Under review as a conference paper at ICLR 2025

NEURAL FINGERPRINTS FOR ADVERSARIAL ATTACK
DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning models for image classification have become standard tools in re-
cent years. However, a well known vulnerability of these models is their suscep-
tibility to adversarial examples. Adversarial examples are generated by slightly
altering an image of a certain class in a way that is imperceptible to humans but
causes the model to classify it wrongly as another class. Many algorithms have
been proposed to address this problem, falling generally into one of two cate-
gories: (i) building robust classifiers (ii) directly detecting attacked images. De-
spite the very good performance of the proposed detectors, we argue that in a
white-box setting, where the attacker knows the configuration and weights of the
network and the detector, the attacker can overcome the detector by running many
examples on a local copy, and sending only examples that were not detected to the
actual model. This problem of addressing complete knowledge of the attacker is
common in security applications where even a very good model is not sufficient
to ensure safety. In this paper we propose to overcome this inherent limitation of
any static defence with randomization. To do so, one must generate a very large
family of detectors with consistent performance, and select one or more of them
randomly for each input. For the individual detectors, we suggest the method of
neural fingerprints. In the training phase, for each class we repeatedly sample a
tiny random subset of neurons from certain layers of the network, and if their av-
erage is sufficiently different between clean and attacked images of the focal class
they are considered a fingerprint and added to the detector bank. During test time,
we sample fingerprints from the bank associated with the label predicted by the
model, and detect attacks using a likelihood ratio test. We evaluate our detectors
on ImageNet with different attack methods and model architectures, and show
near-perfect detection with low rates of false detection.

1 INTRODUCTION

In recent years, deep learning models have become ubiquitous across a wide range of applications,
from image classification and natural language processing to speech recognition and transportation.
However, these models have been shown to be vulnerable to adversarial attacks - small, impercep-
tible perturbations to inputs that cause models to make incorrect predictions (Szegedy et al., 2014;
Goodfellow et al.,[2014). These attacks pose serious concerns regarding the security and reliability
of deep learning systems, especially in critical domains (Kurakin et al 2016). A growing body
of research has focused on developing adversarial attacks that can reliably fool models as well as
defences to mitigate these threats (Madry et al.,[2017; |Song et al., 2017;|Gowal et al., 2020).

The main defence approaches can be divided into the broad categories of robust classification and
adversarial attack detection. As the name suggests, robust models aim to mitigate the threat by being

Under review as a conference paper at ICLR 2025

robust to such inputs. This is often achieved by introducing training schemes that include adversarial
examples, or by alterations of the inputs aiming to negate the adversarial perturbation. Alternatively,
in adversarial attack detection, the main model is used as-is, but a parallel model performs the binary
classification of the input as clean or attacked. This is done for instance by adding and training an
additional output head from one of the layers of the network, or via statistical models that consider
network activations or the final output layer. A short introduction to the main adversarial attack and
protection methods is given in Section (2).

When considering the truly white-box threat model — that is, assuming that the attacker has complete
knowledge of the system — even near-perfect detection will not suffice. Knowing the structure and
parameters used both for the main classifier and for the detector model, the attacker need only run
many attack attempts on an offline copy of the system, and present the actual system only with inputs
that were already verified to be successful adversarial attacks. If the detector model is differentiable,
as is the case when adding an extra binary output head, the attacker can feasibly bypass the defence
even more directly, by adding the desired (negative) response of the detector model to the objective
when computing the perturbation for the adversarial attack.

Imagine however if we could have multiple detector networks, each providing a consistent and
acceptable detection level. During inference, we randomly choose one of these detectors to apply
to the input. This randomized strategy prevents users from crafting an input that could compromise
both the network and the detector, as they won’t know which detector will be selected. For this
method to be effective, we need: (i) a large pool of detectors to choose from, and (ii) detectors that
are not highly correlated, so that attacking one does not affect many others. Additionally, the entire
process must be computationally efficient to ensure practicality.

In this paper, we introduce the concept of Neural Fingerprints. A neural fingerprint consists of a
subset of neurons with a known distributions given a specific class. We demonstrate that grouping
just a few dozen neurons into a fingerprint can achieve considerable detection rates, and by using
many fingerprints together we can achieve near-perfect detection with a negligible false alarm rate.
Additionally, we present an efficient method to prepare a large bank of fingerprints that share very
few neurons, allowing for the selection of an uncorrelated random subset of fingerprints at test
time. Our method is validated on the ImageNet dataset, where we systematically created adversarial
attacks across classes. This extensive experimentation surpasses that of most studies in adversarial
detection methods, suggesting the practical effectiveness and scalability of our method in real-world
scenarios.

The intuition behind the use of neural fingerprints for adversarial attack detection relies on several
facts to hypothesize that such detectors would exist in many cases. First, from the lottery ticket
hypothesis (Frankle & Carbin| [2018]), we know that most neurons are not actively driving the clas-
sification result. Moreover, the various adversarial attacks try to make as little change as possible,
and hence will mostly change the value of the activations that do affect the classification. From this
we conclude that most neurons in a random set of neurons will not be significantly impacted by
an adversarial attack. Finally, due to the way that networks are trained (e.g., small gradient steps,
dropout) many neurons that are not currently important for the classification do carry some infor-
mation about the class that was gathered during training. In total, we hypothesise that information
about the identity of the true class is distributed among a large population of neurons, most of which
are not highly influential in the classification output and thus they will not be targeted by adversarial
attacks. We attempt to extract and exploit this information in our detectors.

The main contribution of this paper is twofold. First, to the best of our knowledge this paper is the
first to address the insufficiency of deterministic adversarial attack detectors in the truly white-box
setting when the attacker is assumed to have full information of the methods used. Second, we
propose and demonstrate the Neural Fingerprint approach for the creation of large detector banks,
and application of randomized attack detection.

Under review as a conference paper at ICLR 2025

The rest of the paper is organized as follows: In the next section we briefly review the main ap-
proaches used for adversarial attacks, robust classification and detection of attacks. In Section (3)
we present the proposed method of Neural Fingerprints for adversarial attack detection. In Section
(@) we review the related work and highlight the similarity and differences from this work. Next, in
Section (5) we present an evaluation of the proposed method on the ImageNet dataset, followed by
a short summary and conclusion in Section ().

2 BACKGROUND: ADVERSARIAL ATTACKS AND DEFENCE STRATEGIES

In this section we briefly review the most common and effective methods to create adversarial im-
ages, and the state of the art in protecting from such attacks.

2.1 ADVERSARIAL ATTACKS

We begin by setting the stage for both attack and defence methods. We assume that the attacked
model f(-;0) is a classifier that gets an image = and returns a probability vector §¢(x) over a pre-
defined set of labels L. We will denote the output of the classifier by ¢é;(x), namely the class for
which arg max §¢(«) is obtained. A white-box attack is the setting in which the network parameters
are known to the attacker, whereas in a black-box attack the attacker has only oracle-access to the
model.

An adversarial attack is comprised of the following steps: First, a clean image = is selected with the
corresponding label c. In the targeted case, the attacker has a specific desired output ¢/, whereas
in the untargeted case the objective of the adversary is simply to change the output to be anything
other than c. The adversary generates an altered image by introducing a minor perturbation 7:

¥=x+n (D)

Finally, the attack is deemed successful if the perturbation 7 is imperceptible for the human eye,
but the classification éf(z’) gives the desired output. That is, if é7(z’) = ¢’ in the targeted case, or
simply ¢y(x’) # c in the untargeted case.

The perturbation 7 used to create the adversarial image =’ must be imperceptible to humans. This
constraint is typically operationlized by limiting the magnitude of the perturbation 7 under some
metric, to ensure that the difference between the original input = and the perturbed input 2’ remains
below a certain threshold d. Often, this distance d is measured using an L;, norm so as to emphasize
pixels with large deviations.

The most direct way to obtain an adversarial example is through gradient-based methods. This broad
category utilizes gradient information to determine the direction of perturbation that maximizes the
desired output of the model. Let [be a loss function for the model as a function of the input image.
For example, the standard cross entropy loss with respect to the desired target class ¢’

l(z) = —loggs(x)[c])

where §[c’] is used to denote the ¢/-th element of the output . The gradient —V,Il(x) gives the
direction of movement in pixel space needed to produce a targeted adversarial example. Essentially,
this is the same procedure as when training the model, except that the input and parameters switch
roles. During training, the training data is fixed and model parameters are updated according to the
gradient of the loss function with respect to the parameters, whereas when computing the adversarial
perturbation the parameters are fixed and the input image is updated according to the gradient with
respect to the pixels. Most adversarial attack methods follow this logic either explicitly or via various

Under review as a conference paper at ICLR 2025

workarounds (which are required for instance when direct access to to the parameters, and hence the
gradients, is not available).

The Fast Gradient Sign Method (Goodfellow et al.l [2014) is a technique for generating adversarial
examples by conducting a single gradient step:

n=—a-sign(V,l(z)) 3)

Where, « is a small constant controlling the magnitude of the perturbation, and sign(-) computes the
sign elementwise. This technique has been found to reliably cause various neural network models
to misclassify their input data.

Iterative FGSM (IFGSM) (Dong et al.| 2018)) applies the FGSM step multiple times within an L,
bound € on the total perturbation. That is, it repeats the following update:

ip1 = Clipe (z; — - sign(V U(2))))

where Clip, (r) = min(max(x,z¢ — €),xo + €). The step size « is in this case typically smaller
than the total budget € so that IFGSM can make multiple steps without exceeding the constraint.
The iterative application of FGSM allows IFGSM to account for gradient directions that may not be
directly toward the decision boundary from the starting point. By accumulating these gradient steps,
it can find adversarial examples that FGSM would not acheive in a single step. More generally,
projected Gradient Descent (PGD) attacks (Madry et al.| [2017) take multiple small gradient steps
while projecting back onto the allowed perturbation set after each step. The different approaches in
this family differ mostly by the metric used in the projection.

Black box attacks mostly follow the same general logic, except that the direct computation of gra-
dients is no longer possible. The Substitute Blackbox Attack (SBA) (Papernot et al., [2016)) method
starts by querying the model on a set of inputs and training a substitute model on this dataset. Next,
a white-box attack is performed with the substitute model. Other methods use numeric estimates of
gradients (Spall, 1992} |Chen et al.,|2017) which are plugged into the standard whitebox methods.

2.2 DEFENCES

We now turn to discuss methods for defence against adversarial attacks. Broadly speaking, adver-
sarial defences are grouped into two main approaches: improving model robustness and detecting
adversarial inputs. Adversarially-robust methods aim to produce the correct output whether pre-
sented with clean or attacked inputs. Detection methods are applied in parallel (or prior to) the main
deep learning model, and aim to classify the input into clean versus attacked.

Adversarial training aims to improve robustness by incorporating adversarial examples into the train-
ing data. The model is trained on original examples plus versions of those examples perturbed with
adversarial attacks. This exposes the model to adversarial inputs during training. To generate these
adversarial examples, one can adopt various techniques such as the Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2015).

One drawback of this method is that models trained in this manner remain susceptible to other forms
of adversarial examples not encountered during the training process. Another approach is the use
of a Barrage of Random Transforms (BaRT), as proposed in the study by Tramer et al. (Tramer
et al., 2017). The key idea behind BaRT is to combine dozens of individually weak defences into
a single strong defence that is robust to attacks. Specifically, BaRT applies many random image
transformations like color reduction, noise injection, and FFT perturbation to each input image
before classification. While each transform alone can be defeated, together they provide a boost in
adversarial robustness.

Under review as a conference paper at ICLR 2025

A key consideration when applying adversarial training or other adversarial defences is the potential
impact on accuracy of clean, unperturbed inputs. Hardening a model against adversarial attacks
requires some trade-off with performance on the original task. As Kurakin et al. (Kurakin et al.|
2016) found a moderate decrease in clean image accuracy when adversarial training was applied,
with more robust models generally exhibiting a larger drop. In general, adversarial training induces
some minor accuracy drop in order to gain improved robustness, typically around 1%, as reported
by Kurakin et al. (Kurakin et al.,2016).

Adversarial detection defences aim to detect adversarial examples by training networks to distin-
guish between legitimate and adversarial inputs. A key advantage of adversarial classification is
that it can be applied to any pretrained model without needing to modify the model architecture or
training process. However, a core challenge is enabling the detector to generalize across diverse
perturbation types and datasets.

A common approach for adversarial classification is to augment a classifier network f(z) with a
detector network D(x) that outputs a prediction y,q, O Yeiean indicating whether the input x is
adversarial or clean (Metzen et all2017). The detector network D(x) is trained on a dataset con-
taining a mix of clean examples from the original training data and adversarial examples specifically
crafted to try to evade detection by the network.

Several works have proposed training feedforward neural networks as detector models. The detector
network D(h(z)) typically takes the activations of an intermediate layer h of the classifier network
f(x) as input rather than the raw input data (Metzen et al., 2017).

3 THE METHOD OF NEURAL FINGERPRINTS

In the pure white-box setting even a near-perfect deterministic adversarial attack detector is insuf-
ficient. By pure white-box we mean that the attacker has full knowledge and access to the model
and trained parameters, as well as the detector model that will be employed to detect the attack. By
deterministic we mean that the defence model is constant, so the attacker is able to check offline
weather or not each adversarial input created will be detected. Consider for instance a near-perfect
deterministic adversarial attack detector with a detection rate of 99.9%. The attacker generates a
few thousand unrelated adversarial inputs, finds on average a few that pass the defence, and discards
all others. Then, the online system is only fed these few inputs that are already known to fool the
defence.

What is needed for an effective defence in this case is a large family of detectors from which one
(or more) is sampled at random in real time for each input. The size of the family should be large
enough so that an attacker is not able to find inputs that fool them all (even if such inputs exist). This
randomization assures us that the attacker is not able to work offline to find inputs that are known to
fool the detector. For the defender on the other hand the computation needed to generate a sufficient
number of detectors must be feasible. Finally, the detectors should have adequately good detection
properties.

3.1 NEURAL FINGERPRINTS

Consider a deep neural network classifier f(x;6) with parameters . For an input image z, let
A(z) € RY denote the concatenated vector of activations for the last ¢ layers, containing in total N
neurons. That is, the last ¢ layers are of sizes n',n?,...,nf, and > n' = N. A d-size fingerprint
is asubset S C {1, ..., N} of size d that indexes into A(z). We use A(z, j) to denote the activation
of the j neuron in A(x). The fingerprint value is given by:

Under review as a conference paper at ICLR 2025

Fo() = = 3 A,))

We generate K fingerprints S1,Ss, ..., Sk where K is a hyper-parameter of the method. The
procedure used to generate the fingerprints is described at the end of this section. In total, this
defines a K-dimensional feature representation of the input x:

O(x) = [Fs,(2), .-, Fye ()] (6)

The main goal is to model Ppean(P(x)]y), the distribution of fingerprints conditioned on each of
the classes y, and Py.ck (P (z)]y), the distribution of fingerprints conditioned on inputs from another
class being adversarially attacked to class . At test time, for an input « and the associated prediction
¢r(x), all that remains is to determine if the feature vector ®(x) is likely under the predicted class
¢¢(x). To this end, we define the likelihood functions for the observed input under clean and attacked
class models:

K

Eclean(y | -T) = Pclean(q)(tT) ‘ y) = H Pclean(FSi (‘T) | y) (7)
=1
K

Lattack(y | :C) = Pattack(q)(x) ‘ y) = H Paltack(FSi, (‘T) | y) (8)
1=1

where the second equality in each case stems from an independence assumption for the fingerprints,
and Pean(Fs, (z) | y) and Py (Fs, (z) | y) are density models for the ¢-th fingerprint with clean
and attacked predicted class y respectively. The decision rule is then a threshold on the likelihood
ratio:

»Cclean (y | LC)

>« 9
Eattack(y | 33) ©

or equivalently using the log likelihoods:

K K
Z log (Petean(Fs, () | y)) — Z log (Paack (Fs, (%) | y)) > log(a) (10)
i=1

=1

The set of decision rules for possible values of a defines an ROC curve, and a point can then
be selected that achieves the best possible detection while maintaining an acceptable rate of false
positives. In addition to the likelihood ratio threshold test, we propose two additional decision rules.
The first is a simpler version of aggregating individual fingerprint information via a vote between
them. That is, using a threshold on on the number of votes for flagging an attack:

K
Z 1 [Pattack(FS,; (‘T) | y) Z Pclean(FS,; (I) | y)} (11)

=1

One drawback of both the likelihood ratio and voting tests is that they require the distribution of
fingerprint values for attacked images as well as the claen ones. When this is not available, it is

Under review as a conference paper at ICLR 2025

possible to resort to an anomaly detection approach, setting a threshold on the likelihood under the
clean model only, that is:

K
Z log (Fetean (Fs, (%) |) (12)
i=1

Two final remaining element are the estimation of the density functions Prea(Fs,(2)|y),
Puack(Fs; (x)|y), and the method used to obtain effective fingerprints. Recall each fingerprint is
the average of many neuron activations from different parts of the network, and it stands to reason
that these will be almost completely independent, conditioned on the predicted class. Hence, it is
sufficient to approximate the individual fingerprint density functions using a Gaussian approxima-
tion. This was verified empirically (See figure|[T).

For efficient computation of fingerprints we suggest the following preprocessing. For a specific class
¢, we begin with a set of m images from the class, and m' random images of other classes, which
underwent a targeted adversarial attack and are now classified as class c. All images are then fed
through the model, and the [V activations that are considered for fingerprint membership are stored
for each one. In total this produces a table of size N x m for the clean images, and N x m/’ for the
attacked images. The remaining computation requires only these tables (the images and model are
no longer used).

The procedure we use to generate effective fingerprints is based on sampling and filtering. At each
step a fingerprint (that is k& out of the total NV activations in the tables) is sampled. Next, the pa-
rameters (mean and variance) for the Gaussian approximation of the distribution of the fingerprint
value is computed for clean and attacked images. Finally, a Cohen’s d (Cohen, 2013)) effect size is
calculated to determine the usefulness of the fingerprint in separating the clean and attacked inputs.
If the fingerprint’s effect size is above a pre-determined threshold it is added to the fingerprint bank.
We note that in the anomaly detection variant the filtering step is not possible, as we are only using
the clean images, and hence all fingerprints are used.

4 RELATED WORK

Neural probing is a method originally developed to ascertain how suitable the representation in
each layer of a deep neural network is for the purpose of the learned task (Alain & Bengio, |2016),
and has since become a fundamental tool for understanding models in natural language processing
(Belinkov, 2022). In this method, entire representations (hidden layers) are used as features for a
predictor of some aspect of the input, and the success of the predictor is understood to measure how
well the aspect is encoded in the representation. Using this framework, each fingerprint in our work
can be described as a random sparse linear readout for the binary prediction of adversarial attacks.
The success of these predictors points to the idea that the presence of adversarial attacks is encoded
in the representation of the final layers of the model. However, clearly using a straightforward probe
from these layers is insufficient for protection, as an attacker could simply add this additional output
to the objective of the adversarial attack, or find inputs that are not detected via offline trial and error.
It is the combinatorical size of the fingerprint space as they are formulated here, that provides some
additional protection from straightforward workarounds (see Section [3).

Several methods have previously utilized hidden layer activations for detection of adversarial attacks
or for robust classification. For example, in (Zheng & Hongl |2018) entire hidden layers are modeled
using Gaussian Mixture Models (GMMs), and an adversarial attack is declared if the likelihood of
an image in the fitted GMM is below a threshold. In (Feinman et al.,[2017) a similar method is used
based on a Kernel Density Estimate (KDE) model of the last hidden layer.

Under review as a conference paper at ICLR 2025

(a) Randomly selected fingerprints (b) Filtered fingerprints

Figure 1: Fingerprint distributions: (a) randomly selected fingerprints (b) fingerprints filtered based
on effect size. Orange - clean image, blue - attacked.

The method proposed here differs from all the above in two fundamental aspects. First, and most
importantly, all the above inherently employ static functions of the network activations that can
be added to the attack objective, while the possibility of randomization with the method proposed
here offers some protection from this straightforward bypass. Second, our method, using only sparse
linear combinations of activations, is fast and easy to implement with any existing network structure.

5 RESULTS

In this section we evaluate the proposed method of Neural Fingerprints, and compare the three deci-
sion rule alternatives of likelihood ratio, voting, and anomaly detection (see Section E]) To the best
of our knowledge this is the first randomized method for detection of adversarial attacks operating
under the assumption that the attacker has full knowledge of the system, hence the purpose of this
evaluation is only to determine the feasibility of the method, as there are no relevant alternatives to
compare to. For this purpose we use the ImageNet validation data.

We repeat the following for each of the tested deep learning models and attack methods: from each
category, 500 images were sampled, with 400 allocated for training and 100 reserved for testing.
Only images with a minimum of 50% confidence for the correct class were considered for sampling.
Likewise, 500 images were randomly selected from all other categories and attacked so that the
model classified them as the current category (examples of original and attacked images are pre-
sented in Appendix A). The attacked images were also subdivided into 400 for training and 100 for
testing. In total, this amounts to 1000 images per category and one million in total.

The network architectures used for the evaluation are Inception V (Szegedy et al.,[2016)) and Vi
(Dosovitskiy et al.l [2021). These two were selected as representatives of the convolution based and
transformer based model families. To obtain adversarial attacked images we used the CleverHans

"https://huggingface.co/docs/timm/en/models/inception-v3
https://huggingface.co/timm/vit_base_patchl6_224.augreg2_in2lk_ft_inlk

https://huggingface.co/docs/timm/en/models/inception-v3
https://huggingface.co/timm/vit_base_patch16_224.augreg2_in21k_ft_in1k

Under review as a conference paper at ICLR 2025

Model Attack | Detection Method | 1% FP | 2% FP | 5% FP
Vote 98.2% 99.3% 99.7%

IFGSM Anomaly 94.0% 97.6% 99.3%

Tnception V3 Likelihood Ratio 98.7% 99.4% 99.7%
Vote 97.9% 99.2% 99.5%

PGD Anomaly 97.4% | 98.8% | 99.4%

Likelihood Ratio 98.6% 99.1% 99.5%

Vote 97.4% 98.8% 99.8%

IFGSN Anomaly 93.6% | 97.8% | 99.5%

ViT Likelihood Ratio 96.9% 99.0% 99.9%
Vote 96.8% 98.5% 99.3%

PGD Anomaly 95.0% 97.2% 98.4%

Likelihood Ratio 96.5% 97.6% 99.4%

Table 1: Adversarial attack detection rate for the ImageNet dataset using ViT and Inception V3
models, tested against IFGSM and PGD attacks across 3 detection methods: Vote, Anomaly, and
Likelihood Ratio with 20 fingerprints.

implementation (Papernot et al., 2018)) [’| of Iterative Fast Gradient Sign Method (IFGSM) and Pro-
jected Gradient Descent (PGD). For IFGSM, the attack parameters include the number of iterations
(iter=150) and the magnitude of the perturbation (eps=0.01), however we terminated each attack
upon reaching confidence of at least 70% in the target class, which was normally achieved after 3 to
10 iterations. Similarly, for PGD, the key parameters used are (eps=0.01), the number of iterations
(iter=40), and the step size (step size=0.01). Here also we stop whenever reaching at least 70%
confidence in the target class. For each iteration, 100, 000 fingerprints of size d = 50 were sampled,
and the top 20 were selected based on the training data.

We first consider the individual fingerprints. Figure (1)) shows an illustrative example of fingerprints
generated for class toucarﬂ in the Inception V3 model and IFGSM attack setting. The general
fingerprints sampled (left panel) mostly show high overlap in distribution between the clean and
attacked images, with a few exceptions. When sampling based on effect size (Cohen’s d > 1)
(right panel) we are able to obtain fingerprints with high individual separating power. With these
in mind, it is easy to see how combining many random fingerprints of this sort (either by voting or
likelihood model) will result in good detection performance.

The main results are presented as test data detection rate when setting the false detection rate to 1, 3
or 5% (Table[l). First, detection rates are relatively high for all combinations of deep learning model,
attack method, and detection rule, ranging from 93.6% to 99.9%. As expected, the likelihood ratio
detection rule offers the best overall performance from among the three tested approaches, followed
by the voting decision rule, with the anomaly detection approach trailing behind. When considering
the effect of number of fingerprints used for each input (Figure[Z), we see a saturation of the detection
AUC at 20 — 40 fingerprints. Furthermore, the detection performance for the ViT model saturates
higher but later than for Inception V3, suggesting that slightly increasing the number of fingerprints
used in the main results Table (I]) beyond 20 could be beneficial for ViT adversarial attack detection.

6 CONCLUSION

Deep learning models have been shown to suffer from vulnerability to adversarial attacks, which
are small perturbations to the input, imperceptible to humans, but causing the model to misclassify

*https://github.com/cleverhans—lab/cleverhans
“n01843383

https://github.com/cleverhans-lab/cleverhans

Under review as a conference paper at ICLR 2025

Inception V3 ViT
1.000 1.000 —
—— vote
4 anomaly
0.975 0.975 —— likelihood
0.950 1 0.950
0.9251 0.925
®) ®)
2 0.900 - D 0.900
< <
0.8751 0.875
0.850 1 0.850
— vote
0.825 1 anomaly 0.825
—— likelihood
0.800 +— v y T T T 0.800
0 20 40 60 80 100 0 20 40 60 80 100
Number of fingerprints Number of fingerprints

Figure 2: Detection AUC as a function of Number of Fingerprints for the three detection methods:
Vote, Anomaly, and Likelihood for both models.

the input. Although existing adversarial attack detection methods often have excellent performance,
we argue this is not enough. In the truly white-box setting, when the attacker knows the structure
and parameters of the classifier and detection models, a deterministic system with less than perfect
accuracy will not suffice. To overcome this inherent limitation, we suggest the method of Neural
Fingerprints for creating a large bank of attack detectors, from which a few can be sampled for
each input at test time. The simplicity and scalability of this approach enables us to build a very
large bank of detectors to sample from, so that the straightforward attacks against any deterministic
system (see Section [I)) are no longer feasible. Results conducted on the ImageNet dataset with
standard deep learning models and adversarial attacks shows the efficacy of the proposed method
with high detection rates and a low proportion of false positives.

In this work we suggest to combine the individual fingerprints that are sampled for each input using
a likelihood ratio test. Treating them as week classifiers, future work will address the question of
improving on the results presented here via a boosting framework. Another possible extension is
the use of the same idea for robust classification rather than detection. Finally, the Neural Finger-
print method is presented and tested in this paper in the language of image classification, but is not
inherently limited to this domain.

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes. arXiv preprint arXiv:1610.01644, 2016.

Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Computational
Linguistics, 48(1):207-219, 2022.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
mization based black-box attacks to deep neural networks without training substitute models. In
Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, AlSec ’17, pp.
15-26. ACM, 2017. URL http://doi.acm.org/10.1145/3128572.3140448.

Jacob Cohen. Statistical power analysis for the behavioral sciences. routledge, 2013.

10

http://doi.acm.org/10.1145/3128572.3140448

Under review as a conference paper at ICLR 2025

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boost-
ing adversarial attacks with momentum. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 9185-9193, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021.

Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner. Detecting adversarial
samples from artifacts. arXiv preprint arXiv:1703.00410, 2017.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015. URL http://
arxiv.org/abs/1412.6572.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. Uncovering
the limits of adversarial training against norm-bounded adversarial examples. arXiv preprint
arXiv:2010.03593, 2020.

Alexey Kurakin, Ian J Goodfellow, and Yoshua Bengio. Adversarial machine learning. In 26th
International Conference on Neural Information Processing Systems, pp. 2442-2450, 2016.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On detecting adversarial
perturbations. arXiv preprint arXiv:1702.04267, 2017.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against deep learning systems using adversarial examples.
CoRR, abs/1602.02697, 2016. URL http://arxiv.org/abs/1602.02697.

Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow, Reuben Feinman, Alexey Ku-
rakin, Cihang Xie, Yash Sharma, Tom Brown, Aurko Roy, Alexander Matyasko, Vahid Behzadan,
Karen Hambardzumyan, Zhishuai Zhang, Yi-Lin Juang, Zhi Li, Ryan Sheatsley, Abhibhav Garg,
Jonathan Uesato, Willi Gierke, Yinpeng Dong, David Berthelot, Paul Hendricks, Jonas Rauber,
and Rujun Long. Technical report on the cleverhans v2.1.0 adversarial examples library. arXiv
preprint arXiv:1610.00768, 2018.

Yang Song, Rui Shu, Nate Kushman, and Stefano Ermon. Pixeldefend: Leveraging generative
models to understand and defend against adversarial examples. arXiv preprint arXiv:1710.10766,
2017.

James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE Transactions on Automatic Control, 37(3):332-341, 1992.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2014.

11

http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1602.02697

Under review as a conference paper at ICLR 2025

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818-2826, 2016.

Florian Tramer, Alec Madry, Alexey Kurakin, and Ian J Goodfellow. Ensemble adversarial training:
Attacks and defenses. In International Conference on Learning Representations, 2017.

Zhihao Zheng and Pengyu Hong. Robust detection of adversarial attacks by modeling the intrinsic
properties of deep neural networks. Advances in neural information processing systems, 31, 2018.

12

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

Under review as a conference paper at ICLR 2025

7 APPENDIX A: ATTACKED IMAGES

Original Goldfish Original Scorpion

Original Snake

.

Rl %}

Attack To Banana Attack To Banana Attack To Banana

orig image: n01443537_317_goldfish orig image: n01770393_270_scorpion orig image: n01740131_92_snake
banana : 98.42% Confidence banana : 73.17% Confidence banana : 73.46% Confidence

2" ‘-

Attack To Printer Attack To Printer Attack To Printer

orig image: n01443537_317_goldfish orig image: n01770393_270_scorpion orig image: n01740131_92_snake
printer : 81.56% Confidence printer : 79.35% Confidence printer : 95.22% Confidence

Attack To Tiger-Shark Attack To Tiger-Shark Attack To Tiger-Shark

orig image: n01443537_317_goldfish orig image: n01770393_270_scorpion orig image: n01740131_92_snake
tiger_shark : 95.73% Confidence tiger_shark : 98.46% Confidence tiger_shark : 79.30% Confidence

Original Toucan

Attack To Banana

orig image: n01843383_180_toucan
banana : 99.86% Confidence

Attack To Printer

orig image: n01843383_180_toucan
printer : 70.91% Confidence

Attack To Tiger-Shark

orig image: n01843383_180_toucan
tiger_shark : #9.37% Confidence

Figure 3: Example of original images and their adversarial attacks. The first row shows original
images of classes goldfish, scorpion, snake, and toucan. The subsequent rows demonstrate IFGSM
attacks on Iception V3, of each original image to three other categories: Banana, Printer, Tiger-

Shark.

13

	Introduction
	Background: adversarial attacks and defence strategies
	Adversarial Attacks
	Defences

	The method of Neural Fingerprints
	Neural Fingerprints

	Related Work
	Results
	Conclusion
	Appendix A: attacked images

