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ABSTRACT

We study reward poisoning attacks on online deep reinforcement learning (DRL),
where the attacker is oblivious to the learning algorithm used by the agent and
does not necessarily have full knowledge of the environment. We demonstrate the
intrinsic vulnerability of state-of-the-art DRL algorithms by designing a general,
black-box reward poisoning framework called adversarial MDP attacks. We in-
stantiate our framework to construct several new attacks which only corrupt the
rewards for a small fraction of the total training timesteps and make the agent
learn a low-performing policy. Our key insight is that state-of-the-art DRL al-
gorithms strategically explore the environment to find a high-performing policy.
Our attacks leverage this insight to construct a corrupted environment where (a)
the agent learns a high-performing policy that has low performance in the origi-
nal environment and (b) the corrupted environment is similar to the original one
so that the attacker’s budget is reduced. We provide a theoretical analysis of the
efficiency of our attack and perform an extensive evaluation. Our results show
that our attacks efficiently poison agents learning with a variety of state-of-the-art
DRL algorithms, such as DQN, PPO, SAC, etc., under several popular classical
control and MuJoCo environments.

1 INTRODUCTION

In several important applications such as robot control (Christiano et al., 2017) and recommendation
systems (Afsar et al., 2021; Zheng et al., 2018), state-of-the-art online deep reinforcement learning
(DRL) algorithms rely on human feedbacks in terms of rewards, for learning high-performing poli-
cies. This dependency raises the threat of reward-based data poisoning attacks during training: a user
can deliberately provide malicious rewards to make the DRL agent learn low-performing policies.
Data poisoning has already been identified as the most critical security concern when employing
learned models in industry (Kumar et al., 2020). Thus, it is essential to study whether state-of-
the-art DRL algorithms are vulnerable to reward poisoning attacks to discover potential security
vulnerabilities and motivate the development of more robust training algorithms.

Challenges in poisoning DRL agents. To uncover practical vulnerabilities, it is critical that the
attack does not rely on unrealistic assumptions about the attacker’s capabilities. Therefore for en-
suring a practically feasible attack, we require that: (i) the attacker has no knowledge of the exact
DRL algorithm used by the agent as well as the parameters of the neural network used for training.
Further, it should be applicable to different kinds of learning algorithms (e.g., policy optimization, Q
learning) (ii) the attacker does not have detailed knowledge about the agent’s environment, and (iii)
to ensure stealthy, the amount of reward corruption applied by the attacker is limited (see Section 3).
As we show in Appendix G, these restrictions make finding an efficient attack very challenging.

This work: efficient poisoning attacks on DRL. To the best of our knowledge, no prior work stud-
ies the vulnerability of the DRL algorithms to reward poisoning attacks under the practical restric-
tions mentioned above. To overcome the challenges in designing efficient attacks and demonstrate
the vulnerability of the state-of-the-art DRL algorithms, we make the following contributions:

1. We propose a general, efficient, and parametric reward poisoning framework for DRL algorithms,
which we call adversarial MDP attack, and instantiate it to generate several attack methods that
are applicable to any kind of learning algorithms and computationally efficient. To the best of
our knowledge, our attack is the first one that considers the following four key elements in the
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threat model at the same time: 1. Training time attack, 2. Deep RL, 3. Reward poisoning attack,
4. Complete black box attack (no knowledge or assumption about the learning algorithm and the
environment). A detailed explanation for each key point is provided in Appendix A.

2. We provide a theoretical analysis of our attack methods based on certain assumptions on the
efficiency of the DRL algorithms which yields several insightful implications.

3. We provide an extensive evaluation of our attack methods for poisoning the training with sev-
eral state-of-the-art DRL algorithms, such as DQN, PPO, SAC, etc., in the classical control and
MuJoCo environments, commonly used for developing and testing DRL algorithms. Our results
show that our attack methods significantly reduce the performance of the policy learned by the
agent in the majority of the cases and are considerably more efficient than baseline attacks (e.g.,
VA2C-P (Sun et al., 2020), reward-flipping (Zhang et al., 2021b)). We further validate the impli-
cations of our theoretical analysis by observing the corresponding phenomena in experiments.

2 RELATED WORK

Testing time attack on RL. Testing time attack (evasion attack) in deep RL setting is popular in
literature (Huang et al., 2017; Kos & Song, 2017; Lin et al., 2017). For an already trained policy,
testing time attacks find adversarial examples where the learned policy has undesired behavior. In
contrast, our training time attack corrupts reward to make the agent learn low-performing policies.

Data poisoning attack on bandit and tabular RL settings. Jun et al. (2018); Liu & Shroff (2019);
Xu et al. (2021b) study data poisoning attack against bandit algorithms. Ma et al. (2019) studies
the attack in the offline tabular RL setting. Rakhsha et al. (2020); Zhang et al. (2020b) study the
online tabular RL setting relying on full or partial knowledge of the environment and the learning
algorithm. Liu & Lai (2021); Xu et al. (2021a) discuss the attack that can work with no knowledge
or weak assumptions on the learning algorithm or the environment. Both tabular and bandit settings
are simpler than the deep RL setting considered in our work.

Observation perturbation attack and defense. There is a line of work studying observation per-
turbation attacks during training time (Behzadan & Munir, 2017a;b; Inkawhich et al., 2019) and the
corresponding defense (Zhang et al., 2021a; 2020a). The threat model here does not change the
actual state or reward of the environment, but instead, it changes the learner’s observation of the
environment by generating adversarial examples. In contrast, for the poisoning attack as considered
in our work, the actual reward or state of the environment is changed by the attacker. The obser-
vation perturbation attack assumes access to perturb the sensor of the agent that is used to observe
the environment. Therefore, it is not practical when the attacker does not have access to the agent’s
sensor, or the agent does not rely on sensors for interacting with the environment.

Data poisoning attack on DRL. The work of Sun et al. (2020) is the only other work that considers
reward poisoning attack on DRL and therefore is the closest to ours. There are three main limitations
of their attack compared to ours (a) the attack requires the knowledge of the learning algorithm (the
update rule for learned policies) used by the agent, which is not the complete black box setting, (b)
the attack only works for on-policy learning algorithms, and (c) the attacker in their setting makes
the decision about attacking after receiving a whole training batch. This makes the attack infeasible
when the agent updates the observation at each time step, as in this case it is impossible for the
attacker to apply corruption to previous observations in a training batch. We experimentally compare
against them by adapting our general attacks to their restricted setting. Our results in Appendix I
show that our attack requires much less computational resources and achieves better attack results.

Robust learning algorithms against data poisoning attack. Robust learning algorithms can guar-
antee efficient learning under the data poisoning attack. There have been studies on robustness in
the bandit (Lykouris et al., 2018; Gupta et al., 2019), and tabular MDP settings (Chen et al., 2021;
Wu et al., 2021; Lykouris et al., 2021), but these results are not applicable in the more complex
DRL setting. For the DRL setting, Zhang et al. (2021b) proposes a learning algorithm guaranteed to
be robust in a simplified DRL setting under strong assumptions on the environment (e.g., linear Q
function and finite action space). The algorithm is further empirically tested in actual DRL settings,
but the attack method used for testing robustness, which we call reward flipping attack, is not very
efficient and malicious as we show in Appendix H. Testing against weak attack methods can provide
a false sense of security. Our work provides attack methods that are more suitable for empirically
measuring the robustness of learning algorithms.
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3 BACKGROUND

Reinforcement learning. We consider a standard RL setting where an agent is trained by interacting
with an environment. The interaction involves the agent observing a state representation of the
environment, taking an action, and receiving a reward. Formally, an environment is represented by a
Markov decision process (MDP), M = {S,A,P,R, µ}, where S is the state space, A is the action
space, P is the state transition function, R is the reward function, and µ is the distribution of the
initial states. The training process consists of multiple episodes where each episode is initialized
with a state sampled from µ, and the agent interacts with the environment in each episode until it
terminates. A policy π : S → D(A) is a mapping from the state space to the space of probability
distribution D(A) over the action space. If a policy π is deterministic, we use π(s) to represent the
action it suggests for state s. A value function V π

M(s) is the expected reward an agent obtains by
following the policy π starting at state s in the environment M. We denote Vπ

M := Es0∼µV
π
M(s0)

as the policy value for a policy π in M, which measures the performance of π. The goal of the
RL agent is to find the optimal policy with the highest policy value π∗ = argmaxπ Vπ

M. For ease
of analysis, the state distribution is defined as µπ(s) = Eπ,s0∼µ[

∑
t 1[s

t = s]], representing how
often a state is visited under policy π in an episode.

Reward poisoning attack on deep RL. In this work we consider a standard data poisoning attack
setting (Jun et al., 2018; Rakhsha et al., 2020) where a malicious adversary tries to manipulate the
agent by poisoning the reward received by the agent from the environment during training. The
attacker observes the current state, action, and reward tuple (st, at.rt) generated during training at
each timestep t and injects a corruption ∆t on the true reward rt. As a result, the environment
returns the agent with the corrupted observation (st, at, st+1, rt +∆t) where st+1 is the next state.
Next, we describe the restrictions on the attacker’s capabilities as mentioned in the introduction:

1. Limited budget. The attacker can only corrupt a small number of timesteps C, i.e.,∑T
t=0 1{∆t ̸= 0} ≤ C and C ≪ T where T is the total number of training steps.

2. Limited per-step corruption. The corruption at each timestep is limited by |∆t| ≤ B, ∀t ∈ [T ].

3. Limited per-episode corruption: The total corruption across an episode is limited by∑
t∈te |∆t| ≤ E where te is the set of all timesteps in an episode e.

4. Oblivious of the DRL algorithm. The attacker has no knowledge of the training algorithm or
any parameters in the network used by the agent while training.

5. Oblivious of the environment. The attacker has no knowledge about the MDP M except for
the number of dimensions and range of each dimension in the state and action space S , A. Our
attacks do not need knowledge of M but can benefit from having access to a good performing
policy in M which could be trained by itself, another agent, or publicly available. We consider
these additional cases to study the impact of increasing attacker resources on its efficiency.

Let π0 be the best learned policy when the DRL training finishes, the goal of the attacker is to
corrupt training such that the performance of the learned policy π0 in the environment M: Vπ0

M
is low. Note that Vπ

M is an intrinsic property of a given policy π in M and is independent of the
learning algorithm. Reward poisoning does not change Vπ

M but instead makes the agent learn a
policy π with lower Vπ

M. For clarity, we summarize the goal, knowledge, and constraints for our
attacker in Appendix B. We consider multiple constraints on the attacker to make the setting more
realistic defined above. The full constraints are considered in experiments in Section 6. For the
purpose of theoretical analysis, we simplify the problem by dropping the constraint on per-episode
corruption E in Section 4 and Section 5.

4 FORMULATING REWARD POISONING ATTACK

A reward poisoning attack algorithm can be represented by its attack strategy At at each timestep
during training. An attack strategy At depends on the full observation before that attack, that is,
all the states s1:t, actions a1:t, rewards r1:t−1. The output of At, i.e, the corruption on reward,
satisfies ∆t = At(s1:t, a1:t, r1:t−1). A practical attack should be constructed in a computationally
efficient manner and should work in a practical setting where it is oblivious to the environment and
learning algorithm. In Appendix G we show that searching for the optimal or near-optimal attack
is computationally hard regardless of the attack constraints in the DRL setting and requires full
knowledge of the learning algorithm and environment. Since it is hard to construct both optimal and
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practical attacks, we focus on finding feasible attacks that are not necessarily the optimal ones but
still make a learning algorithm learn a policy with low policy value with a limited budget. Formally,
the attacker’s objective, i.e., finding a feasible attack, can be stated using the following constraints:

find ∆t=1,...,T s.t. Vπ0

M ≤ V ;

T∑
t=1

1[∆t ̸= 0] ≤ C; |∆t| ≤ B, ∀t ∈ [T ]. (1)

To solve equation 1, one way is to fix the values of V , B, and C and solve for an attack ∆t. However,
it is possible that no solution is feasible for certain V , B, and C. Since each feasibility check can be
expensive, we look for a more efficient and convenient way to solve equation 1. We fix the attack
and estimate the corresponding V , B, and C to satisfy equation 1. An attack algorithm is efficient
if it can satisfy equation 1 with low values for B, C, V with V < Vπ∗

M otherwise the attack is trivial
as Vπ0

M ≤ Vπ∗

M holds without any attack. As confirmed by our theoretical analysis in Section 5 and
experiments in Section 6, finding an efficient attack based on equation 1 is non-trivial.

Adversarial MDP attack. To find attack algorithms for solving equation 1, we introduce a general
parametric attack framework called ”adversarial MDP attack” for poisoning the training of deep
RL agents. The high-level idea behind our attack is to construct a fixed adversarial environment to
train the agent. This idea has been applied in designing attacks in the simpler bandit (Liu & Shroff,
2019) and tabular setting Rakhsha et al. (2020) where they formulate the problem of finding the
best adversarial environment for their attack goal as an optimization problem and solve it directly.
Solving such an optimization problem is computationally infeasible in the deep RL setting due to the
complexity of both the environment and the learning algorithm. Therefore we design new efficient
algorithms that are suited to the deep RL setting and our attack scenario. In our attack, the attacker
constructs an adversarial MDP M̂ = {S,A,P, R̂, µ} for the agent to train on by injecting the
corrupted reward R̂ to the environment during training. More specifically, for an adversarial MDP
attack with M̂, its attack strategy at round t only depends on the agent’s current state and action:

∆t = At(st, at) = R̂(st, at)−R(st, at) (2)

Next, we compute bounds on V , B, and C such that A1:T constructed using equation 2 from a given
M̂ in our framework is a feasible solution to equation 1. The lower these values, the more efficient
is the adversarial MDP M̂. We make two simplifying assumptions: (i) the learning algorithm can
always find and report the optimal policy from a fixed environment, i.e.,π0 = π∗ always holds. We
note that our experimental results show that our attack succeeds with low values of V, B and C on
state-of-the-art deep RL algorithms that do not always learn an optimal policy, and (ii) the learning
algorithm explores strategically, that is, instead of uniformly exploring all state-action pairs, the
algorithm does not waste many rounds to explore the state action pairs that have little value. This
assumption is satisfied by RL algorithms (Dong et al., 2019; Jin et al., 2018; Agarwal et al., 2019)
and also validated in our experiments.

Lower bounds on V, B, and C for a given M̂. The bound on V relates to the optimal policy
π̂∗ := argmaxπ Vπ

M̂
that the algorithm will learn under M̂ based on our first assumption, i.e., π0 =

π̂∗. We can directly bound V by the policy value of π̂∗ under M: V ≥ V π̂∗

M . It is straightforward to
bound B as B ≥ ||R̂ −R||∞. For bounding C, our attack applies corruption whenever the learning
algorithm chooses an action at at a state st such that the reward function at this state action pair
are different for the real and adversarial MDP, i.e, R̂(st, at) ̸= R(st, at). Then C can be bound as
C ≥

∑T
t=1 1[R̂(st, at) ̸= R(st, at)]. Under our second assumption on strategic exploration of the

learning algorithm, the bound on C will be low if M̂ satisfies R̂(s, π̂∗(s)) = R(s, π̂∗(s)) for all
states s, as for most of the time at = π̂∗(s), resulting in 1[R̂(st, at) ̸= R(st, at)] = 0.

Effect of given V,B and C on M̂. Raising the value of B or C increases the number of adversarial
MDP’s that satisfy equation 1. To achieve the same value of V , a larger value of B can reduce the
requirement on C to ensure existance of feasible solutions, and vice versa. Next, we will instantiate
our framework to construct specific M̂ that result in efficient attacks which significantly reduce the
performance of the learned policy under a low budget.
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5 POISONING ATTACK METHODS

In this section, we design new reward poisoning attacks for deep RL by instantiating our adversarial
MDP attack framework. Each instantiation provides a parameterized way to construct an adversarial
MDP M̂ via a parameter ∆, corresponding to the amount of reward corruption for poisoning applied
by the attacker at a timestep. The definition of ∆ yields |∆| = ||R̂−R||∞, resulting in a lower bound
on requirement B ≥ |∆|. For a given value of V, let ∆(V ) be the minimum absolute value of the
parameter ∆ for the instantiation to satisfy the requirement on V in equation 1. We note that ∆(V )
corresponds to the minimum requirement on B for the attack to satisfy V in equation 1. We provide
symbolic expressions for ∆(V ) corresponding to each instantiation and then use it to construct an
upper bound on ∆(V ), which is easier to reason about than exact expressions. We define GM

V and
BM

V with respect to value V to be the set of all policies with policy value > V and ≤ V respectively
under M. The upper bound on ∆(V ) will be constructed using GM

V and BM
V . We will empirically

examine the requirement on C for each instantiation in Section 6. An attack is efficient if to satisfy a
certain value of V in equation 1, it requires low value of C and B = ∆(V ). All the attack methods
we are going to propose do not require any knowledge about both the learning algorithm and the
environment, though one method gain benefits from full or partial knowledge of the environment as
we find in practice. For simplicity, we start with attacks on environments with discrete action space
and then show how to transfer the attack and the corresponding analysis to continuous action space.
Note that our analysis in this section is based on the two assumptions we made in Section 4 that the
learning algorithms can always learn the optimal policy and explore strategically. All the proofs for
the theorems and lemmas can be found in the Appendix E.

Uniformly random time(UR) attack. We first introduce a trivial instantiation of adversarial MDP
attack framework as a baseline, which we call the UR attack. Here, the attacker randomly decides
whether to corrupt the reward at a timestep with a fixed probability p and amount ∆ regardless of the
current state and action. Formally, the attack strategy of the UR attacker at time t is: At(st, at) = ∆
with probability p, otherwise At(st, at) = 0. Let Vmax = maxπ Vπ

M and Vmin = minπ Vπ
M be

the maximum and minimum policy value computed over all policies under M. We provide the
following bounds on ∆(V ) for the UR attack:
Theorem 5.1. For the UR attack parameterized with probability p, the exact expression and an
upper bound on ∆(V ) are:

∆(V ) = min
π1∈BM

V

max
π2∈GM

V

Vπ2

M − Vπ1

M
p · |Lπ1 − Lπ2 |

≤ Vmax − Vmin

p ·minπ1∈GM
V

maxπ2∈BM
V

|Lπ1 − Lπ2 |

where Lπ :=
∑

s µ
π(s) is the expected length of an episode for an agent following the policy π.

Moreover, the expression only holds for ∆ with the same sign as Lπ1−Lπ2 for the π1, π2 that realize
the min-max condition.

Theorem 5.1 shows that the value of ∆(V ) depends on the difference in episode length from policies
in GM

V and BM
V . A low value of p also makes high value of ∆(V ). In addition, the sign of ∆ needs

to be chosen correctly to make V π̂∗

M < Vπ∗

M , otherwise it can make the optimal policies look even
better under M̂, which yields the following implications:

Implication 1. Compared to the UR attack in the right direction, the UR attack in the wrong
direction requires a higher value of ∆ to make the learning agent learn the policy with the same
performance (expected reward per episode), or even worse: the attack in the wrong direction
can never prevent the learning agent from finding the optimal policy.

Implication 1 suggests that for the UR attack, it is important to find the right direction for corruption.

Learned policy evasion (LPE) attack. The high-level idea behind the LPE attack is to make all
policies of good performance appear bad to the learning agent. Intuitively, policies of good per-
formance should share similar behavior as there is usually a certain general strategy to behave well
in the environment. Therefore if the attacker can make the actions corresponding to such behav-
ior look bad, then all the good policies will appear bad to the agent. Formally, the LPE attack
is characterized by the policy π† available to the attacker, and it penalizes the learning algorithm
whenever it chooses an action that corresponds to π†. Correspondingly, the attack strategy is:
At(st, at) = ∆ · 1{at = π†(st)}, where ∆ < 0 is a fixed value. π† is learned offline by the
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attacker before the agent starts learning. We will show different ways the attacker can generate π†

in Section 6. Next, we analyze the efficiency of the attack. To help our analysis, we introduce the
following definition to measure the similarity D(π1, π2) between two policies π1 and π2:
Definition 5.2. (Similarity between policies) The similarity of a policy π1 to a policy π2 is:
D(π1, π2) =

∑
s∈S µπ1(s)1[π1(s) = π2(s)].

The similarity of π1 to π2 increases with the frequency with which π2 takes the same action as π1 in
the same state s. Note that D(π1, π2) ̸= D(π2, π1), and D(π1, π2) ≤ Lπ1 .
Theorem 5.3. For LPE attack with π†, the expression and an upper bound on ∆(V ) are:

∆(V ) = min
π1∈BM

V

max
π2∈GM

V

Vπ2

M − Vπ1

M
D(π2, π†)−D(π1, π†)

≤ Vmax − Vmin

minπ∈GM
V

D(π, π†)−minπ∈BM
V

D(π, π†)
.

In Appendix E we will show that minπ∈BM
V

D(π, π†) is likely to be 0 in general cases. Theorem
5.3 shows that the requirement on ∆ for the LPE attack is inversely proportional to the minimum
similarity between π† and a policy from GM

V . In practice, we observe that in most cases there are
usually certain behaviors shared in common by the non-trivial policies that have better performance
than random ones. This yields the following implications:

Implication 2. With the same value of ∆, the LPE attack can make the agent learn policies of
worse performance with high performing π† compared to the LPE attack with a random policy.

The LPE attack can generate a random policy as π†. For experiments in Section 6, to simplify im-
plementation, we generate the random policy through random initialization of a learning algorithm
different from the one used by the agent. When the attacker has access to a high-performing policy,
it can be used as π† which may provide better attack performance. Implication 2 suggests that the
LPE attack should use a high-performing policy to attack if possible. To estimate the requirement
on C, we give the following lemma:

Lemma 5.4. For the LPE attack, R̂(s, π̂∗(s)) = R(s, π̂∗(s)),∀s ∈ S ⇐⇒ D(π†, π̂∗) = 0. Given
sufficient ∆, the optimal policy under M̂ given by the LPE attack with π† satisfies D(π†, π̂∗) = 0.

Recall that in Section 4, we estimate that the requirement on C will be low if the adversarial and
real reward are the same at all (s, π̂∗(s)), i.e., R̂(s, π̂∗(s)) = R(s, π̂∗(s)). Lemma 5.4 suggests that
this condition will hold for the LPE attack given sufficient ∆, as for the LPE attack D(π†, π̂∗) =

0 ⇐⇒ R̂(s, π̂∗(s)) = R(s, π̂∗(s)). This yields

Implication 3: Under the LPE attack with sufficient |∆|, the learning agent will gradually
converge to π̂∗ under M̂ eventually and few corruptions will be applied afterward, resulting in
a decrease in attack frequency as the training goes on.

Random policy inducing (RPI) attack. The intuitive idea behind the RPI attack is to make the
agent believes that a random policy is an optimal one. To achieve this, the attacker can make all
the actions that are different from the ones given by the random policy look bad. The RPI attack is
characterized by a randomly generated policy π†, and it penalizes the learning algorithm whenever
it doesn’t follow the action that corresponds to π†. Formally, the attack strategy of the RPI attack
with a policy π† is: At(st, at) = ∆ · 1{at ̸= π†(st)}, where ∆ < 0 is a fixed value. We have the
following expression and upper bound on ∆(V ):
Theorem 5.5. For RPI attack with policy π†, the expression and an upper bound on ∆(V ) are:

∆(V ) = min
π1∈BV

max
π2∈GV

Vπ2

M − Vπ1

M
(Lπ2 − Lπ1)− (D(π2, π†)−D(π1, π†))

≤ Vmax − Vmin

minπ∈GM
V
(Lπ −D(π, π†))

Theorem 5.5 suggests that the requirement on B will be low if all policies in GM
V have low similarity

to π†. With the same observation we give about the similarity between policies better than the
random ones, it suggests that ∆(V ) will be less when π† is a random policy. Then theorem 5.5 gives
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Implication 4: With the same value of ∆, the RPI attack with random π† can make the learning
algorithm learn policies of worse performance than the RPI attack with high performing π†.

Implication 4 suggests that the RPI attack should always use a random policy for the attack. To
estimate the requirements on C, we give the following lemma:

Lemma 5.6. For the RPI attack, R̂(s, π̂∗(s)) = R(s, π̂∗(s)) ⇐⇒ π̂∗ = π†. Given sufficient ∆,
the optimal policy under M̂ constructed by the RPI attack with π† is π̂∗ = π†.

Lemma 5.6 suggests that with a sufficient value of |∆|, R̂(s, π̂∗(s)) = R(s, π̂∗(s)) will hold, re-
sulting in low requirement on C. This also implies that

Implication 5: For the RPI attack with sufficient |∆|, the learning agent will gradually con-
verge to π†, resulting in a decrease in the frequency of corruption as the training goes on.

Our two main attack methods LPE and RPI proposed so far work with negative corruption on reward
and avoid attacking the action corresponding to π̂∗ in every state. The methods will work well under
our assumptions on learning algorithms. An alternative is to attack with positive corruption on the
reward. Under the framework of adversarial MDP attack, such an attack can result in less require-
ments on C when the learning agent does the opposite to our second assumption, i.e., exploring the
sub-optimal actions more often. To compare the difference in performance between these types of
attack, we propose a variant of RPI attack called random policy promoting (RPP) attack.

Random policy promoting (RPP) attack. The RPP attack shares the same intuition about high-
lighting a random policy, but instead, it positively rewards the actions corresponding to the random
policy. Formally, the attack strategy of RPP attack with a policy π† is At(st, at) = ∆ · 1{at =
π†(st)}, where ∆ > 0 is a fixed value. The expression and an upper bound on ∆(V ) are:
Theorem 5.7. Under RPP attack with policy π†, the expression and an upper bound for ∆(V ) are:

∆(V ) = min
π1∈BV

max
π2∈GV

Vπ2

M − Vπ1

M
D(π2, π†)−D(π1, π†)

≤ Vmax − Vmin

max{Lπ† −maxπ∈GM
V

D(π, π†), 0}

We note that compared to the RPI attack, the RPP attack requires more B if Lπ†
< minπ∈GM

V
Lπ , as

it results in Lπ† −maxπ∈GM
V

D(π, π†) < minπ∈GM
V

Lπ−maxπ∈GM
V

D(π, π†) ≤ minπ∈GM
V
(Lπ−

D(π, π†)). Further if Lπ† −maxπ∈GM
V

D(π, π†) becomes less than 0, then equation 1 can never be
satisfied with any value of B. This happens when a policy in GM

V benefits more from the positive
corruption than policies from BM

V . This implies that

Implication 6: For environments where policies of high values are associated with long
episodes, the RPI attack can make the learning agent learn worse policy than the RPP attack,
and the RPP attack may even be ineffective regardless of ∆.

As mentioned above, the requirement on C for the RPP and RPI attack depends on how much
the learning algorithm deviates from our second assumption in Section 4. From experiments in
Section 6, under the same constraints on the attack, we observe that for most learning algorithms,
the RPI attack usually achieves better attack results. Our results suggest that although the RPP attack
can be more efficient for certain learning algorithms and environments, the RPI attack is in general
more reliable and efficient than the RPP attack.

Finally, note that the upper bound we provide for ∆(V ) of all attacks here satisfies ∆(V ) ≥ (Vmax−
Vmin)/Lmax, where Lmax := maxπ L

π is the maximum episode length. Therefore for experiments
in Section 6, we always let |∆| > (Vmax − Vmin)/Lmax.

Extension to environments with continuous action space. To extend the above attacks from dis-
crete to continuous action space, we adaptively discretize the continuous action space with respect
to the action from the learning agent. Formally, we consider two actions the same if their dis-
tance in the action space is less than a given threshold r. Then the aforementioned attack meth-
ods can decide whether to apply corruption based on whether two actions are considered the same
given r. For example, the attack strategy for the LPE attack with π† in continuous action space
is At = ∆ · 1[||at − π†(st)||2 ≤ r]. Accordingly, we define the similarity between policies for
continuous action space parameterized by r:

7
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Definition 5.8. (Similarity between policies under distance r) The similarity of a policy π1

to a policy π2 in continuous action space parameterized by r is defined as Dc(π1, π2, r) =∑
s∈S µπ1(s)1[∥π1(s)− π2(s)∥2 ≤ r].

By replacing D(π1, π2) with Dc(π1, π2, r), we can transfer the analysis for the attack from discrete
action space to continuous action space. Note that while we measure the distance in L2-norm, any
other norm will also work. The extension adds an additional parameter r for the attack methods. In
Appendix D we show how r influences the attacks.

6 EXPERIMENTS

We evaluate our attack methods from Section 5 for poisoning training with state-of-the-art DRL
algorithms in both the discrete and continuous settings. We consider learning in environments typ-
ically used for assessing the performance of the DRL algorithms in the literature. As for the impli-
cations in Section 5, in Appendix C we experimentally show that they hold when attacking practical
DRL algorithms even though they do not necessarily satisfy our assumptions from Section 4.

Learning algorithms and environments. We consider 4 common Gym environments (Brockman
et al., 2016) in the discrete case: CartPole, LunarLander, MountainCar, and Acrobot, and 4 contin-
uous cases: HalfCheetah, Hopper, Walker2d, and Swimmer. The DRL algorithms in the discrete
setting are: dueling deep Q learning (Duel) (Wang et al., 2016) and double dueling deep Q learning
(Double) (Van Hasselt et al., 2016) while for the continuous case we choose: deep deterministic
policy gradient (DDPG), twin delayed DDPG (TD3), soft actor critic (SAC), and proximal policy
optimization (PPO). Overall, the 6 algorithms we consider cover the popular paradigms in model-
free learning algorithms: policy gradient, Q-learning, and their combination. The implementation
of the algorithms is based on the spinningup project (Achiam, 2018).

Experimental setup. The attacks set |∆| = B, and the signs of ∆ are specified in each attack’s
strategy. We consider more strict and practical constraints (as described in Section 3) on the at-
tacker than in our theoretical analysis. To work with extra constraints, we modify our adversarial
MDP attack framework: if applying corruption as per the attack strategy given by the framework
in Section 4 will break the constraints on E or C at a time step, i.e. if at time t in episode e,
1 +

∑t−1
τ=0 1[|Aτ > 0] > C or |∆| +

∑
τ∈te

|At| > E, then the attacker applies no corruption at
that time step. We choose T to ensure that the learning algorithm can converge within T time steps
without the attack. We evaluate the effectiveness of our attacks with different values of C such that
the ratio C/T is low. Since the attacker is unaware of the learning algorithm in all of our attacks,
for each environment, whenever the attacker needs to learn π† offline, it does so with an algorithm
different from the agent’s learning algorithm. More specifically, for each environment we select a
pair of learning algorithms that are most efficient in learning from the environment (without attack),
then while we use one of them for the learning agent to train, the other will be used by the attacker
to learn a high performing policy or generate a random policy π†. Our criteria yield cases where
the learning algorithms in a pair belong to different learning paradigms and have different architec-
tures of neural networks. Our results demonstrate that the efficiency of our attack methods does not
depend upon the similarity between the learning algorithms.

To determine E and B, we note that Vmax − Vmin represents the maximum environment-specific
net reward an agent can get during an episode, and (Vmax−Vmin)

Lmax
represents the range of average

reward at a time step for an agent. We set E = λE · (Vmax − Vmin), and B = λB · (Vmax−Vmin)
Lmax

where λE ≤ 1, λB > 1 are normalization constants to ensure that the values of E and B represent
similar attack power across different experiments. We choose λE ≤ 1 to ensure that the corruption
in an episode is ≤ the maximum net reward a policy can achieve during an episode. We choose
λB > 1 that ensures B > (Vmax−Vmin)

Lmax
. This is because the upper bounds on ∆(V ) according to our

theorems in Section 5 should be > (Vmax−Vmin)
Lmax

for all attack algorithms. The exact values of T , B,
and E for different environments are in the Appendix D.

Main results. A subset of our main results is shown in figure 1. The full set can be found
in Appendix D. The x axis is C/T ; the y axis is the policy value of the best policy the learning
algorithm learned after each epoch across the whole training process. The y value at each data point
is averaged over 10 experiments under the same setting. For the same constraint on C, we consider
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Figure 1: Highest policy value of learned policies by algorithms under no or different attacks.

an attack to be more efficient than another if it has a lower value on the y axis. We consider an
attack to be successful if the resulting policy value is lower than the two baselines: the learning
agent under no attack and the UR attack. For the UR attack, we set p = C/T so that the corrupted
rounds are randomly distributed in the whole training process. We always choose the sign of ∆
that gives the best attack result. In figure 1, the best UR attack has only a small influence on the
learning algorithm. We also compare to two other empirical attack methods proposed in previous
work (Zhang et al., 2021b; Sun et al., 2020). In Appendix H we explain how the reward flipping
attack from Zhang et al. (2021b) works and show that it is no more efficient than the UR attack. In
Appendix I we show that the VA2C-P attack in Sun et al. (2020) not only has more limitations as
mentioned in Section 2 but also less efficient and is significantly more computationally expensive
than our attacks.

For the LPE attack, we consider three variants based on π†: (1) the attacker does not have any
knowledge about the environment and uses a random policy as π†, (2) the attacker trains in the
environment for T steps and chooses the best policy as π†, and (3) Same as (2) except that the
attacker selects a policy as π† which has a policy value that is the closest to the mean of the policy
values in the first two cases. This variant is used to check the effect of learning suboptimal π† on the
attack performance. We observe in figure 1 that variants (2) and (3) always succeed while (1) fails in
1 case (LunarLander learned by Double). Comparing the three variants, variants (2), and (3) usually
achieve better attack results than variant (1). Especially, we notice that LPE (2) achieves the best
attack result for training with the Duel algorithm in MountainCar and with the Double algorithm
in Acrobot with corruption budget C/T = 0.04 and 0.02 respectively, as the learning algorithms
do not learn policies better than random ones with minimal performance. (−200 and −500 are the
minimum rewards from an episode in the two environments respectively)

For the RPI and RPP attacks, they are effective in most cases except that RPI fails in 2 cases (Acrobot
learned by Double, and Swimmer learned by PPO which can be found in the full set of results in
Appendix D), and RPP fails in 1 case (CartPole learned by Double). Across all cases, the RPI
attack usually has better performance than the RPP attack. Especially, we notice that in Acrobot and
MountainCar environments, RPI attack achieves better attack results when the learning algorithm is
Duel, and the opposite is true when the learning algorithm is Double. This is probably because the
Double algorithm does more exploration in suboptimal state action pairs than the Duel algorithm.

7 CONCLUSION AND LIMITATIONS

In this work, we studied the security vulnerability of DRL algorithms against training time attacks.
We designed a general, parametric framework for reward poisoning attacks and instantiated it to
create several efficient attacks. We provide theoretical analysis yielding insightful implications val-
idated by our experiments. Our detailed evaluation confirms the efficiency of our attack methods
pointing to the practical vulnerability of popular DRL algorithms. Our attacks have the following
limitations: (i) not applicable for other attack goals, e.g, to induce a target policy, (ii) cannot find the
optimal attacks, and (iii) do not cover state poisoning attack.
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8 REPRODUCIBILITY STATEMENT

For the purpose of reproducing the experimental results, we provide the code in the supplementary
materials and the necessary instructions in the README file. We provide the experiment details
about the setup and hyper-parameters in Section 6 and Appendix D. For checking the correctness
of our theoretical analysis, the proof for all theorems and lemmas in Section 5 can be found in
Appendix E.
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A KEY ELEMENTS EXPLANATION

We mentioned there are four key elements that our attack methods address at the same time. The
four key elements are 1. Training time attack, 2. Deep RL, 3. Reward poisoning, 4. Complete black
box. To the best of our knowledge, we are the only paper that covers the above four elements at the
same time. Below are the explanations for what each key element means and why it is important to
be considered:

1. Training time attack: Testing time attacks target an already learned policy, where the attacker
wants to make the learned policy misbehave by crafting examples, such as an adversarial state
where the policy suggests a sub-optimal action. The target of training time attacks is a learning
algorithm trying to learn a policy, where the attacker wants to make the learning agent learn a
policy having undesired behavior by corrupting the training process. In this work we propose
efficient training time attacks against DRL so that practical threat against DRL is better under-
stood.

2. Deep RL setting: Most of the works on training time attacks study simpler learning settings like
bandit and tabular MDP cases. Considering that DRL is more practical in real-world applications,
we study training time attacks in the deep MDP settings.

3. Reward poisoning attack: The threat models for RL include three types of poisoning: state,
action, and reward poisoning, and all of them have been studied in different literature. In this
work we focus on reward poisoning as it is a more practical threat in applications where the
agent collects reward from a human user.

4. Complete black box: In practical cases such as a recommendation system, the learning agent
needs to formulate the MDP by itself, which is private to the agent and unknown to the attacker.
It is also likely that the attacker does not have any knowledge of the learning algorithm as it
is also private information held by the learning agent. To model realistic attacks, we consider
attackers with no prior knowledge about both the environment and the learning algorithm.

5. Real time attack: To work in a real-time manner, the attacker should satisfy the two following
conditions: 1. It is able to compute the corruption at each time step in a short time. 2. It need to
decide and apply corruption at each timestep after the

B A SUMMARY OF THE INFORMATION ABOUT THE ATTACKER

For clarity, we summarize all information about the attacker in our setting, including its knowledge,
constraint, and goal.

Table 1: The knowledge, constraint, and goal of the attacker

Description

Knowledge 1. Has no information about agent’s learning algorithm
2. Only aware of the state and action spaces of the environment.
3. Can observe the true state, action, and reward at each timestep during the training process.

Constraints 1. corruption can be injected at each step is limited
2. Total corruption can be injected at each episode is limited
3. Number of steps the attacker can inject corruption is limited

Goal Minimize the performance of the policy learned by the agent

C EXPERIMENTAL VALIDATION OF IMPLICATIONS

Experimental validation of implications 1,2,4, and 6 We empirically examine the best value of
V learned by the agent under our attack methods parameterized with different values of ∆. Note
that the value of |∆| is also the requirement on B for the attack. To remove the dependency of V on
C, we set C = T , E = ∞ so that the attacker is never out of budget due to C and E. We choose
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Figure 2: Experimental observations validating implications 1,2,4, and 6 from section 5.

Figure 3: Experimental observations validating implications 3 and 5 from section 5

representative environments to validate our implications in section 5, and the results are shown in
figure 2. The x axis is the value of ∆ in (a) the |∆| for the rest used by the attacks. The y axis
has the same meaning as in figure 1. In figure 2(a) we run the UR attack with both signs of ∆ on
environment Acrobot. We observe that when corrupting in the wrong direction ∆ < 0, the Duel
algorithm can still learn the policies of optimal performance. When corrupting in the right direction
∆ > 0, the Duel algorithm learns much worse policies as ∆ increases. This observation agrees with
implication 1. In figure 2(b) we run the three variants of the LPE attack on environment MountainCar
and Acrobot. We observe that for the same value of ∆, LPE (2) (3) attack can always result in lower
policy value than LPE (1) attack, which agrees with implication 2. In figure 2(c) we run the RPI

13



Under review as a conference paper at ICLR 2023

attack together with its special variant (RPI-h) which uses high performing π†. We observe that
the RPI attack with a random policy π† always leads to a lower value of the best learned policy
compared to the RPI-h with high performing π†, which agrees with implication 4. In figure 2(d) we
run the RPI and RPP attack with random π† on CartPole. CartPole is an environment that satisfy the
condition in implication 6 where the a policy’s value is the same as its episode length. We observe
that RPI attack leads to very low value of the best learned policy while the RPP attack does not
influence the learned policy value no matter how large |∆| it uses, which agrees with implication 6.

Experimental validation of implications 3 and 5. We experimentally examine the requirement
on attack budget C for our attack methods with sufficient value of |∆|. For a fixed value of ∆, we
remove the constraints on C and E so that the corruption can always be applied following At defined
by different attack methods, and then we measure how many steps are corrupted in each epoch under
the attack. The environment we choose is MountainCar, and the value of |∆| for both LPE (all the
three variants as described in section 6) and RPI attack is 10. The results are shown in figure 3.
The x axis is the index of epochs during training, and the y axis is the number of time steps that
are corrupted in the epoch. For both LPE and RPI attack, we observe that the number of corrupted
steps decrease with time and eventually approaches 0. This suggests that for both attacks, the agent
gradually never take actions at at the states st that correspond to the ones where no currption will
be applied under the attack, i.e., At(st, at) ̸= 0. This observation agrees with implication 3 and 5.

D EXPERIMENTS DETAILS AND ADDITIONAL EXPERIMENTS

The hyper parameters for the learning algorithms can be found in the codes. The parameters for
the setup of the experiments are given in Table 2. Here the parameter r is the additional parameter
for attack against environment with continuous action space as discussed in section 5. The choice
on r for the LPE attack and RPI/RPP attack are different. In practice we choose the parameters
that significantly reduce the performance of the best learned policy by the learning algorithms. In
Table 3 We provide the value of Vmin, Vmax, and Lmax for each environment we use to determine the
constraints on the attack. These value are given by either the setup of the environment or empirically
estimation. For example, in MountainCar-v0, Lmax = 200 and Vmin = −200 are given by the set
up directly, as an episode will be terminated after 200 steps, and the reward is −1 for each step.
Vmax = −100 is empirically estimated by the highest reward given by the best policy learned by
the most efficient learning algorithm. In Table 4 we provide the policy values (expected total reward
from an episode) of π† used by LPE attack (2) and (3). Recall that for LPE attack (2), π† represents
an expert policy that have very high performance, and for LPE attack (3), π† represents a median
expert policy that also have high performance but less than that for LPE attack (2). The whole set of
the main results for our attack methods against learning algorithms under full constraints are shown
in figure 4.

Table 2: Parameters for experiments

ENVIRONMENT T B E r(LPE) r(RPI/RPP)

CARTPOLE 80000 5 500 / /
LUNARLANDER 120000 4 800 / /
MOUNTAINCAR 80000 2.5 200 / /
ACROBOT 80000 4 500 / /
HALFCHEETAH 600000 42 6300 2 1.5
HOPPER 600000 25 2500 2 1.1
WALKER2D 600000 25 2500 2.2 1.5
SWIMMER 600000 0.8 80 2.2 1.0

To make the figures clean, the variance of the results are not included in the figures. We present a
subset of variance for our main results as an example in the table 5 below to show that our results
are statistically stable.

By the definition 5.8, higher value of r results in higher similarity between policies. By theorem
5.3, the LPE attack should have lower value of ∆(V ) given higher value of r; by theorem 5.5 and
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Figure 4: The complete main results for our attack methods against different learning algorithms in
different environment
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Table 3: Values used to determine the constraints on attack

ENVIRONMENT Lmax Vmax Vmin Vmax − Vmin
Vmax−Vmin

Lmax

CARTPOLE 500 500 0 500 1
LUNARLANDER 1000 200 -1000 1200 1.2
MOUNTAINCAR 200 -100 -200 100 0.5
ACROBOT 500 -100 -500 400 0.8
HALFCHEETAH 1000 12000 0 12000 12
HOPPER 1000 4000 0 4000 4
WALKER2D 1000 5000 0 5000 5
SWIMMER 1000 120 0 120 0.12

Table 4: Policy value of π† used by LPE attack (2) and (3). Here ALG1 and ALG2 are the pair of
learning algorithms we use in each environment. Vπ†

M-(2)-1 is the policy value of π† for LPE attack
(2) when the learning algorithm for the agent is ALG1 (implying that the learning algorithm used
by the attacker to learn π† is ALG2). The meanings for the last three columns are similar.

ENVIRONMENT ALG1 ALG2 Vπ†
M -(2)-1 Vπ†

M -(3)-1 Vπ†
M -(2)-2 Vπ†

M -(3)-2

CARTPOLE DUEL DOUBLE 500 220 500 199
LUNARLANDER DUEL DOUBLE 154 2 202 10
MOUNTAINCAR DUEL DOUBLE -108 -158 -101 -156
ACROBOT DUEL DOUBLE -101 -200 -100 -199
HALFCHEETAH DDPG SAC 12374 6007 12766 5974
HOPPER TD3 SAC 3619 1828 3562 1801
WALKER2D TD3 SAC 5172 2552 4622 2426
SWIMMER DDPG PPO 120 61 120 61

Table 5: The values in the table are the variance of the performance of the best learned policy over
10 runs in identical settings. The values in the brackets are the corresponding average value that is
reported in the main result figure 1.

Environment-Learning algorithm-Attack C = 0.001 C = 0.005 C = 0.01 C = 0.02

Hopper-sac-UR 106(3468) 114 (3414) 296(3355) 90(3492)
Hopper-sac-LPE(1) 125 (3463) 165 (3335) 1134 (2220) 113 (55)
Hopper-sac-LPE(2) 684 (3236) 131 (3424) 224 (3332) 34 (1051)
Hopper-sac-LPE(3) 436(3246) 860 (3392) 206 (3231) 690 (1006)
Hopper-sac-RPI 107(3397) 81(3489) 1118(2224) 628(2901)
Hopper-sac-RPP 132(3407) 107(3579) 666(3129) 604(2961)
Hopper-td3-UR 147(3580) 212(3524) 215(3482) 1032(3021)
Hopper-td3-LPE(1) 133(3443) 895(2845) 286(159) 49(23)
Hopper-td3-LPE(2) 1299(2589) 1008(626) 6(5) 1(4)
Hopper-td3-LPE(3) 1034(3054) 453(179) 306(107) 1(3)
Hopper-td3-RPI 87(3452) 860(3072) 206(963) 690(1501)
Hopper-td3-RPP 175(3538) 386(3385) 754(2684) 870(1755)

5.7, the RPI and RPP attack should have lower value of ∆(V ) given lower value of r. This gives the
follow implications:

Implication 8: Given unlimited buget on C and E, with the same value of |∆|, the LPE attack
can make the learning algorithm learn worse policy with higher value of r, and the opposite is
true for the RPI and RPP attack.

To experimentally validate this implication, we run experiments on Hopper environment and TD3
learning algorithm as an example. We set C = T , E = ∞, and |∆| = 25. The results are shown in
figure 5. The observation validates implication 8.
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Figure 5: Influence of the distance threshold for similarity r on different attack methods

E PROOF FOR THEOREMS AND LEMMAS

At the beginning we introduce a simple yet useful lemma for the purpose of simplifying the proof
of our theorems and lemmas:
Lemma E.1. A necessary and sufficient condition for the optimal policy π̂∗ under M̂ has a policy
value less than V under M is:

V π̂∗

M ≤ V ⇐⇒ max
π∈BM

V

Vπ
M̂ > max

π∈GM
V

Vπ
M̂.

Proof: Necessity: When the l.h.s V π̂∗

M ≤ V is true, by definition of BM
V we have π̂∗ ∈ BM

V .
Since M̂ is the policy of highest policy value under M̂, we have maxπ∈BM

V
Vπ
M̂

= maxπ Vπ
M̂

>

maxπ∈GM
V

Vπ
M̂

. Sufficiency: When the r.h.s maxπ∈BM
V

Vπ
M̂

> maxπ∈GM
V

Vπ
M̂

is true, then π̂∗ ∈
BM

V , and by the definition of BM
V , we have V π̂∗

M ≤ V .

For convenience, we introduce a definition called value loss to measure the difference between the
policy value of a policy under the original and adversarial MDP, :
Definition E.2. (Value loss) The value loss of a policy π given the environment M and an adver-
sarial MDP M̂ is defined as

δVπ
M,M̂ :=

∑
s

µπ(s)(R(s, π(s)))− R̂(s, π(s))

, where µπ(s) is the state distribution for the policy π representing in expectation how often a state
s will be visited in an episode.

The definition of value loss can help us rewriting lemma E.1 as

V π̂∗

M ≤ V ⇐⇒ max
π∈BM

V

Vπ
M − δVπ

M,M̂ > max
π∈GM

V

Vπ
M̂ − δVπ

M,M̂. (3)

We will frequently using this result for the proof next.

Proof for theorem 5.1 Under the UR attack, the value loss of a policy is

δVπ
M,M̂ = −p ·∆ ·

∑
s

µπ(s) = −p ·∆ · Lπ.

To make the r.h.s in Equation 3 hold, the following needs to be satisfied:

max
π∈BM

V

V π
M + p ·∆ · Lπ > max

π∈BM
V

V π
M + p ·∆ · Lπ.
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Equivalently, it requires that there exists π1 ∈ BM
V such that for all π2 ∈ GM

V , the follow-
ing holds (V π1

M + p · ∆ · Lπ1) − (V π2

M + p · ∆ · Lπ2) > 0. This can further be formalized as
minπ2∈GM

V
maxπ1∈BM

V
(V π1

M + p ·∆ · Lπ1)− (V π2

M + p ·∆ · Lπ2) > 0, which gives

|∆| > min
π1∈BM

V

max
π2∈GM

V

Vπ2

M − Vπ1

M
p · |Lπ1 − Lπ2 |

.

Then by the definition of ∆(V ), we have ∆(V ) = minπ1∈BM
V

maxπ2∈GM
V

Vπ2
M−Vπ1

M
p·|Lπ1−Lπ2 | , and an

upper bound can be directly derived as

min
π1∈BM

V

max
π2∈GM

V

Vπ2

M − Vπ1

M
p · |Lπ1 − Lπ2 |

≤ min
π1∈BM

V

max
π2∈GM

V

Vmax − Vmin

p · |Lπ1 − Lπ2 |
=

Vmax − Vmin

p ·maxπ1∈BM
V

minπ2∈GM
V

|Lπ1 − Lπ2 |
.

Proof for theorem 5.3

The value loss for a policy π under the LPE attack with policy π† is:

δVπ
M,M̂ = −

∑
s

µπ(s) ·∆ · 1[π(s) = π†(s)]

= −∆ ·D(π, π†).

(4)

Equation 4 says that the value loss for policy π is proportional to its similarity with π†. To make the
r.h.s in Equation 3 hold, the following should be satisfied:

max
π1∈BM

V

V π
M +∆ ·D(π1, π

†) > max
π2∈GM

V

V π
M +∆ ·D(π2, π

†).

By similar analysis from proof for theorem 5.1, it can equivalently be rewritten as

|∆| > min
π1∈BM

V

max
π2∈GM

V

Vπ2

M − Vπ1

M
D(π2, π†)−D(π1, π†)

= ∆(V ).

Next we give an upper bound on ∆(V ). Let π0 := argminπ∈BM
V

D(π, π†) then the maximum
policy value of a policy from BM

V is lower bound by

max
π∈BM

V

Vπ
M̂ = max

π∈BM
V

(Vπ
M −∆ ·D(π, π†)) ≥ Vπ0

M −∆ ·D(π0, π
†) ≥ Vmin − min

π∈BM
V

D(π, π†)

For the maximum policy value of a policy from GM
V , it can be directly upper bound by

max
π∈GM

V

Vπ
M̂ = max

π∈GM
V

(Vπ
M−∆·D(π, π†)) ≤ max

π∈BM
V

Vπ
M− min

π∈BM
V

∆·D(π, π†) = Vmax−∆· min
π∈BM

V

D(π, π†).

Then the upper bound on ∆(V ) can be given as

∆(V ) ≤ Vmax − Vmin

minπ∈GM
V

D(π, π†)−minπ∈BM
V

D(π, π†)

Note that one can always find a policy π that share no similarity to π† by always choosing a different
action to π†, that is π(s) ̸= π†(s),∀s, then D(π, π†) = 0. In the situation where the number of
actions is large than 2, then such policy can still have random behavior which usually corresponds
to low policy value, and we can assume that a policy with no similarity to π† can always be found
in BM

V , suggesting that minπ∈BM
V
D(π, π†), then the upper bound on ∆(V ) can be rewritten as

∆(V ) ≤ Vmax−Vmin

min
π∈GM

V
D(π,π†)

.

Proof for theorem 5.5
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The value loss for a policy π under the RPI attack with policy π† is:

δVπ
M,M̂ = −

∑
s

µπ(s) ·∆ · 1[π(s) ̸= π†(s)]

= −
∑
s

µπ(s) ·∆ · (1− 1[π(s) = π†(s)])

= −
∑
s

µπ(s) ·∆−
∑
s

µπ(s) ·∆ · 1[π(s) ̸= π†(s)])

= −∆ · (Lπ −D(π, π†))

(5)

Note that for the attack policy π† itself, its value loss is 0 as Lπ†
= D(π†, π†). To make the r.h.s in

Equation 3 hold, the following needs to be satisfied

max
π1∈BM

V

V π
M +∆ · (Lπ1 −D(π1, π

†)) > max
π2∈GM

V

V π
M +∆ · (Lπ2 −D(π2, π

†)).

It can be equivalently rewritten as

|∆| > min
π1∈BM

V

max
π2∈GM

V

Vπ2

M − Vπ1

M
(Lπ2 − Lπ1)− (D(π2, π†)−D(π1, π†))

= ∆(V ).

Next we give an upper bound on ∆(V ). Since π† is randomly generated, we can assume that it has
random behavior in the environment resulting in poor performance, then we can lower bound the
the maximum policy value of a policy from BM

V by

max
π∈BM

V

Vπ
M̂ = max

π∈BM
V

(Vπ
M −∆ ·D(π, π†)) ≥ Vπ†

M −∆ · (Lπ†
−D(π†, π†)) = Vπ†

M ≥ Vmin.

For the maximum policy value of a policy from GM
V , it can be directly upper bound as

max
π∈GM

V

Vπ
M̂ = max

π∈GM
V

(Vπ
M −∆ · (Lπ −D(π, π†)))

≤ max
π∈BM

V

Vπ
M − min

π∈BM
V

∆ · (Lπ −D(π, π†))

= Vmax −∆ · min
π∈BM

V

(Lπ −D(π, π†)).

Combing both, an upper bound on ∆(V ) can be given as

∆(V ) ≤ Vmax − Vmin

minπ∈GM
V
(Lπ −D(π, π†))

.

Proof for theorem 5.7 Note that the attack strategy for RPP attack has the same form as that of the
LPE attack, except that the attack applies positive corruption instead of negative. We can directly
write down the policy loss for a policy and ∆(V ) under the RPP attack since they share the same
form as those for the LPE attack.

δVπ
M,M̂ = −∆ ·D(π, π†).

|∆| > min
π1∈BM

V

max
π2∈GM

V

Vπ2

M − Vπ1

M
D(π2, π†)−D(π1, π†)

= ∆(V ).

For the upper bound on ∆(V ), we can lower bound the maximum policy value in M̂ of a policy in
BM

V by that of π†, that is,

max
π∈BM

V

Vπ
M̂ ≥ Vπ†

M̂ = Vπ†

M +∆ ·D(π†, π†) ≥ Vmin +∆ · Lπ†
.
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The maximum policy value in M̂ of a policy in GM
V can be upper bound by

max
π∈GM

V

Vπ
M̂ ≤ Vmax +∆ · min

π∈GM
V

D(π, π†).

Combing both, an upper bound on ∆(V ) can be given as

∆(V ) ≤ Vmax − Vmin

Lπ† −maxπ∈GM
V

D(π, π†)
.

Proof for lemma 5.4 Under the LPE attack, the value loss for any policy is ≥ 0 as the corruption ∆
is always negative. If a policy π has no similarity to the attack policy π†, that is, D(π, π†) = 0, then
its policy loss is 0. Let D0 be the set of policies that has no similarity to π†. Then as the value of
|∆| increases, the value loss for all policies not in D0 increase, then eventually the policy with the
highest policy value in D0 will have the highest policy value under the LPE attack with sufficient ∆.

Proof for lemma 5.6 Under the RPI attack, the value loss for any policy is ≥ 0 as the corruption ∆
is always negative. The only policy that has 0 value loss is the attack policy π† itself. As the value
of |∆| increases, the value loss for all policies increase except for π†, then eventually π† will have
the highest policy value under the RPI attack with sufficient ∆.

F PROS AND CONS OF ATTACK METHODS

To make it clear about which attack method is more promising given a scenario, we summarize the
strength and weakness of our attack methods.

LPE attack: The main strength is that the attack has less requirement on corruption budget. The
attack only applies perturbation for a small subset of actions, so during agent’s random exploration,
it only applies perturbation for a small portion of the steps. As a result, in most experiments we find
that LPE attack usually have significant influence on learning when the attack budget is small. The
attack can also benefit from having access to a high performing policy if possible, and in experiments
we find that LPE-(2) and (3) are usually more efficient than LPE-(1). The weakness of the attack is
that it may fail if the high performing policies can have very different behavior, which can happen
if the environment is easy and many policies can be thought of as good. CartPole is a good example
of such environments, and in the experiments we can also find that LPE attack is less efficient.

RPI attack: Compared to LPE attack, its strength is that it still works even if there are high per-
forming policies of distinct behaviors, as it will only make one policy look the best. This is likely
to be the reason why RPI attack is more efficient in CartPole environment. As a cost, it will require
more corruption budget, as during agent’s random exploration, it applies corruption for most of the
time. In experiments we can see that in many scenarios, the RPI attack is more efficient when attack
budget is large compared to the LPE attack

RPP attack: RPP attack is more efficient than the RPI attack if the agent explores sub-optimal
actions more often and vice versa. The reason is that the RPP attack perturbs the steps where the
agent explores the optimal actions in the adversarial environment, and the RPI attack does the op-
posite. For example, in Acrobot and MountainCar environment, we observe that when the learning
algorithm is double, RPP is more efficient; and the opposite is true when the learning algorithm is
duel.

G HARDNESS OF FINDING THE OPTIMAL ATTACK ALGORITHM

First we show the space for all possible attack algorithms is exponentially large in T . As discussed
in section 3, an attack algorithms can be represented by its attack strategies At at each round t, and
the attack strategy is a mapping At : St × At × Rt−1 → C, where C is the corruption space for
all possible amount of corruption, St = S × S . . .× S︸ ︷︷ ︸

t times

, and the meaning of At, Rt−1, and Ct is

similar. Given the constraints on the budget of the attacker defined in section 3, finding the optimal
attack algorithm requires solving the following optimization problem:
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min
At=1,...,T

Vπ0

M, s.t. ∆t = At(s1:t, a1:t, r1:t−1),

T∑
t=1

1[∆t ̸= 0] ≤ C, |∆t=1,...,T | ≤ B. (6)

Even in the tabular setting where the sizes of S,A,∇, C are all finite, in total there are
O(|S|T 2 |A|T 2 |R|T 2 |C|T ) many possible attack algorithms. This makes exhaustive enumeration
computationally infeasible.

Next we show the hardness of searching for the optimal or near optimal attack strategy. Zhang et al.
(2020b) show that the poisoning attack problem in the simpler tabular setting can be formulated
as an RL problem which is harder than the RL problem for the learning agent. More specifically,
the input state of the RL problem for the attacker needs to include the parameters of the learning
algorithm, and correspondingly the transition function P needs to include how such parameters are
updated. In the DRL setting, the learning algorithms are more complex compared to the tabular
setting. For example, if the learning algorithm is a deep Q learning algorithm, then the input space
for the attacker’s RL problem need to include all the parameters in the neural networks. Clearly both
the input space and transition functions are more complicated in the DRL setting, making the RL
problem for the attacker significantly harder to solve regardless of the additional constraints given
by attacker’s budget.

At last, note that both exhaustive enumeration and the attacker’s RL formulation requires that the
attacker has full knowledge of both the environment and the learning algorithm which is a strong
assumption on attacker’s capabilities as mentioned in section 4. Considering all the strong require-
ments for the attacker and difficulties in finding the optimal or near optimal attack, the goal in our
work is to not chase optimality but find feasible attack algorithms that can be constructed efficiently
without requiring any knowledge about the environment and the learning algorithm.

H EFFICIENCY OF REWARD FLIPPING ATTACK

Here we analyze and empirically examine the performance of a heuristic attack that appears to be
effective as believed in Zhang et al. (2021b). The strategy of the attack is to change the sign of
the true reward at each time. We call such attack as reward flipping attack, and its attack strategy
can be formally written as At(st, at) = −2rt. Note that such attack also construct a stationary
adversarial reward function, suggesting that it also falls in our ”adversary MDP attack” framework.
Under such adversarial MDP M̂, since all rewards have their signs flipped, we have Vπ

M̂
= −Vπ

M

for all policy π, suggesting that the optimal policy under M̂ actually has the worst performance
under the true environment M. However, the disadvantage of the attack method is that it needs to
apply corruption at every timestep, resulting in too much requirement on C. Note that this is the
same issue as the UR attack has. We further empirically test the efficiency of the reward flipping
attack. The attacker cannot apply corruption when it runs out of budget on total corruption steps C,
and we do not assume any constraint on B. We consider environment Hopper and HalfCheetah, and
set C = 0.01 as considered in our experiments while the remaining parameters are unchanged. Our
results show that the performance of the reward flipping attack is comparable to the baseline UR
attack as shown in the table 6 below, suggesting that the reward flipping attack is not efficient.

Table 6: Performance of reward flipping attack. The values in the table are the performance of
the best policy ever learned by the learning algorithm, which is the same as the y axis of our main
experiment results in figure 1

Environment-Learning algorithm Reward flipping attack UR attack No attack

Hopper-td3 3157 3482 3502
Hopper-sac 3521 3355 3496
HalfCheetah-ddpg 7463 6622 9341
HalfCheetah-td3 7603 7694 9610
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I COMPARISON TO VA2C-P ATTACK

Here we compare the effectiveness of our LPE attack, which is our most efficient attack as an exam-
ple, and the most ”black box” version of VA2C-P attack proposed in Sun et al. (2020) which knows
the learning algorithm but does not know the parameters in its model. Note that the constraints for
the two attacks are different in the two papers. To make sure that we are not underestimating the
effectiveness of the VA2C-P attack, we let both attacks work under the same constraints used in Sun
et al. (2020). The constraints here are characterized by two parameters K and ϵ. The training process
is separated into K batches of steps, and the attacker is allowed to corrupt no more than C out of
K training batches. In each training batch with t time steps, let δr = {δr1, . . . , δrt} be the injected
reward corruption at each time step, then the corruption should satisfy ||δr||2√

t
≤ ϵ. We modify the

LPE attack accordingly to work with such constraints. More specifically, the attack strategy is un-
changed when applying corruption will not break the constraints, and we forbid the attack to apply
corruption if doing so will break the constraints. To avoid anything that could cause a decrease in
efficiency of VA2C-P attack, we do not modify any code related to training and attacking provided
by Sun et al. (2020), and implement our attack method in their code.

Since VA2C-P has more limitations than LPE attack, we only consider the scenarios where both
attack are applicable. As an example, we choose Swimmer as the environment and PPO as the
learning algorithm. Here we use the metric in Sun et al. (2020) to measure the performance of
the attack. More specifically, we measure the average reward per episode collected by the learning
agent through the whole training process. We set K = 1, ϵ = 1, and the length of training to be 600
episodes where each episode consists of 1000 steps. The results for different attacks are shown in
table 7. Each result is the average of 10 repeated experiment, and it is clear that our attack is much
more efficient.

Table 7: Comparison between VA2C-P and LPE attack

clean VA2C-P LPE-(1) LPE-(3) LPE-(2)

30.07 25.49 14.75 7.08 -2.16

We also notice that our LPE attack computes faster than VA2C-P attack. To compute the attack for
600 training episodes in the experiment, our LPE attack takes 135.7 seconds, while the VA2C-P
black box attack takes 7049.5 seconds. In this case, the LPE attack computes 52 times faster than
VA2C-P attack.

One may notice that learning efficiency of PPO algorithm here is not as good as what we show in
Figure 4. This is due to different implementation of the same algorithm in our work and Sun et al.
(2020). It is a known issue that difference in implementations can lead to very different learning
results Henderson et al. (2018). As mentioned before, we build our learning algorithms based on
spinning up documents Achiam (2018), and the learning performance of our learning algorithms
match the results shown in the spinning up documents.
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