ∼ Ph(· | sh, ah) for each step h in an
episode. In this paper, we study the exploration problem in
quantum-accessible environments (also called the quantum
exploration problem), which is a natural extension of the
classical exploration problem.

In the quantum exploration problem, the agent “executes”
a policy πh by calling the quantum evaluation Πh of πh,
and then “transits” to the next state by calling the transition
oracle P̄h. This correspondence is natural in that Πh and P̄h

exactly quantize the randomness of πh and Ph. The oracles
Πh and P̄h are allowed to be called once in an episode.

Prior to this paper, Wang et al. (2021a) studied the learning
of optimal policies on discounted MDP under quantum-
accessible environments. However, they assumed the ability
to prepare any quantum state |s⟩ for all s ∈ S , which enables
them to use P̄ and R̄ as generative models to query any state
and action (Sidford et al., 2018; Kearns & Singh, 1998). In
online RL, however, the agent cannot access unexplored
states. As a consequence, the agent has to actively explore
the unknown environment to learn the high-rewarded area of
the state space. This is known as the exploration challenge,
which is ubiquitous in the literature of online RL (Auer et al.,
2008; Azar et al., 2017; Jin et al., 2018). In the quantum
exploration problem, we cannot prepare arbitrary |s⟩, and
we need to resolve the exploration challenge.

Algorithm 1 Quantum UCRL
1: Input: failure probability δ.
2: Initialize for each ∀(s, a, h) ∈ S ×A× [H]:

• The counter and tag nh(s, a) := 0, lh(s, a) := 0.

• The empirical model P̂h(· | s, a) := Unif(S).

• The set of quantum samples Dh(s, a) := ∅.

3: Initialize the exploration policy π1 as a uniform policy.
4: for phase k = 1, 2, ..., ⌈T/H⌉ do
5: for step h = 1, 2, ...,H do
6: Call skh := CSQA(πk, h) (Algorithm 6), define

akh := πk
h(s

k
h).

7: Define |φ̄k,h+1⟩ := P̄h|skh, akh⟩|0⟩ and
|φ̄−1

k,h+1⟩ := P̄
−1
h |skh, akh⟩|0⟩.

8: Add {|φ̄k,h+1⟩, |φ̄−1
k,h+1⟩} to Dh(s

k
h, a

k
h).

9: Add the counter nh(skh, a
k
h) by 1.

10: if nh(skh, akh) = 2lh(s
k
h,a

k
h) then

11: Update P̂h(· | skh, akh) by calling quantum sub-
routine (Lemma 3.1) with Dh(s

k
h, a

k
h).

12: Add the tag lh(skh, a
k
h) by 1.

13: Set Dh(s
k
h, a

k
h) = ∅.

14: end if
15: end for
16: Set VH+1(s) = 0,∀s ∈ S.
17: for h = H,H − 1, ..., 1 do
18: Set bonus term bh(s, a) := Õ(HS/nh(s, a)).
19: Update Q,V by (4.2) and (4.3).
20: Set πk+1

h (s) := argmaxaQh(s, a).
21: end for
22: end for

4. Warmup: Results for Tabular MDPs
As an initial study of online quantum RL, we focus on the
tabular setting where the state and action space are finite
and of small sizes, where we assume |S| = S, |A| = A.
For tabular RL, we propose Quantum UCRL that learns the
optimal policy given quantum access to an episodic MDP.
Its key ingredients are summarized as follows.

Data collection scheme. Unlike classical RL that a com-
plete trajectory (s1, a1, s2, a2, ..., sH , aH) is revealed in a
single episode, we can only collect quantum states that can-
not be seen directly in quantum-accessible environments.
Therefore, we cannot build the estimators of Ph(· | sh, ah)
with sh+1 as in classical RL algorithms (Auer et al., 2008;
Azar et al., 2017) because sh, ah, sh+1 are not directly ob-
servable without measurements.

To this end, we divide T episodes into different phases,
where one phase consists of H consecutive episodes. We
use a fixed policy πk during the k-th phase to collect quan-
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tum samples for each h ∈ [H]. To construct an estimator
of Ph(· | sh, ah) for any (sh, ah), we need to first obtain a
classical sample (sh, ah), then query P̄h on |sh, ah⟩ to get
a quantum sample of Ph(· | sh, ah). Quantum subroutines
enable us to estimate Ph(· | sh, ah) with quantum samples
more efficiently. Fortunately, we can accomplish this classi-
cal sampling by the CSQA subroutine, and query P̄h once
to acquire a quantum sample.

Lazy updating via doubling trick. Fix a state-action pair
(s, a) and step h, it requires Õ(S/ϵ) quantum samples of
Ph(· | s, a) (i.e., Õ(S/ϵ) calls to P̄h or its inverse on
|s, a⟩) to form an ϵ-close estimator in terms of ℓ1 distance
(Lemma 3.1). However, the quantum estimation subroutine
requires to do a measurement in the end, which causes all
the quantum samples to collapse. As a result, these quantum
samples are not reusable in the future estimation, in contrast
to the classical setting where each sample can be reused to
construct future estimators.

This phenomenon has been observed by Wan et al. (2022)
in quantum bandits, where they also need to design a lazy
updating scheme to estimate the rewards of each arm. In the
quantum bandit problems, the agent is able to constantly pull
an arm and collect quantum samples to estimate it, while
it is not possible to constantly query on the same (s, a) in
MDPs. Therefore, we have to design a more complicated
lazy updating scheme.

We use a doubling trick to resolve this issue. Define the tag
function by lh(·, ·) : S ×A → N, which are initially 0. We
only reconstruct the estimator P̂h(· | s, a) using quantum
multi-dimensional amplitude estimation (Lemma 3.1) as
long as the number of quantum samples nh(s, a) reaches
2lh(s,a). Then we add lh(·, ·) by 1 to double the length of this
procedure. In this way, we ensure nh(s, a)/2 ≤ ñh(s, a) ≤
nh(s, a), where ñh(s, a) is the number of quantum samples
actually used to build the estimator. More details on the
counter updating is deferred to Remark B.4.

Optimistic planning. Thanks to the quantum subroutines
and doubling trick, we can construct an estimator P̂h(· |
s, a) for any (s, a) such that with high probability

∥∥∥P̂h(· | s, a)− Ph(· | s, a)
∥∥∥
1
≤ Õ

( S

nh(s, a)

)
. (4.1)

This greatly improves the Õ(1/
√
nh(s, a)) rate of empir-

ical estimation in classical RL (Jaksch et al., 2010). See
Appendix C.1 for the detailed implementation.

At the end of each phase, we update the optimistic value
functions by optimistic value iteration (Azar et al., 2017)
with bonus function bh(s, a) := Õ(HS/nh(s, a)) (see the

formal definition in (D.1)):

Qh(s, a) = min{Rh(s, a) + P̂hVh+1(s, a) + bh(s, a), H},
(4.2)

Vh(s) = max
a

Qh(s, a), (4.3)

where P̂h is the operator defined by (P̂hV )(s, a) =

E[V (s′) | s′ ∼ P̂h(· | s, a)]. The exploration policy πk+1

for the next phase is fixed as the greedy policy w.r.t. Q.

The theoretical guarantee of Algorithm 1 is given below.

Theorem 4.1. With probability at least 1− δ, the regret of
Quantum UCRL (Algorithm 1) is at most

Regret(T ) = O
(
S2AH3 log(T ) log(S2AH log(T )/δ)

)
.

The detailed proof of Theorem 4.1 is deferred to Ap-
pendix D. Our results show that it is possible to design
novel algorithms with only O(poly(log T )) regret with the
help of quantum subroutines. This greatly improves on
the classical setting where the regret bound of any classi-
cal algorithm must be at least Ω(

√
T ) (Auer et al., 2008;

Jin et al., 2018). We conjecture that the dependence of
S and H in Theorem 4.1 can be improved. Specifically,
to improve the dependency on S, it may be necessary to
design provably efficient model-free algorithms since the
regret O(S2A log(T )) seems inevitable for model-based al-
gorithms (Azar et al., 2017; Zhang et al., 2021). On the other
hand, to improve the dependency onH , one may need to uti-
lize the technique of variance reduction (Azar et al., 2017).

5. Results for Linear Mixture MDPs
The result for tabular MDPs is a simple demonstration of the
effectiveness of quantum RL. Our main setting is quantum
RL with linear function approximation. In specific, we
customize a novel quantum RL algorithm for linear mixture
MDP (Modi et al., 2020; Ayoub et al., 2020; Cai et al., 2020),
followed by theoretical guarantees.

We present the Quantum UCRL-VTR algorithm in Algo-
rithm 2. The learning process consists of T episodes, which
are divided into K phases. At each phase, the algorithm
has four ingredients: (i) model estimation; (ii) optimistic
planning; (iii) feature estimation; and (iv) regression targets
estimation. We present the details of the k-th phase below.

Model estimation. At the beginning of the k-th phase, the
agent has access to the estimators obtained in previous k−1
phases, including

6
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Algorithm 2 Quantum UCRL-VTR
1: for phase k = 1, · · · ,K do
2: Calculate {θ̄kh}h∈[H] and {Λk

h}h∈[H] as (5.3).
3: Construct the confidence set Ck = {Ckh}h∈[H]

as (5.4).
4: ({Qk

h}h∈[H], {V k
h }h∈[H], {πk

h}h∈[H])← Optimistic
Planning(Ck) (Algorithm 3).

5: {ϕ̂kh}h∈[H] ← Estimate Feature({Λk
h}h∈[H]) (Algo-

rithm 4).
6: Set wk ← maxh∈[H] ∥ϕ̂kh∥(Λk

h)
−1 .

7: {ykh}h∈[H] ← Estimate Regression Target(πk, V k, wk)
(Algorithm 5).

8: end for

Algorithm 3 Optimistic Planning
1: Input: Confidence set C = {Ch}h∈[H].
2: Calculate {θ̂h}h∈[H] by solving the following problem:

argmax
{θ′

h}h∈[H]

V ′
1(s1)

s.t.


Q′

h(·, ·) = Rh(·, ·) + ϕV ′
h+1

(·, ·)⊤θ′h, ∀h ∈ [H],

V ′
h(·) = maxa∈AQ

′
h(·, a), ∀h ∈ [H],

V ′
H+1(·) = 0,
θ′h ∈ C, ∀h ∈ [H].

3: VH+1(·) = 0.
4: for h = H, · · · , 1 do
5: Qh(·, ·) = Rh(·, ·) + ϕVh+1

(·, ·)⊤θ̂h.
6: Vh(·) = maxa∈AQh(·, a).
7: πh(· | ·) = argmaxπ⟨Qh(·, ·), πh(· | ·)⟩A.
8: end for
9: Output: ({Qh}h∈[H], {Vh}h∈[H], {πh}h∈[H]) .

Algorithm 4 Estimate Feature
1: Input: Positive definite matrices {Λh}h∈[H] .
2: Initialize: m = 1, ϕ̂h,0 = ϕ̂h,1 = 0, ∀h ∈ [H].
3: while ∥ϕ̂h,m−1∥(Λh)−1 < 22−m for all h ∈ [H] do
4: m← m+ 1.
5: for h = 1, · · · , H do
6: Calculate ϕ̂h,m by quantum multivariate mean es-

timation subroutine (Lemma 3.2) up to error 2−m.
7: end for
8: end while

• Estimated value functions {V τ
h }(τ,h)∈[k−1]×[H];

• Estimated features {ϕ̂τh}(τ,h)∈[k−1]×[H], which are esti-
mators of{
ϕτh := E(sh,ah)∼πτ [ϕV τ

h+1
(sh, ah)]

}
(τ,h)∈[k−1]×[H]

.

Algorithm 5 Estimate Regression Target
1: Input: Policy π, value functions {Vh}h∈[H], and pa-

rameter w.
2: for h = 1, · · · , H do
3: Calculate yh, the estimator of Eπ[PhVh+1(sh, ah)],

by quantum mean estimation subroutine (Lemma 3.2)
up to error w.

4: end for

• Regression targets {yτh}(τ,h)∈[k−1]×[H], which are estima-
tors of{

E(sh,ah)∼πτ [PhV
τ
h+1(sh, ah)]

}
(τ,h)∈[k−1]×[H]

.

Note that, for any h ∈ [H],

Eπτ [PhV
τ
h+1(sh, ah)] = Eπτ

[ ∫
s′
V τ
h+1Ph(s

′ | sh, ah)ds′
]

= Eπτ

[ ∫
s′
V τ
h+1ψ(sh, ah, s

′)⊤θhds
′
]

= (ϕτh)
⊤θh, (5.1)

where the first equality uses the definition of the opera-
tor Ph defined in (2.2), the second equality follows from
the definition of linear mixture MDP in Definition 2.1,
and the last equality is obtained by the definition that
ϕτh = Eπτ [ϕV τ

h+1
(sh, ah)]. Here Eπτ is taken respect

to (sh, ah) and we omit (sh, ah) for simplicity. Inspired
by (5.1), for any h ∈ [H], we solve the following weighted
ridge regression problem to estimate θh

θ̄kh ← argmin
θ

k−1∑
τ=1

(
(ϕ̂τh)

⊤θ − yτh
)2

w2
τ

+ λ ∥θ∥22 , (5.2)

where the weightwτ is calculated in previous k−1 episodes
and we will specify its choice in Line 2 of Algorithm 2.
λ is a regularization parameter that will be specified in
Theorem 5.2. The solution of (5.2) takes the form

θ̄kh = (Λk
h)

−1
( k−1∑

τ=1

ϕ̂τh · yτh
w2

τ

)
,

where Λk
h =

k−1∑
τ=1

ϕ̂τh(ϕ̂
τ
h)

⊤

w2
τ

+ λId.

(5.3)

We remark that the work (Zhou et al., 2021) in classical
RL also adopted the weighted ridge regression to estimate
models. The w2

τ in Zhou et al. (2021) is the estimated vari-
ance, while w2

τ here is the estimation uncertainty measured
by matrix weighted norm (cf. Line 2 of Algorithm 2). Be-
sides, Wan et al. (2022) applied a similar weighted ridge
regression to quantum linear bandits. However, we have an
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extra challenge in determining wτ to incorporate the quan-
tum speed-up: the feature ϕτh is unknown and needs to be
estimated from data. To this end, we propose the “feature
estimation” part, which is completely new and essential for
RL. See Remark 5.1 for details.

Optimistic planning. Given the estimators {θ̄kh}h∈[H], we
construct the confidence set Ck = {Ckh}h∈[H] for {θh}h∈[H],
where

Ckh =
{
θ : ∥θ − θ̄kh∥Λk

h
≤ βk

}
, (5.4)

and βk ≥ 0 is the radius of the confidence set specified
later. We will prove that θh ∈ Ckh for all h ∈ [H] with high
probability. Based on this confidence set, we can perform
the optimistic planning (Algorithm 3).

Feature estimation. Recall that we use estimated features
{ϕ̂τh}(τ,h)∈[k−1]×[H] to perform the weighted ridge regres-
sion in (5.2) since {ϕτh}(τ,h)∈[k−1]×[H] are unknown. In
the k-th phase, we need to estimate features {ϕkh}h∈[H] by
quantum tools. For the sake of theoretical analysis (cf. Ap-
pendix E), the ideal estimators {ϕ̂kh}h∈[H] should satisfy

∥ϕ̂kh − ϕkh∥2 ≤ max
h∈[H]

∥ϕ̂kh∥(Λk
h)

−1 , (5.5)

for all h ∈ [H]. Even for the classical setting, this prob-
lem still seems challenging since the accuracy in the right
hand side of (5.5) depends on the estimators {ϕ̂kh}h∈[H]

themselves. Meanwhile, we hope to achieve acceleration in
estimating {ϕkh}h∈[H] with the help of quantum tools, which
poses another challenge. To this end, we propose a novel
feature estimation process, which leverages a novel combi-
nation of the binary search and quantum mean estimation
oracles. See Algorithm 4 and Appendix C.2 for details.

Remark 5.1. Since linear bandits do not involve unknown
transition kernels and the feature is known to the learner
(Wan et al., 2022), this challenge is unique to linear mixture
MDPs. Meanwhile, in classical RL (Ayoub et al., 2020),
there is no need to estimate the feature due to martingale
analysis, which typically results in only a

√
T regret, with-

out a quantum computing speedup counterpart. Finally, we
would like to emphasize that the technical challenge elabo-
rated in (5.5) has not appeared in previous literature, and the
corresponding algorithm design (Algorithm 4) and analysis
(e.g., Lemma E.3) are entirely new. More elaborations of
our novelties are deferred to Appendix A.2.

Regression targets estimation. At the end of k-th phase,
we use quantum multivariate mean estimation oracle in
Lemma 3.2 to calculate regression targets {ykh}h∈[H]. We
provide the pseudocode in Algorithm 5 and defer more
details to Appendix C.3.

The theoretical guarantee for Algorithm 2 is given below,
and the proof is deferred to Appendix E.

Theorem 5.2. Let λ = 1 in (5.3) and βk = 1 + 2
√
dk

in (5.4). Fix δ > 0. Then with probability at least 1− δ, the
regret bound of Algorithm 2 satisfies

Regret(T ) = O
(
d5/2H9/2 log3/2

(
1 +

T 3

d

)
· ι
)
,

where ι = O(log(dH log(1 + T 3/d)/δ)).

We have established an O(poly(d,H, log T )) regret in The-
orem 5.2 as desired. This logarithmic regret breaks the
Ω(
√
T ) barrier in classical RL (Zhou et al., 2021).

Proof Sketch. Firstly, we show that the phase num-
ber K is bounded by Õ(dH) (Lemma E.1). Addition-
ally, we establish that the k-th phase contains at most
Õ(
√
dH2/maxh∈[H] ∥ϕ̂kh∥(Λk

h)
−1) episodes, as detailed in

Lemma E.3 and Lemma E.4. Through a novel regret de-
composition analysis (Lemma E.2 and the proof in Ap-
pendix E.5), we establish that each episode in the k-th phase
incurs at most Õ(Hβk · maxh∈[H] ∥ϕ̂kh∥(Λk

h)
−1) error. By

combining these results, we derive our final regret bound.
Notably, our proof diagram, especially the feature estima-
tion analysis, is completely new.

6. Related Works
Exploration is the core problem in online RL. In the litera-
ture of classical RL, there is a long line of works designing
no-regret algorithms for tabular RL (Jaksch et al., 2010;
Azar et al., 2017; Jin et al., 2018; Zanette & Brunskill, 2019;
Zhang et al., 2021; Wu et al., 2022; Zhang et al., 2022), RL
with linear function approximation (Yang & Wang, 2019;
Ayoub et al., 2020; Jin et al., 2020; Cai et al., 2020; Yang &
Wang, 2020; Modi et al., 2020; Zhou et al., 2021), and RL
with general function approximation (Jiang et al., 2017; Sun
et al., 2019; Wang et al., 2020; Du et al., 2021; Ishfaq et al.,
2021; Jin et al., 2021; Foster et al., 2021; Zhong et al., 2022;
Chen et al., 2022). Our work is mostly related to Jaksch et al.
(2010) and Ayoub et al. (2020). Specifically, Jaksch et al.
(2010) proposed the UCRL2 algorithm for tabular RL and
established an Õ(poly(S,A,H) ·

√
T ) regret bound. Ayoub

et al. (2020) focused on linear mixture MDPs and proposed
the UCRL-VTR algorithm with Õ(poly(d,H) ·

√
T ) regret

bound, where d is the ambient dimension. In comparison,
we leverage quantum tools and design novel algorithms with
logarithmic regret for both tabular and linear mixture MDPs.

For classical RL, Jaksch et al. (2010); Jin et al. (2018); Zhou
et al. (2021) showed that, without additional assumption,
the
√
T regret is inevitable. To this end, some works (Sim-

chowitz & Jamieson, 2019; Yang et al., 2021; He et al.,
2021; Xu et al., 2021; Dong & Ma, 2022) proposed algo-
rithms with logarithmic gap-dependent regret. In contrast,
we establish logarithmic worst-case regret in quantum RL.

Quantum machine learning has become a popular research
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topic in recent years (Schuld et al., 2015; Biamonte et al.,
2017; Arunachalam & de Wolf, 2017; Dunjko & Briegel,
2018). In particular, the study of quantum RL is rapidly
advancing (see e.g., Meyer et al., 2022). In the following,
we make comparisons to existing literature in quantum RL
related to our work.

• Quantum bandits: For the special model of bandits, Casalé
et al. (2020); Wang et al. (2021b) studied the exploitation
problem of best-arm identification of multi-armed bandits.
As for exploration, Wan et al. (2022) proposed quantum
algorithms for multi-armed bandits and linear bandits
with logarithmic regret, and Li & Zhang (2022) extended
logarithmic regret guarantee to quantum algorithms for
stochastic convex bandits. Lumbreras et al. (2022) studied
exploration versus exploitation when learning properties
of quantum states. We note that these papers focused on
the bandit problems and are not as general as the tabular
and linear mixture MDPs studied in this paper.

• Quantum policy iteration: Cherrat et al. (2022); Wiede-
mann et al. (2022) studied how to train MDPs on quantum
computers via policy iteration, and Cornelissen (2018);
Jerbi et al. (2022) studied quantum algorithms for com-
puting policy gradients. These papers focused on how to
train MDPs on quantum computers and did not study the
exploration guarantee of quantum algorithms.

• Quantum RL with quantum environments: Dunjko et al.
(2015; 2016; 2017); Hamann et al. (2021); Saggio et al.
(2021); Hamann & Wölk (2022) considered genuine quan-
tum environments and corresponding quantum RL mod-
els. These results exploit RL to solve quantum problems,
while we focus on classical RL problems and use quantum
computing to make their exploration more efficient.

Comparison with Concurrent Work (Ganguly et al.,
2023). The concurrent and independent work (Ganguly
et al., 2023) also focuses on quantum RL and establishes
logarithmic regret for tabular MDPs. We provide compar-
isons between Ganguly et al. (2023) and our work below.

• The problem settings are different. Ganguly et al.
(2023) assumes an MDP proceeding classically, with an
agent providing a certain action ah at time step h, get-
ting reward rh, and stepping to next state sh+1 from
sh. Here (sh, ah, rh, sh+1) are collected as classical
information. For each step, the agent is assumed to
observe S additional quantum samples returned by S
unitaries: Us|0⟩ =

√
1− Ph(sh+1 = s | sh, ah)|0⟩ +√

Ph(sh+1 = s | sh, ah)|1⟩,∀s ∈ S, which encode the
probability of making transition to sh+1 by taking ac-
tion ah at state sh in order to estimate the distribution
Ph(sh+1 = · | sh, ah) ∈ RS . In contrast, our work con-
siders a quantum-accessible environment. In our work,
the agent is allowed to take a quantum policy as (3.4),
which is stochastic and is naturally evaluated by unitaries.

The transition and reward are also given by quantum uni-
taries as (3.2) and (3.3). The whole episode of MDP is
quantized and it is natural to quantum computers. Due
the the different models studied by Ganguly et al. (2023)
and us, our regret bound is worse than their regret bound
by a factor of H . We want to emphasize that our analysis
immediately implies the same regret bound as theirs under
their setting.

• More importantly, our work also considers linear mixture
MDPs, which are not considered by Ganguly et al. (2023).
This setting is significantly more challenging than the
tabular setting. To establish the logarithmic regret for
linear mixture MDPs, we develop new algorithm designs
and theoretical analysis, as detailed in the “Challenges
and Technical Overview” part of the introduction section,
Section 5, and Appendix A.2.

7. Conclusion
In this paper, we initiate the study of the online exploration
problem in quantum RL. For both tabular MDPs and linear
mixture MDPs, we propose novel algorithms with prov-
able logarithmic worst-case regret guarantee. To our best
knowledge, we provide the first theoretical understanding of
quantum speedup in online RL. We believe our work opens
up many promising directions for future investigation:
Tighter regret bounds in tabular and linear settings.
Since the MDP with a generative model is a simpler set-
ting than the online quantum RL considered by us, the
sample complexity lower bound Ω(S

√
AH1.5/ϵ) in the pre-

vious work Wang et al. (2021b) immediately implies the
sample complexity lower bound for online quantum RL.
By the relationship between regret and sample complexity
(see Appendix A.1), this Ω(S

√
AH1.5/ϵ) further implies a

Ω(S
√
AH1.5) regret lower bound (C = S

√
AH1.5 therein).

Regarding the lower bound for linear mixture MDPs, we can
regard the hard instance constructed in (Wang et al., 2021b)
as a linear mixture MDP with d = S2A (see also our discus-
sions below (2.2)). Hence, by the same proof in Wang et al.
(2021b), we can obtain an Ω(

√
dH3/ϵ) sample complexity

lower bound and an Ω(
√
dH3) regret lower bound for linear

mixture MDPs. It would be interesting to derive tighter or
even minimax optimal regret bound for these setting.
General function approximation. It is natural to ask
whether it is possible to establish a logarithmic regret bound
in RL with general function approximation. A core chal-
lenge is the absence of uniform convergence. The uni-
form convergence in classical RL enables us to estimate
E[f(x)] using n samples of x for any f ∈ F up to error
log(|F|)/

√
n. However, it remains elusive if we can de-

sign a quantum algorithm to return an estimator with error
log(|F|)/n. Furthermore, our techniques for bypassing mar-
tingale analysis seem challenging to extend the results to
linear MDPs (Jin et al., 2020) and more general settings.
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A. Additional Discussions
A.1. Discussions on Regret Lower Bound and Sample Complexity

We first discuss the relationship between regret guarantee and sample complexity. Similar arguments have been presented in
Jin et al. (2018).

• A regret upper bound guarantee implies a sample complexity upper bound. If an algorithm executes policies {πi}Ti=1

and incurs a regret Reg(T ) in T episodes, the algorithm can output a policy π̄ = Uniform({πi}Ti=1) (uniformly select a
policy). The gap between π̄ and the optimal policy π∗ is Reg(T )/T . Solving the inequality Reg(T )/T ≤ ϵ gives the
sample complexity of the algorithm. For example, a classical

√
T -regret upper bound implies a ϵ−2 sample complexity;

our log T -regret upper bound implies a ϵ−1 sample complexity.

• A sample complexity lower bound implies a regret lower bound guarantee. Assuming g(ϵ) is a known sample
complexity lower bound, for any algorithm with regret Reg(T ), it implies a sample complexity f(ϵ) as discussed above.
Solving the inequality f(ϵ) ≥ g(ϵ) yields a regret lower bound. For example, suppose there is a hard instance where
every algorithm necessitates C/ϵ (resp. C/ϵ2) sample complexity to obtain the ϵ optimal policy, where C involves certain
problem parameters (e.g., S,A,H, d) and sufficiently large constants. Now, assume the existence of an algorithm that
achieves regret o(C) (resp. o(

√
CT )). This implies an o(C/ϵ) (resp. o(C/ϵ2)) sample complexity, which contradicts the

sample complexity lower bound. Hence, we can conclude that in this hard instance, every algorithm incurs a regret at least
Ω(C) (resp. Ω(

√
CT )).

Further discussions on the gap between upper bounds and lower bounds. Ignoring the logarithmic terms (in T or ϵ),
our regret/sample complexity can be improved in terms of (S,A,H)/(d,H). We conjecture that all these dependencies can
be enhanced. One potential approach is using the variance reduction technique, as in classical online RL (Azar et al., 2017;
Zhou et al., 2021). However, we currently lack an understanding of how to apply this in the context of online quantum RL.
Moreover, deriving the minimax optimal sample complexity in MDPs with a generative model remains an open question,
and addressing the sample complexity problem in this simpler setting seems more feasible and may provide more insights
into obtaining sharper bounds in online quantum RL. As an initial exploration of online quantum RL, we leave achieving the
tighter or even minimax optimal regret bound as future work.

A.2. More Discussions on Our Novelties

Algorithm design novelties: One can regard the bandits as the MDPs satisfying (i) the state space only contains a
single dummy state sdummy; (ii) H = 1; and (iii) the reward only depends on the action chosen by the learner, i.e.,
r(sdummy, a) = r(a). In this case, the learner can repeatedly pull a particular arm a to collect sufficient samples to estimate
r(sdummy, a). However, in online RL, the state will transit according to the transition kernel, preventing repeated arm pulls
for the desired estimator. To address this, we introduce a novel adaptive lazy-updating rule, quantifying the uncertainty of
the visiting state-action pair and updating the model infrequently through the doubling trick. This algorithm design, absent
in previous works on quantum bandits (Wan et al., 2022) and quantum RL with a generative model (Wang et al., 2021b),
connects online exploration in quantum RL with strategic lazy updating mechanisms, inspiring subsequent algorithm design
in online quantum RL.

Technical novelties: In the tabular setting, a significant technical challenge is obtaining a high probability regret bound,
as vanilla regret decomposition (e.g., the one used in UCBVI) leads to a martingale term of order O(H

√
T ). Though it is

not the dominating term in the classical setting, it would become the dominating term in our setting. We found that another
regret decomposition (i.e., the one used in EULER) based on the expected Bellman error cleverly bypasses such martingale
terms in the regret, thus achieving the desired regret bound.

In the linear setting, the algorithm requires a novel design to leverage the advantage of quantum mean estimation. Classical
linear RL analysis heavily relies on martingale concentration, such as the well-known self-normalized concentration bound
for vectors. However, in quantum RL, there is no direct counterpart to martingale analysis. Consequently, we redesign
the lazy updating frequency and propose an entirely new technique to estimate features for building the confidence set for
the model. Notably, previous works on quantum bandits (Wan et al., 2022) do not need to take this step since there is no
unknown transition kernel in their setting. Moreover, estimating the features poses a subtle technical challenge, as elaborated
in (5.5). Our proposed algorithm (Algorithm 4), which features binary search and quantum mean estimation, successfully
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addresses this technical challenge. Meanwhile, the quantum samples used in feature estimation approximately equal the
number of quantum samples in each phase, eliminating extra regret for this additional feature estimation. This algorithm
design (Algorithm 4) and theoretical analysis are entirely new in the literature on (classical and quantum) RL theory.

B. Additional Explanations on Quantum Computing
In this section, we supplement the details about the basics of quantum computing, and how to simulate classical sampling in
quantum-accessible environments.

B.1. Oracles

First, we give the explicit definition about the probability oracle and binary oracle mentioned in Lemma 3.1 and Lemma 3.2.

Definition B.1 (Probability Oracle). Consider a probability distribution p on a finite set Ω. We say Up is a probability oracle
for p if

Up : |0⟩ →
∑
ω∈Ω

√
p(ω)|ω⟩|ϕω⟩

where {|ω⟩}ω∈Ω are orthonormal vectors representing ω ∈ Ω, and |ϕω⟩ are ancilla quantum states. Commonly we set
Ω = {1, . . . , n} for some integer n.

Definition B.2 (Binary Oracle). Consider a random variable X : Ω→ R on a finite probability space (Ω, p). We say UX is
a binary oracle for X if

UX : |ω⟩|0⟩ → |ω⟩|X(ω)⟩ ∀ω ∈ Ω

In the above definitions |0⟩ can be short for |0 . . . 0⟩ with more than one qubits.

Remark B.3. A quantum oracle is not only applied to |0⟩ or the computational basis. It is a unitary that acts on any quantum
state in the corresponding Hilbert space. For example, the binary oracle UX can be used as below:∑

ω∈Ω

aω|ω⟩|0⟩
UX−−→

∑
ω∈Ω

aω|ω⟩|X(ω)⟩

where
∑

ω∈Ω aω|ω⟩ is a normalized quantum state, i.e.,
∑

ω∈Ω |aω|2 = 1.

B.2. Classical Sampling via Quantum Access

We introduce the subroutine Classical Sampling via Quantum Access (CSQA) here (Jerbi et al., 2022; Wiedemann et al.,
2022). On the input policy π and target step h, CSQA returns a sample sh ∼ dπh using at most 1 episode of quantum
interactions (one call to each oracle P̄h′ for h′ < h). Note that according to Grover & Rudolph (2002) we know the unitary
Πh is efficiently computable given a classical policy π = {πh}Hh=1 for any h ∈ [H].

Algorithm 6 Classical Sampling via Quantum Access (CSQA)
1: Input: policy π, target step h.
2: Prepare |φ⟩ := |s1⟩|0⟩A(|0⟩S |0⟩A)⊗(h−2)|0⟩S .
3: for h′ = 1, 2, ..., h− 1 do
4: Call Πh′ on the (2h′ − 1)-th and 2h′-th register of |φ⟩.
5: if h′ < h− 1 then
6: Call P̄h′ on the (2h′ − 1)-th, 2h′-th, and (2h′ + 1)-th register of |φ⟩.
7: end if
8: end for
9: Output: Measure the last register of |φ⟩ in the standard basis of S̄, and output the result.

Here the notation |0⟩S and |0⟩A are used to distinguish the superposition of states and actions, ⊗ denotes the tensor product.
The implementation of CSQA is simply a quantum simulation of the classical sampling procedure. We use |φh′⟩ to denote
the (2h′ − 1)-th register of |φ⟩. Starting with h′ = 1, CSQA performs the quantum evaluation of πh′ on |φh′⟩ and get
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the result Πh′ |φh′⟩|0⟩A at first. Then CSQA calls P̄h′ on Πh′ |φh′⟩|0⟩A|0⟩S to obtain |φh′+1⟩ as the last register. It is
straightforward to verify the correctness of this process: if

|φh′⟩ =
∑
s

√
dπh′(s)|s⟩,

by the definition in (3.2), we know the last register of P̄h′Πh′ |φh′⟩|0⟩A|0⟩S (i.e., |φh′+1⟩) equals

|φh′+1⟩ =
∑
s

√
dπh′+1(s)|s⟩,

since4

Πh′ |φh′⟩|0⟩A|0⟩S =
∑
s,a

√
dπh′(s, a)|s, a⟩|0⟩S

P̄h′−−→
∑
s,a,s′

√
dπh′(s, a)Ph(s′ | s, a)|s, a, s′⟩

be definition. Therefore, the last register s′ is equal to∑
s′

√∑
s,a

dπh′(s, a)Ph(s′ | s, a)|s′⟩ =
∑
s′

√
dπh′+1(s

′)|s′⟩ = |φh′+1⟩.

Finally, we can measure the last register of |φ⟩ and obtain a sample |sh⟩ with probability dπh(sh).
Remark B.4 (Discussion on Counter Updating). First, we would like to clarify that tracking the number of quantum samples
nh(s, a) does not require the agent to know the next state, whether it is a classical state or a quantum state. Tracking nh(s, a)
only requires knowing the classical state (s, a) at step h, which is achieved by CSQA (Algorithm 6). This algorithm returns
a classical state (s, a) at step h according to the given roll-out policy. When we use (s, a) to query the transition oracle at
step h, it is equivalent to apply P̄h on the input state |s, a⟩|0⟩, since |s, a⟩ denotes the quantum representation of (s, a) in
the Hilbert space of quantum superpositions. A quantum sample is returned after the query, so we can increase the counter
nh(s, a) by 1 since we gain a new independent quantum sample P̄h|s, a⟩|0⟩.

C. Quantum Oracles Used in the Algorithms
For the tabular MDPs, we use the quantum probability oracles for Ph(· | s, a) for each (s, a, h) ∈ S ×A× [H] to construct
estimators P̂h(· | s, a). For the linear mixture MDPs, we construct the quantum probability oracles and quantum binary
oracles for the feature ϕkh and the regression target Eπk [PhV

k
h+1(sh, ah)] to estimate them efficiently. In this section, we

describe how to construct these quantum probability oracles in detail. Note that in our case, the quantum oracle encodes a
classical distribution; for simplicity, we omit ancilla quantum states in probability oracles in Definition B.1. The simplified
probability oracle is also sufficient for estimation (van Apeldoorn, 2021; Cornelissen et al., 2022). See also Gilyén & Li
(2020) for the relationships between quantum oracles that encode distributions.

C.1. Model Estimation in Tabular MDPs

The only usage of the quantum probability oracles in Quantum UCRL (Algorithm 1) is at Line 1, when the number of visits
nh(sh, ah) reaches 2lh(sh,ah) for step h and some state-action pair (sh, ah). At this time, the dataset Dh(sh, ah) stores all
the quantum samples querying P̄h on the same input |sh, ah⟩|0⟩. By definition of P̄h, this is equivalent to the quantum
samples obtained by querying the following quantum probability oracle

Uh,sh,ah
: |0⟩ →

∑
s′

√
Ph(s′ | sh, ah)|s′⟩. (C.1)

Note that we have nh(sh, ah) independent quantum samples obtained by calling Uh,sh,ah
(or its inverse). Therefore, we can

turn to the quantum multi-dimensional amplitude estimation subroutine (Lemma 3.1) to obtain an estimate P̂h(· | sh, ah)
such that ∥∥∥P̂h(· | sh, ah)− Ph(· | sh, ah)

∥∥∥
1
≤ c1S

nh(sh, ah)
log

S

δ
(C.2)

with probability at least 1− δ.

4With a little abuse of notations, we use dπh(·, ·) to denote the occupancy measure of π at step h over state-action space.
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Remark C.1 (Discussion on Binary Oracle in Tabular MDPs). We can definitely generalize the results of Lemma 3.1 to
Lemma 3.2 with binary oracle in the tabular setting. This is done in the following way. For a fixed (s, a) pair, we define
the binary oracle Us,a : |s, a⟩|s′⟩|0⟩ → |s, a⟩|⃗1[s′]⟩, where 1⃗[s′] is an S-dimensional standard basis vector encoded by
s′ (i.e., a one-hot vector with non-zero entry at the s′ position). Combined with the probability oracle P̄h : |s, a⟩|0⟩ →∑

s′

√
Ph(s′ | s, a)|s′⟩, we can estimate the S-dimensional vector (Ph(s1 | s, a),Ph(s2 | s, a), ...,Ph(sS | s, a))⊤ ∈ RS

suppose s′ is enumerated from the state space {s1, s2, ..., sS} using Lemma 3.2. Since we hope the l1 estimation error to
be bounded by ϵ, the sample complexity of such estimation is O(S log(S/δ)/ϵ), the same as Lemma 3.1. Since the target
vector (Ph(s1 | s, a),Ph(s2 | s, a), ...,Ph(sS | s, a)) is actually a distribution over the state space, we can also encode this
vector as the amplitude of a quantum superposition and use Lemma 3.1 to estimate the amplitude. We choose Lemma 3.1
mainly because the quantum multi-dimensional amplitude estimation subroutine is conceptually simpler without requiring
an additional binary oracle, so it is more efficient in implementation.

C.2. Feature Estimation in Linear Mixture MDPs

Recall that we need to estimate the feature

ϕkh = Eπk

[
ϕV k

h+1
(sh, ah)

]
(C.3)

in order to perform the value target regression in the phase k of Quantum UCRL-VTR (Algorithm 2). Here ϕV k
h+1

(·, ·) is a
known feature mapping. Define the binary oracle UV,k,h+1 for ϕV k

h+1
(·, ·) as follows

UV,k,h+1 : |s, a⟩|0⟩ → |s, a⟩|ϕV k
h+1

(s, a)⟩. (C.4)

Note that as ϕV k
h+1

(·, ·) is entirely known, we can construct this binary oracle by applying a series of SA controlled gates on
the two registers, where the i-th controlled gate (i ∈ [SA]) applies an addition of ϕV k

h+1
(s, a) to the second register if and

only if the first register equals to the i-th pair of (s, a) among all SA possibilities. Each of these gates can be implemented
on O(logSA) qubits with gate complexity O(logSA) (Barenco et al., 1995).

Next, we construct the quantum probability oracle

Uk,h : |0⟩ →
∑
s,a

√
dπ

k

h (s, a)|s, a⟩ (C.5)

by the same way as in the CSQA subroutine (Algorithm 6), where we do not measure φh at the last line of CSQA and
outputs Πk

hφh|0⟩ instead for Πk
h being the quantum evaluation of πk

h.

Now equipped with the quantum probability oracle Uk,h and binary oracle UV,k,h+1, we can construct the estimation of ϕkh
by the quantum multivariate mean estimation subroutine (Lemma 3.2) to build estimators ϕ̂kh as in Algorithm 4.

C.3. Regression Target Estimation in Linear Mixture MDPs

Similar to the feature estimation, we can construct the quantum probability oracle for the regression target

Eπk

[
PhV

k
h+1(sh, ah)

]
. (C.6)

Note that by definition this term is equal to

Eπk

[
V k
h+1(sh+1)

]
. (C.7)

Therefore, it suffices to construct the binary oracle for V k
h+1

U ′
V,k,h+1 : |s⟩|0⟩ → |s⟩|V k

h+1(s)⟩, (C.8)

and construct the quantum probability oracle

U ′
k,h : |0⟩ →

∑
s

√
dπ

k

h+1(s)|s⟩. (C.9)

These two oracles can be constructed by the same way discussed in the previous section. As a result, we can leverage the
quantum mean estimation subroutine (Lemma 3.2) to estimate the regression target as desired in Algorithm 5.
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D. Proofs for Tabular MDPs
D.1. Proof

The total number of phases is obviously K := ⌈T/H⌉. Define the surrogate regret as

Regret(K) :=

K∑
k=1

V ∗
1 (s1)− V πk

1 (s1).

Then the cumulative regret is bounded by

Regret(T ) ≤ H · Regret(K)

because the policy πk is fixed in phase k and the length of phase k is at most H .

To bound the surrogate regret, we first rule out several failure events. Define the failure event E as

E :=
⋃
s,a,h

E1s,a,h
⋃
E2

E1s,a,h :=

{
∃k ∈ [K],

∥∥∥P̂k
h(· | s, a)− Ph(· | s, a)

∥∥∥
1
> min

(
2c1SL

nkh(s, a)
, 2

)}
,∀(s, a, h) ∈ S ×A× [H]

E2 :=

∃(s, a, k, h) ∈ S ×A× [K]× [H], nkh(s, a) <
1

2

∑
j<k

wj
h(s, a)− log

2SAH

δ

 ,

where nkh denotes the counter nh at the beginning of phase k, P̂k
h denotes the estimator P̂h at the beginning of phase k.

L := log(S2AH log(T )/δ) is a logarithmic term. wk
h(s, a) := Prπk(sh = s, ah = a) is the visiting probability of (s, a) at

step h by πk.

Lemma D.1 (Failure Event). It holds that Pr(E) ≤ δ.

Proof. Fix any (s, a, h), the estimators P̂k
h(· | s, a) switches for at most log T times during K episodes, because it switches

only when nh(s, a) doubles. According to Appendix C.1, we know for any fixed k ∈ [K], it holds that∥∥∥P̂k
h(· | s, a)− Ph(· | s, a)

∥∥∥
1
≤ min

(
2c1SL

nkh(s, a)
, 2

)
with probability 1− δ/2SAH log(T ). By union bound we have Pr(E1s,a,h) ≤ δ/2SAH . Using another union bound gives
Pr(∪s,a,hE1s,a,h) ≤ δ/2.

On the other hand, we know Pr(E2) ≤ δ/2 according to Section D.4 of Zanette & Brunskill (2019) or Section B.1 of Dann
et al. (2019). As a result, we know Pr(E) ≤ δ.

Motivated by the failure event, we formally define the bonus function bh(s, a) for (s, a) ∈ S ×A as

bh(s, a) := min

(
2c1HSL

nh(s, a)
, 2H

)
. (D.1)

Next we show the optimism of the value functions.

Lemma D.2 (Optimism). Denote the optimistic functions Q and V at the beginning of phase k by Qk, V k. Outside the
failure event E it holds that for all k ∈ [K]

V k
1 (s1) ≥ V ∗

1 (s1).

Proof. Let the bonus function bh at the beginning of phase k be bkh. We prove this lemma by induction on h = H,H−1, ..., 1.

Note that Qk
H(s, a) = Q∗

H(s, a) = Rh(s, a) by definition. Thus, V k
H(s) ≥ V ∗

H(s) for all s ∈ S.
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Suppose V k
h′(s) ≥ V ∗

h′(s) for all h′ > h and s ∈ S. By definition we have

Q∗
h(s, a)−Qk

h(s, a) = PhV
∗
h+1(s, a)− P̂k

hVh+1(s, a) + bkh(s, a)

≤ PhV
∗
h+1(s, a)− P̂k

hV
∗
h+1(s, a) + bkh(s, a)

≤
∥∥∥Ph − P̂k

h

∥∥∥
1
·
∥∥V ∗

h+1

∥∥
∞ + bkh(s, a)

≤ 0.

The first inequality is due to the induction hypothesis. The last inequality is because E does not hold and ∥V ∗
h+1∥∞ ≤ H .

Next, we define the “good set” Gk,h (Zanette & Brunskill, 2019) of state-action pairs in phase k and step h to be state-action
pairs that have been visited sufficiently often.
Definition D.3. The good set Gk,h for phase k and step h is defined as

Gk,h :=

(s, a) ∈ S ×A :
1

4

∑
j<k

wj
h(s, a) ≥ log

2SAH

δ
+ 1

 .

We have the following lemma for Gk,h.
Lemma D.4. Outside the failure event E , for any (k, h) ∈ [K]× [H] and (s, a) ∈ Gk,h, it holds that

nkh(s, a) ≥
1

4

∑
j≤k

wj
k(s, a).

Proof. Outside E we have

nkh(s, a) ≥
1

2

∑
j<k

wj
h(s, a)− log

2SAH

δ

=
1

4

∑
j<k

wj
h(s, a) +

1

4

∑
j<k

wj
h(s, a)− log

2SAH

δ

≥ 1

4

∑
j<k

wj
h(s, a) + 1

≥ 1

4

∑
j≤k

wj
h(s, a).

The second inequality is due to the definition of Gk,h.

The state-action pairs outside Gk,h contributes little to the regret.
Lemma D.5. Define L̄ := log(2SAH/δ). There exists constant c2 such that

K∑
k=1

H∑
h=1

∑
(s,a)/∈Gk,h

wk
h(s, a) ≤ c2SAHL̄.

Proof. Observe that
K∑

k=1

H∑
h=1

∑
(s,a)/∈Gk,h

wk
h(s, a) =

∑
s,a

H∑
h=1

K∑
k=1

wk
h(s, a)1{(s, a) /∈ Gk,h}

≤
∑
s,a

H∑
h=1

(
log

2SAH

δ
+ 1

)
≤ c2SAHL̄.
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Lemma D.6 (Rephrased from Lemma 13 of Zanette & Brunskill (2019)). For any h ∈ [H],

K∑
k=1

∑
(s,a)∈Gk,h

wk
h(s, a)

max(1, nkh(s, a))
= O (SA log T ) .

Proof of Theorem 4.1. Outside the failure event E , the surrogate regret can be decomposed as

Regret(K) =

K∑
k=1

V ∗
1 (s1)− V πk

1 (s1) ≤
K∑

k=1

V k
1 (s1)− V πk

1 (s1)

=

K∑
k=1

H∑
h=1

∑
s,a

wk
h(s, a) ·

((
P̂h − Ph

)
V k
h+1(s, a) + bkh(s, a)

)

≤
K∑

k=1

H∑
h=1

∑
s,a

wk
h(s, a)b

k
h(s, a).

The last inequality is by the definition of E and bkh.

Using the good set Gk,h, we further bound the surrogate regret as

Regret(K) ≲
K∑

k=1

H∑
h=1

∑
s,a

wk
h(s, a)b

k
h(s, a)

=

K∑
k=1

H∑
h=1

∑
(s,a)∈Gk,h

wk
h(s, a)b

k
h(s, a) +

K∑
k=1

H∑
h=1

∑
(s,a)/∈Gk,h

wk
h(s, a)b

k
h(s, a)

≤
K∑

k=1

H∑
h=1

∑
(s,a)∈Gk,h

wk
h(s, a)b

k
h(s, a) + 2c2H

2SAL̄.

The last inequality is by Lemma D.5.

The remaining term can be bounded by

K∑
k=1

H∑
h=1

∑
(s,a)∈Gk,h

wk
h(s, a)b

k
h(s, a) ≤

K∑
k=1

H∑
h=1

∑
(s,a)∈Gk,h

2c1HSL · wk
h(s, a)

max(1, nkh(s, a))
+ 2H2SA

= 2c1HSL

H∑
h=1

∑
(s,a)∈Gk,h

K∑
k=1

wk
h(s, a)

max(1, nkh(s, a))
1{(s, a) ∈ Gk,h}+ 2H2SA

≲ HSL

H∑
h=1

SA log(T ) +H2SA

= H2S2AL log(T ) +H2SA.

The second inequality is by Lemma D.6.

Now we come to our final regret bound

Regret(T ) ≤ H · Regret(K) = O
(
H3S2AL log(T ) +H2SAL̄+H3SA

)
.
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E. Proofs for Linear Mixture MDPs
E.1. Total Number of Phases

Lemma E.1 (Phase Number). The number of phases K satisfies

K ≤ O
(
dH · log

(
1 +

T 3

d

))
.

Proof of Lemma E.1. For any k ∈ [K], there exists an hk ∈ [H] such that

∥ϕ̂khk
∥(Λk

hk
)−1 = max

h
∥ϕ̂kh∥(Λk

h)
−1 . (E.1)

By (5.3), we have

Λk+1
hk

= λId +

k∑
τ=1

ϕ̂τhk
(ϕ̂τhk

)⊤

w2
τ

= Λk
hk

+
ϕ̂khk

(ϕ̂khk
)⊤

w2
k

, (E.2)

which further implies that

det(Λk+1
hk

) = det
(
Λk
hk

+
ϕ̂khk

(ϕ̂khk
)⊤

w2
k

)
= det

(
(Λk

hk
)1/2

(
Id +

(Λk
hk
)−1/2ϕ̂khk

(ϕ̂khk
)⊤(Λk

hk
)−1/2

w2
k

)
(Λk

hk
)1/2

)
= det(Λk

hk
) · det

(
Id +

(Λk
hk
)−1/2ϕ̂khk

(ϕ̂khk
)⊤(Λk

hk
)−1/2

w2
k

)
. (E.3)

By the fact that det(Id + vv⊤) = 1 + ∥v∥22 for any v ∈ Rd, (E.3) yields

det(Λk+1
hk

) = det(Λk
hk
) ·

(
1 +

∥∥(Λk
hk
)−1/2ϕ̂khk

∥∥2
2

w2
k

)
= det(Λk

hk
) ·

(
1 +

∥∥ϕ̂khk

∥∥2
(Λk

hk
)−1

w2
k

)
(E.4)

Recall that wk = maxh ∥ϕ̂kh∥(Λk
h)

−1 . Together with (E.1) and (E.4), we obtain

det(Λk+1
hk

) = 2 det(Λk
hk
). (E.5)

Meanwhile, by the same argument of (E.2), we know Λk
h ⪯ Λk+1

h , which implies that

det(Λk+1
h ) ≥ det(Λk

h), ∀h ∈ [H]. (E.6)

Combining (E.5) and (E.6), we have for any k ∈ [K]

H∏
h=1

det(Λk+1
h ) ≥ 2

H∏
h=1

det(Λk
h). (E.7)

Applying (E.7) to all k ∈ [K], we have

H∏
h=1

det(ΛK+1
h ) ≥ 2K

H∏
h=1

det(Λ1
h) = 2KλdH , (E.8)

where the last equality uses the fact that Λ1
h = λ · Id for all h ∈ [H]. On the other hand, we have

tr(ΛK+1
h ) = tr(λ · Id) +

K∑
τ=1

tr
( ϕ̂τh(ϕ̂τh)⊤

w2
τ

)
= λd+

K∑
τ=1

∥ϕ̂τh∥22
w2

τ

≤ λd+
K∑

τ=1

H2

w2
τ

, (E.9)
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where the last inequality uses the fact that ∥ϕ̂τh∥2 ≤ H for all (τ, h) ∈ [K]× [H]. Since ΛK+1
h is positive definite for any

h ∈ [H], we further have

det(ΛK+1
h ) ≤

( tr(ΛK+1
h )

d

)d

≤
(
λ+

K∑
τ=1

H2

d · w2
τ

)d

, ∀h ∈ [H], (E.10)

where the last inequality follows from (E.9). Meanwhile, by the facts that (i) Algorithm 5 uses (C†H2 · ι/wτ ) trajectories in
the τ -th phase (cf. Lemma 3.2), where C† is an absolute constant; and (ii) the total number of trajectories is T , we have
H/wτ ≤ O(T ) for all τ ∈ [K]. Together with (E.8), (E.10), λ = 1, and K ≤ T , we obtain that

K ≤ O
(
dH · log

(
1 +

T 3

d

))
,

which finishes the proof of Lemma E.1.

E.2. Optimism

Lemma E.2 (Optimism). We define the event E† as

E† = {θh ∈ Ckh, ∀(k, h) ∈ [K]× [H]},

where Ckh = {θ ∈ Rd : ∥θ − θ̄kh∥Λk
h
≤ βk} and βk = 1 + 2

√
dk. Then we have

P(E†) ≥ 1− δ.

Proof of Lemma E.2. Fix some (k, h) ∈ [K]× [H]. By the definition of θ̄h in (5.3), we have

θ̄kh − θh = (Λk
h)

−1
( k−1∑

τ=1

ϕ̂τh · yτh
w2

τ

)
− θh

= (Λk
h)

−1
( k−1∑

τ=1

ϕ̂τh · (yτh − (ϕ̂τh)
⊤θh)

w2
τ

)
− λ(Λk

h)
−1θh.

For any x ∈ Rd, by the triangle inequality we have

|x⊤(θ̄kh − θh)| ≤
∣∣∣x⊤(Λk

h)
−1

( k−1∑
τ=1

ϕ̂τh · (yτh − (ϕ̂τh)
⊤θh)

w2
τ

)∣∣∣+ λ
∣∣x⊤(Λk

h)
−1θh

∣∣
≤ ∥x∥(Λk

h)
−1 ·

∥∥∥ k−1∑
τ=1

ϕ̂τh · (yτh − (ϕ̂τh)
⊤θh)

w2
τ

∥∥∥
(Λk

h)
−1

+ λ∥x∥(Λk
h)

−1 · ∥θh∥(Λk
h)

−1 , (E.11)

where the last inequality is obtained by Cauchy-Schwarz inequality. Let x = Λk
h(θ̄

k
h − θh), and (E.11) gives that

∥θ̄kh − θh∥Λk
h
≤

∥∥∥ k−1∑
τ=1

ϕ̂τh · (yτh − (ϕ̂τh)
⊤θh)

w2
τ

∥∥∥
(Λk

h)
−1︸ ︷︷ ︸

(i)

+λ · ∥θh∥(Λk
h)

−1︸ ︷︷ ︸
(ii)

. (E.12)

Term (i): We define

M =
( ϕ̂1h
w1
, · · · ,

ϕ̂k−1
h

wk−1

)
∈ Rd×(k−1), N =

(y1h − (ϕ̂1h)
⊤θh

w1
, · · · ,

yk−1
h − (ϕ̂k−1

h )⊤θh
wk−1

)⊤
∈ R(k−1)×1. (E.13)

With the notations in (E.13), we have

(i) = ∥MN∥(Λk
h)

−1 =
√
N⊤M⊤(Λk

h)
−1MN ≤

√
∥N∥2 · ∥M⊤(Λk

h)
−1M∥2 · ∥N∥2, (E.14)
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where the last inequality follows from Cauchy-Schwarz inequality. Note that

|yτh − (ϕ̂τh)
⊤θh| ≤ |yτh − (ϕτh)

⊤θh|+ |(ϕτh)⊤θh − (ϕ̂τh)
⊤θh|

≤ |yτh − (ϕτh)
⊤θh|+ ∥ϕτh − ϕ̂τh∥2 · ∥θh∥2

≤ wτ + wτ = 2wτ , (E.15)

where the first inequality follows from the triangle inequality, the second inequality uses the Cauchy-Schwarz inequality, and
the third inequality uses Lemma E.4 and Lemma E.3. Combining (E.15) the definition of N in (E.13), we have ∥N∥∞ ≤ 2,
which further implies that

∥N∥2 ≤
√
(k − 1) · ∥N∥∞ ≤ 2

√
k. (E.16)

Meanwhile, we have

∥M⊤(Λk
h)

−1M∥2 ≤ tr
(
M⊤(Λk

h)
−1M

)
= tr

(
(Λk

h)
−1MM⊤). (E.17)

By the definition of M in (E.13), we have

MM⊤ =

k−1∑
τ=1

ϕ̂τh(ϕ̂
τ
h)

⊤

w2
τ

= Λk
h − λ · Id, (E.18)

where the last equality follows from the definition of Λk
h in (5.3). Combining (E.17) and (E.18), we have

∥M⊤(Λk
h)

−1M∥2 = tr
(
Id − λ(Λk

h)
−1

)
≤ tr(Id) = d. (E.19)

Plugging (E.16) and (E.19) into (E.14), we obtain

(i) ≤ 2
√
dk. (E.20)

Term (ii): By the fact that λ · Id ⪯ Λk
h, we have

(ii) ≤ λ · ∥θh∥2/
√
λ ≤
√
λ, (E.21)

where the last inequality uses the fact that ∥θ∥2 ≤ 1.

Plugging (E.20) and (E.21) into (E.12), we obtain

∥θ̄kh − θh∥Λk
h
≤
√
λ+ 2

√
dk = βk,

which concludes the proof of Lemma E.2.

E.3. Feature Estimation

Lemma E.3 (Estimate Feature). Let λ = 1. It holds with probability at least 1− δ/2 that

∥ϕ̂kh − ϕkh∥2 ≤ max
h∈[H]

∥ϕ̂kh∥(Λk
h)

−1 = wk

for all (k, h) ∈ [K]× [H]. Meanwhile, for each k ∈ [K], we need at most

O
( √

dH2ι

maxh∈[H] ∥ϕkh∥(Λk
h)

−1

)

episodes to calculate {ϕ̂kh}h∈[H]. Here ι = O
(
log

(dH log(1+T3

d )

δ

))
.
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Proof of Lemma E.3. Fix h ∈ [H]. In Algorithm 4, we construct a series of estimators {ϕ̂kh,n}
n0+1
n=1 such that

∥ϕ̂kh,n − ϕkh∥2 ≤ 2−n, ∀n ∈ [n0 + 1] (E.22)

until the condition

∥ϕ̂kh,n0
∥(Λk

h)
−1 ≥

1

2n0−1
, (E.23)

is satisfied for some fixed h0 ∈ [H]. Then for any h ∈ [H] we have

∥ϕ̂kh,n0+1 − ϕkh∥2 ≤ 2−(n0+1)

≤ ∥ϕ̂kh0,n0
∥(Λk

h0
)−1 − 2−n0 − 2−(n0+1), (E.24)

where the first inequality uses (E.22) and the second inequality follows from (E.23). By the triangle inequality, we have

∥ϕ̂kh0,n0
∥(Λk

h0
)−1 ≤ ∥ϕkh0

∥(Λk
h0

)−1 + ∥ϕ̂kh0,n0
− ϕkh0

∥(Λk
h0

)−1

≤ ∥ϕkh0
∥(Λk

h0
)−1 + ∥ϕ̂kh0,n0

− ϕkh0
∥2

≤ ∥ϕkh0
∥(Λk

h0
)−1 + 2−n0 , (E.25)

where the second inequality uses the fact that Id ⪯ Λk
h0

, and the last inequality follows from (E.22). Plugging (E.25) into
(E.24), we have for all h ∈ [H] that

∥ϕ̂kh,n0+1 − ϕkh∥2 ≤ ∥ϕkh0
∥(Λk

h0
)−1 − 2−(n0+1)

≤ ∥ϕ̂kh0,n0+1∥(Λk
h0

)−1

≤ max
h∈[H]

∥ϕ̂kh,n0+1∥(Λk
h)

−1 (E.26)

where the second inequality follows from the same argument of (E.25). This finishes the first part of proof.

Meanwhile, following the similar argument of (E.25), we obtain that

∥ϕ̂kh,n0
∥(Λk

h)
−1 ≥ ∥ϕkh∥(Λk

h)
−1 − 2−n0 ≥ 2−(n0−1), (E.27)

where the last inequality holds when

2n0 ≥ 3

∥ϕkh∥(Λk
h)

−1

. (E.28)

If n0 satisfy (E.28) for any h ∈ [H], (E.27) indicates that the condition in (E.23) is satisfied and the estimation process is
terminated. Therefore, we know that

n0 ≤
⌈
log

( 3

maxh∈[H] ∥ϕkh∥(Λk
h)

−1

)⌉
.

Let ι′ = log(dHK/δ), by the property of quantum multivariate mean estimation (Lemma 3.2 with C = H), we need at
most

H · O
(√

dHι′ ·
n0+1∑
n=1

2n
)
≤ O

( √
dH2ι′

maxh∈[H] ∥ϕkh∥(Λk
h)

−1

)
(E.29)

episodes to estimate features. By Lemma E.1 and the definitions of ι′ and ι, we have ι′ ≤ O(ι). Together with (E.29), we
conclude the proof of Lemma E.3.
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E.4. Regression Target Estimation

Lemma E.4 (Estimate Regression Target). It holds with probability at least 1− δ/2 that

∥ykh − (ϕkh)
⊤θh∥2 ≤ wk

for all (k, h) ∈ [K]× [H]. Meanwhile, for each k ∈ [K], we need at most

O
(H2ι

wk

)
episodes to calculate {ykh}h∈[H]. Here ι = O

(
log

(dH log(1+T3

d )

δ

))
.

Proof of Lemma E.4. For any h ∈ [H], invoking Lemma 3.2 with d = 1 and C = H , we know that we need at most

O
(Hι
wk

)
episodes to calculate ykh. Taking summation over h ∈ [H] concludes the proof of Lemma E.4.

E.5. Proof of Theorem 5.2

Our proof relies on the following value decomposition lemma.

Lemma E.5 (Value Decomposition Lemma). Let π = {πh}h∈[H] and π̂ = {π̂h}h∈[H] be any two policies and Q̂ =

{Q̂h}h∈[H] be any estimated Q-functions. Moreover, we assume that the estimated value functions V̂ = {V̂h}h∈[H] satisfy
V̂h(s) = ⟨Q̂h(· | s), π̂h(· | s)⟩A for all (s, h) ∈ S × [H]. Then we have

V̂1(s1)− V π
1 (s1) =

H∑
h=1

Eπ

[
⟨Q̂h (sh, ·) , π̂h (· | sh)− πh (· | sh)⟩A

]
+

H∑
h=1

Eπ

[
Q̂h (sh, ah)−Rh(sh, ah)− PhV̂h+1 (sh, ah)

]
.

Proof. See Appendix B.1 of Cai et al. (2020) for a detailed proof.

Proof of Theorem 5.2. Under the event defined in Lemma E.2, we have θh ∈ Ckh for all (k, h) ∈ [K]× [H]. Together with
the optimistic planning (Algorithm 3), we have

V ∗
1 (s1) ≤ V k

1 , ∀k ∈ [K]. (E.30)

Hence, we further obtain that

V ∗
1 (s1)− V πk

1 (s1) ≤ V k
1 (s1)− V πk

1 (s1)

=

H∑
h=1

Eπk [Qk
h(sh, ah)−Rh(sh, ah)− PhV

k
h+1(sh, ah)], (E.31)

where the inequality follows from (E.30) and the equality uses Lemma E.5. By the optimistic planning procedure
(Algorithm 3), we have

Eπk [Qk
h(sh, ah)] = Eπk

[
Rh(sh, ah) + ϕV k

h+1
(s, a)⊤θ̂kh

]
= Eπk [Rh(sh, ah)] + (ϕkh)

⊤θ̂kh (E.32)

where ϕV k
h+1

id defined in (2.5) and the last equality uses the definition of ϕkh that ϕkh = Eπk [ϕV k
h+1

(sh, ah)]. Meanwhile,
by the same argument in (5.2), we have

Eπk [PhV
k
h+1(sh, ah)] = (ϕkh)

⊤θh. (E.33)
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Plugging (E.32) and (E.33) into (E.31) gives that

V ∗
1 (s1)− V πk

1 (s1) ≤
H∑

h=1

[(ϕkh)
⊤(θ̂kh − θh)]. (E.34)

Recall that in the k-th phase, the learning process consists of the feature estimation and the regression target estimation. In
the sequel, we establish the regret upper bound incurred by these two parts respectively.

Feature Estimation Error: Applying Cauchy-Schwarz inequality to (E.34) gives that

V ∗
1 (s1)− V πk

1 (s1) ≤
H∑

h=1

∥ϕkh∥(Λk
h)

−1 · ∥θ̂kh − θh∥Λk
h
. (E.35)

Under the event E† defined in Lemma E.2, we have

∥θ̂kh − θh∥Λk
h
≤ ∥θ̂kh − θ̄kh∥Λk

h
+ ∥θ̄kh − θh∥Λk

h
≤ 2βk. (E.36)

for any h ∈ [H]. Together with (E.35), we further obtain that

V ∗
1 (s1)− V πk

1 (s1) ≤ 2βk

H∑
h=1

∥ϕkh∥(Λk
h)

−1 ≤ 2Hβk · max
h∈[H]

∥ϕkh∥(Λk
h)

−1 . (E.37)

By Lemma E.3, we know that we use at most

O
( √

dH2ι

maxh∈[H] ∥ϕkh∥(Λk
h)

−1

)
(E.38)

episodes to estimate features. Combining (E.37) and (E.38), we obtain that the feature estimation error of phase k is at most

O(
√
dH3βk · ι). (E.39)

Regression Target Estimation Error: By (E.34), we have

V ∗
1 (s1)− V πk

1 (s1) ≤
H∑

h=1

[(ϕkh)
⊤(θ̂kh − θh)]

=

H∑
h=1

[(ϕ̂kh)
⊤(θ̂kh − θh)] +

H∑
h=1

[(ϕkh − ϕ̂kh)⊤(θ̂kh − θh)]

≤
H∑

h=1

∥ϕ̂kh∥(Λk
h)

−1 · ∥θ̂kh − θh∥Λk
h
+

H∑
h=1

∥ϕkh − ϕ̂kh∥2 · ∥θ̂kh − θh∥2, (E.40)

where the last inequality uses the Cauchy-Schwarz inequality. Under the event E† defined in Lemma E.2, by the same
derivation of (E.36), we have

∥θ̂kh − θh∥Λk
h
≤ ∥θ̂kh − θ̄kh∥Λk

h
+ ∥θ̄kh − θh∥Λk

h
≤ 2βk. (E.41)

Meanwhile, by Lemma E.3 and (2.4), we have

∥ϕkh − ϕ̂kh∥2 · ∥θ̂kh − θh∥2 ≤ 2wk. (E.42)

Plugging (E.41) and (E.42) into (E.40), we have

V ∗
1 (s1)− V πk

1 (s1) ≤ 2βk

H∑
h=1

∥ϕ̂kh∥(Λk
h)

−1 + 2Hwk

≤ 2βkHwk + 2Hwk = 2Hwk(1 + βk). (E.43)

26



Quantum Reinforcement Learning with Logarithmic Worst-Case Regret

By Lemma E.4, we know that we need at most

O
(H2ι

wk

)
(E.44)

episodes to estimate regression targets. Putting (E.43) and (E.44) together, we have that the regression target estimation
error of phase k is at most

O
(
H3βk · ι

)
. (E.45)

Combining (E.39) and (E.45), we have that the regret incurred by the k-th phase is at most

O(
√
dH3βk · ι) = O(dH3

√
k · ι), (E.46)

where we uses that βk = 1 + 2
√
dk. Hence, the total regret is upper bounded by

Regret(T ) ≤
K∑

k=1

O(dH3
√
k · ι) ≤ O(dH3K3/2 · ι) ≤ O

(
d5/2H9/2 log3/2

(
1 +

T 3

d

)
· ι
)
,

where the first inequality uses (E.46) and the last inequality follows from Lemma E.1. Therefore, we finish the proof of
Theorem 5.2.
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