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ABSTRACT

Solving high wavenumber Helmholtz equations is notoriously challenging. Tradi-
tional solvers have yet to yield satisfactory results, and most neural network meth-
ods struggle to accurately solve cases with extremely high wavenumbers within
heterogeneous media. This paper presents an advanced multigrid-hierarchical AI
solver, tailored specifically for high wavenumber Helmholtz equations. We adapt
the MGCNN architecture to align with the problem setting and incorporate a novel
Fourier neural network (FNN) to match the characteristics of Helmholtz equations.
FNN, mathematically akin to the convolutional neural network (CNN), enables
faster propagation of source influence during the solve phase, making it particu-
larly suitable for handling large size, high wavenumber problems. We conduct
supervised learning tests against numerous neural operator learning methods to
demonstrate the superior learning capabilities of our solvers. Additionally, we
perform scalability tests using an unsupervised strategy to highlight our solvers’
significant speedup over the most recent specialized AI solver and AI-enhanced
traditional solver for high wavenumber Helmholtz equations. We also carry out an
ablation study to underscore the effectiveness of the multigrid hierarchy and the
benefits of introducing FNN. Notably, our solvers exhibit optimal convergence of
O(k) up to k ≈ 2000.

1 INTRODUCTION

1.1 BACKGROUND

The Helmholtz equation, a fundamental partial differential equation (PDE), is pivotal in describing
wave propagation phenomena across various disciplines, including acoustics, electromagnetics, and
seismology. Despite its importance, solving the Helmholtz equation presents significant challenges
due to the high wavenumber and variable wave speed. These factors necessitate a large number of grid
points to accurately capture the wave shape and result in a complex-valued, highly ill-conditioned,
indefinite system. Indeed, it is widely acknowledged that the optimal number of iterations required
for a solver with complexity O(N) to solve a high wavenumber k Helmholtz equation is O(k). This
is due to the complex propagation pattern of the wave in heterogeneous media, with a slow decay
rate.

Numerous research efforts have been dedicated to developing efficient traditional solvers, such as the
Born series method Osnabrugge et al. (2016), the factorization method Osei-Kuffuor & Saad (2010),
the shifted Laplacian method Gander et al. (2015); Sheikh et al. (2013); Calandra et al. (2013), domain
decomposition method Chen & Xiang (2013); Leng & Ju (2022; 2019), and multigrid method Brandt
& Livshits (1997). However, these methods have not yet achieved satisfactory results Ernst & Gander
(2011).

Data-driven methods have recently emerged as a popular approach to solving PDEs, either by
optimizing certain solver components or by learning the entire solver. One significant research area
is Physics Informed Neural Networks (PINNs) Raissi et al. (2019), which use neural networks to
approximate PDEs’ solution functions. While recent works Song et al. (2022); Escapil-Inchauspé &
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Ruz (2023) have applied PINNs to Helmholtz equations, they do not address high wavenumber cases.
Furthermore, our focus is on offline inference rather than online training to gain the solution.

A more related research area is neural operator learning, which learns the operator (mapping) between
the infinite-dimensional parameter and solution spaces of PDEs. This includes works such as the
Fourier Neural Operator (FNO) Li et al. (2020), U-NO Rahman et al. (2023), Deep Operator Network
(DeepONet) Lu et al. (2021), Convolutional Neural Operators (CNO) Raissi et al. (2019), and
MgNO He et al. (2024). These methods solve PDEs during the inference phase, functioning more like
a solver for discretized PDEs. The MgNO He et al. (2024) work has tested their method on Helmholtz
equations and compared it with other neural operator learning methods, but did not consider high
wavenumber cases.

1.2 RELATED WORKS

In practice, it is nearly impossible to directly solve high wavenumber Helmholtz equations within
heterogeneous wave speed (or slowness) field to a desired accuracy with just a single application of
the network (see Subsection 4.2). Actually, both traditional and AI solvers require more iterations
when dealing with higher wavenumber. Recent studies Azulay & Treister (2022); Cui et al. (2022);
Stachenfeld et al. (2021); Stanziola et al. (2021) have developed iterative AI solvers to tackle
this challenging problem, capable of achieving higher accuracy through iteration. However, the
wavenumbers tested in these studies remain limited. Our objective is to solve high wavenumber
Helmholtz equations up to k ≈ 2000, aiming to match the application scope of traditional solvers,
but with a significantly improved speed.

Several latest studies have made significant progress in this area. The study Lerer et al. (2024)
introduced a pure AI solver, termed encoder-solver, and the work Cui et al. (2024) presented
a dedicated AI-enhanced traditional multigrid solver framework, Wave-ADR-NS, for Helmholtz
equations. Both of them demonstrated superior performance over traditional shifted Laplacian solvers.
However, the encoder-solver relies on an existing traditional solver for data generation and solve
phase assistance. Meanwhile, Wave-ADR-NS requires extensive problem insights to construct a
solver with good convergence, limiting its applicability to other wave equations.

Moreover, the MGCNN work Xie et al. (2023) laid out principles for building an efficient AI solver
for discretized linear PDEs, guaranteeing quick convergence and adaptability to different iterative
frameworks for desired accuracy. Despite these advantages, MGCNN has not been applied to solve
the Helmholtz equation, and its architecture is not directly suitable for this specific problem.

1.3 OUR CONTRIBUTIONS

In this work, we propose a multigrid-hierarchical AI solver that effectively addresses the challenges
of solving high wavenumber Helmholtz equations. The specific innovations and contributions are
listed as follows:

• We significantly modify the spectral convolution operation in the FNO to create the Fourier
Neural Network (FNN), which handles full-mode information, making it suitable for high
wavenumber problems and scalable for larger problem sizes.

• The FNN, which functions mathematically equivalent to a CNN with an extended kernel
size, facilitates wave propagation. We adapt the MGCNN to address high wavenumber
Helmholtz equations and incorporate the FNN into its solve phase. This integration forms
the MGCFNN solver, which combines the complementary features of the novel FNN and
the multigrid hierarchy, resulting in improved convergence and faster solve time.

• In contrast to recent specialized iterative AI solvers for high wavenumber Helmholtz equa-
tions, our solvers do not necessitate specialized domain knowledge. This makes them easy
to train and utilize, with the potential to directly tackle a broader range of wave equations.
Notably, the proposed MGCFNN achieves at least 4.8× speedup under the same problem
settings.

• Although our solvers are designed for unsupervised learning, we also conduct supervised
experiments. Our solver demonstrates superior learnability compared to other operator
learning networks, achieving lower error with faster training time and fewer parameters.
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2 PRELIMINARIES

2.1 FORMULATION AND DISCRETIZATION

The Helmholtz equation is expressed as

−∆u(x)−
(

ω

c(x)

)2

(1− γi)u(x) = f(x), x ∈ [0, 1]2, (1)

where u represents the unknown field, c is the wave speed, ω is the angular frequency, and f is the
source term. In line with related works Azulay & Treister (2022); Lerer et al. (2024); Cui et al. (2024),
we define κ(x) = 1

c(x) as the wave slowness and refer to k = ω
c = ωκ as the wavenumber. i =

√
−1

is the imaginary unit, and γ is the damping factor, indicating the medium’s wave absorption property.
This work primarily focuses on the hardest case of γ = 0, while also comparing with work Lerer
et al. (2024) under γ = 0.01 in our experiments. As for boundary conditions, we employ absorbing
boundary conditions Engquist & Majda (1979); Erlangga et al. (2006) to reduce wave reflection at the
boundary, simulating radiation in an infinite domain. Specifically, we set γ to increase quadratically
from 0 to 1 at a certain distance from the boundary.

Applying a second-order finite difference discretization to the Helmholtz equation 1 on a uniform
grid with spacing h yields the linear system

Ahuh = fh, (2)

where Ah represents the discretized Helmholtz operator, expressed in stencil form as

Ah =
1

h2

 0 −1 0
−1 4− ω2κ2(x)h2 −1

0 −1 0

 (3)

and fh is the discretized source term. To accurately capture the wave shape, the spacing h must
be sufficiently small, typically requiring at least 10 grid points per wavelength. 1 This implies that
ωκh ≤ 2π

10 . Consequently, we increase the grid size 1/h in our experiments to accommodate the
increased wavenumber k. By multiplying both sides of the equation by the factor 1

h2 and denoting
ωκh along with γ as the problem coefficient coef , we find that coef is scale-invariant, serving as a
normalized input to the network for different scales.

2.2 FOURIER TRANSFORM

The Fourier transform is a mathematical operation that decomposes a function into harmonic wave
components with different frequencies, making it particularly well-suited for wave propagation
problems. In the frequency domain, a globally propagated wave with a specific frequency can be
simply represented within a circle. From another perspective of view, the convolution theorem Smith
(1997) states that the convolution of two functions in the spatial domain corresponds to the pointwise
multiplication of their Fourier transforms in the frequency domain, i.e.,

F(f ∗ g) = F(f)F(g), (4)

where F denotes the Fourier transform. Consequently, the Fourier transform can be utilized to
perform a convolution operation with an extended kernel size, enabling the rapid propagation of wave
source influence during the solve phase. As we use Fast Fourier Transform in our experiments, we
denote FFT as the Fourier transform operation and IFFT as the inverse Fourier transform operation.

3 NETWORK ARCHITECTURE

The architecture comprises a setup phase network for managing problem coefficients and a solve
phase network that utilizes the handled coefficient information to process the source term, also known
as the right-hand-side term (see Appendix C), to propose a solution. We use multigrid hierarchy to
build the two phases, and design a novel FNN kernel to handle the high frequency wave propagation
in the coarse levels of the solve phase.

1To illustrate high wavenumber cases and keep the comparison experiments feasible, we may break the rule
to use high wavenumber with relatively small grid size.
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3.1 FOURIER NEURAL NETWORK

While the Fourier Neural Operator (FNO) Li et al. (2020) demonstrates impressive learnability across
a range of PDEs, it encounters limitations when solving high wavenumber Helmholtz equations. To
address these, we make significant modifications to FNO’s spectral convolution operation.

• We separate the processing of the coefficient and source term, ensuring the network linearly
operates the source terms, as will be shown in the solve phase level status process equation 5.

• We assume that the weights form a smooth function in the frequency domain (see Fig. 1a),
and thus use a smaller weight tensor to interpolate weights across the entire frequency do-
main. This approach ensures high-frequency modes are captured within a limited parameter
size. This step is denoted as case 1 in Fig. 2.

• To apply the FNN to problems with larger size and higher wavenumber, we first perform
IFFT to obtain the convolutional kernel in the space domain, then pad it to the size of the
larger target problem domain, and finally apply FFT to obtain the weights in the frequency
domain. This step is denoted as case 2 in Fig. 2.

• Moreover, the input tensor is interpreted as the concatenation of real and imaginary parts of
a complex tensor, halving the number of channels prior to the operation. Conversely, the
output tensor channels are doubled from a complex tensor. These decrease the computational
cost of the Fourier transform while maintaining the network’s predictive performance.

(a) weights in frequency domain (b) weights in space domain

Figure 1: The setuped weight tensor of FNN in frequency domain and space domain.

to cmplx

& pad

to real

& unpad

weights
interppad

setuped
weights

IFFT

FFT

IFFT

Frequency
 Domain

Space 
Domain

Input

Output

linear map

FFT

case 2

interp

case 1

Figure 2: The network architecture of FNN. Case 1: Interpolated weights are of the same size as the
target problem. Case 2: The target problem is larger than the interpolated weights. Box width is
proportional to the number of channels, and box height is proportional to the number of grid points.

Remark 3.1. For higher wavenumber problems, we initially planned to leverage the invariance of
the function in the frequency domain (see Appendix A) and apply the interpolation technique again
to obtain the weight tensor. However, a straightforward interpolation method performs poorly for
substantially larger wavenumber. The mathematical equivalence in equation 4 aids us in proposing a
more elegant and efficient approach.
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Remark 3.2. FNN is mathematically connected to the inverse of the damped Helmholtz operator,
as detailed in Appendix A. Additionally, its position within the network architecture at one level is
mathematically related to the traditional Born series method Osnabrugge et al. (2016), which solves
the equation with an iterative pseudo-propagation process. A detailed discussion on this connection
is provided in Appendix B.

In summary, the network architecture of the FNN is depicted in Fig. 2, and its detailed pseudocode
is provided in Appendix D. It’s important to note that for a given problem size, FNN first performs
interpolation or even additional IFFT and FFT to set up the weight tensor. This is a one-time cost for
all same-sized problems.

Effective Kernel Size. Despite FNN’s utilization of all Fourier transform modes, its effective
influence length is limited, as illustrated in Fig. 1b. On one hand, fixed-length padding, which
corresponds to the effective kernel size of the equivalent convolution operation, is adequate. On the
other hand, a multigrid hierarchy is still crucial to handle problems on multiple levels and accelerate
influence transmission when the multiple grids can resolve the high frequency wave, as shown in
Subsection 4.4. We then introduce the multigrid-hierarchical setup and solve phase network to
efficiently address the challenge in conjunction with FNN.

3.2 SETUP PHASE

The setup phase processes the coefficients of the PDEs, including the wave speed c(x) (or slowness
κ(x)) and the damping factor γ(x), transmitting necessary information for each level in solve phase.
We streamline the setup phase of MGCNN from Xie et al. (2023) by integrating the downsampling
and nonlinear ResCNN processing into a single workflow (see Alg. 1). The setup phase only needs to
be executed once for fixed PDE coefficients and multiple right-hand-side tensors, as is the case for
the updated residual term in an iterative solving framework (see Appendix C).

Algorithm 1 Setup Phase Network

1: INPUT: coef is the problem coefficient tensor, level is the number of levels in its multigrid
hierarchy.

2: OUTPUT: setup outs is the list of setup tensors for each level.
3: procedure SETUP(coef, level)
4: setup out1 ← reChannelCNN(coef)
5: for l in 1, 2, . . . , level do
6: setup outl ← NonLinearResCNN(setup outl) . Nonlinear processing
7: if l < level then
8: setup outl+1 ← RestrictCNN(setup outl) . Downsampling
9: end if

10: end for
11: return setup outs← [setup out1, setup out2, . . . , setup outlevel]
12: end procedure

3.3 SOLVE PHASE

The solve phase framework of MGCFNN closely follows that of MGCNN as described in Xie et al.
(2023). The key distinction lies in the replacement of the CNN components in ResNets at certain
coarse levels with our custom-designed FNN. During both the down and up cycles, each level involves
three primary steps:

1. Utilize ResNet (either ResCNN or ResFNN) in conjunction with the setup tensor at the
current level to process the status tensor. Specifically, we have

xl = ResNet(setup outl, xl) = Net(setup outl · xl) + xl. (5)

2. During the down cycle, after processing, employ the restriction operator to transfer the status
tensor to the next coarser level.

5
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3. During the up cycle, before processing, add the prolonged status tensor from the coarser
level.

⊕

⊕
⊕

⊗
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⊗

⊗

⊗

⊗

⊗
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FNN

Figure 3: The network architecture of MGCFNN. Its coarsest two levels use FNN kernels.

By combining the aforementioned setup and solve phase networks, we arrive at our novel solver,
MGCFNN, as shown in Fig. 3.

Architecture Naming. We use the following naming conventions for our multigrid-hierarchical
networks: MGCFNN refers to networks that utilize FNN in some coarse levels of the solve phase.
MGFNN refers to networks that use FNN at all levels. MGCNN refers to networks that use CNN at
all levels.

Multigrid Challenges. As demonstrated in previous literature Xie et al. (2023), MGCNN can
function as a global operator, using more levels with weight sharing across levels to handle problems
of larger sizes. However, applying this strategy to higher wavenumber cases in our scalability test
settings presents two challenges. First, the grid must be sufficiently large to accommodate the high
wavenumber. Actually, it is common practice to maintain fixed few number of levels of the multigrid
hierarchy in traditional methods Calandra et al. (2013) for higher wavenumber. Second, the coarse
grid problem faces the same wavenumber with fewer grid points, resulting in dissimilar properties
across different levels.

Architecture Techniques. In response to these challenges, despite our efforts of developing FNN to
transmit wave influence more globally, we use fixed number of levels of the multigrid hierarchy in
our experiments and increase the network’s computational complexity when moving to coarser level.
Specifically, number of levels are determined by number of points per wavelength and we double the
number of sweeps (layers) for all of our multigrid-hierarchical solvers on coarser level. The detailed
architecture settings are provided in Appendix H.

Remark 3.3. The choice of multigrid levels is closely related to frequency. MGCFNN replaces the
CNN with FNN at levels where the grid size is nearly insufficient to resolve high-frequency waves but
still too large for CNN to handle. From one perspective, using FNN at all levels is unnecessary, as
shown in Subsection 4.4. From another perspective, there is no need to use FNN for low-frequency
waves, where more coarse grids can still resolve waves. Therefore, the optimal use of FNN is
problem-dependent, which is a common feature for iterative solvers.

In summary, we combine the complementary features of the novel FNN and a specialized multigrid
hierarchy to develop the MGCFNN solver, which effectively handles high wavenumber Helmholtz
equations.

4 NUMERICAL EXPERIMENTS

6
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4.1 BASIC SETTINGS

Comparison Methods. We first compare our solvers with well-known operator learning methods
to demonstrate their learnability. While there are some Graph Neural Network (GNN) based meth-
ods Trifonov et al. (2024); Li et al. (2023), they are designed for unstructured problems, do not
utilize structural features, and are typically computationally slower than CNNs. Operator learning
methods are not directly suitable for iterative applications to improve accuracy, so we perform a single
inference to compare results under the same supervised learning settings in Subsection 4.2. Some
strategies Azulay & Treister (2022); Lerer et al. (2024); Rudikov et al.; Kopaničáková & Karniadakis
(2024) exist to improve the accuracy of these methods, such as using flexible Krylov methods for
nonlinear preconditioning and generating suitable rhs (source) training datasets. In Subsection 4.3,
we compare our work with Lerer et al. (2024), the most recent specialized iterative AI solver for high
wavenumber Helmholtz equations. Additionally, we compare with the latest AI-enhanced traditional
solver, Wave-ADR-NS Cui et al. (2024), which is based on a specially designed traditional solver
framework to achieve good convergence. We also provide comparison with sparse direct solver and
remarks on recent advanced parallel traditional iterative methods.

Loss function & Data. We use an unsupervised training strategy, except when comparing with other
operator learning methods in Subsection 4.2. The network is trained by minimizing the square of the
residual norm of the linear equations, which is also the convergence criterion for iterative methods.
The loss function is defined as:

L =
1

N

N∑
i=1

||rhsi −Aisoli||2 (6)

where N is the data count, rhsi is the input source term, soli is the output wave field, and Ai is
the discretized linear operator. The operator is determined by the coefficient tensor coefi, which
includes the normalized slowness model κ and γ. We generate rhsi as a white noise tensor to cover
all frequency ranges. The κ field is generated using the CIFAR-10 Krizhevsky et al. (2009) dataset,
with images interpolated to the target problem size and linearly transformed to range [κmin, κmax]. In
practice, coefi should be generated to fit specific application scenarios. We also present results from
an ultrasonic CT scenario in Subsection 4.4 , which are more representative of real-world applications.
Furthermore, Appendix G shows generalization results on STL-10 Coates et al. (2011) dataset and
the benchmark Marmousi Brougois et al. (1990) data, both of which are of higher resolution.

Although the solve phase network can be applied several times when solving in an iterative framework,
we only perform the solve phase once for each coefi during training.

Default Settings. Unless stated otherwise, experiments follow these defaults: slowness bounds κmin

and κmax are 0.25 and 1.0 respectively. Solve test results represent the median of 50 unseen data.
Training is unsupervised, executed on an RTX 4090 GPU using PyTorch with CUDA 12.4. Both
training and inference use float32 precision, while the solver employs a mixed precision strategy C to
achieve rtol=1E-7 tolerance for the norm of relative residual. We refer to the solver within a stationary
iterative framework as a standalone solver and also show the results of using GMRES to speed up the
convergence. For scalability tests, we only train our models on a 511× 511 grid and test on grid size
up to 4095× 4095.

Note that larger models are used in small size problems to fully utilize GPU resources, while
smaller models are employed in scalability tests to fit within GPU memory constraints. For detailed
hyperparameters, refer to Appendix H.

4.2 COMPARISON OF DIFFERENT SOLVERS

To provide a fair illustration of our solvers’ learnability, we employ supervised learning, a training
strategy commonly used in other operator learning methods. As most operator learning methods
are not designed for use in an iterative framework, we compare the results after a single network
inference. We limit these tests to a grid size of 256× 256 and use a relatively high angular frequency
ω = 80π to achieve a high wavenumber k. We compare our method with recent well-known operator
learning methods, including MgNO He et al. (2024), FNO2d Li et al. (2020), U-NO Rahman et al.
(2023), Dil-ResNet Stachenfeld et al. (2021), LSM Wu et al. (2023), MWT2d Gupta et al. (2021), and

7
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U-Net Ronneberger et al. (2015). We utilize the official implementations of these solvers, adjusting
the tunable parameters to suit the problem and balance the train error, train time and parameter size.
All solvers are trained under identical settings (refer to Appendix I). To assess the model’s ability to
generalize, we record the point Where the Best Test Error is achieved. This includes the test error, the
corresponding training error, and the epoch index within the total of 120 epochs.

We decrease the value of κmin to aggravate the heterogeneity of the media, and separately evaluate
models for κmin = 0.75, 0.5, 0.25. As demonstrated in Table 1 and Table 2, our proposed models,
MGCFNN and MGFNN, outperform other solvers in terms of train and test error, time efficiency,
and parameter size, which represent the state-of-the-art in this field. While models like FNO2d,
MWT2d, and U-NO can achieve certain low training errors, they are prone to high test errors and
early overfitting, further highlighting the superiority of our models.

Table 1: Supervised learning on grid 256 × 256 with ω = 80π and κmin = 0.75. We record
information Where the Best Test Error reaches.

κmin = 0.75
Where Best Test Error

Model Train Error Test Error Train Error Epoch Train Time(s/epoch) Parameters(MB)
MGFNN 0.035 0.061 0.035 120 93.2 8.9

MGCFNN 0.046 0.070 0.046 120 67.5 5.3
MGNO 0.063 0.079 0.063 120 110.3 4.6
FNO2D 0.085 0.561 0.496 4 103.6 46.1

MWT2D 0.119 0.527 0.475 4 147.0 26.0
U-NO 0.408 0.880 0.870 4 101.6 86.7

U-NET 0.534 0.803 0.758 31 89.9 31.0
DIL-RESNET 0.605 0.606 0.605 116 140.0 0.6

LSM 0.722 0.783 0.739 66 230.7 4.9

Table 2: Supervised learning on grid 256 × 256 with ω = 80π and κmin = 0.50, 0.25. We record
information Where the Best Test Error reaches.

κmin = 0.50 κmin = 0.25
Where Best Test Error Where Best Test Error

Model Train Error Test Error Train Error Epoch Train Error Test Error Train Error Epoch
MGFNN 0.075 0.187 0.122 25 0.126 0.431 0.253 18

MGCFNN 0.101 0.206 0.104 88 0.190 0.458 0.396 7
MGNO 0.209 0.333 0.221 81 0.361 0.633 0.614 14
FNO2D 0.122 0.749 0.718 3 0.154 0.851 0.818 3

MWT2D 0.169 0.728 0.669 4 0.186 0.845 0.821 3
U-NO 0.389 0.871 0.864 3 0.362 0.935 0.930 4

U-NET 0.634 0.774 0.716 57 0.575 0.806 0.778 26
DIL-RESNET 0.627 0.629 0.627 117 0.699 0.702 0.699 119

LSM 0.852 0.860 0.852 117 0.867 0.878 0.874 38

These results, especially in Table 2, suggest that applying a neural network just once to achieve the
desired accuracy for high wavenumber and heterogeneous Helmholtz equations may not be feasible.
In subsequent experiments, we will concentrate solely on iterative solving. Moreover, in scalability
tests, solvers are expected to handle higher wavenumber up to k = 640π ≈ 2000.

4.3 SCALABILITY COMPARISON

In this paper, we place greater emphasis on the scalability to larger problems with higher wavenumber.
The solver should be capable of iteratively achieving any desired level of accuracy. The latest
noteworthy iterative AI solvers to handle the challenging high wavenumber Helmholtz equations
include pure AI solver Lerer et al. (2024), termed as encoder-solvers, and the Wave-ADR-NS
solver, an AI-enhanced traditional multigrid solver Cui et al. (2024). Both methods have shown
superior convergence and solve time performance compared to the traditional shifted Laplacian
solver. However, we are unable to replicate the encoder-solver results, and the Wave-ADR-NS, while
effective, is complex to implement and not currently open source. Therefore, we use their published
results for comparison under the same data and hardware settings. The results are presented in Table 3.
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Our proposed MGCFNN significantly outperforms other solvers with 4× ∼ 7× and 30× ∼ 120×
speedup respectively in terms of solve time. Furthermore, while direct solvers are potentially less
scalable to 3D problems than iterative methods, they are a viable option for challenging 2D problems.
We compare our results with the sparse LU solver CHOLMOD Davis & Hager (2009); Chen et al.
(2008); Davis et al. (2004); Amestoy et al. (1996; 2004) in the SuiteSparse Davis (2024) software.
Its GPU acceleration Rennich et al. (2014) is not beneficial in our problems, so we run CHOLMOD
with single precision on CPU (Intel(R) Xeon(R) Gold 6458Q). Our MGCFNN is approximately
3× ∼ 30× faster than CHOLMOD.

Table 3: Scalability comparison with other solvers.

rtol=1E-7 γ = 0.01 (RTX3090) Lerer et al. (2024) γ = 0.0 (A100 80G) Cui et al. (2024) γ = 0.0 (CPU)
time (s) & iters time (s) & iters time(s)

ω grid MGCFNN ENCODER-SOLVER speedup MGCFNN WAVE-ADR-NS speedup CHOLMOD speedup
80π 511× 511 0.12(9) 0.65(43) 5.5 0.16(14) 15.07(28) 94.8 0.49 3.1
160π 1023× 1023 0.19(11) 1.29(68) 6.8 0.30(22) 34.98(54) 116.2 8.88 29.5
320π 2047× 2047 0.58(14) 3.40(85) 5.8 1.15(40) 91.63(122) 79.6 38.91 33.8
640π 4095× 4095 2.77(18) 13.34(117) 4.8 8.55(83) 286.14(247) 33.5 183.61 21.5

4.4 ABLATION STUDY

Firstly, we examined the FNN, MGFNN, and MGCFNN models on two datasets with fixed grid
sizes. The first dataset has a grid size of 256 × 256 and an angular frequency of ω = 80π. The
second dataset, from an ultrasonic CT competition2, has a grid size of 480 × 480 and an angular
frequency of ω = 150π. Table 4 presents the results for random sources, while Fig. 4b and Fig. 4a
show single source results for illustration. As shown in Table 4, the multigrid hierarchy allows
MGFNN to converge faster than FNN, but it only reduces a few iterations compared to MGCFNN.
MGCFNN solves problems faster in terms of time and is expected to be comparably faster for
larger problems. Moreover, MGFNN uses more memory than MGCFNN, making it less suitable for
large-scale problems.

Table 4: Model architecture ablation study.

grid size 256× 256, ω = 80π grid size 480× 480, ω = 150π
rtol=1E-7 standalone GMRES standalone GMRES

MGCFNN MGFNN FNN MGCFNN MGFNN FNN MGCFNN MGFNN FNN MGCFNN MGFNN FNN
iters 22 19 55 15 13 24 12 9 54 11 10 22

time(s) 0.136 0.135 0.270 0.111 0.116 0.151 0.093 0.101 0.724 0.105 0.124 0.365

Secondly, we assess the scalability of MGCFNN and MGCNN across varying grid sizes and angular
frequencies. Detailed results are in Table 5. Both models show optimal O(k) convergence for high
wavenumber k, whether as standalone solvers or preconditioners in the GMRES solver. Notably,
MGCFNN excels as a standalone solver, while MGCNN, needing 2 to 3 times more iterations, benefits
significantly from being a preconditioner of GMRES. This confirms MGCFNN’s effective learning of
the Helmholtz equation’s inverse operator. Despite the unexpected computation inefficiency of linear
map in frequency domain (see Appendix E), MGCFNN still outperforms MGCNN in solve time.

Table 5: Scalability comparison between MGCFNN and MGCNN.

rtol=1E-7 standalone GMRES
MGCFNN MGCNN MGCFNN MGCNN

ω size iters time(s) iters time(s) iters time(s) iters time(s)
80π 511× 511 14 0.17 35 0.27 12 0.17 21 0.20
160π 1023× 1023 22 0.31 61 0.55 20 0.31 36 0.37
320π 2047× 2047 41 1.18 115 2.33 35 1.13 71 1.65
640π 4095× 4095 83 8.18 231 18.66 72 8.48 146 14.56

Remark 4.1. The solve time for the largest problem is approximately 8.2 seconds. This represents a
significant improvement over recent parallel traditional solvers, such as source transfer Leng & Ju

2AI4S Cup - Prediction of Wavefield in Ultrasonic Computed Tomography
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(a) Single source wave with ω = 80π, in a slowness field of a cell.

(b) Single source wave with ω = 150π, in a slowness field generated from a CIFAR-10 data.

Figure 4: From left to right: slowness field κ(x), real value of wave field and wave field in frequency
domain, iterative solving history. The cross symbol in the first column denotes the position of source.

(2019) and trace transfer Leng & Ju (2022) methods, which typically require over fifty seconds to
handle similar problems.

5 CONCLUSIONS

We modify MGCNN architecture and further introduce a novel network component, the Fourier Neural
Network (FNN), to improve performance for high wavenumber Helmholtz equations. FNN manages
the information of full modes and scales to larger size and higher wavenumber problems. In standard
supervised learning scenarios, MGCFNN surpasses other operator learning methods, showcasing
superior learnability. Focusing on iterative solving for any desired accuracy and scalability to larger,
higher wavenumber problems, MGCFNN significantly outperforms the most recent specialized AI
solver and AI-enhanced traditional solver for Helmholtz equations. We further demonstrate the
benefits of multigrid hierarchy and the hybrid model pattern. Both MGCFNN and modified MGCNN
exhibit an optimal convergence property of O(k) for high wavenumber k up to approximately 2000,
and MGCFNN excels in terms of number of iterations and solve time. The ablation studies verify the
complementary features of FNN and the multigrid hierarchy. All the experiments establish MGCFNN
as the state-of-the-art AI solver for high wavenumber Helmholtz equations. Moreover, it reaches a
high wavenumber scope comparable to the advanced parallel traditional solvers, while significantly
improving solve time.

In the present study, the interpolation operation in FNN remains simplistic, and the properties and
best practices of FNN for solving Helmholtz equations are not yet fully explored. Furthermore, we
have not addressed various boundary conditions, including reflection boundary conditions, which
may conflict with the periodic boundary effect of the Fourier transform or the padding technique.
These limitations highlight areas for future exploration and improvement.
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Paul Escapil-Inchauspé and Gonzalo A Ruz. Hyper-parameter tuning of physics-informed neural
networks: Application to Helmholtz problems. Neurocomputing, 561:126826, 2023.

Jeffrey Galkowski, Shihua Gong, Ivan G Graham, David Lafontaine, and Euan A Spence. Conver-
gence of overlapping domain decomposition methods with PML transmission conditions applied
to nontrapping Helmholtz problems. arXiv preprint arXiv:2404.02156, 2024.

Martin J Gander, Ivan G Graham, and Euan A Spence. Applying GMRES to the Helmholtz equation
with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent
convergence is guaranteed? Numerische Mathematik, 131(3):567–614, 2015.

11

http://suitesparse.com


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Ivan G Graham, Owen R Pembery, and Euan A Spence. The Helmholtz equation in heterogeneous
media: a priori bounds, well-posedness, and resonances. Journal of Differential Equations, 266(6):
2869–2923, 2019.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differential
equations. In Proceedings of the 35th International Conference on Neural Information Processing
Systems, pp. 24048–24062, 2021.

Juncai He, Xinliang Liu, and Jinchao Xu. MgNO: Efficient parameterization of linear operators via
multigrid. In The Twelfth International Conference on Learning Representations, 2024.
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A FNN WEIGHTS IN FREQUENCY AND SPACE DOMAINS

Consider the weights of the FNN in both the frequency and space domains at each level of a MGFNN,
as depicted in Fig. 5 and Fig. 6. The weights in the frequency domain appear smooth, and in the
space domain, they exhibit a larger kernel size than common CNNs. These observations align with
our design assumptions. Moreover, the weights in the space domain behave like a damped wave
propagation.

(a) Level 1 (b) Level 2 (c) Level 3

Figure 5: The weights of FNN in frequency domain.
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(a) Level 1 (b) Level 2 (c) Level 3

Figure 6: The weights of FNN in space domain.

(a) (b)

Figure 7: The inverse of the damped Helmholtz operator in frequency domain and its corresponding
weights in space domain. γ = 0.5, ωκh = 0.5 and N = 1000.

To further elucidate this, we examine the expression of the inverse of a damped Helmholtz operator
in the frequency domain. The one-dimensional stencil of the damped Helmholtz operator can be
expressed as follows:

[−1, 2− k2hγ ,−1], (7)

where k2hγ = ω2κ2h2(1− γi). For a mode e
−i2mnπ

N with frequency m, where n is the grid index and
N is the grid size, the inverse of the damped Helmholtz operator on this mode is:

1

2(1− cos( 2m
N π))− k2hγ

e
−i2mnπ

N . (8)

If k2hγ remains invariant with the increase of N , and m increases at the same rate, this operation
result also remains invariant. Given a large damping factor γ = 0.5, we can view the inverse of the
damped Helmholtz operator in the frequency domain in Fig. 7a and its corresponding weights in the
space domain in Fig. 7b. Similar patterns are observed in both the frequency and space domains.
Thus, we can interpret FNN as learning a damped Helmholtz operator in the frequency domain.
Remark A.1. We observe that the weights in the frequency domain are not smooth enough, which
is expected since a wave with a certain frequency will exhibit centralized energy in the frequency
domain. As shown in Fig. 5, the circles appear suboptimal with some serration resulting from a
simple interpolation operation. This is a potential area for improvement in future work.

B CONNECTION WITH BORN SERIES METHOD

The Born series method Osnabrugge et al. (2016) uses the Green’s function theorem to solve the
Helmholtz equation in a heterogeneous medium. Specifically, for a Helmholtz equation

∇2u(x) + k(x)2u(x) = −f(x), (9)
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we can rewrite it in a damped form as

∇2u(x) + (k20 − iε)u(x) = −f(x)− (k(x)2 − k20 + iε)u(x). (10)

Suppose g0 is the Green’s function of the damped Helmholtz operator, and denote G = F−1g0F .
Further, denote V as the diagonal matrix of k(x)2 − k20 + iε. We can rewrite Eq. 10 as

u = GV u+Gf. (11)

The Born series method solves Eq. 11 iteratively as a series expansion of the operator 1/(1−GV ),
i.e.,

u =

∞∑
n=0

(GV )nGf = (1 +GV + (GV )2 + · · · )Gf. (12)

This method can be iteratively written as

uk+1 = GV uk +Gf, (13)

which is similar to our solve phase in FNN as

xl = FNN(setup outl · xl) + xl. (14)

Recall that FNN performs like a damped Helmholtz operator, setup outl contains information from
k(x) and xl is the current state, starting from f initially. Thus, the FNN in our solve phase level can
be interpreted as a learnable Born series method for solving the Helmholtz equation.

C ITERATIVE FRAMEWORK AND MIXED PRECISION STRATEGY

In the context of a linear system A sol = rhs, where A is a square matrix, sol is the solution vector,
and rhs is the right-hand-side vector, the objective of a linear solver is to find the solution sol that
meets satisfactory tolerance which can be obtained iteratively enhancing the solution’s accuracy.

One such iterative method is the stationary iterative method, which solves linear systems by iteratively
addressing the error equation A sol = r, where r = rhs−A sol represents the residual vector. This
method can be defined as follows:

solk+1 = solk +B rk = solk +B (rhs−A solk), (15)

where solk is the solution at the k-th iteration and B serves as the solver, providing an approximate
error correction for each residual rk. In our experiments, our neural network functions as the solver
B in the iterative framework.

The Krylov subspace method Golub & Van Loan (2013) is another iterative framework where the
solver B acts as a preconditioner. This method often speeds up the iteration process, albeit with
some overheads. In this category, we use the Generalized Minimal Residual (GMRES) method and
apply a restart technique to prevent storage of excessively large subspace vectors and to reduce the
computations required for subspace orthogonalization. In our experiments, we set the restart number
to 10, unless convergence is achieved rapidly, in which case it is set to 5.

To attain high accuracy, we employ a straightforward mixed precision strategy for both iterative
frameworks. The computationally intensive part, either the stationary iteration’s solver network
B or the entire GMRES solve process before restart, operates in float32 precision. To avoid error
accumulation, the residual is updated in float64 precision.

D FNN PSEUDOCODE

FNN operates in two phases: a setup phase (Alg. 2) to initialize the weight tensor in the frequency
domain, and a solve phase (Alg. 3) to perform spectral convolution. Note that this setup phase should
not be confused with the setup phase network described in Subsection 3.2, which takes the problem
coefficients as input.
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Algorithm 2 FNN setup phase

1: INPUT: size is the size of the input tensor of the FNN.
2: OUTPUT: setup weight is the tensor of the FNN weights in frequency domain to do linear

mapping.
3: procedure SETUPFNNWEIGHT(size)
4: init weight← loaded or initialized
5: interp size← loaded or settled
6: if size = interp size then . case 1
7: setup weight← interpolate(init weight)
8: else . case 2
9: space weight←F−1(init weight)

10: space weight← pad space weight to size
11: setup weight←F(space weight)
12: end if
13: return setup weight
14: end procedure

Algorithm 3 FNN spectral convolution

1: INPUT: input is the input tensor of the FNN, setup weight is the tensor of the FNN weights in
frequency domain.

2: OUTPUT: output is the output tensor of the FNN.
3: procedure FNNCONV(input, setup weight)
4: C ← number of channels of the input tensor
5: input cmplx← input[: C/2] + input[C/2 :] · i . real to complex value
6: pad input cmplx
7: input freq←F(input cmplx)
8: output freq← linear map(input freq, setup weight)
9: output cmplx←F−1(output freq)

10: unpad output cmplx
11: output← concat(output cmplx.real, output cmplx.imag) . complex to real value
12: return output
13: end procedure
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The linear map in Alg. 3 uses setup weight per pixel to transform the input channels to output
channels per pixel, which can be expressed as follows in Einstein summation convention:

OUTb,o[x, y] = INb,i[x, y]Wi,o[x, y] (16)

where b denotes the batch index, o is the output channel index, i is the input channel index, and x, y
are the spatial indices. Therefore, we observe that setup weight has a size of C2n2, which restricts
the application of FNN to large-scale problems. Fortunately, it is only required for certain coarse
levels in the multigrid hierarchy.

E A COMPUTATIONAL INEFFICIENCY ISSUE

A drawback of the FNN is the unexpected inefficiency in computing the linear map operation (see
Eq. 16) in the frequency domain. The computational complexity of this operation is O(C2n2) for
a n× n grid with C channels, which should ideally be as swift as a convolution with 1× 1 kernel.
However, our timing tests reveal that this operation takes even longer than the FFT2d in PyTorch. This
issue is less apparent in FNO-like methods, which consider significantly fewer modes. Consequently,
future work should focus on developing a more efficient implementation of the linear map in FNN.

F SCALABILITY TEST DETAILS

We conduct scalability tests on 50 unseen data with varying grid sizes and angular frequencies.
The results, depicted in Fig. 8, reveal that the iterations required for convergence vary across
different data, a characteristic typical of the Helmholtz equation. Indeed, certain speed (or slowness)
distributions can exacerbate the ill-conditioned nature of the Helmholtz equation, leading to trapping
phenomena Graham et al. (2019); Ralston (1971).

Figure 8: Scalability test over 50 unseen data. The upper row is the results of MGCFNN, and the
lower row is the results of MGCNN.

G GENERALIZATION TO OTHER DISTRIBUTIONS

We further investigate the generalization of MGCFNN to other distributions. In the experiments, we
apply the model trained on the CIFAR-10 dataset to the STL-10 dataset, which has a higher image
resolution of 96× 96, and to the benchmark Marmousi data, which has a resolution of 362× 1101.
The results are presented in Table 6, where MGCFNN demonstrates good generalization performance
with a slight increase in number of solving iterations. This increase is expected, as a more complex
medium results in more optic rays, which influence the convergence of the iterative solver Galkowski
et al. (2024). Figures 9a and 9b illustrate the single source results on a STL-10 data and Marmousi
model, respectively.
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Table 6: Generalization results of number of iterations on STL-10 dataset and Marmousi. The model
is trained on CIFAR-10 dataset.

rtol=1E-7, iters standalone GMRES
ω size CIFAR-10 STL-10 Marmousi CIFAR-10 STL-10 Marmousi

80π 511× 511 14 39 26 12 32 21
160π 1023× 1023 22 41 35 20 33 29
320π 2047× 2047 41 59 52 35 51 42
640π 4095× 4095 83 109 92 72 94 79

(a) Single source wave with ω = 80π, in a slowness field generated from a STL-10 data.

(b) Single source wave with ω = 160π, in a slowness field from Marmousi.

Figure 9: From left to right: slowness field κ(x), real value of wave field and wave field in frequency
domain, iterative solving history. The cross symbol in the first column denotes the position of source.

H MODEL ARCHITECTURE SETTINGS

Before discussing the architecture settings, it is important to note that the number of points per
wavelength is a critical factor in determining the model architecture. For problems smaller than
511 × 511, there are about 6 points per wavelength, while for larger problems in scalability tests,
there are approximately 12 points per wavelength. We set the number of multigrid levels such that the
coarsest level has around 3 points per wavelength, and then add more levels to optimize the results.
For MGCFNN, the level with around 3 points per wavelength is also the starting level where the FNN
is used in the solve phase network. We find that using FNN in the two coarsest levels is beneficial.
Additionally, to fully utilize GPU resources, we set a larger number of channels for smaller problems.
Detailed model architecture settings for the solve phase are presented in Tables 7 and 8.

Table 7: Solve phase settings for around 6 points in a wavelength.

Model Settings
MGCFNN, MGFNN 32 channels, 1, 2, 4 sweeps for level 1, 2, 3

FNN 32 channels, 8 sweeps for one level

For the kernel sizes in both the solve and setup phases, CNNs within ResNets use a kernel size of
5, while the restriction and prolongation CNNs use a kernel size of 3. All skip add operations are
performed with a kernel size of 1. In the setup phase, we set two sweeps for each level, and the
number of channels is consistent with the solve phase to ensure network compatibility.
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Table 8: Solve phase settings for around 12 points in a wavelength.

Model Settings
MGCFNN 12 channels, 1, 2, 4, 8 sweeps for level 1, 2, 3, 4
MGCNN 12 channels, 1, 2, 4, 8, 16 sweeps for level 1, 2, 3, 4, 5

I TRAINING SETTINGS

Table 9: Training settings.

Parameter Value Description
epochs 120 –

num data 10000 number of data used in training
lr 0.001 initial learning rate

optimizer Adam scheduler: step size=6, gamma=0.8
batch size 10 –
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