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Abstract

Multimodal large models have been recognized001
for their advantages in various performance002
and downstream tasks. The development of003
these models is crucial towards achieving gen-004
eral artificial intelligence in the future. In this005
paper, we propose a novel audio representa-006
tion learning method called WavBriVL, which007
is based on Bridging-Vision-and-Language008
(BriVL). WavBriVL embeds audio, image, and009
text into a shared space, enabling the realiza-010
tion of various multimodal applications. Our011
approach addresses major challenges in robust012
audio representation learning and effectively013
captures the correlation between audio and im-014
age. Additionally, we demonstrate the qualita-015
tive evaluation of the generated images from016
WavBriVL, which serves to highlight the po-017
tential of our approach in creating images from018
audio. Overall, our experimental results demon-019
strate the efficacy of WavBriVL in downstream020
tasks and its ability to generate appropriate021
images from audio. The proposed approach022
has the potential for various applications such023
as speech recognition, music signal process-024
ing, and captioning systems. We would like025
to highlight that WavBriVL is the first univer-026
sal method for generating images from audio-027
driven diffusion models.028

1 Introduction029

Sound and vision affect people’s core cognition030

in many areas, such as feeling, information pro-031

cessing and communication. Sound and vision are032

closely related. However, most of the existing meth-033

ods only have a single cognitive ability, and some034

only study text-vision, text-voice, etc. Recent stud-035

ies have shown that leveraging large-scale Internet036

data for self-supervised pre-training of models of-037

fers better results than relying on high-quality or038

manually labeled data sets (Pan et al., 2022), such039

as the recently amazing chatGPT1. Moreover, mul-040

1https://chat.openai.com/

Fig. 1: Bridge Vision-Language Pre-training (BriVL),
and our two-stage approaches including pre-training and
evaluation.

tiple studies demonstrate the effectiveness of mul- 041

timodal models over single or bimodal models in 042

several fields and tasks (Chen et al., 2022a), such 043

as Microsoft’s latest BEiT3 model (Wang et al., 044

2022). 045

Data volume is the basic element for training 046

large-scale language models. Since BERT of De- 047

vlin et al. (2018) (perhaps even earlier (Ma and 048

Zhang, 2015)), the pre-training model of NLP has 049

been benefiting from large-scale corpora. Accord- 050

ing to theory of OpenAI (Kaplan et al., 2020), 051

the language model gradually reflects a scaling 052

law (the rule that the model capacity increases 053

with the model volume). In supervised learning, 054

manual annotation of large amounts of data is 055

very expensive, so self-supervised learning is val- 056

ued for large model training. In order to expand 057

the boundary of the research field and break the 058

limitation of the lack of relevant resources (Hsu 059

et al., 2021), we explore a new multimodal self- 060

monitoring model based on the latest excellent 061

work: Bridging-Vision-and-Language (Fei et al., 062

2022). It’s a new effort similar to OpenAI CLIP 063

(Radford et al., 2021) and Google ALIGN (Jia et al., 064

2021). BriVL2 model has excellent effect on image 065

and text retrieval tasks, surpassing other common 066

2https://github.com/BAAI-WuDao/BriVL
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multimodal pre-training models in the same period.067

In this work, we propose WavBriVL, an audio-068

visual correspondence model that extracts training069

from the BriVL model. The principle of WavBriVL070

is to freeze the BriVL visual model, run video on071

the visual stream of the model, and train a new072

model to predict BriVL embedding independently073

from the audio stream. Our method is very simple,074

which can train, expand, and output images. In075

addition, WavBriVL embeddings originate from076

BriVL, which means they align with text. In theory,077

this makes audio guided image repair (Zhao et al.,078

2022), audio subtitles and cross mode text/audio to079

audio retrieval be true. Our approach addresses the080

unique challenges presented by audio input to im-081

prove the overall performance and applicability of082

multimodal models in various tasks, such as media083

captioning and recommendation systems. And in084

this work, we conducted detailed testing on these085

possible tasks, WavBriVL generates audio subti-086

tles, and cross-mode text/audio to audio retrieval,087

which surpasses previous methods’ outcomes, prov-088

ing its significance in future multimodal models’089

development.090

Finally, we use WavBriVL to guide the gener-091

ation of model DALL·E3 (Ramesh et al., 2021)092

output images, and intuitively verify that the em-093

bedded space is meaningful. Experimental results094

show that this method can effectively generate ap-095

propriate images from audio. Our approach enables096

the generation of high-quality images solely from097

the audio input by leveraging the shared embed-098

dings in the BriVL framework. This is a significant099

contribution to the field of multimodal learning,100

as prior methods mainly focused on generating101

images from text or image inputs, rather than au-102

dio inputs. The novel contribution of our work,103

being the first method that audio-driven diffusion104

model to generate images, thus demonstrates the105

potential of the approach in advancing the field of106

multimodal learning. In addition, compared with107

other fully supervised models, WavBriVL theoreti-108

cally requires less data to obtain competitive perfor-109

mance in downstream tasks, that is, it performs pre-110

training more effectively than competitive methods,111

because it does not need to completely re learn the112

visual model, only needs to train the audio model.113

It is a reproducible and potential application model,114

and we will provide more code information after115

publication.116

3https://github.com/lucidrains/DALLE-pytorch

2 Method And Tasks 117

Bridging-Vision-and-Language (BriVL) is a model 118

trained on 650 million text image weak semantic 119

datasets. They designed a cross modal comparison 120

learning algorithm based on the monomodal com- 121

parison learning method MoCo (He et al., 2020), 122

and maintained the negative sample queue in dif- 123

ferent training batches through a mechanism called 124

Memory Bank, so as to obtain a large number of 125

negative samples for use in the comparison learn- 126

ing method. As shown in the left part of Figure 1, 127

its core idea is to realize the general artificial intel- 128

ligence model (AGI) by simulating the multi-mode 129

processing idea of human brain. It also shows the 130

SOTA results in such scenes as image annotation, 131

image zero sample classification, and input features 132

of other downstream multimodal tasks. Even the 133

guidance generation model has excellent perfor- 134

mance. 135

As shown in Figure 1, WavBriVL replaces the 136

text encoder with the audio encoder by freezing 137

the visual model of BriVL, runs the image through 138

it, and trains the new model to predict that only 139

the matching image embedded content is obtained 140

from the audio. We refer to the exclusive multilayer 141

perceptron of BriVL, which can not only enhance 142

performance but also prepare for possible down- 143

stream tasks. After the audio encoder is trained, 144

we freeze it and use it in the WavBriVL image 145

generation task as a qualitative evaluation of our 146

experimental results. 147

2.1 Dataset for WavBriVL performance test 148

We select diverse set of data ranging from various 149

number of clips, number of categories, and perform 150

diverse tasks including classification, retrieval, and 151

generation. For evaluation, we use relevant metrics 152

detailed in Table 1 for each task. BriVL needs more 153

than 100 A100 graphics cards to train for 10 days, 154

so we don’t consider retraining it. Our training and 155

performance testing are based on the pre-trained 156

model. 157

2.2 Dataset for diffusion model 158

We used VGG-Sound (Chen et al., 2020a) and 159

AudioSet (Gemmeke et al., 2017) video datasets. 160

VGG-Sound consists of short clips of audio sound, 161

which includes 310 video classes and 200,000 au- 162

dio that span a large number of challenging acous- 163

tic environments and noise characteristics of practi- 164

cal applications. All videos are non man-made and 165
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more corresponding. We randomly select one im-166

age from each sample video, cut them into squares,167

and sample them down to 64 × 64. The audio168

sampling rate is 16,000Hz. We use it to train the169

model, which helps to increase the applicability170

of the model. AudioSet collected 10 second clips171

from 2.1 million videos. We randomly selected the172

audio of 18 videos for our image generation task.173

2.3 Feature extraction processing methods174

For image and audio encoders, we use EfficientNet-175

B7 (Tan and Le, 2019) as the CNN in the image176

encoder, and the backbone WavLM (Chen et al.,177

2022b) as the basic transformer in the audio en-178

coder. The self concerned block is composed of179

4 Transformer encoder layers and MLP block re-180

spectively, with two fully connected layers and one181

ReLU activation layer. For all models, we use182

grid search to find the best hyperparameter. For183

other hyperparameters (such as batch size, training184

steps, learning rate, etc.), we directly use the sug-185

gested values in the original papers. Note that for186

per-instance perturbation, we adopt the appropriate187

quantity compared to the original epochs.188

Image Encoder. In the input image, the method189

of BriVL using random grayscale for the input im-190

age and random color jitter for data enhancement is191

followed. For all videos in the dataset, we use 720P192

resolution and separate images (if not, use 480P).193

All images are cropped down to 360 × 360 pixels.194

We use Transformer to capture patch features, and195

use the average pooling layer to fuse and extract. To196

better capture the relationship of image patch fea-197

tures, BriVL’s team4 deploys a self-attention (SA)198

block containing multiple Transformer encoder lay-199

ers. Every Transformer encoder layer consists of a200

multi-head attention (MHA) layer and a feed for-201

ward network (FFN) layer (Fei et al., 2022):202

S′ = LayerNorm(S+ MHA(S)) (1)203

S = LayerNorm(S′ + FFN(S′)) (2)204

Then, they use the average pooling layer to fuse the205

extracted patch features:206

r(i) =
1

Np

Np∑
j=1

Sj ∈ Rc (3)207

where Sj is the j-th column of S. A two-layer208

MLP block with a ReLU activation layer is adopted209

4https://github.com/BAAI-WuDao/BriVL

to project r(i) to the joint cross-modal embedding 210

space, resulting in the final d-dimensional image 211

embedding z(i) ∈ Rd. 212

Audio Encoder. For audio input, we first convert 213

the original audio waveform (1D) into a spectrum 214

(2D) as the input of WavLM, and pool the entire 215

512 dimensional audio sequence to output an em- 216

bedding. The WavLM embedding is computed 217

by the weighted average of outputs from all trans- 218

former layers. The WavLM5 model inspired by 219

HuBERT contains two main networks as follows: 220

a CNN encoder and a Transformer with L blocks. 221

During training, some frames of the CNN encoder 222

output x are masked randomly and fed to the Trans- 223

former as input. The Transformer is optimized to 224

predict the discrete target sequence z, in which 225

each zt ∈ [C] is a C-class categorical variable. 226

The distribution over the classes is parameterized 227

with 228

p(c|ht) =
exp(sim(WPhL

t , ec)/τ)∑C
c′=1 exp(sim(WPhL

t , ec′)/τ)
(4) 229

where WP is a projection matrix, hL
t is the out- 230

put hidden state for step t, ec is the embedding for 231

class c, sim(a, b) means the cosine similarity be- 232

tween a and b, and τ = 0.1 scales the logit (Chen 233

et al., 2022b). The WavLM embedding is calcu- 234

lated by the weighted average of all transformer 235

layer outputs of WavLM, where the weights are 236

learned during fine tuning. In the process of fine- 237

tuning, we either update or freeze the parameters 238

of WavLM. 239

2.4 Training process 240

We continue to use a similar cross modal compar- 241

ative loss in BriVL. It is defined based on MoCo 242

(He et al., 2020), which provides a mechanism of 243

building dynamic sample queues for contrastive 244

learning. Since the two negative queues used in our 245

BriVL decouple the queue size from the mini-batch 246

size, we can have a much larger negative sample 247

size than the mini-batch size (thus GPU-resource- 248

saving). Loss function with cross projection de- 249

fined as CXLoss = L(f(Image), Audio) + 250

L(Image, g(Audio)) (f, g: projection functions 251

and L: contrastive loss). 252

For all models, we use grid search to find the 253

best hyperparameter. For other hyperparameters 254

(such as batch size, training steps, learning rate, 255

5https://github.com/microsoft/unilm/tree/
master/wavlm
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etc.), we directly use the suggested values in the256

original papers. Note that for per-instance perturba-257

tion, we adopt the appropriate quantity compared to258

the original epochs. In this paper, we utilize several259

key parameters to achieve our experimental results.260

The topk parameter is set to 1, which indicates261

that we only consider the top-scoring prediction for262

each input instance. The queue_size parameter is263

set to 9600, which controls the number of instances264

that can be processed in parallel. We use a momen-265

tum value of 0.99 to stabilize the learning process266

and prevent oscillations during training. The tem-267

perature parameter is set to 0.07, which scales the268

logits output of the model to control the softness of269

the predicted probability distribution. Finally, we270

use a grid_size of 4 to divide the input image into271

a grid of smaller sub-regions for object detection272

tasks.273

3 Related Works274

Our motivation comes from the relevant work pro-275

posed in the first half of this year (2022): we276

can see that BriVL has demonstrated better per-277

formance than CLIP (Radford et al., 2021) in many278

aspects, and Microsoft’s new WavLM (Chen et al.,279

2022b) is also better than the previous Wav2Vec280

(Baevski et al., 2020) in most cases. We guess that281

the combination of these two new works will also282

be better than Wav2CLIP7. More importantly, there283

is currently a lack of groundbreaking work on au-284

dio guided diffusion models to generate images,285

which is a very meaningful attempt.286

3.1 Audio dependent multimodal models287

There have been many multimodal works that have288

taken audio into account before, and some have289

replaced text with audio as the main object for290

matching with images (Ilharco et al., 2019; Chru-291

pała, 2022). In addition to AudioCLIP (Guzhov292

et al., 2021) and other similar but actually differ-293

ent work, the most similar to us is Wav2CLIP (Wu294

et al., 2022). For CLIP, the BriVL we use has295

the following differences and advantages: Firstly,296

BriVL has more weak semantic relevance, so our297

model is more imaginative. For example, here are298

two groups of graphs in Figure 2 generated by299

using CLIP and BriVL respectively using GAN300

for comparison and understanding in the field of301

text-guided generation. Secondly, for our network302

7https://github.com/descriptinc/
lyrebird-wav2clip

Fig. 2: Examples of CLIP (top) and BriVL (bottom) to
image generation from text, BriVL’s labels in x-axis are
translated.

architecture, because there is not necessarily a fine- 303

grained area match between the image and audio, 304

we lost the time-consuming target detector and 305

adopted a simple and more efficient dual tower 306

architecture, so we can encode the image and audio 307

input through two independent encoders. Thirdly, 308

BriVL designed a cross modal comparative learn- 309

ing algorithm based on the single modal compara- 310

tive learning method MoCo (He et al., 2020), which 311

has different advantages than CLIP. 312

3.2 Audio driven image generation 313

For many years, people have been trying to give 314

AI people multimodal perception and thinking, and 315

one of the main ideas is to simulate people’s im- 316

pressions of different external inputs, namely im- 317

age generation. The pursuit of applications and 318

methods for generating different images is the di- 319

rection of researchers’ efforts. With the emergence 320

of different generation models, such as Goodfellow 321

introduced GAN in 2014, there has been a lot of ex- 322

cellent work in the field of GAN-based image gen- 323

eration (Karras et al., 2017; Cudeiro et al., 2019; Yi 324

et al., 2020; Zhang et al., 2021a; Song et al., 2022; 325

Zhang et al., 2021b,c; Wu et al., 2021; Lahiri et al., 326

2021; Richard et al., 2021; Thies et al., 2020; Wen 327

et al., 2020; Song et al., 2021; Chen et al., 2020b). 328

Then, from single mode to multi-mode, from text 329

guidance about 15 years later to audio guidance 330

(Qiu and Kataoka, 2018) 20 years later (of course, 331

there are more and earlier attempts and exceptions), 332

several impressive works appeared (Xu et al., 2018; 333

Zhu et al., 2021; Hessel et al., 2021; Saharia et al., 334

2022b,a). At a time when diffusion models have 335

achieved success in many fields, exploring based 336

on this work is meaningful. 337
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Dataset Task Clip (Split) Class Metric

ESC-50 (Piczak, 2015) MC/ZS 2k (5 folds) 50 ACC
UrbanSound8K (Salamon et al., 2014) MC/ZS 8k (10 folds) 10 ACC

VGGSound (Chen et al., 2020a) MC/ZS 185k 309 mAP

DESED (Turpault et al., 2019) AR 2.5k (valid) 10 F1
VGGSound (Chen et al., 2020a) CMR 15k (test) 309 MRR

Clotho (Drossos et al., 2020) AC 5k (evaluation) COCO6

Table 1: Downstream tasks, including 1. classification: multi-class (MC), zero-shot (ZS), 2. retrieval: audio (AR)
and cross-modal retrieval (CMR), and 3. audio captioning (AC) task, with various of clips, classes, and common
metrics.

4 Task 1: WavBriVL Performance Test338

We begin by discussing the training, development,339

and evaluation process of the WavBriVL model.340

We use publicly available datasets of varying sizes341

and tasks, including classification, retrieval, and au-342

dio captioning tasks. We compare WavBriVL with343

some widely used as strong benchmarks in this344

field, and evaluate its performance in these tasks.345

Additionally, we investigate the effect of sound346

volume on the generated images. We hypothesize347

that the volume of sounds can influence the gen-348

erated images. Hence, we explore the influence349

of sound volume on image features extracted from350

the sound using the sound correlation model. We351

also perform quantitative image analysis to eval-352

uate the performance of WavBriVL compared to353

previous work, such as S2I and Pedersoli et al.354

We test model with five categories from VEGAS355

(Zhou et al., 2018) and compare its performance356

with other methods in terms of generating visually357

plausible images.358

4.1 Training, development, and evaluation359

We selected publicly available audio classification360

data of different sizes, which are generally used for361

evaluation (Cramer et al., 2019), and also included362

some audio tasks/data, as shown in table 1, includ-363

ing classification, retrieval and audio captioning.364

ESC-50 (Piczak, 2015) is a simple data set with365

only 2 thousand samples, while UrbanSound8K366

(Salamon et al., 2014) is a large environmental data367

set with 10 categories. VGGSound (Chen et al.,368

2020a) is a huge set of audio and video materi-369

als as we said before. DESED is used again as370

an audio extraction (AR) job because DESED can371

perform sound extraction at the fragment level. Fi-372

nally, Clotho (Drossos et al., 2020) is a unique set373

of audio subtitles.374

Fig. 3: Generated images by inputting different volumes
of sounds. The numbers in the table is the relative
loudness to the original sound.

For multi-class (MC) classification problems, an 375

MLP-based classifier is employed, with a corre- 376

sponding number of classes as output. In DESED, 377

we use the way of simulating WavBriVL and 378

sed_eval8 to realize audio retrieval (AR). At the 379

same time, we also explore the performance of 380

ours when dealing with multimodal tasks, and how 381

to transfer zero samples to other modalities. 382

4.2 Sound volume 383

To establish the reliability of our method’s capabil- 384

ity to learn the connection between sound and vi- 385

sion, we analyzed the influence of sound volume on 386

generated images. To achieve this, we adjusted the 387

sound volume levels during testing and extracted 388

features for the corresponding sound files. These 389

modified sound features were then input into our 390

pre-trained generator, which was trained on a stan- 391

dard volume scale. The final three sets of images 392

can prove our hypothesis that the magnitude of 393

8https://github.com/TUT-ARG/sed_eval
8 https://github.com/tylin/coco-caption
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Classification Retrieval

Model ESC-50 UrbanSound8K VGGSound DESED (AR) VGGSound (CMR)

ACC ACC mAP F1 A→I (MRR) I→A (MRR)

Supervise 0.5200 0.6179 0.4331
OpenL3 0.733 0.7588 0.3487 0.1170 0.0169 0.0162

Wav2CLIP 0.8595 0.8101 0.4663 0.3955 0.0566 0.0678
WavBriVL 0.9117 0.8832 0.4741 0.3720 0.0611 0.0608

SOTA 0.959 0.8949 0.544

WavBriVL (ZS) 0.412 0.4024 0.1001

Table 2: In the subsequent classification and acquisition work, there will be supervised training, other audio
representation modes, OpenL3, and the latest SOTA (Guzhov et al., 2021; Kazakos et al., 2021). ZS is based on
WavBriVL as a zero sample size model, some of which are derived from the original literature.

Method
VEGAS (5 classes)

R@1 FID (↓) IS (↑)

(A) Pedersoli et al. 23.10 118.68 1.19
(B) S2I 39.19 114.84 1.45
(C) S2V 77.58 34.68 4.01
(D) Ours 81.31 31.48 5.42

Table 3: Comparison to the baseline: Pedersoli et al.
(2022) and existing sound-to-image/video method:
S2I and S2V (Fanzeres and Nadeu, 2021; Sung-Bin
et al., 2023). Our method outperforms the others both
qualitatively and quantitatively in the VEGAS dataset.

different volume levels is usually positively corre-394

lated with the effects and meanings displayed in395

the images.396

4.3 Quantitative image analysis397

We conducted a comparative analysis of our pro-398

posed model against publicly available prior works399

S2I9 (Fanzeres and Nadeu, 2021; Sung-Bin et al.,400

2023) and Pedersoli et al. (2022). It should be noted401

that while the latter is not primarily designed for402

sound-to-image conversion, it employs a VQVAE-403

based model to generate sound-to-depth or segmen-404

tation. We trained our model and Pedersoli et al.405

using the same training setup as S2I, including five406

categories in VEGAS, to ensure a fair comparison.407

As shown in Table 3, our proposed model outper-408

forms all other models while generating visually409

compelling and recognizable images. We assert410

that this superior performance can be attributed to411

the combination of visually enriched audio embed-412

dings and a powerful image generator.413

9https://github.com/leofanzeres/s2i

4.4 Comparisons with previous work 414

First, we monitor the benchmark by training from 415

scratch on each downlink (with random initializa- 416

tion of the encoder weights). Next, we compare 417

WavBriVL with other publicly available OpenL3 418

(Cramer et al., 2019) pre-trained on different pre- 419

text tasks in OpenL3. OpenL3 multimodal self- 420

monitoring training with AudioSet. It serves as a 421

strong benchmark for different audio tasks, such 422

as audio classification and retrieval. We extract 423

features from OpenL3 (512 dim) and WavBriVL 424

(512 dim) and apply the same training scheme to 425

all downstream classification and retrieval tasks. In 426

the chart, we can see that in the retrieval of clas- 427

sification, we are slightly better than our previous 428

work, with an average increase of about 0.04, and 429

only some deficiencies in AR. But it’s only about 430

0.02. We approach or slightly outperform our pre- 431

vious work in retrieval tasks. 432

In sumary, our model has good effects in both 433

data sets of audio retrieval classification, for the 434

source of our strengths: In the Classification tasks, 435

on the four datasets, three of us achieved good re- 436

sults close to or exceeding SOTA. one of reason 437

may be related to our data, and the other may be the 438

effect of BriVL. As for the lack of excellent perfor- 439

mance in AR tasks, it may be due to the excessive 440

divergence of the BriVL dataset. If we retrain the 441

basic model on a large scale, we may achieve bet- 442

ter results. In the Retrieva tasks, such mrr tasks 443

from A to I, from I to A we have also achieved 444

excellent results, which mainly comes from the ex- 445

cellent training effect of the previous two towers 446

model and the pre-training model, the structure of 447

the brief is useful for general with tasks. 448
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Fig. 4: Working principle of DALL·E+WavBriVL

5 Task2: Speech Generation Picture449

Based on Diffusion Model450

To visually analyze the shared embedded space451

of WavBriVL and enhance its detectability. We452

asked WavBriVL to generate images with the help453

of DALL·E. The purpose of this task is to qualita-454

tively evaluate the effect of our model. The image455

of the previous model is generated by VQGAN10,456

because the old model has not completely tried the457

effect of the diffusion model. The effect of their458

use of the diffusion model is worth looking forward459

to, but they have not yet tried it.460

5.1 Processing method461

WavBriVL includes an Audio Encoder and an Im-462

age Encoder. Its pre training model can accurately463

judge whether the given audio and image match.464

Similarly, in order to generate audio guidance im-465

age, we only need to match the image generated by466

DALL·E with the input audio according to whether467

BriVL "approves" it. If there is no match, feedback468

will be given to DALL·E (Ramesh et al., 2021) to469

guide it to generate more accurate images. This470

process is an iterative process of training DALL·E.471

In this iteration process, the image quality gener-472

ated by DALL·E must be getting better and better,473

and closer to the limit of WavBriVL.474

DALL·E image generator was created by Ope-475

nAI and it can be able to generate images similar476

to surrealism directly through text description. VQ-477

GAN is the choice of Wav2CLIP, and not very con-478

venient to compare similar work. But, comparisons479

are still relevant. The goal of DALL·E is to treat480

the text token and image token as a data sequence481

and carry out auto-regression through Transformer.482

Due to the large resolution of the image, if a single483

pixel is treated as a token, it will lead to a huge484

amount of computation, so DALL · E introduced a485

dVAE model to reduce the resolution of image.486

10https://github.com/nerdyrodent/VQGAN-CLIP

Options Positive Negative Neither
Wav2CLIP 72 - 78% 9 - 17% 5 - 13%
WavBriVL 75 - 83% 12 - 18% 4 - 7%

Table 4: Human scores on correlation between sounds
and images, Wav2CLIP works for comparison

1. In the first stage, first train a dVAE to com- 487

press each 256x256 RGB image into a 32x32 image 488

token, and each position has 8192 possible values 489

(that is, the encoder output of the dVAE is the log- 490

its with the dimension of 32x32x8192, and then 491

combine the features of the codebook through the 492

logits index. The embedding of the codebook is 493

learnable). 2. In the second stage, the text is en- 494

coded with Text Encoder to obtain a maximum of 495

x text tokens. If the number of tokens does not 496

meet the maximum value, the maximum value is 497

padded. Then x text tokens and 1024 image tokens 498

are spliced to obtain 1280 data in length. Finally, 499

the spliced data is input into Transformer for au- 500

toregressive training. 3. In the reasoning stage, 501

given a candidate image and an audio, the fused 502

token can be obtained through the transformer, and 503

then the image can be generated by the dvae de- 504

coder. Finally, as shown in Figure 4, the matching 505

score of the audio and the generated image can 506

be calculated through the pre-trained WavBriVL, 507

ultimately achieving the effect of guiding the gen- 508

eration of the most matched image. As in general 509

performance testing, DALL·E and WavBriVL are 510

frozen during the generation process. 511

5.2 Correlation between sounds and images 512

This section aims to investigate whether the pro- 513

posed method generates graphs that are also rel- 514

evant to humans. In Figure 5, we demonstrate 515

that our method can generate more eye-catching 516

images; However, simply proving authenticity is 517

not enough to prove the deep connection between 518

sound and image. To demonstrate the connection 519

between the two, we conducted a test similar to pre- 520

vious work (Ilharco et al., 2019; Wan et al., 2019). 521

Participants were presented with two images, each 522

with different sound categories as input and the im- 523

age closest to the given sound. We conducted three 524

tests and obtained a series of option values. By 525

collecting participants’ options, we aim to evaluate 526

the effectiveness of the model in generating images 527

related to different sound categories. 528

The experimental results are shown in Table 4, 529
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Fig. 5: Images generated from five-piece audio in AudioSet (Gemmeke et al., 2017). Top: Wav2CLIP, Bottom:
WavBriVL - corresponding audio input labels in x-axis.

which collected participants’ reactions and classi-530

fied them as positive, negative, or neutral. A posi-531

tive option indicates that participants have chosen532

images generated from input sound, while a neg-533

ative option indicates their preference for images534

generated from different categories of sound. Par-535

ticipants who believe that neither of these images536

represents the sound they hear are considered neu-537

tral. Our research results indicate that the majority538

of participants believe that the generated images539

are related to the input sound, thus verifying our540

method’s ability to generate images related to a541

given sound.542

5.3 Comparison with previous work543

In previous work, Wav2CLIP also tried to generate544

text/audio maps. Here are two sets of pictures for545

comparison with our work. Figure 2 shows the text546

output image of CLIP and BriVL. Figure 5 shows547

another group of pictures generated by Wav2CLIP548

and WavBriVL using audio.549

However, in general, they all generated appro-550

priate images, and they have their own characteris-551

tics: for example, in their understanding of "Tiger552

Roads", WavBriVL is more realistic, and WavCLIP553

is more abstract. When they faced the input of "Wa-554

ter Sound", our work generated a small stream, and555

WavCLIP generated symbolic images similar to556

fish fossils. Even considering the characteristics of557

the GAN model, this result can further prove the su-558

periority of our work, which also indicates that our559

exploration and attempt to generate images using560

a universal audio guided diffusion model is mean-561

ingful; For the generation of audio, they exhibit562

two characteristics of convergence and divergence563

between the two models, as we can see, conver- 564

gence still corresponds to the image. Divergence 565

is reflected in Figure 5 generated by audio, which 566

is more imaginative than Figure 2 generated by 567

text. This is because our BriVL weak semantic text 568

image dataset has strong imagination, and another 569

reason is that audio itself has strong divergence 570

ability, which will enhance the associative ability 571

of audio driven models. 572

6 Summary & Conclusion 573

This paper introduces a WavBriVL11 for audio rep- 574

resentation. The results show that WavBriVL is 575

able to output general, robust sound representa- 576

tions, and that WavBriVL can be easily transferred 577

to multimodal jobs, such as audio classification, au- 578

dio retrieval, audio captioning and audio image gen- 579

eration. In future research, we will explore some 580

interpretable machine learning approaches that uses 581

the ability to generate (sound-image) across modal- 582

ities. Based on learnings from embedded systems, 583

additional speech classification and retrieval efforts 584

are evaluated and compared to more advanced mul- 585

timodal large models. On this basis, we will try to 586

share the embedding space in multiple modes, so as 587

to achieve the cross mode of image-generated text 588

and image-generated sound. In the future, we will 589

also consider exploring and using Microsoft’s lat- 590

est text-to-speech fusion model, SpeechLM (Zhang 591

et al., 2022), the next release of the Diffusion model 592

(Ho et al., 2020), the Consistency Models (Song 593

et al., 2023) and the NeRF (Mildenhall et al., 2020) 594

as the next version of the work. 595

11AnonymousGitHub
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Limitations596

The limitation of WavBriVL is that the BriVL is597

trained based on the Chinese text image data set598

WSCD (the text-image is corresponding (Fei et al.,599

2022)), while our later training uses the English600

video data set VGG-Sound (the audio-image is cor-601

responding). However, audio and text do not nec-602

essarily correspond strictly. It has no impact on603

the classification, retrieval, and generation tasks604

of audio image, but it is not recommended to use605

them when text image tasks are involved (of course,606

this is obviously a BriVL task, not our WavBriVL607

task). When future researchers explore multimodal608

mutual transformation, it is recommended to find a609

Chinese video dataset for retraining. The method610

in this paper is sufficient for generating correlation611

images. This is also mentioned in the Section 2.1612

Dataset chapter.613

Ethics Statement614

All datasets we train actively exclude harmful,615

pornographic, and private content, and are only616

used for research purposes. The participants we re-617

cruited, except for some who volunteered, received618

satisfactory compensation for the rest. The aca-619

demic tools and human assessment related tests620

used in this article comply with all regulations or621

relevant permits.622

Biases & Content Acknowledgment Although623

our ability to generate images through audio is624

impressive, it should be noted that this model may625
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