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Abstract

Multimodal large models have been recognized
for their advantages in various performance
and downstream tasks. The development of
these models is crucial towards achieving gen-
eral artificial intelligence in the future. In this
paper, we propose a novel audio representa-
tion learning method called WavBriVL, which
is based on Bridging-Vision-and-Language
(BriVL). WavBriVL embeds audio, image, and
text into a shared space, enabling the realiza-
tion of various multimodal applications. Our
approach addresses major challenges in robust
audio representation learning and effectively
captures the correlation between audio and im-
age. Additionally, we demonstrate the qualita-
tive evaluation of the generated images from
WavBriVL, which serves to highlight the po-
tential of our approach in creating images from
audio. Overall, our experimental results demon-
strate the efficacy of WavBriVL in downstream
tasks and its ability to generate appropriate
images from audio. The proposed approach
has the potential for various applications such
as speech recognition, music signal process-
ing, and captioning systems. We would like
to highlight that WavBriVL is the first univer-
sal method for generating images from audio-
driven diffusion models.

1 Introduction

Sound and vision affect people’s core cognition
in many areas, such as feeling, information pro-
cessing and communication. Sound and vision are
closely related. However, most of the existing meth-
ods only have a single cognitive ability, and some
only study text-vision, text-voice, etc. Recent stud-
ies have shown that leveraging large-scale Internet
data for self-supervised pre-training of models of-
fers better results than relying on high-quality or
manually labeled data sets (Pan et al., 2022), such
as the recently amazing chatGPT'. Moreover, mul-
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Fig. 1: Bridge Vision-Language Pre-training (BriVL),
and our two-stage approaches including pre-training and
evaluation.

tiple studies demonstrate the effectiveness of mul-
timodal models over single or bimodal models in
several fields and tasks (Chen et al., 2022a), such
as Microsoft’s latest BEiT3 model (Wang et al.,
2022).

Data volume is the basic element for training
large-scale language models. Since BERT of De-
vlin et al. (2018) (perhaps even earlier (Ma and
Zhang, 2015)), the pre-training model of NLP has
been benefiting from large-scale corpora. Accord-
ing to theory of OpenAl (Kaplan et al., 2020),
the language model gradually reflects a scaling
law (the rule that the model capacity increases
with the model volume). In supervised learning,
manual annotation of large amounts of data is
very expensive, so self-supervised learning is val-
ued for large model training. In order to expand
the boundary of the research field and break the
limitation of the lack of relevant resources (Hsu
et al., 2021), we explore a new multimodal self-
monitoring model based on the latest excellent
work: Bridging-Vision-and-Language (Fei et al.,
2022). It’s a new effort similar to OpenAl CLIP
(Radford et al., 2021) and Google ALIGN (Jia et al.,
2021). BriVL? model has excellent effect on image
and text retrieval tasks, surpassing other common
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multimodal pre-training models in the same period.

In this work, we propose WavBriVL, an audio-
visual correspondence model that extracts training
from the BriVL model. The principle of WavBriVL
is to freeze the BriVL visual model, run video on
the visual stream of the model, and train a new
model to predict BriVL embedding independently
from the audio stream. Our method is very simple,
which can train, expand, and output images. In
addition, WavBriVL embeddings originate from
BriVL, which means they align with text. In theory,
this makes audio guided image repair (Zhao et al.,
2022), audio subtitles and cross mode text/audio to
audio retrieval be true. Our approach addresses the
unique challenges presented by audio input to im-
prove the overall performance and applicability of
multimodal models in various tasks, such as media
captioning and recommendation systems. And in
this work, we conducted detailed testing on these
possible tasks, WavBriVL generates audio subti-
tles, and cross-mode text/audio to audio retrieval,
which surpasses previous methods’ outcomes, prov-
ing its significance in future multimodal models’
development.

Finally, we use WavBriVL to guide the gener-
ation of model DALL-E? (Ramesh et al., 2021)
output images, and intuitively verify that the em-
bedded space is meaningful. Experimental results
show that this method can effectively generate ap-
propriate images from audio. Our approach enables
the generation of high-quality images solely from
the audio input by leveraging the shared embed-
dings in the BriVL framework. This is a significant
contribution to the field of multimodal learning,
as prior methods mainly focused on generating
images from text or image inputs, rather than au-
dio inputs. The novel contribution of our work,
being the first method that audio-driven diffusion
model to generate images, thus demonstrates the
potential of the approach in advancing the field of
multimodal learning. In addition, compared with
other fully supervised models, WavBriVL theoreti-
cally requires less data to obtain competitive perfor-
mance in downstream tasks, that is, it performs pre-
training more effectively than competitive methods,
because it does not need to completely re learn the
visual model, only needs to train the audio model.
It is a reproducible and potential application model,
and we will provide more code information after
publication.
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2 Method And Tasks

Bridging- Vision-and-Language (BriVL) is a model
trained on 650 million text image weak semantic
datasets. They designed a cross modal comparison
learning algorithm based on the monomodal com-
parison learning method MoCo (He et al., 2020),
and maintained the negative sample queue in dif-
ferent training batches through a mechanism called
Memory Bank, so as to obtain a large number of
negative samples for use in the comparison learn-
ing method. As shown in the left part of Figure 1,
its core idea is to realize the general artificial intel-
ligence model (AGI) by simulating the multi-mode
processing idea of human brain. It also shows the
SOTA results in such scenes as image annotation,
image zero sample classification, and input features
of other downstream multimodal tasks. Even the
guidance generation model has excellent perfor-
mance.

As shown in Figure 1, WavBriVL replaces the
text encoder with the audio encoder by freezing
the visual model of BriVL, runs the image through
it, and trains the new model to predict that only
the matching image embedded content is obtained
from the audio. We refer to the exclusive multilayer
perceptron of BriVL, which can not only enhance
performance but also prepare for possible down-
stream tasks. After the audio encoder is trained,
we freeze it and use it in the WavBriVL image
generation task as a qualitative evaluation of our
experimental results.

2.1 Dataset for WavBriVL performance test

We select diverse set of data ranging from various
number of clips, number of categories, and perform
diverse tasks including classification, retrieval, and
generation. For evaluation, we use relevant metrics
detailed in Table 1 for each task. BriVL needs more
than 100 A100 graphics cards to train for 10 days,
so we don’t consider retraining it. Our training and
performance testing are based on the pre-trained
model.

2.2 Dataset for diffusion model

We used VGG-Sound (Chen et al., 2020a) and
AudioSet (Gemmeke et al., 2017) video datasets.
VGG-Sound consists of short clips of audio sound,
which includes 310 video classes and 200,000 au-
dio that span a large number of challenging acous-
tic environments and noise characteristics of practi-
cal applications. All videos are non man-made and
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more corresponding. We randomly select one im-
age from each sample video, cut them into squares,
and sample them down to 64 x 64. The audio
sampling rate is 16,000Hz. We use it to train the
model, which helps to increase the applicability
of the model. AudioSet collected 10 second clips
from 2.1 million videos. We randomly selected the
audio of 18 videos for our image generation task.

2.3 Feature extraction processing methods

For image and audio encoders, we use EfficientNet-
B7 (Tan and Le, 2019) as the CNN in the image
encoder, and the backbone WavLM (Chen et al.,
2022b) as the basic transformer in the audio en-
coder. The self concerned block is composed of
4 Transformer encoder layers and MLP block re-
spectively, with two fully connected layers and one
ReL.U activation layer. For all models, we use
grid search to find the best hyperparameter. For
other hyperparameters (such as batch size, training
steps, learning rate, etc.), we directly use the sug-
gested values in the original papers. Note that for
per-instance perturbation, we adopt the appropriate
quantity compared to the original epochs.

Image Encoder. In the input image, the method
of BriVL using random grayscale for the input im-
age and random color jitter for data enhancement is
followed. For all videos in the dataset, we use 720P
resolution and separate images (if not, use 480P).
All images are cropped down to 360 x 360 pixels.
We use Transformer to capture patch features, and
use the average pooling layer to fuse and extract. To
better capture the relationship of image patch fea-
tures, BriVL’s team* deploys a self-attention (SA)
block containing multiple Transformer encoder lay-
ers. Every Transformer encoder layer consists of a
multi-head attention (MHA) layer and a feed for-
ward network (FFN) layer (Fei et al., 2022):

S’ = LayerNorm(S + MHA(S)) (1)
S = LayerNorm(S’ + FEN(S"))  (2)

Then, they use the average pooling layer to fuse the
extracted patch features:

L
() — — .
= £ e R 3)
7=1
where S; is the j-th column of S. A two-layer

MLP block with a ReL.U activation layer is adopted
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to project r(¥) to the joint cross-modal embedding
space, resulting in the final d-dimensional image
embedding z(¥) € R?.

Audio Encoder. For audio input, we first convert
the original audio waveform (1D) into a spectrum
(2D) as the input of WavLLM, and pool the entire
512 dimensional audio sequence to output an em-
bedding. The WavLM embedding is computed
by the weighted average of outputs from all trans-
former layers. The WavLM> model inspired by
HuBERT contains two main networks as follows:
a CNN encoder and a Transformer with L blocks.
During training, some frames of the CNN encoder
output x are masked randomly and fed to the Trans-
former as input. The Transformer is optimized to
predict the discrete target sequence z, in which
each z; € [C] is a C-class categorical variable.
The distribution over the classes is parameterized
with

exp(sim(WPhtL,ec)/T)
23:1 exp(sim(WFhl e.)/T)

p(clhy) = “4)

where W7 is a projection matrix, h’ is the out-
put hidden state for step ¢, e, is the embedding for
class ¢, sim(a, b) means the cosine similarity be-
tween a and b, and 7 = 0.1 scales the logit (Chen
et al., 2022b). The WavLM embedding is calcu-
lated by the weighted average of all transformer
layer outputs of WavLM, where the weights are
learned during fine tuning. In the process of fine-
tuning, we either update or freeze the parameters
of WavLM.

2.4 Training process

We continue to use a similar cross modal compar-
ative loss in BriVL. It is defined based on MoCo
(He et al., 2020), which provides a mechanism of
building dynamic sample queues for contrastive
learning. Since the two negative queues used in our
BriVL decouple the queue size from the mini-batch
size, we can have a much larger negative sample
size than the mini-batch size (thus GPU-resource-
saving). Loss function with cross projection de-
fined as CXLoss = L(f(Image),Audio) +
L(Image, g(Audio)) (f,g: projection functions
and L: contrastive loss).

For all models, we use grid search to find the
best hyperparameter. For other hyperparameters
(such as batch size, training steps, learning rate,

Shttps://github.com/microsoft/unilm/tree/
master/wavlm
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etc.), we directly use the suggested values in the
original papers. Note that for per-instance perturba-
tion, we adopt the appropriate quantity compared to
the original epochs. In this paper, we utilize several
key parameters to achieve our experimental results.
The topk parameter is set to 1, which indicates
that we only consider the top-scoring prediction for
each input instance. The queue_size parameter is
set to 9600, which controls the number of instances
that can be processed in parallel. We use a momen-
tum value of 0.99 to stabilize the learning process
and prevent oscillations during training. The tem-
perature parameter is set to 0.07, which scales the
logits output of the model to control the softness of
the predicted probability distribution. Finally, we
use a grid_size of 4 to divide the input image into
a grid of smaller sub-regions for object detection
tasks.

3 Related Works

Our motivation comes from the relevant work pro-
posed in the first half of this year (2022): we
can see that BriVL has demonstrated better per-
formance than CLIP (Radford et al., 2021) in many
aspects, and Microsoft’s new WavLM (Chen et al.,
2022b) is also better than the previous Wav2Vec
(Baevski et al., 2020) in most cases. We guess that
the combination of these two new works will also
be better than Wav2CLIP’. More importantly, there
is currently a lack of groundbreaking work on au-
dio guided diffusion models to generate images,
which is a very meaningful attempt.

3.1 Audio dependent multimodal models

There have been many multimodal works that have
taken audio into account before, and some have
replaced text with audio as the main object for
matching with images (Ilharco et al., 2019; Chru-
pata, 2022). In addition to AudioCLIP (Guzhov
et al., 2021) and other similar but actually differ-
ent work, the most similar to us is Wav2CLIP (Wu
et al., 2022). For CLIP, the BriVL we use has
the following differences and advantages: Firstly,
BriVL has more weak semantic relevance, so our
model is more imaginative. For example, here are
two groups of graphs in Figure 2 generated by
using CLIP and BriVL respectively using GAN
for comparison and understanding in the field of
text-guided generation. Secondly, for our network
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Fig. 2: Examples of CLIP (top) and BriVL (bottom) to
image generation from text, BriVL’s labels in x-axis are
translated.

architecture, because there is not necessarily a fine-
grained area match between the image and audio,
we lost the time-consuming target detector and
adopted a simple and more efficient dual tower
architecture, so we can encode the image and audio
input through two independent encoders. Thirdly,
BriVL designed a cross modal comparative learn-
ing algorithm based on the single modal compara-
tive learning method MoCo (He et al., 2020), which
has different advantages than CLIP.

3.2 Audio driven image generation

For many years, people have been trying to give
Al people multimodal perception and thinking, and
one of the main ideas is to simulate people’s im-
pressions of different external inputs, namely im-
age generation. The pursuit of applications and
methods for generating different images is the di-
rection of researchers’ efforts. With the emergence
of different generation models, such as Goodfellow
introduced GAN in 2014, there has been a lot of ex-
cellent work in the field of GAN-based image gen-
eration (Karras et al., 2017; Cudeiro et al., 2019; Yi
et al., 2020; Zhang et al., 2021a; Song et al., 2022;
Zhang et al., 2021b,c; Wu et al., 2021; Labhiri et al.,
2021; Richard et al., 2021; Thies et al., 2020; Wen
et al., 2020; Song et al., 2021; Chen et al., 2020b).
Then, from single mode to multi-mode, from text
guidance about 15 years later to audio guidance
(Qiu and Kataoka, 2018) 20 years later (of course,
there are more and earlier attempts and exceptions),
several impressive works appeared (Xu et al., 2018;
Zhu et al., 2021; Hessel et al., 2021; Saharia et al.,
2022b,a). At a time when diffusion models have
achieved success in many fields, exploring based
on this work is meaningful.
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Dataset Task  Clip (Split)  Class Metric
ESC-50 (Piczak, 2015) MC/ZS 2k (5 folds) 50 ACC
UrbanSound8K (Salamon et al., 2014) MC/ZS 8k (10 folds) 10 ACC
VGGSound (Chen et al., 2020a) MC/ZS 185k 309 mAP
DESED (Turpault et al., 2019) AR 2.5k (valid) 10 F1
VGGSound (Chen et al., 2020a) CMR 15k (test) 309 MRR
Clotho (Drossos et al., 2020) AC 5k (evaluation) COCO°

Table 1: Downstream tasks, including 1. classification: multi-class (MC), zero-shot (ZS), 2. retrieval: audio (AR)
and cross-modal retrieval (CMR), and 3. audio captioning (AC) task, with various of clips, classes, and common

metrics.
4 Task 1: WavBriVL Performance Test

We begin by discussing the training, development,
and evaluation process of the WavBriVL model.
We use publicly available datasets of varying sizes
and tasks, including classification, retrieval, and au-
dio captioning tasks. We compare WavBriVL with
some widely used as strong benchmarks in this
field, and evaluate its performance in these tasks.
Additionally, we investigate the effect of sound
volume on the generated images. We hypothesize
that the volume of sounds can influence the gen-
erated images. Hence, we explore the influence
of sound volume on image features extracted from
the sound using the sound correlation model. We
also perform quantitative image analysis to eval-
uate the performance of WavBriVL compared to
previous work, such as S2I and Pedersoli et al.
We test model with five categories from VEGAS
(Zhou et al., 2018) and compare its performance
with other methods in terms of generating visually
plausible images.

4.1 Training, development, and evaluation

We selected publicly available audio classification
data of different sizes, which are generally used for
evaluation (Cramer et al., 2019), and also included
some audio tasks/data, as shown in table 1, includ-
ing classification, retrieval and audio captioning.
ESC-50 (Piczak, 2015) is a simple data set with
only 2 thousand samples, while UrbanSound8K
(Salamon et al., 2014) is a large environmental data
set with 10 categories. VGGSound (Chen et al.,
2020a) is a huge set of audio and video materi-
als as we said before. DESED is used again as
an audio extraction (AR) job because DESED can
perform sound extraction at the fragment level. Fi-
nally, Clotho (Drossos et al., 2020) is a unique set
of audio subtitles.

0.5 times 2.0 times 3.0 times

Original

Fig. 3: Generated images by inputting different volumes
of sounds. The numbers in the table is the relative
loudness to the original sound.

For multi-class (MC) classification problems, an
MLP-based classifier is employed, with a corre-
sponding number of classes as output. In DESED,
we use the way of simulating WavBriVL and
sed_eval® to realize audio retrieval (AR). At the
same time, we also explore the performance of
ours when dealing with multimodal tasks, and how
to transfer zero samples to other modalities.

4.2 Sound volume

To establish the reliability of our method’s capabil-
ity to learn the connection between sound and vi-
sion, we analyzed the influence of sound volume on
generated images. To achieve this, we adjusted the
sound volume levels during testing and extracted
features for the corresponding sound files. These
modified sound features were then input into our
pre-trained generator, which was trained on a stan-
dard volume scale. The final three sets of images
can prove our hypothesis that the magnitude of

8https://github.com/TUT-ARG/sed_eval
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Classification Retrieval
Model ESC-50 UrbanSound8K VGGSound DESED (AR) VGGSound (CMR)
ACC ACC mAP F1 A—I(MRR) I—A (MRR)
Supervise 0.5200 0.6179 0.4331
OpenL3 0.733 0.7588 0.3487 0.1170 0.0169 0.0162
Wav2CLIP 0.8595 0.8101 0.4663 0.3955 0.0566 0.0678
WavBriVL 0.9117 0.8832 0.4741 0.3720 0.0611 0.0608
SOTA 0.959 0.8949 0.544
WavBriVL (ZS) 0.412 0.4024 0.1001

Table 2: In the subsequent classification and acquisition work, there will be supervised training, other audio
representation modes, OpenL.3, and the latest SOTA (Guzhov et al., 2021; Kazakos et al., 2021). ZS is based on
WavBriVL as a zero sample size model, some of which are derived from the original literature.

VEGAS (5 classes)

Method
R@l FID({) IS(D)
(A) Pedersolietal. 23.10 118.68 1.19
(B) S21I 39.19 114.84 1.45
(C) S2v 77.58  34.68 4.01
(D) Ours 81.31 31.48 5.42

Table 3: Comparison to the baseline: Pedersoli et al.
(2022) and existing sound-to-image/video method:
S2I and S2V (Fanzeres and Nadeu, 2021; Sung-Bin
et al., 2023). Our method outperforms the others both
qualitatively and quantitatively in the VEGAS dataset.

different volume levels is usually positively corre-
lated with the effects and meanings displayed in
the images.

4.3 Quantitative image analysis

We conducted a comparative analysis of our pro-
posed model against publicly available prior works
S21° (Fanzeres and Nadeu, 2021; Sung-Bin et al.,
2023) and Pedersoli et al. (2022). It should be noted
that while the latter is not primarily designed for
sound-to-image conversion, it employs a VQVAE-
based model to generate sound-to-depth or segmen-
tation. We trained our model and Pedersoli et al.
using the same training setup as S2I, including five
categories in VEGAS, to ensure a fair comparison.
As shown in Table 3, our proposed model outper-
forms all other models while generating visually
compelling and recognizable images. We assert
that this superior performance can be attributed to
the combination of visually enriched audio embed-
dings and a powerful image generator.
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4.4 Comparisons with previous work

First, we monitor the benchmark by training from
scratch on each downlink (with random initializa-
tion of the encoder weights). Next, we compare
WavBriVL with other publicly available OpenL.3
(Cramer et al., 2019) pre-trained on different pre-
text tasks in OpenL.3. OpenlL3 multimodal self-
monitoring training with AudioSet. It serves as a
strong benchmark for different audio tasks, such
as audio classification and retrieval. We extract
features from OpenL3 (512 dim) and WavBriVL
(512 dim) and apply the same training scheme to
all downstream classification and retrieval tasks. In
the chart, we can see that in the retrieval of clas-
sification, we are slightly better than our previous
work, with an average increase of about 0.04, and
only some deficiencies in AR. But it’s only about
0.02. We approach or slightly outperform our pre-
vious work in retrieval tasks.

In sumary, our model has good effects in both
data sets of audio retrieval classification, for the
source of our strengths: In the Classification tasks,
on the four datasets, three of us achieved good re-
sults close to or exceeding SOTA. one of reason
may be related to our data, and the other may be the
effect of BriVL. As for the lack of excellent perfor-
mance in AR tasks, it may be due to the excessive
divergence of the BriVL dataset. If we retrain the
basic model on a large scale, we may achieve bet-
ter results. In the Retrieva tasks, such mrr tasks
from A to I, from I to A we have also achieved
excellent results, which mainly comes from the ex-
cellent training effect of the previous two towers
model and the pre-training model, the structure of
the brief is useful for general with tasks.
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Fig. 4: Working principle of DALL-E+WavBriVL

5 Task2: Speech Generation Picture
Based on Diffusion Model

To visually analyze the shared embedded space
of WavBriVL and enhance its detectability. We
asked WavBriVL to generate images with the help
of DALL-E. The purpose of this task is to qualita-
tively evaluate the effect of our model. The image
of the previous model is generated by VQGAN!?,
because the old model has not completely tried the
effect of the diffusion model. The effect of their
use of the diffusion model is worth looking forward
to, but they have not yet tried it.

5.1 Processing method

WavBriVL includes an Audio Encoder and an Im-
age Encoder. Its pre training model can accurately
judge whether the given audio and image match.
Similarly, in order to generate audio guidance im-
age, we only need to match the image generated by
DALL-E with the input audio according to whether
BriVL "approves" it. If there is no match, feedback
will be given to DALL-E (Ramesh et al., 2021) to
guide it to generate more accurate images. This
process is an iterative process of training DALL-E.
In this iteration process, the image quality gener-
ated by DALL-E must be getting better and better,
and closer to the limit of WavBriVL.

DALL-E image generator was created by Ope-
nAl and it can be able to generate images similar
to surrealism directly through text description. VQ-
GAN is the choice of Wav2CLIP, and not very con-
venient to compare similar work. But, comparisons
are still relevant. The goal of DALL-E is to treat
the text token and image token as a data sequence
and carry out auto-regression through Transformer.
Due to the large resolution of the image, if a single
pixel is treated as a token, it will lead to a huge
amount of computation, so DALL - E introduced a
dVAE model to reduce the resolution of image.
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Options Positive ~ Negative Neither
Wav2CLIP 72-78% 9-17% 5-13%
WavBriVL  75-83% 12-18% 4-7%

Table 4: Human scores on correlation between sounds
and images, Wav2CLIP works for comparison

1. In the first stage, first train a dVAE to com-
press each 256x256 RGB image into a 32x32 image
token, and each position has 8192 possible values
(that is, the encoder output of the dVAE is the log-
its with the dimension of 32x32x8192, and then
combine the features of the codebook through the
logits index. The embedding of the codebook is
learnable). 2. In the second stage, the text is en-
coded with Text Encoder to obtain a maximum of
x text tokens. If the number of tokens does not
meet the maximum value, the maximum value is
padded. Then x text tokens and 1024 image tokens
are spliced to obtain 1280 data in length. Finally,
the spliced data is input into Transformer for au-
toregressive training. 3. In the reasoning stage,
given a candidate image and an audio, the fused
token can be obtained through the transformer, and
then the image can be generated by the dvae de-
coder. Finally, as shown in Figure 4, the matching
score of the audio and the generated image can
be calculated through the pre-trained WavBriVL,
ultimately achieving the effect of guiding the gen-
eration of the most matched image. As in general
performance testing, DALL-E and WavBriVL are
frozen during the generation process.

5.2 Correlation between sounds and images

This section aims to investigate whether the pro-
posed method generates graphs that are also rel-
evant to humans. In Figure 5, we demonstrate
that our method can generate more eye-catching
images; However, simply proving authenticity is
not enough to prove the deep connection between
sound and image. To demonstrate the connection
between the two, we conducted a test similar to pre-
vious work (Ilharco et al., 2019; Wan et al., 2019).
Participants were presented with two images, each
with different sound categories as input and the im-
age closest to the given sound. We conducted three
tests and obtained a series of option values. By
collecting participants’ options, we aim to evaluate
the effectiveness of the model in generating images
related to different sound categories.

The experimental results are shown in Table 4,
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Fig. 5: Images generated from five-piece audio in AudioSet (Gemmeke et al., 2017). Top: Wav2CLIP, Bottom:

WavBriVL - corresponding audio input labels in x-axis.

which collected participants’ reactions and classi-
fied them as positive, negative, or neutral. A posi-
tive option indicates that participants have chosen
images generated from input sound, while a neg-
ative option indicates their preference for images
generated from different categories of sound. Par-
ticipants who believe that neither of these images
represents the sound they hear are considered neu-
tral. Our research results indicate that the majority
of participants believe that the generated images
are related to the input sound, thus verifying our
method’s ability to generate images related to a
given sound.

5.3 Comparison with previous work

In previous work, Wav2CLIP also tried to generate
text/audio maps. Here are two sets of pictures for
comparison with our work. Figure 2 shows the text
output image of CLIP and BriVL. Figure 5 shows
another group of pictures generated by Wav2CLIP
and WavBriVL using audio.

However, in general, they all generated appro-
priate images, and they have their own characteris-
tics: for example, in their understanding of "Tiger
Roads", WavBriVL is more realistic, and WavCLIP
is more abstract. When they faced the input of "Wa-
ter Sound", our work generated a small stream, and
WavCLIP generated symbolic images similar to
fish fossils. Even considering the characteristics of
the GAN model, this result can further prove the su-
periority of our work, which also indicates that our
exploration and attempt to generate images using
a universal audio guided diffusion model is mean-
ingful; For the generation of audio, they exhibit
two characteristics of convergence and divergence

between the two models, as we can see, conver-
gence still corresponds to the image. Divergence
is reflected in Figure 5 generated by audio, which
is more imaginative than Figure 2 generated by
text. This is because our BriVL weak semantic text
image dataset has strong imagination, and another
reason is that audio itself has strong divergence
ability, which will enhance the associative ability
of audio driven models.

6 Summary & Conclusion

This paper introduces a WavBriVL!! for audio rep-
resentation. The results show that WavBriVL is
able to output general, robust sound representa-
tions, and that WavBriVL can be easily transferred
to multimodal jobs, such as audio classification, au-
dio retrieval, audio captioning and audio image gen-
eration. In future research, we will explore some
interpretable machine learning approaches that uses
the ability to generate (sound-image) across modal-
ities. Based on learnings from embedded systems,
additional speech classification and retrieval efforts
are evaluated and compared to more advanced mul-
timodal large models. On this basis, we will try to
share the embedding space in multiple modes, so as
to achieve the cross mode of image-generated text
and image-generated sound. In the future, we will
also consider exploring and using Microsoft’s lat-
est text-to-speech fusion model, SpeechLM (Zhang
et al., 2022), the next release of the Diffusion model
(Ho et al., 2020), the Consistency Models (Song
et al., 2023) and the NeRF (Mildenhall et al., 2020)
as the next version of the work.
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Limitations

The limitation of WavBriVL is that the BriVL is
trained based on the Chinese text image data set
WSCD (the text-image is corresponding (Fei et al.,
2022)), while our later training uses the English
video data set VGG-Sound (the audio-image is cor-
responding). However, audio and text do not nec-
essarily correspond strictly. It has no impact on
the classification, retrieval, and generation tasks
of audio image, but it is not recommended to use
them when text image tasks are involved (of course,
this is obviously a BriVL task, not our WavBriVL
task). When future researchers explore multimodal
mutual transformation, it is recommended to find a
Chinese video dataset for retraining. The method
in this paper is sufficient for generating correlation
images. This is also mentioned in the Section 2.1
Dataset chapter.

Ethics Statement

All datasets we train actively exclude harmful,
pornographic, and private content, and are only
used for research purposes. The participants we re-
cruited, except for some who volunteered, received
satisfactory compensation for the rest. The aca-
demic tools and human assessment related tests
used in this article comply with all regulations or
relevant permits.

Biases & Content Acknowledgment Although
our ability to generate images through audio is
impressive, it should be noted that this model may
be influenced by human factors to output content
that enhances or exacerbates social biases.
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