
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

QURL: EFFICIENT REINFORCEMENT LEARNING WITH
QUANTIZED ROLLOUT

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) has become a trending
paradigm for training reasoning large language models (LLMs). However, due
to the autoregressive decoding nature of LLMs, the rollout process becomes the
efficiency bottleneck of RL training, consisting of up to 70% of the total training
time. In this work, we propose Quantized Reinforcement Learning (QuRL) that
uses a quantized actor for accelerating the rollout. We address two challenges in
QuRL. First, we propose Adaptive Clipping Range (ACR) that dynamically ad-
justs the clipping ratio based on the policy ratio between the full-precision actor
and the quantized actor, which is essential for mitigating long-term training col-
lapse. Second, we identify the weight update problem, where weight changes
between RL steps are extremely small, making it difficult for the quantization op-
eration to capture them effectively. We mitigate this problem through the invariant
scaling technique that reduces quantization noise and increases weight update. We
evaluate our method with INT8 and FP8 quantization experiments on DeepScaleR
and DAPO, and achieve 20% to 80% faster rollout during training.

1 INTRODUCTION

The emergence of reasoning Large Language Models (LLMs) such as OpenAI-O1 (Jaech et al.,
2024) and DeepSeek-R1 (Guo et al., 2025) represents a fundamental transformation in AI capabil-
ities through the strategic scaling of inference-time computation. By enabling extensive Chain-of-
Thought (CoT) deliberation, these systems exhibit advanced problem-solving behaviors that deliver
significant gains on challenging domains, notably mathematical reasoning (Luo et al., 2025b; Yu
et al., 2025; Yue et al., 2025) and code synthesis (Luo et al., 2025a; Liu & Zhang, 2025). Such mod-
els sacrifice computational economy in favor of superior accuracy, producing elaborate reasoning
chains that encompass systematic exploration, iterative verification, and strategic backtracking. Re-
inforcement learning (RL) forms the cornerstone of these breakthroughs. Through direct optimiza-
tion on verifiable objective functions instead of proxy reward models, RL-driven approaches cir-
cumvent reward hacking pitfalls (Amodei et al., 2016; Wen et al., 2024) while maintaining stronger
fidelity to genuine reasoning patterns.

A typical LLM RL training step comprises of three phases: actor rollout for response generation,
forward pass to compute output probabilities, and backward pass for policy gradient updates. The
autoregressive nature of LLMs imposes a fundamental bottleneck—each token must be decoded
sequentially during rollout, requiring extensive memory bandwidth for weight and KV cache access.
This sequential dependency severely limits parallelization opportunities. Consequently, the rollout
phase dominates training time (He et al., 2025; Zheng et al., 2025), consuming approximately 70%
of the total latency. This bottleneck is further exacerbated in reasoning tasks, where competitive
performance requires extended CoT traces.

In this work, we propose Quantized Reinforcement Learning (QuRL), an efficient RL training algo-
rithm through efficient inference. Specifically, we quantize the actor model for rollout while main-
taining full-precision parameters for gradient updates. This approach transforms the on-policy RL
into an off-policy setting: sequences are generated by a quantized actor while policy updates occur
in the full-precision parameter space. This necessitates careful importance sampling and trust region
constraints, as formalized in Decoupled PPO (Fu et al., 2025; Liu et al., 2025). However, we iden-
tify a critical failure mode where the decoupled PPO objective leads to training collapse at extended

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

horizons, characterized by exponential growth of the divergence between the quantized actor and
full precision actor. To address this instability, we propose Adaptive Clipping Range (ACR), which
dynamically adjusts trust region bounds based on the policy divergence between the full-precision
and the quantized actors.

Beyond importance sampling, we identify a critical scale mismatch between quantized and full-
precision actors. RL updates usually satisfy trust region constraints (Schulman et al., 2015), re-
sulting in weight changes that are orders of magnitude smaller than quantization errors. Conse-
quently, the quantization operation fails to capture most weight updates, effectively decoupling the
quantized model from the training dynamics. To address this fundamental mismatch, we propose
Update-Aware Quantization (UAQ) that uses invariant scaling (Xiao et al., 2023a) to simultaneously
reduce quantization error and amplify weight updates, ensuring that parameter changes exceed the
quantization granularity threshold.

We validate our approach across multiple RL algorithms including PPO (Schulman et al., 2017),
GRPO (Shao et al., 2024), and DAPO (Yu et al., 2025) on diverse reasoning benchmarks. Through
8-bit quantization (INT8 or FP8), we achieve substantial inference acceleration for 7B, 14B and 32B
models, demonstrating 20%–80% throughput improvements. Our experimental evaluation demon-
strates that QuRL consistently outperforms naive combinations of RL with quantized rollout as well
as concurrent approaches (Liu et al., 2025). Notably, INT8 QuRL achieves 55.5% average accu-
racy on the DeepScaleR benchmark (Luo et al., 2025b) across five reasoning tasks, exceeding the
baseline performance by 1.7%.

2 RELATED WORK

Reinforcement Learning for Reasoning. AI systems capable of extended reasoning constitute
a distinct class of models that perform elaborate CoT deliberation prior to producing outputs, pi-
oneered by OpenAI’s o1 series (Jaech et al., 2024). Following this breakthrough, DeepSeek (Guo
et al., 2025) and Kimi (Team et al., 2025) have documented comprehensive frameworks for develop-
ing reasoning models through RLVR. These contributions have established various RL algorithms
as standard practice, including GRPO (Shao et al., 2024), Mirror Descent (Tomar et al., 2020),
RLOO (Ahmadian et al., 2024), among others. However, this scaling comes at the cost of per-
forming a significant amount of decoding, which severely under-utilizes modern hardware. To this
end, the RL community has explored many ways for efficient training, including selective rollout
generation (Zheng et al., 2025), rollout down-sampling (Xu et al., 2025), asynchronous multi-role
distributed architectures (Fu et al., 2025). Despite these advances, achieving efficient RL training
while maintaining model performance remains a key challenge.

Quantization Quantization has emerged as a fundamental technique for compressing and acceler-
ating large-scale models. Comprehensive surveys by Gholami et al. (2022) and Nagel et al. (2021)
provide systematic analyses of quantization advancements. This section reviews key quantization
methods with emphasis on LLM applications. Quantization techniques fall into two main cate-
gories: Post-training Quantization (PTQ) and Quantization-Aware Training (QAT). PTQ methods
operate directly on pre-trained models without additional training. Prominent approaches includ-
ing Frantar et al. (2022b); Lin et al. (2023); Wei et al. (2022; 2023); Shao et al. (2023); Chee et al.
(2023); Liu et al. (2023a) enhance uniform quantization through strategic optimization of weight pa-
rameters, scaling factors, and clipping boundaries. Alternative PTQ strategies explore non-uniform
quantization schemes (Egiazarian et al., 2024; van Baalen et al., 2024; Elangovan et al., 2025) and
mixed-precision architectures such as LLM.int8 (Dettmers et al., 2022). QAT methods integrate
quantization into the training process itself. LLM-QAT (Liu et al., 2023b) addresses data require-
ments through synthetic generation, while Q-LoRA (Dettmers et al., 2023) combines quantization
with low-rank adaptation to reduce memory overhead during fine-tuning.

3 PRELIMINARIES

We begin with a brief overview of the GRPO (Shao et al., 2024) algorithm. And then we introduce
the basics of quantization operation and the subsequent challenges.

Group Relative Policy Optimization. GRPO adapts the PPO (Schulman et al., 2017) framework
for training LLMs, notably by eliminating the need for a learned value function (critic). Instead of

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

using generalized advantage estimation (GAE), GRPO estimates the advantage Âi,t at token t of
output oi based on the relative rewards within a group of G outputs {o1, o2, . . . , oG} sampled from
the old policy πθold for the same prompt q. The objective function is:

JGRPO(θ) = Eq∼P (q),o∼πθold

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min (Ri,tAi,t, clip(Ri,t, 1− ϵ, 1 + ϵ)Ai,t)

 (1)

where Ri,t =
πθ(oi,t|qi)

πθold
(oi,t|qi) is importance sampling ratio between the old actor and the current actor

on the t-th token of i-th generated response. Additionally, GRPO augments the PPO objective with
an explicit KL regularization term DKL(πθ||πθref ). The reference model πθref (typically the initial
supervised fine-tuned model) provides regularization, with the KL divergence computed using the
k3 estimator from Schulman (2020).

Quantization. Quantization maps the full precision parameters θ into low-bit parameters θ̂ = Q(θ).
In general, a b-bit quantized parameter can be expressed as

Q(θ, b) = α× (−1)sign × 2d × (1 +

b−1−e∑
i=1

mi

2i
), (2)

where the representation consists of three components: sign, exponent, and mantissa, scaled by a
factor α. Here, sign ∈ {−1,+1} encodes the sign, d ∈ [1, 2e] represents the exponent using e
bits. And the mantissa uses the remaining (b − 1 − e) bits with mi ∈ {0, 1}. When e = 0, this
formulation reduces to integer quantization. The scaling factor α is determined by the maximum
absolute value within a group of weights or activations. The granularity of quantization depends
on the group size, ranging from channel-wise to block-wise operations. To further reduce memory
overhead, the scaling factor itself can be quantized, as in NVFP4 (NVIDIA, 2025).

4 QURL: QUANTIZED REINFORCEMENT LEARNING

Old Actor

𝜃!"#

Updated
Actor
𝜃

Quantized
Model
𝑄(𝜃!"#)

Actor
Rollout

a~	𝜋$(&!"#)	

Quant. Error:
𝑄 𝜃!"# − 𝜃!"#

Weight Update
𝜃 − 𝜃!"#

Accelerated
D
ecoding

Figure 1: Overview of QuRL training.
The sampling model θold is quantized to
θ̂old for rollout.

To accelerate the rollout phase, we quantize the weights
and activations of the old actor model θold to lower-bit
representations, enabling efficient matrix multiplication
during inference θ̂old = Q(θold, b). Fig. 1 illustrates the
pipeline for incorporating quantization into the RL.

Our QuRL approach occupies a unique position between
post-training quantization (PTQ) and quantization-aware
training (QAT). Unlike QAT, we do not explicitly op-
timize quantization performance through gradient de-
scent—the actor undergoes one-shot quantization before
deployment for rollout. However, unlike pure PTQ, the
actor parameters are implicitly influenced by the gradi-
ents computed from the quantized model’s outputs dur-
ing policy updates. This dual nature imposes specific re-
quirements on our quantization strategy: it must be sufficiently simple to avoid complex calibration
procedures while remaining expressive enough to preserve the learning dynamics. In the following
sections, we present our methodology addressing both the reinforcement learning adaptations and
the quantization operations necessary for efficient training.

4.1 ISSUES WITH IMPORTANCE SAMPLING AND CLIPPING

Given that rollout data has been sampled from the quantized actor, we can rewrite the RL objective
as

J (θ) = Eq∼P (q),o∼πθ̂old

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
R̂i,tAi,t, clip(R̂i,t, 1− ϵ, 1 + ϵ)Ai,t

) , (3)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500 600 700 800
Step

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Va
lu
e

(a) Mean Training Rewards

BF16 (Eq. 1)
INT8 (Eq. 1)
INT8 (Eq. 3)
INT8 (Eq. 4)

0 100 200 300 400 500 600 700 800
Step

0.000

0.005

0.010

0.015

(b) Token Clipped Fraction
BF16 (Eq. 1)
INT8 (Eq. 1)
INT8 (Eq. 3)
INT8 (Eq. 4)

Figure 2: Comparison of (a) training rewards and (b) token clipped fraction under different training
objective or quantization.

where R̂i,t =
πθ(oi,t|qi)

πθ̂old
(oi,t|qi) denotes the importance sampling ratio between the current full-precision

actor πθ and the quantized old actor πθ̂old
.

We implement the objective of Eq. (3) and compare it with full-precision GRPO experiments. The
model and dataset follow the DeepScaleR setup (Luo et al., 2025b). Unfortunately, the quantized
model’s importance sampling leads to training instability, with rewards collapsing after several RL
steps as shown in Fig. 2. Analysis of the token clipped fraction in Fig. 2(b) reveals that R̂i,t exhibits
significantly higher clipping rates than the full-precision baseline. The fraction rapidly increases
to 1.5% before abruptly dropping to zero, indicating severe instability in the R̂i,t when applying
clipping on top of it. Additionally, we test the objective of Eq. (1) with quantized rollout, which
instead uses the full-precision old actor as the denominator for clipping and importance sampling.
Fig. 2 shows that this objective can have a stable training curve, but may produce a large gap between
BF16 after 800 steps of RL training.

To address the instability in Eq. (3), we adopt the decoupled PPO objective (Hilton et al., 2022; Fu
et al., 2025), which separates the behavior policy πθbehav

(for token sampling) from the proximal
policy πθprox

(for clipping):

Jdecoupled(θ) = Ẽo∼πθbehav

[
πθprox(oi,t)

πθbehav
(oi,t)

min (Ri,tAi,t, clip(Ri,t, 1− ϵ, 1 + ϵ)Ai,t)

]
, (4)

where Ri,t =
πθ(oi,t)

πθprox (oi,t)
denotes the ratio between the current policy and the proximal policy.

For simpler notation, we integrate the averaging across responses and groups into expectation Ẽ,
as they do not change the clipping/importance sampling outcome. In QuRL, we set the behavior
policy as the quantized old actor (πθbehav

= πθ̂old
) and the proximal policy as the full-precision

old actor (πθprox = πθold ). Compared to R̂i,t that uses a quantized actor to determine clipping,
Ri,t enables more tokens to be trained via correct importance sampling. As shown in Fig. 2, this
approach significantly improves training stability.

FlashRL (Liu et al., 2025) observes that πθ̂old
is usually obtained from the inference engine such

as vLLM (Kwon et al., 2023) and SGLang (Zheng et al., 2024). However, due to the implementa-
tion difference between training (i.e., HuggingFace and Megatron) and inference (i.e., vLLM and
SGLang) engines, an extra engineering discrepency between πθprox and πθbehav

is introduced and
will hinder RL training. FlashRL proposes Truncated Importance Sampling (TIS) to reduce this
difference, given by

JTIS(θ) = Ẽo∼πθbehav

[
min

(
πθprox(oi,t)

πθbehav
(oi,t)

, C

)
min (Ri,tAi,t, clip(Ri,t, 1− ϵ, 1 + ϵ)Ai,t)

]
.

(5)
where C bounds the proximal-to-behavior ratio. This formulation reduces computational overhead
by directly accessing probabilities from the inference engine and naturally extends to other off-
policy RL methods. However, even with these modifications, the decoupled objective alone cannot
fully bridge the quantization gap in QuRL, particularly during later training stages.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000 1200
Step

0.005

0.010

0.015

0.020

0.025

Va
lu
e

(a) KL( behav|| prox)

QuRL w/o ACR
QuRL w/ ACR

0 200 400 600 800 1000 1200
Step

0

5000

10000

15000

(b) Max Ratio

Figure 3: Training dynamics of QuRL. (a) Training collapses after 1000 steps due to increased KL
divergence between behavior and proximal policy, and (b) the maximum value of the proximal-to-
behavior policy ratio.

4.2 ADAPTIVE CLIPPING RANGE

The TIS essentially modifies the behavior policy by truncating the behavior policy if it is extremely
small. To see this, we define

πθtrunc
behav

= max(πθbehav
,
πθprox

C
). (6)

Now, we can rewrite TIS objective as the decoupled PPO objective form, given by

Jdecoupled(θ) = Ẽo∼πθbehav

[
πθprox(oi,t)

πθtrunc
behav

(oi,t)
min (Ri,tAi,t, clip(Ri,t, 1− ϵ, 1 + ϵ)Ai,t)

]
, (7)

Essentially, the gradient of the original decoupled PPO objective is scaled by ri,t =
πθbehav

(oi,t)/πθtrunc
behav

(oi,t). As shown in Fig. 3(b), the maximum proximal-to-behavior ratio can reach
up to 105, causing an extremely large gradient norm if using the decoupled PPO objective. The
above equation effectively avoids the excessive gradient norm.

In practice, we find that TIS works well under 500 steps of RL training. However, at long training
steps (e.g., > 1000 steps), we observe the KL divergence between the behavior policy and the
proximal policy (i.e., DKL(πθbehav

||πθprox) = E[log πθbehav

πθprox
]) continues to increase. As shown in

Fig. 3(a), the KL divergence increases from 0.002 to 0.025, which is 12× higher. This indicates that
the truncated behavior policy also leads to biased gradient estimation, especially for large r.

To mitigate this problem, we examine the clipping mechanism in the decoupled PPO objective and
propose the Adaptive Clipping Range (ACR). Our intuition is that, when the behavior policy is
truncated, the factor ri,t implicitly affects the clipping. More concretely, given that 0 < ri,t ≤ 1,
we can absorb this factor into the clipping term as well as its range, given by

ri,tclip(Ri,t, (1− ϵ), (1 + ϵ)) = clip(ri,tRi,t, ri,t(1− ϵ), ri,t(1 + ϵ)). (8)

This operation shrinks both the upper and lower clipping range by a factor of ri,t. For negative
advantage sequences, it does affect the clipping since the large ratios do not get clipped regardless.
However, for positive advantage sequences, it reduces the upper bound. For large ri,t where the
difference is likely due to training/inference engine execution, its biased estimation unexpectedly
clips more tokens. To address this issue, we propose to use a fixed upper threshold (1 + ϵ), to allow
more tokens to pass if the πθbehav

(oi,t) is truncated. As a result, we can rewrite our ACR into:

JACR(θ) = Ẽo∼πθbehav

[
min

(
πθprox(oi,t)

πθbehav
(oi,t)

, C

)
min

(
Ri,tAi,t, clip

(
Ri,t, (1− ϵ),

(1 + ϵ)

ri,t

)
Ai,t

)]
.

(9)
The ACR can dynamically adjust the clipping range based on the proximal-to-behavior ratio: For
tokens where

πθprox (oi,t)

πθbehav
(oi,t)

> C, ri,t < 1 enlarges the upper clipping bound, allowing more positive
tokens to be updated. Otherwise, the threshold is the same as TIS.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

𝜃!"#																		

𝜃#!"#	

Δ𝜃 = 𝛼×𝐺				 𝜃	

Quantize

Few weights changed
quantized values

𝜃#	

+

Quantize for next rollout

(a) Weight change mismtach

0 25 50 75 100 125 150 175 200
Step

0.010

0.012

0.014

0.016

0.018

be
ha

v
pr

ox

QuRL w/. UAQ (INT8)
QuRL w/o UAQ (INT8)

(b) Visualization of average (πθ̂old
− πθold)

Figure 4: The weight update problem. (a) An intuitive example showing weight quantization cannot
sense the weight update suitably and (b) visualization of training dynamics showing the difference
between πθ̂old

and πθold .

4.3 UPDATE-AWARE QUANTIZATION

Another crucial challenge in QuRL is the mismatch of magnitude between the weight quantization
change and the weight update change. During each RL step, θold is quantized to θ̂old for rollout,
then updated to θ to become the old actor for the next step. The weight change magnitudes follow:

θ̂old − θold ∝ |θold|
2b

, θ − θold ∝ αG, (10)

where α denotes the learning rate and G the gradient. In typical RL experiments, we observe G ∈
[0.1, 1.0] with α = 10−6, yielding weight updates of order 10−7 to 10−6. This is substantially
smaller than the quantization error, as the weight norm itself ranges from (0.001, 0.1). We also
provide an example in Fig. 4(a) to illustrate this problem.

Empirical analysis confirms this mismatch. Comparing θ̂old across RL steps with INT8 quantization
in DeepScaleR experiments, the update is much smaller than quantization error. See Appendix A for
more details. This indicates that quantization masks nearly all weight updates, effectively freezing
the quantized model despite ongoing training. In Fig. 4(b), we measure the average difference
between πθ̂old

and πθold of INT8 quantization in DAPO task (Yu et al., 2025).

Since QuRL operates between PTQ and QAT paradigms, neither approach offers an optimal solu-
tion. Complex calibration algorithms like GPTQ (Frantar et al., 2022a) could theoretically capture
finer weight changes if applied at each step, but would impose prohibitive training time overhead on
rollout. For QAT, it will introduce additional discrepancies between training and inference engines,
exacerbating importance sampling bias (Liu et al., 2025).

To mitigate this problem, we propose Update-Aware Quantization (UAQ), a one-time weight

Layer
Norm

Q_proj

K_proj

V_proj

𝑠X

𝑊!

𝑠

𝑠𝑊"#

𝑊$

𝑠

𝑊%

𝑠

Figure 5: Invariant scaling of
Q/K/V layers.

adjustment performed before RL training begins. Our ap-
proach leverages invariant scaling of linear layers in trans-
former blocks (Xiao et al., 2023b). Given weights W and input
activations X in a layer, invariant scaling preserves the output
by

WX =

(
W

s

)
· (sX). (11)

The scale s is applied column-wise to W and row-wise to X .
The activation scaling can be absorbed into the preceding layer
(e.g., LayerNorm), as illustrated in Fig. 5.

Unlike existing PTQ methods (Xiao et al., 2023b) that minimize quantization error
∥Q(W/s)Q(sX) − WX∥, we strategically choose s > 1 to balance weight quantization error
against update magnitude such that

θ̂old − θold ∝ |θold|
s · 2b

, θ − θold ∝ s · αG. (12)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of GSM8k accuracy.

Method Bitwidth Accuracy
RL BF16 55.35

RL INT8 48.78
FlashRL (Liu et al., 2025) INT8 51.40
QuRL (Ours) INT8 53.55

RL FP8 0.0
FlashRL (Liu et al., 2025) FP8 53.60
QuRL (Ours) FP8 54.28

Figure 6: Convergence of INT8 experiment.

0 100 200 300 400
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

GS
M8

K 
Ac
cu

ra
cy

RL (BF16)
RL (INT8)
FlashRL (INT8)
QuRL (INT8)

The scaling factor s reduces quantization error by a factor of s while amplifying weight updates by
the same factor. The weight update amplification occurs because gradients with respect to W are
computed as ∇WL = (∇Y L)X⊤, where the pre-scaled activations X have been multiplied by s.

This dual effect creates an s2 improvement in the ratio between weight updates and quantization
noise, enabling the quantized model to capture training dynamics more effectively. Empirically, we
find s = 1.5 provides consistent improvements on INT8 and FP8 quantization, striking an effective
balance between reducing quantization artifacts and maintaining numerical stability.

5 EXPERIMENTS

All our experiments were conducted with the hybrid engine-based RL framework, VeRL (Sheng
et al., 2024). We evaluate QuRL across three distinct reinforcement learning configurations: (1) PPO
training on GSM8K (Cobbe et al., 2021), (2) DAPO (Yu et al., 2025) optimization on AIME mathe-
matical reasoning tasks, and (3) GRPO training on the DeepScaleR benchmark (Luo et al., 2025b).
Our quantization experiments employ both INT8 and FP8 precision formats. Weight quantization
utilizes channel-wise scaling factors, while activation quantization applies token-wise scaling. We
leverage vLLM’s optimized INT8 and FP8 matrix multiplication kernels (Kwon et al., 2023) to
achieve computational acceleration during inference. Note that FP8 KV cache quantization remains
suboptimally implemented in the current vLLM version and does not yield measurable throughput
improvements; consequently, we exclude KV cache quantization from our experimental evaluation.

5.1 REASONING RESULTS

PPO on GSM8K. We evaluate the PPO algorithm (Schulman et al., 2017) on the GSM8K dataset,
which comprises 7.4k training examples and 1.3k validation examples. We use Qwen2.5-0.5B-
Instruct (Qwen et al., 2024) as the base model and conduct training over 15 epochs, corresponding
to 435 RL optimization steps. Training employs a batch size of 256 with a maximum response
length of 512 tokens per rollout. Evaluation metrics are computed using greedy decoding on the test
set (deterministic next-token selection based on maximum probability).

We compare against four experimental configurations: (1) Full-precision RL baseline, (2) Quan-
tized rollout with standard importance sampling—applying Equation 1 to responses sampled from
the quantized policy o ∼ πθ̂old

, (3) FlashRL with Truncated Importance Sampling (TIS) (Liu et al.,
2025), and (4) QuRL with Adaptive Clipping Range. Note that Update-Aware Quantization is dis-
abled for this experiment due to the relatively high learning rate (10−5), which already provides suf-
ficient weight update magnitude. Table 1 presents final checkpoint accuracies. The results demon-
strate that naive INT8 quantization without decoupled behavior/proximal policies yields substantial
performance degradation. FlashRL (Liu et al., 2025) achieves training stabilization through TIS
and decoupled PPO, yet maintains a notable accuracy gap relative to BF16 baseline—particularly
severe under INT8 quantization (4% degradation). In contrast, QuRL with ACR reduces this gap to
2% for INT8 and approximately 1% for FP8, demonstrating superior quantization robustness across
precision formats.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison of AIME 2024 accuracy.

Method Bitwidth Avg@1 Avg@32
RL BF16 33.33 31.67

RL INT8 0.00 0.001
FlashRL INT8 26.66 30.29
QuRL w/o UAQ INT8 33.33 30.63
QuRL w/ UAQ INT8 33.33 31.25

RL FP8 0.00 0.003
FlashRL FP8 30.00 32.60
QuRL w/o UAQ FP8 36.66 33.12
QuRL w/ UAQ FP8 33.33 33.27

Figure 7: Convergence of FP8 experiment.

0 25 50 75 100 125 150 175 200
Step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

AI
ME

 2
02

4 
Av

g@
32

RL (BF16)
RL (FP8)
FlashRL (FP8)
QuRL w/o UAQ (FP8)
QuRL w. UAQ (FP8)

Table 3: Comparison of Avg@32 accuracy across various math reasoning tasks of DeepScaleR.

Method Bitwidth AIME24 AMC MATH Minerva Olympiad Avg
Base BF16 28.54 62.58 82.90 26.38 43.58 48.80
RL BF16 40.73 73.45 87.71 30.56 49.59 56.40

RL INT8 33.95 68.75 84.90 28.12 45.85 52.31
FlashRL INT8 36.77 70.55 85.88 28.44 47.33 53.80
QuRL w/o UAQ INT8 39.06 70.48 86.48 29.20 48.75 54.79
QuRL w/ UAQ INT8 40.52 71.34 87.20 29.22 49.13 55.48

DAPO on AIME 2024. Next, we test the decoupled clip and dynamic sampling policy optimization
(DAPO) (Yu et al., 2025) with Qwen2.5-7B-Math. We use the 17k dataset from the original paper
and apply the decoupled clip where ϵhigh = 0.28 and ϵlow = 0.2 for the default clipping range. We
optimize the base model for 200 steps, and the learning rate is set to 1e− 6. In each step, we sample
512 queries and 16 rollout responses per query. Additionally, DAPO does not apply any KL diver-
gence loss between the actor and reference models. For evaluation, we use two metrics (Avg@1)
and (Avg@32) on the AIME 2024 dataset, where, Avg@1 represents the accuracy achieved using
greedy decoding (deterministic next token prediction) and Avg@32 represents the average accuracy
of 32 sampled responses per problem, using a temperature of 1.0 and a top p of 0.7.

As shown in Table 2, vanilla INT8/FP8 RL has near 0 accuracy on the AIME 2024 dataset, indi-
cating that a biased estimation of the importance sampling will result in crashed performance. The
convergence figure on the right shows that RL can converge well in the first 100 steps, but results in
decreased performance for the latter 100 steps. This is due to the increased gap between proximal
and behavioral policy through training. FlashRL (Liu et al., 2025) converges better than RL and
has much better final accuracy than RL. For example, with INT8 quantization, FlashRL achieves
30.3% Avg@32 accuracy, with a 1.4% gap from the full precision baseline. Our QuRL, equipped
with ACR, can successfully close the gap during training. The final accuracy also shows improved
results, with 33.1% Avg@32 accuracy under FP8 quantization.

GRPO on DeepScaleR. Finally, we test the performance of our algorithm on an open-source
project, DeepScaleR (Luo et al., 2025b), which improves the reasoning boundaries of DeepSeek-
Distill-Qwen1.5B models (Guo et al., 2025). The training dataset contains 40k math problems from
AIME problems from 1983 to 2023, as well as Omni-Math Gao et al. (2024) and Still (Min et al.,
2024). We train the actor for 3 stages, under 8k, 16k, and 24k context length, respectively. The
training batch size is 256, with the learning rate of 1e − 6. Following the official implementation,
for the first stage, we generate 8 rollouts per query with 8k context length and train the model for
800 steps. For the latter two stages, 16 rollouts per query are generated, and the actor is trained for
400 steps. The coefficient for KL divergence in GRPO is set to 1e− 3. The temperature is set to 0.6

For evaluation, we follow the official implementation to compare the Avg@32 results on AIME
2024 (Li et al., 2024), MATH 500 (Hendrycks et al., 2021), AMC 2023 (Ouyang et al., 2022),
Minerva Math (Lewkowycz et al., 2022), and Olympiad Bench (He et al., 2024) as well as the
average accuracy of all above. The results are shown in Table 3. The full-precision RL improves the
base model by 7.6% average accuracy across 5 tasks and notably 12% accuracy improvement on the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

A6000 A100 H100
GPU Model

0

10

20

30

40

50

60

70

Qu
er

ie
s 

pe
r 

se
co

nd

1.36x

1.30x

1.16x

DeepSeek-Distill-Qwen-7B

BF16
INT8

A6000 A100 H100
GPU Model

0

10

20

30

40

50

1.56x 1.33x

1.30x

DeepSeek-Distill-Qwen-14B

BF16
INT8

A6000x2 A100x2 H100x2
GPU Model

0

10

20

30

40

50

1.40x

1.66x

1.83x

DeepSeek-Distill-Qwen-32B

BF16
INT8

Figure 8: Inference acceleration of INT8 quantization.

AIME 2024 dataset. Instead, INT8 RL can barely improve the base model accuracy, for example,
5% improvement on the AIME 2024 dataset. Averaging all tasks, INT8 RL has a large gap of 4.1%
compared to BF16 RL. FlashRL achieves a slight improvement over INT8 RL, with a 1.5% higher
average accuracy among 5 tasks. On the other hand, QuRL w/ UAQ significantly boosts the average
accuracy of INT8 RL by 3%.

5.2 THROUGHPUT TEST

In this section, we demonstrate the throughput benefits of applying quantization during rollout (de-
coding). We use the script from GuideLLm (Neural Magic, 2024) to evaluate the DeepSeek-Distill-
Qwen-7B/14B/32B models on the vLLM platform (Kwon et al., 2023). We test INT8 quantization
across multiple GPU types, including A6000, A100, and H100. For 7B and 14B model, we evaluate
the throughput (queries per second) on one GPU, while for 32B model, we evaluate it with tensor
parallelism across 2 GPUs.

The results are shown in Fig. 8. For the 7B model, INT8 quantization can bring 20%∼30% accel-
eration effect, while for the 32B model, we find INT8 quantization can bring 70% faster throughput
on A100 and 90% faster throughput on H100. Generally, we observe that larger models benefit
more from quantization. This is due to the large model being bottlenecked by matrix multiplication,
yet smaller models are usually bottlenecked by the I/O Nevertheless, we emphasize that QuRL is
compatible with other types of compression (Frantar & Alistarh, 2023; Liu et al., 2024).

5.3 ABLATION STUDY

In this section, we compare the results of choosing different scales for UAQ. On one hand, a large
scale contributes to a smaller gap between weight update and weight quantization noise. On the

Scale s Learning Rate Avg@32

s = 1 α = 10−6 30.63
s = 1.5 α = 10−6 31.25
s = 2 α = 10−6 29.15
s = 1 α = 1.5× 10−6 29.06
s = 1 α = 2× 10−6 26.66

Table 4: Ablation on scale and α.

other hand, it will also make the weight update more than
usual, causing more clipped tokens and decreasing the
RL performance. To demonstrate this effect, we compare
scales s = 1, 1.5, 2 and also test another alternative by
directly increasing the learning rate on the DAPO tasks
with INT8 quantization. The results are shown in Table
4. It can be seen that s = 1.5 with the original learning
rate provides the best results. The larger scale or learning
rate results in less stable training of RL and decreases the
accuracy on AIME 2024.

CONCLUSION

We present QuRL, an efficient RL training method that accelerates rollout generation through quan-
tized inference. QuRL addresses two fundamental challenges: clipping instability and weight
update-quantization mismatch. Our ACR prevents training collapse by dynamically adjusting the
clipping, while UAQ bridges the scale gap between weight updates and quantization errors through
invariant scaling. Experiments across multiple RL algorithms demonstrate consistent improvements
over baselines and 20∼80% throughput improvement over BF16 rollout.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
ing from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
crete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher De Sa. Quip: 2-bit quantization of
large language models with guarantees. arXiv preprint arXiv:2307.13304, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan Al-
istarh. Extreme compression of large language models via additive quantization. arXiv preprint
arXiv:2401.06118, 2024.

Reena Elangovan, Charbel Sakr, Anand Raghunathan, and Brucek Khailany. Bcq: Block clustered
quantization for 4-bit (w4a4) llm inference. arXiv preprint arXiv:2502.05376, 2025.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022a.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022b.

Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun
Mei, Jiashu Wang, et al. Areal: A large-scale asynchronous reinforcement learning system for
language reasoning. arXiv preprint arXiv:2505.24298, 2025.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark
for large language models. arXiv preprint arXiv:2410.07985, 2024.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Jingkai He, Tianjian Li, Erhu Feng, Dong Du, Qian Liu, Tao Liu, Yubin Xia, and Haibo
Chen. History rhymes: Accelerating llm reinforcement learning with rhymerl. arXiv preprint
arXiv:2508.18588, 2025.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Jacob Hilton, Karl Cobbe, and John Schulman. Batch size-invariance for policy optimization. Ad-
vances in Neural Information Processing Systems, 35:17086–17098, 2022.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843–3857, 2022.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13(9):9, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq:
Activation-aware weight quantization for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Jiawei Liu and Lingming Zhang. Code-r1: Reproducing r1 for code with reliable rewards. arXiv
preprint arXiv:2503.18470, 3, 2025.

Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, Jianfei Cai, and Bohan Zhuang. Qllm:
Accurate and efficient low-bitwidth quantization for large language models. arXiv preprint
arXiv:2310.08041, 2023a.

Liyuan Liu, Feng Yao, Dinghuai Zhang, Chengyu Dong, Jingbo Shang, and Jianfeng Gao.
Flashrl: 8bit rollouts, full power rl, August 2025. URL https://fengyao.notion.site/
flash-rl.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023b.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024.

Michael Luo, Sijun Tan, Roy Huang, Xiaoxiang Shi, Rachel Xin, Colin Cai,
Ameen Patel, Alpay Ariyak, Qingyang Wu, Ce Zhang, Li Erran Li, Raluca Ada
Popa, Ion Stoica, and Tianjun Zhang. Deepcoder: A fully open-source 14b
coder at o3-mini level. https://pretty-radio-b75.notion.site/
DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51,
2025a. Notion Blog.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan
Roongta, Colin Cai, Jeffrey Luo, Tianjun Zhang, Li Erran Li, Raluca Ada
Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview with a 1.5b
model by scaling rl. https://pretty-radio-b75.notion.site/
DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2,
2025b. Notion Blog.

11

https://fengyao.notion.site/flash-rl
https://fengyao.notion.site/flash-rl
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng
Wang, Xiaoxue Cheng, Huatong Song, et al. Imitate, explore, and self-improve: A reproduction
report on slow-thinking reasoning systems. arXiv preprint arXiv:2412.09413, 2024.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart Van Baalen,
and Tijmen Blankevoort. A white paper on neural network quantization. arXiv preprint
arXiv:2106.08295, 2021.

Inc. Neural Magic. Guidellm: Scalable inference and optimization for large language models.
https://github.com/vllm-project/guidellm, 2024.

NVIDIA. Introducing NVFP4 for Efficient and Accurate Low-Precision Inference — NVIDIA
Technical Blog — developer.nvidia.com. https://developer.nvidia.com/blog/
introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/,
2025. [Accessed 11-09-2025].

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

A Yang Qwen, Baosong Yang, B Zhang, B Hui, B Zheng, B Yu, Chengpeng Li, D Liu, F Huang,
H Wei, et al. Qwen2. 5 technical report. arXiv preprint, 2024.

John Schulman. Approximating KL Divergence — joschu.net. http://joschu.net/blog/
kl-approx.html, 2020. [Accessed 11-09-2025].

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. arXiv preprint arXiv:2308.13137, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent policy
optimization. arXiv preprint arXiv:2005.09814, 2020.

Mart van Baalen, Andrey Kuzmin, Markus Nagel, Peter Couperus, Cedric Bastoul, Eric Mahurin,
Tijmen Blankevoort, and Paul Whatmough. Gptvq: The blessing of dimensionality for llm quan-
tization. arXiv preprint arXiv:2402.15319, 2024.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Feng-
wei Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer lan-
guage models. Advances in Neural Information Processing Systems, 35:17402–17414, 2022.

Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo Zhang, Ruihao Gong, Jinyang Guo, and Xian-
glong Liu. Outlier suppression+: Accurate quantization of large language models by equivalent
and optimal shifting and scaling. arXiv preprint arXiv:2304.09145, 2023.

12

https://github.com/vllm-project/guidellm
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
https://developer.nvidia.com/blog/introducing-nvfp4-for-efficient-and-accurate-low-precision-inference/
http://joschu.net/blog/kl-approx.html
http://joschu.net/blog/kl-approx.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiaxin Wen, Ruiqi Zhong, Akbir Khan, Ethan Perez, Jacob Steinhardt, Minlie Huang, Samuel R
Bowman, He He, and Shi Feng. Language models learn to mislead humans via rlhf. arXiv
preprint arXiv:2409.12822, 2024.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023a.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
conference on machine learning, pp. 38087–38099. PMLR, 2023b.

Yixuan Even Xu, Yash Savani, Fei Fang, and Zico Kolter. Not all rollouts are useful: Down-sampling
rollouts in llm reinforcement learning. arXiv preprint arXiv:2504.13818, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
Wang, TianTian Fan, Zhengyin Du, et al. Vapo: Efficient and reliable reinforcement learning for
advanced reasoning tasks. arXiv preprint arXiv:2504.05118, 2025.

Haizhong Zheng, Yang Zhou, Brian R Bartoldson, Bhavya Kailkhura, Fan Lai, Jiawei Zhao, and
Beidi Chen. Act only when it pays: Efficient reinforcement learning for llm reasoning via selective
rollouts. arXiv preprint arXiv:2506.02177, 2025.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs. Advances in neural information processing systems, 37:
62557–62583, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A WEIGHT CHANGE VISUALIZATION

0 200 400 600 800
Training Step

0.000

0.002

0.004

0.006

0.008

0.010

Re
la

ti
ve

 L
2 

No
rm

Normalized Weight Update
Normalized Weight Quantization Error

Figure 9: Visualization of normalized weight changes.

In this section, we visualize the weight change during RL learning. We conduct our analysis on the
DeepScaleR task (Luo et al., 2025b). Our metric include (1) Normalized Weight Update, defined as

NormalizedWeightUpdate(t) =
||θt+1 − θt||2F

||θt||2F
, (13)

where θt denotes the actor weights after t RL steps. This metric captures the ratio between the total
weight update and the initial weight values. The second metric we adopt is the Normalized Weight
Quantization Error, defined as

NormalizedWeightQuantError =
||Q(θt)− θt||2F

||θt||2F
. (14)

We use INT8 quantization, and compare their values in Fig. 9. It can be found that the weight
quantization error is much larger than the weight update, especially at the early training stages. Note
that the update are measured across every 16 steps, which means the actual weight update per step
could be far smaller than the plotted values.

B DEEPSCALER VISUALIZATION

0 200 400 600 800 1000 1200 1400
Step

0.20

0.25

0.30

0.35

0.40

AI
ME
 2
02
4 
Av
g@
32

RL (BF16)
RL (INT8)
FlashRL (INT8)
QuRL (INT8)

Figure 10: Visualization of test accuracy (AIME 2024 Avg@32).

Here, we provide the test accuracy of our DeepScaleR experiments. It can be observed that in the
long-horizon training scenarios, INT8 RL incurs a large gap with the BF16 RL. Although FlashRL
ensures consistent improvement before 1200 steps, its test accuracy starts to drop after 1200 steps.
While QuRL can have consistent improvement across the whole training cycle.

14


	Introduction
	Related Work
	Preliminaries
	QuRL: Quantized Reinforcement Learning
	Issues with Importance Sampling and Clipping
	Adaptive Clipping Range
	Update-Aware Quantization

	Experiments
	Reasoning Results
	Throughput Test
	Ablation Study

	Weight Change Visualization 
	DeepScaleR Visualization

