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ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) has become a trending
paradigm for training reasoning large language models (LLMs). However, due
to the autoregressive decoding nature of LLMs, the rollout process becomes the
efficiency bottleneck of RL training, consisting of up to 70% of the total training
time. In this work, we propose Quantized Reinforcement Learning (QuRL) that
uses a quantized actor for accelerating the rollout. We address two challenges in
QuRL. First, we propose Adaptive Clipping Range (ACR) that dynamically ad-
justs the clipping ratio based on the policy ratio between the full-precision actor
and the quantized actor, which is essential for mitigating long-term training col-
lapse. Second, we identify the weight update problem, where weight changes
between RL steps are extremely small, making it difficult for the quantization op-
eration to capture them effectively. We mitigate this problem through the invariant
scaling technique that reduces quantization noise and increases weight update. We
evaluate our method with INT8 and FP8 quantization experiments on DeepScaleR
and DAPO, and achieve 20% to 80% faster rollout during training.

1 INTRODUCTION

The emergence of reasoning Large Language Models (LLMs) such as OpenAI-O1 (Jaech et al.,
2024) and DeepSeek-R1 (Guo et al., 2025) represents a fundamental transformation in AI capabil-
ities through the strategic scaling of inference-time computation. By enabling extensive Chain-of-
Thought (CoT) deliberation, these systems exhibit advanced problem-solving behaviors that deliver
significant gains on challenging domains, notably mathematical reasoning (Luo et al., 2025b; Yu
et al., 2025; Yue et al., 2025) and code synthesis (Luo et al., 2025a; Liu & Zhang, 2025). Such mod-
els sacrifice computational economy in favor of superior accuracy, producing elaborate reasoning
chains that encompass systematic exploration, iterative verification, and strategic backtracking. Re-
inforcement learning (RL) forms the cornerstone of these breakthroughs. Through direct optimiza-
tion on verifiable objective functions instead of proxy reward models, RL-driven approaches cir-
cumvent reward hacking pitfalls (Amodei et al., 2016; Wen et al., 2024) while maintaining stronger
fidelity to genuine reasoning patterns.

A typical LLM RL training step comprises of three phases: actor rollout for response generation,
forward pass to compute output probabilities, and backward pass for policy gradient updates. The
autoregressive nature of LLMs imposes a fundamental bottleneck—each token must be decoded
sequentially during rollout, requiring extensive memory bandwidth for weight and KV cache access.
This sequential dependency severely limits parallelization opportunities. Consequently, the rollout
phase dominates training time (He et al., 2025; Zheng et al., 2025), consuming approximately 70%
of the total latency. This bottleneck is further exacerbated in reasoning tasks, where competitive
performance requires extended CoT traces.

In this work, we propose Quantized Reinforcement Learning (QuRL), an efficient RL training algo-
rithm through efficient inference. Specifically, we quantize the actor model for rollout while main-
taining full-precision parameters for gradient updates. This approach transforms the on-policy RL
into an off-policy setting: sequences are generated by a quantized actor while policy updates occur
in the full-precision parameter space. This necessitates careful importance sampling and trust region
constraints, as formalized in Decoupled PPO (Fu et al., 2025; Liu et al., 2025). However, we iden-
tify a critical failure mode where the decoupled PPO objective leads to training collapse at extended
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horizons, characterized by exponential growth of the divergence between the quantized actor and
full precision actor. To address this instability, we propose Adaptive Clipping Range (ACR), which
dynamically adjusts trust region bounds based on the policy divergence between the full-precision
and the quantized actors.

Beyond importance sampling, we identify a critical scale mismatch between quantized and full-
precision actors. RL updates usually satisfy trust region constraints (Schulman et al., 2015), re-
sulting in weight changes that are orders of magnitude smaller than quantization errors. Conse-
quently, the quantization operation fails to capture most weight updates, effectively decoupling the
quantized model from the training dynamics. To address this fundamental mismatch, we propose
Update-Aware Quantization (UAQ) that uses invariant scaling (Xiao et al., 2023a) to simultaneously
reduce quantization error and amplify weight updates, ensuring that parameter changes exceed the
quantization granularity threshold.

We validate our approach across multiple RL algorithms including PPO (Schulman et al., 2017),
GRPO (Shao et al., 2024), and DAPO (Yu et al., 2025) on diverse reasoning benchmarks. Through
8-bit quantization (INT8 or FP8), we achieve substantial inference acceleration for 7B, 14B and 32B
models, demonstrating 20%–80% throughput improvements. Our experimental evaluation demon-
strates that QuRL consistently outperforms naive combinations of RL with quantized rollout as well
as concurrent approaches (Liu et al., 2025). Notably, INT8 QuRL achieves 55.5% average accu-
racy on the DeepScaleR benchmark (Luo et al., 2025b) across five reasoning tasks, exceeding the
baseline performance by 1.7%.

2 RELATED WORK

Reinforcement Learning for Reasoning. AI systems capable of extended reasoning constitute
a distinct class of models that perform elaborate CoT deliberation prior to producing outputs, pi-
oneered by OpenAI’s o1 series (Jaech et al., 2024). Following this breakthrough, DeepSeek (Guo
et al., 2025) and Kimi (Team et al., 2025) have documented comprehensive frameworks for develop-
ing reasoning models through RLVR. These contributions have established various RL algorithms
as standard practice, including GRPO (Shao et al., 2024), Mirror Descent (Tomar et al., 2020),
RLOO (Ahmadian et al., 2024), among others. However, this scaling comes at the cost of per-
forming a significant amount of decoding, which severely under-utilizes modern hardware. To this
end, the RL community has explored many ways for efficient training, including selective rollout
generation (Zheng et al., 2025), rollout down-sampling (Xu et al., 2025), asynchronous multi-role
distributed architectures (Fu et al., 2025). Despite these advances, achieving efficient RL training
while maintaining model performance remains a key challenge.

Quantization Quantization has emerged as a fundamental technique for compressing and acceler-
ating large-scale models. Comprehensive surveys by Gholami et al. (2022) and Nagel et al. (2021)
provide systematic analyses of quantization advancements. This section reviews key quantization
methods with emphasis on LLM applications. Quantization techniques fall into two main cate-
gories: Post-training Quantization (PTQ) and Quantization-Aware Training (QAT). PTQ methods
operate directly on pre-trained models without additional training. Prominent approaches includ-
ing Frantar et al. (2022b); Lin et al. (2023); Wei et al. (2022; 2023); Shao et al. (2023); Chee et al.
(2023); Liu et al. (2023a) enhance uniform quantization through strategic optimization of weight pa-
rameters, scaling factors, and clipping boundaries. Alternative PTQ strategies explore non-uniform
quantization schemes (Egiazarian et al., 2024; van Baalen et al., 2024; Elangovan et al., 2025) and
mixed-precision architectures such as LLM.int8 (Dettmers et al., 2022). QAT methods integrate
quantization into the training process itself. LLM-QAT (Liu et al., 2023b) addresses data require-
ments through synthetic generation, while Q-LoRA (Dettmers et al., 2023) combines quantization
with low-rank adaptation to reduce memory overhead during fine-tuning.

3 PRELIMINARIES

We begin with a brief overview of the GRPO (Shao et al., 2024) algorithm. And then we introduce
the basics of quantization operation and the subsequent challenges.

Group Relative Policy Optimization. GRPO adapts the PPO (Schulman et al., 2017) framework
for training LLMs, notably by eliminating the need for a learned value function (critic). Instead of
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using generalized advantage estimation (GAE), GRPO estimates the advantage Âi,t at token t of
output oi based on the relative rewards within a group of G outputs {o1, o2, . . . , oG} sampled from
the old policy πθold for the same prompt q. The objective function is:

JGRPO(θ) = Eq∼P (q),o∼πθold

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min (Ri,tAi,t, clip(Ri,t, 1− ϵ, 1 + ϵ)Ai,t)

 (1)

where Ri,t =
πθ(oi,t|qi)

πθold
(oi,t|qi) is importance sampling ratio between the old actor and the current actor

on the t-th token of i-th generated response. Additionally, GRPO augments the PPO objective with
an explicit KL regularization term DKL(πθ||πθref ). The reference model πθref (typically the initial
supervised fine-tuned model) provides regularization, with the KL divergence computed using the
k3 estimator from Schulman (2020).

Quantization. Quantization maps the full precision parameters θ into low-bit parameters θ̂ = Q(θ).
In general, a b-bit quantized parameter can be expressed as

Q(θ, b) = α× (−1)sign × 2d × (1 +

b−1−e∑
i=1

mi

2i
), (2)

where the representation consists of three components: sign, exponent, and mantissa, scaled by a
factor α. Here, sign ∈ {−1,+1} encodes the sign, d ∈ [1, 2e] represents the exponent using e
bits. And the mantissa uses the remaining (b − 1 − e) bits with mi ∈ {0, 1}. When e = 0, this
formulation reduces to integer quantization. The scaling factor α is determined by the maximum
absolute value within a group of weights or activations. The granularity of quantization depends
on the group size, ranging from channel-wise to block-wise operations. To further reduce memory
overhead, the scaling factor itself can be quantized, as in NVFP4 (NVIDIA, 2025).

4 QURL: QUANTIZED REINFORCEMENT LEARNING
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Figure 1: Overview of QuRL training.
The sampling model θold is quantized to
θ̂old for rollout.

To accelerate the rollout phase, we quantize the weights
and activations of the old actor model θold to lower-bit
representations, enabling efficient matrix multiplication
during inference θ̂old = Q(θold, b). Fig. 1 illustrates the
pipeline for incorporating quantization into the RL.

Our QuRL approach occupies a unique position between
post-training quantization (PTQ) and quantization-aware
training (QAT). Unlike QAT, we do not explicitly op-
timize quantization performance through gradient de-
scent—the actor undergoes one-shot quantization before
deployment for rollout. However, unlike pure PTQ, the
actor parameters are implicitly influenced by the gradi-
ents computed from the quantized model’s outputs dur-
ing policy updates. This dual nature imposes specific re-
quirements on our quantization strategy: it must be sufficiently simple to avoid complex calibration
procedures while remaining expressive enough to preserve the learning dynamics. In the following
sections, we present our methodology addressing both the reinforcement learning adaptations and
the quantization operations necessary for efficient training.

4.1 ISSUES WITH IMPORTANCE SAMPLING AND CLIPPING

Given that rollout data has been sampled from the quantized actor, we can rewrite the RL objective
as

J (θ) = Eq∼P (q),o∼πθ̂old

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
R̂i,tAi,t, clip(R̂i,t, 1− ϵ, 1 + ϵ)Ai,t

) , (3)
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Figure 2: Comparison of (a) training rewards and (b) token clipped fraction under different training
objective or quantization.

where R̂i,t =
πθ(oi,t|qi)

πθ̂old
(oi,t|qi) denotes the importance sampling ratio between the current full-precision

actor πθ and the quantized old actor πθ̂old
.

We implement the objective of Eq. (3) and compare it with full-precision GRPO experiments. The
model and dataset follow the DeepScaleR setup (Luo et al., 2025b). Unfortunately, the quantized
model’s importance sampling leads to training instability, with rewards collapsing after several RL
steps as shown in Fig. 2. Analysis of the token clipped fraction in Fig. 2(b) reveals that R̂i,t exhibits
significantly higher clipping rates than the full-precision baseline. The fraction rapidly increases
to 1.5% before abruptly dropping to zero, indicating severe instability in the R̂i,t when applying
clipping on top of it. Additionally, we test the objective of Eq. (1) with quantized rollout, which
instead uses the full-precision old actor as the denominator for clipping and importance sampling.
Fig. 2 shows that this objective can have a stable training curve, but may produce a large gap between
BF16 after 800 steps of RL training.

To address the instability in Eq. (3), we adopt the decoupled PPO objective (Hilton et al., 2022; Fu
et al., 2025), which separates the behavior policy πθbehav

(for token sampling) from the proximal
policy πθprox

(for clipping):

Jdecoupled(θ) = Ẽo∼πθbehav

[
πθprox(oi,t)

πθbehav
(oi,t)

min (Ri,tAi,t, clip(Ri,t, 1− ϵ, 1 + ϵ)Ai,t)

]
, (4)

where Ri,t =
πθ(oi,t)

πθprox (oi,t)
denotes the ratio between the current policy and the proximal policy.

For simpler notation, we integrate the averaging across responses and groups into expectation Ẽ,
as they do not change the clipping/importance sampling outcome. In QuRL, we set the behavior
policy as the quantized old actor (πθbehav

= πθ̂old
) and the proximal policy as the full-precision

old actor (πθprox = πθold ). Compared to R̂i,t that uses a quantized actor to determine clipping,
Ri,t enables more tokens to be trained via correct importance sampling. As shown in Fig. 2, this
approach significantly improves training stability.

FlashRL (Liu et al., 2025) observes that πθ̂old
is usually obtained from the inference engine such

as vLLM (Kwon et al., 2023) and SGLang (Zheng et al., 2024). However, due to the implementa-
tion difference between training (i.e., HuggingFace and Megatron) and inference (i.e., vLLM and
SGLang) engines, an extra engineering discrepency between πθprox and πθbehav

is introduced and
will hinder RL training. FlashRL proposes Truncated Importance Sampling (TIS) to reduce this
difference, given by

JTIS(θ) = Ẽo∼πθbehav

[
min

(
πθprox(oi,t)

πθbehav
(oi,t)

, C

)
min (Ri,tAi,t, clip(Ri,t, 1− ϵ, 1 + ϵ)Ai,t)

]
.

(5)
where C bounds the proximal-to-behavior ratio. This formulation reduces computational overhead
by directly accessing probabilities from the inference engine and naturally extends to other off-
policy RL methods. However, even with these modifications, the decoupled objective alone cannot
fully bridge the quantization gap in QuRL, particularly during later training stages.
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Figure 3: Training dynamics of QuRL. (a) Training collapses after 1000 steps due to increased KL
divergence between behavior and proximal policy, and (b) the maximum value of the proximal-to-
behavior policy ratio.

4.2 ADAPTIVE CLIPPING RANGE

The TIS essentially modifies the behavior policy by truncating the behavior policy if it is extremely
small. To see this, we define

πθtrunc
behav

= max(πθbehav
,
πθprox

C
). (6)

Now, we can rewrite TIS objective as the decoupled PPO objective form, given by

Jdecoupled(θ) = Ẽo∼πθbehav

[
πθprox(oi,t)

πθtrunc
behav

(oi,t)
min (Ri,tAi,t, clip(Ri,t, 1− ϵ, 1 + ϵ)Ai,t)

]
, (7)

Essentially, the gradient of the original decoupled PPO objective is scaled by ri,t =
πθbehav

(oi,t)/πθtrunc
behav

(oi,t). As shown in Fig. 3(b), the maximum proximal-to-behavior ratio can reach
up to 105, causing an extremely large gradient norm if using the decoupled PPO objective. The
above equation effectively avoids the excessive gradient norm.

In practice, we find that TIS works well under 500 steps of RL training. However, at long training
steps (e.g., > 1000 steps), we observe the KL divergence between the behavior policy and the
proximal policy (i.e., DKL(πθbehav

||πθprox) = E[log πθbehav

πθprox
]) continues to increase. As shown in

Fig. 3(a), the KL divergence increases from 0.002 to 0.025, which is 12× higher. This indicates that
the truncated behavior policy also leads to biased gradient estimation, especially for large r.

To mitigate this problem, we examine the clipping mechanism in the decoupled PPO objective and
propose the Adaptive Clipping Range (ACR). Our intuition is that, when the behavior policy is
truncated, the factor ri,t implicitly affects the clipping. More concretely, given that 0 < ri,t ≤ 1,
we can absorb this factor into the clipping term as well as its range, given by

ri,tclip(Ri,t, (1− ϵ), (1 + ϵ)) = clip(ri,tRi,t, ri,t(1− ϵ), ri,t(1 + ϵ)). (8)

This operation shrinks both the upper and lower clipping range by a factor of ri,t. For negative
advantage sequences, it does affect the clipping since the large ratios do not get clipped regardless.
However, for positive advantage sequences, it reduces the upper bound. For large ri,t where the
difference is likely due to training/inference engine execution, its biased estimation unexpectedly
clips more tokens. To address this issue, we propose to use a fixed upper threshold (1 + ϵ), to allow
more tokens to pass if the πθbehav

(oi,t) is truncated. As a result, we can rewrite our ACR into:

JACR(θ) = Ẽo∼πθbehav

[
min

(
πθprox(oi,t)

πθbehav
(oi,t)

, C

)
min

(
Ri,tAi,t, clip

(
Ri,t, (1− ϵ),

(1 + ϵ)

ri,t

)
Ai,t

)]
.

(9)
The ACR can dynamically adjust the clipping range based on the proximal-to-behavior ratio: For
tokens where

πθprox (oi,t)

πθbehav
(oi,t)

> C, ri,t < 1 enlarges the upper clipping bound, allowing more positive
tokens to be updated. Otherwise, the threshold is the same as TIS.
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Figure 4: The weight update problem. (a) An intuitive example showing weight quantization cannot
sense the weight update suitably and (b) visualization of training dynamics showing the difference
between πθ̂old

and πθold .

4.3 UPDATE-AWARE QUANTIZATION

Another crucial challenge in QuRL is the mismatch of magnitude between the weight quantization
change and the weight update change. During each RL step, θold is quantized to θ̂old for rollout,
then updated to θ to become the old actor for the next step. The weight change magnitudes follow:

θ̂old − θold ∝ |θold|
2b

, θ − θold ∝ αG, (10)

where α denotes the learning rate and G the gradient. In typical RL experiments, we observe G ∈
[0.1, 1.0] with α = 10−6, yielding weight updates of order 10−7 to 10−6. This is substantially
smaller than the quantization error, as the weight norm itself ranges from (0.001, 0.1). We also
provide an example in Fig. 4(a) to illustrate this problem.

Empirical analysis confirms this mismatch. Comparing θ̂old across RL steps with INT8 quantization
in DeepScaleR experiments, the update is much smaller than quantization error. See Appendix A for
more details. This indicates that quantization masks nearly all weight updates, effectively freezing
the quantized model despite ongoing training. In Fig. 4(b), we measure the average difference
between πθ̂old

and πθold of INT8 quantization in DAPO task (Yu et al., 2025).

Since QuRL operates between PTQ and QAT paradigms, neither approach offers an optimal solu-
tion. Complex calibration algorithms like GPTQ (Frantar et al., 2022a) could theoretically capture
finer weight changes if applied at each step, but would impose prohibitive training time overhead on
rollout. For QAT, it will introduce additional discrepancies between training and inference engines,
exacerbating importance sampling bias (Liu et al., 2025).

To mitigate this problem, we propose Update-Aware Quantization (UAQ), a one-time weight

Layer
Norm

Q_proj

K_proj

V_proj

𝑠X

𝑊!

𝑠

𝑠𝑊"#

𝑊$

𝑠

𝑊%

𝑠

Figure 5: Invariant scaling of
Q/K/V layers.

adjustment performed before RL training begins. Our ap-
proach leverages invariant scaling of linear layers in trans-
former blocks (Xiao et al., 2023b). Given weights W and input
activations X in a layer, invariant scaling preserves the output
by

WX =

(
W

s

)
· (sX). (11)

The scale s is applied column-wise to W and row-wise to X .
The activation scaling can be absorbed into the preceding layer
(e.g., LayerNorm), as illustrated in Fig. 5.

Unlike existing PTQ methods (Xiao et al., 2023b) that minimize quantization error
∥Q(W/s)Q(sX) − WX∥, we strategically choose s > 1 to balance weight quantization error
against update magnitude such that

θ̂old − θold ∝ |θold|
s · 2b

, θ − θold ∝ s · αG. (12)
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Table 1: Comparison of GSM8k accuracy.

Method Bitwidth Accuracy
RL BF16 55.35

RL INT8 48.78
FlashRL (Liu et al., 2025) INT8 51.40
QuRL (Ours) INT8 53.55

RL FP8 0.0
FlashRL (Liu et al., 2025) FP8 53.60
QuRL (Ours) FP8 54.28

Figure 6: Convergence of INT8 experiment.
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The scaling factor s reduces quantization error by a factor of s while amplifying weight updates by
the same factor. The weight update amplification occurs because gradients with respect to W are
computed as ∇WL = (∇Y L)X⊤, where the pre-scaled activations X have been multiplied by s.

This dual effect creates an s2 improvement in the ratio between weight updates and quantization
noise, enabling the quantized model to capture training dynamics more effectively. Empirically, we
find s = 1.5 provides consistent improvements on INT8 and FP8 quantization, striking an effective
balance between reducing quantization artifacts and maintaining numerical stability.

5 EXPERIMENTS

All our experiments were conducted with the hybrid engine-based RL framework, VeRL (Sheng
et al., 2024). We evaluate QuRL across three distinct reinforcement learning configurations: (1) PPO
training on GSM8K (Cobbe et al., 2021), (2) DAPO (Yu et al., 2025) optimization on AIME mathe-
matical reasoning tasks, and (3) GRPO training on the DeepScaleR benchmark (Luo et al., 2025b).
Our quantization experiments employ both INT8 and FP8 precision formats. Weight quantization
utilizes channel-wise scaling factors, while activation quantization applies token-wise scaling. We
leverage vLLM’s optimized INT8 and FP8 matrix multiplication kernels (Kwon et al., 2023) to
achieve computational acceleration during inference. Note that FP8 KV cache quantization remains
suboptimally implemented in the current vLLM version and does not yield measurable throughput
improvements; consequently, we exclude KV cache quantization from our experimental evaluation.

5.1 REASONING RESULTS

PPO on GSM8K. We evaluate the PPO algorithm (Schulman et al., 2017) on the GSM8K dataset,
which comprises 7.4k training examples and 1.3k validation examples. We use Qwen2.5-0.5B-
Instruct (Qwen et al., 2024) as the base model and conduct training over 15 epochs, corresponding
to 435 RL optimization steps. Training employs a batch size of 256 with a maximum response
length of 512 tokens per rollout. Evaluation metrics are computed using greedy decoding on the test
set (deterministic next-token selection based on maximum probability).

We compare against four experimental configurations: (1) Full-precision RL baseline, (2) Quan-
tized rollout with standard importance sampling—applying Equation 1 to responses sampled from
the quantized policy o ∼ πθ̂old

, (3) FlashRL with Truncated Importance Sampling (TIS) (Liu et al.,
2025), and (4) QuRL with Adaptive Clipping Range. Note that Update-Aware Quantization is dis-
abled for this experiment due to the relatively high learning rate (10−5), which already provides suf-
ficient weight update magnitude. Table 1 presents final checkpoint accuracies. The results demon-
strate that naive INT8 quantization without decoupled behavior/proximal policies yields substantial
performance degradation. FlashRL (Liu et al., 2025) achieves training stabilization through TIS
and decoupled PPO, yet maintains a notable accuracy gap relative to BF16 baseline—particularly
severe under INT8 quantization (4% degradation). In contrast, QuRL with ACR reduces this gap to
2% for INT8 and approximately 1% for FP8, demonstrating superior quantization robustness across
precision formats.
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Table 2: Comparison of AIME 2024 accuracy.

Method Bitwidth Avg@1 Avg@32
RL BF16 33.33 31.67

RL INT8 0.00 0.001
FlashRL INT8 26.66 30.29
QuRL w/o UAQ INT8 33.33 30.63
QuRL w/ UAQ INT8 33.33 31.25

RL FP8 0.00 0.003
FlashRL FP8 30.00 32.60
QuRL w/o UAQ FP8 36.66 33.12
QuRL w/ UAQ FP8 33.33 33.27

Figure 7: Convergence of FP8 experiment.
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Table 3: Comparison of Avg@32 accuracy across various math reasoning tasks of DeepScaleR.

Method Bitwidth AIME24 AMC MATH Minerva Olympiad Avg
Base BF16 28.54 62.58 82.90 26.38 43.58 48.80
RL BF16 40.73 73.45 87.71 30.56 49.59 56.40

RL INT8 33.95 68.75 84.90 28.12 45.85 52.31
FlashRL INT8 36.77 70.55 85.88 28.44 47.33 53.80
QuRL w/o UAQ INT8 39.06 70.48 86.48 29.20 48.75 54.79
QuRL w/ UAQ INT8 40.52 71.34 87.20 29.22 49.13 55.48

DAPO on AIME 2024. Next, we test the decoupled clip and dynamic sampling policy optimization
(DAPO) (Yu et al., 2025) with Qwen2.5-7B-Math. We use the 17k dataset from the original paper
and apply the decoupled clip where ϵhigh = 0.28 and ϵlow = 0.2 for the default clipping range. We
optimize the base model for 200 steps, and the learning rate is set to 1e− 6. In each step, we sample
512 queries and 16 rollout responses per query. Additionally, DAPO does not apply any KL diver-
gence loss between the actor and reference models. For evaluation, we use two metrics (Avg@1)
and (Avg@32) on the AIME 2024 dataset, where, Avg@1 represents the accuracy achieved using
greedy decoding (deterministic next token prediction) and Avg@32 represents the average accuracy
of 32 sampled responses per problem, using a temperature of 1.0 and a top p of 0.7.

As shown in Table 2, vanilla INT8/FP8 RL has near 0 accuracy on the AIME 2024 dataset, indi-
cating that a biased estimation of the importance sampling will result in crashed performance. The
convergence figure on the right shows that RL can converge well in the first 100 steps, but results in
decreased performance for the latter 100 steps. This is due to the increased gap between proximal
and behavioral policy through training. FlashRL (Liu et al., 2025) converges better than RL and
has much better final accuracy than RL. For example, with INT8 quantization, FlashRL achieves
30.3% Avg@32 accuracy, with a 1.4% gap from the full precision baseline. Our QuRL, equipped
with ACR, can successfully close the gap during training. The final accuracy also shows improved
results, with 33.1% Avg@32 accuracy under FP8 quantization.

GRPO on DeepScaleR. Finally, we test the performance of our algorithm on an open-source
project, DeepScaleR (Luo et al., 2025b), which improves the reasoning boundaries of DeepSeek-
Distill-Qwen1.5B models (Guo et al., 2025). The training dataset contains 40k math problems from
AIME problems from 1983 to 2023, as well as Omni-Math Gao et al. (2024) and Still (Min et al.,
2024). We train the actor for 3 stages, under 8k, 16k, and 24k context length, respectively. The
training batch size is 256, with the learning rate of 1e − 6. Following the official implementation,
for the first stage, we generate 8 rollouts per query with 8k context length and train the model for
800 steps. For the latter two stages, 16 rollouts per query are generated, and the actor is trained for
400 steps. The coefficient for KL divergence in GRPO is set to 1e− 3. The temperature is set to 0.6

For evaluation, we follow the official implementation to compare the Avg@32 results on AIME
2024 (Li et al., 2024), MATH 500 (Hendrycks et al., 2021), AMC 2023 (Ouyang et al., 2022),
Minerva Math (Lewkowycz et al., 2022), and Olympiad Bench (He et al., 2024) as well as the
average accuracy of all above. The results are shown in Table 3. The full-precision RL improves the
base model by 7.6% average accuracy across 5 tasks and notably 12% accuracy improvement on the
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Figure 8: Inference acceleration of INT8 quantization.

AIME 2024 dataset. Instead, INT8 RL can barely improve the base model accuracy, for example,
5% improvement on the AIME 2024 dataset. Averaging all tasks, INT8 RL has a large gap of 4.1%
compared to BF16 RL. FlashRL achieves a slight improvement over INT8 RL, with a 1.5% higher
average accuracy among 5 tasks. On the other hand, QuRL w/ UAQ significantly boosts the average
accuracy of INT8 RL by 3%.

5.2 THROUGHPUT TEST

In this section, we demonstrate the throughput benefits of applying quantization during rollout (de-
coding). We use the script from GuideLLm (Neural Magic, 2024) to evaluate the DeepSeek-Distill-
Qwen-7B/14B/32B models on the vLLM platform (Kwon et al., 2023). We test INT8 quantization
across multiple GPU types, including A6000, A100, and H100. For 7B and 14B model, we evaluate
the throughput (queries per second) on one GPU, while for 32B model, we evaluate it with tensor
parallelism across 2 GPUs.

The results are shown in Fig. 8. For the 7B model, INT8 quantization can bring 20%∼30% accel-
eration effect, while for the 32B model, we find INT8 quantization can bring 70% faster throughput
on A100 and 90% faster throughput on H100. Generally, we observe that larger models benefit
more from quantization. This is due to the large model being bottlenecked by matrix multiplication,
yet smaller models are usually bottlenecked by the I/O Nevertheless, we emphasize that QuRL is
compatible with other types of compression (Frantar & Alistarh, 2023; Liu et al., 2024).

5.3 ABLATION STUDY

In this section, we compare the results of choosing different scales for UAQ. On one hand, a large
scale contributes to a smaller gap between weight update and weight quantization noise. On the

Scale s Learning Rate Avg@32

s = 1 α = 10−6 30.63
s = 1.5 α = 10−6 31.25
s = 2 α = 10−6 29.15
s = 1 α = 1.5× 10−6 29.06
s = 1 α = 2× 10−6 26.66

Table 4: Ablation on scale and α.

other hand, it will also make the weight update more than
usual, causing more clipped tokens and decreasing the
RL performance. To demonstrate this effect, we compare
scales s = 1, 1.5, 2 and also test another alternative by
directly increasing the learning rate on the DAPO tasks
with INT8 quantization. The results are shown in Table
4. It can be seen that s = 1.5 with the original learning
rate provides the best results. The larger scale or learning
rate results in less stable training of RL and decreases the
accuracy on AIME 2024.

CONCLUSION

We present QuRL, an efficient RL training method that accelerates rollout generation through quan-
tized inference. QuRL addresses two fundamental challenges: clipping instability and weight
update-quantization mismatch. Our ACR prevents training collapse by dynamically adjusting the
clipping, while UAQ bridges the scale gap between weight updates and quantization errors through
invariant scaling. Experiments across multiple RL algorithms demonstrate consistent improvements
over baselines and 20∼80% throughput improvement over BF16 rollout.
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A WEIGHT CHANGE VISUALIZATION
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Figure 9: Visualization of normalized weight changes.

In this section, we visualize the weight change during RL learning. We conduct our analysis on the
DeepScaleR task (Luo et al., 2025b). Our metric include (1) Normalized Weight Update, defined as

NormalizedWeightUpdate(t) =
||θt+1 − θt||2F

||θt||2F
, (13)

where θt denotes the actor weights after t RL steps. This metric captures the ratio between the total
weight update and the initial weight values. The second metric we adopt is the Normalized Weight
Quantization Error, defined as

NormalizedWeightQuantError =
||Q(θt)− θt||2F

||θt||2F
. (14)

We use INT8 quantization, and compare their values in Fig. 9. It can be found that the weight
quantization error is much larger than the weight update, especially at the early training stages. Note
that the update are measured across every 16 steps, which means the actual weight update per step
could be far smaller than the plotted values.
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Figure 10: Visualization of test accuracy (AIME 2024 Avg@32).

Here, we provide the test accuracy of our DeepScaleR experiments. It can be observed that in the
long-horizon training scenarios, INT8 RL incurs a large gap with the BF16 RL. Although FlashRL
ensures consistent improvement before 1200 steps, its test accuracy starts to drop after 1200 steps.
While QuRL can have consistent improvement across the whole training cycle.
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