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ABSTRACT

Sparse attention is one of the most effective approaches for addressing the O(N?)
attention complexity of transformer models. Existing methods manually designs
a uniform sparse attention mask for all attention heads. However, uniform masks
treat different attention heads equally. To preserve necessary attentions for im-
portant heads, the masks are unnecessarily dense for unimportant heads, limiting
the overall sparsity and wall-clock speedup. Thus, we propose Semantic Sparse
Attention (SemSA) paradigm. It uses statistical information to evaluate, gener-
ate and optimize different sparse attention masks for different heads. We observe
that the acquired attention masks successfully learn different semantic information
from the dense pre-trained large language models: some heads focus on contents
while others mainly encode the token positions. We optimize SemSA GPU oper-
ators and evaluate it on popular large language models OPT-6.7B (2k tokens) and
Llama2-7B (4k tokens). Compared with dense PyTorch models, SemSA achieves
4.18 ~ 11.67x and 1.36 ~ 2.34x speedup for attention layer and first-token-
latency with negligible accuracy loss. Compared with other sparse attention meth-
ods optimized with state-of-the-art sparse framework, SemSA achieves up to 1.6 x
sparsity, 1.4x attention speedup with higher accuracy.

1 INTRODUCTION

Transformer is an increasingly popular model architecture in a wide range of applications (Brown
et al.} |2020; Dosovitskiy et al.l 2020), including natural language processing, computer vision, and
so on. It has played a vital role in the remarkable achievements of recent large language models
(LLMs). At the heart of Transformer models lies the attention layer that takes a sequence of N input
tokens, and computes the correlation between them with O(NN?) complexity. With the growing
scale of tokens, the squared complexity of the attention layer makes it a key latency bottleneck. For
example, for the large language model Llama2-7B (Touvron et al., 2023) with a context length of
4K, the attention layers account for over 70% latency.

Previous work designs approximate methods to reduce the long latency of attention, which are
widely used for MB-scale models like BERT (Devlin et al. [2018)). Linear attention approaches
avoid the explicit computation of the O(/N?) attention matrix and re-trains the model. They project
the token dimension NN to a fixed hidden dimension (Wang et al.,|2020), or multiply key and value
matrix before multiplying query matrix (Qin et al.l 2022)). These approaches require an extreme
re-training overhead for LLMs, as linear attention methods need different weights and hidden states
from existing dense attention models because of their fundamentally different structure. In con-
trast, sparse attention approaches (Zaheer et al.,[2020; |Beltagy et al., 2020 (Child et al.,2019; Feng
et al., |2022) would require much fewer training cost. These approaches design masks to skip the
computation of some attention values, with the proportion of the skipped positions defined as the
sparsity. These existing sparse attention methods use uniform masks, meaning that each attention
head has the same sparsity and the same type of mask pattern. This uniformity ignores the semantic
differences among attention heads and limits the sparsity due to the presence of sensitive heads.

In this work, to push the limit of the sparsity and thereby unleash the latency benefit of sparse atten-
tion methods, we propose SemSA. The main idea of SemSA is to leverage the semantic knowledge
learned by dense LLMs to decide the sparse masks that retain essential attention patterns. Com-
pared with previous masks that manually define uniform attention mask pattern or density, SemSA
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preserves different semantics for different heads, yielding lower density. Our contributions are sum-
marized as follows.

* We propose the semantic sparse attention method. It reduces the mask density by automati-
cally optimizing the sparse pattern for each attention head with information from the dense
model. Both intra-head and inter-head impacts of the sparse mask are modeled to minimize
accuracy impact.

* We invest the generated masks and show their interpretable semantics. We find that our
generated masks successfully captures the token-position-based and token-content-based
attention pattern of different attention heads.

* We design GPU kernels to support SemSA’s sparse attention computation. Our imple-
mentation balances the workloads of different GPU kernels and achieves 1.74 x attention
speedup (for one attention layer in Llama2-7B with a 4K context) over state-of-the-art
sparse attention acceleration framework xFormers.

We compare SemSA with other sparse attention methods on popular large language models OPT-
6.7b and Llama2-7B. SemSA demonstrates 4.18 ~ 11.67x attention wall-time speedup over dense
PyTorch models, while maintaining high accuracy. Compared to other sparse attention methods,

SemSA achieves 1.27x to 1.6x mask density reduction and while achieving better accuracy. Our
code is available at https://anonymous.4open.science/r/SemSA/README . md.

2 RELATED WORK

2.1 ATTENTION MECHANISM

Attention generally refers to Multi-Head self At-

tention (MHA) mechanism (Vaswani et al., 2017). 23 PyTorch
Given B-batched input sequence of length N, a lin- . —e—Flash Attn 1
ear projection transform the token embeddings into i Flash Attn 2
three matrices: query matrix Q, key matrix K, and z 10 —e—xFormers
value matrix V of size ROBXH)*N>d [T and d de- 3 O~ Ours
note the number of attention heads and the hidden % 5

dimension of each head.

As shown in equation [T} the attention matrix A is 0 T
the multiplication of Q and K” with the softmax 2048
activation function. For generative language mod-
els (Brown et al., [2020; |[Zhang et al.; [Touvron et al.,
2023)), a casual mask M is applied to mask out the
upper triangular elements of the attention matrix. It
is commonly implemented by adding negative infi-
nite to the upper triangular elements of A before softmax. Finally, attention output O is the the
multiplication of O and V.
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Figure 1: Attention latency of the Llama2-
7B model with different input token length
and attention framework.
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2.2 EFFICIENT ATTENTION

Efficient attention methods are proposed to avoid the costy attention matrix computation in equa-
tion[I} A branch of work uses linear methods to approximate the attention computation. Wang et al.
(2020); (Choromanski et al.| (2020) approximate the query and value matrices by projecting their
N dimension onto a lower D-dimension. (Choromanski et al.|(2020); |Qin et al.| (2022); |Peng et al.
(2022) approximate the softmax activation with a kernel function ¢ to supplement softmax(QK)*V
with ¢(Q)(¢(K)TV). It avoids generating the large N x N attention matrix. KDE approxima-
tion (Zandieh et al.| 2023)) and recursive attention computation (Poli et al., [2023; [Feng et al., [2022)
methods are also proposed. The benefit of linear complexity and regular computation makes them
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Figure 2: SemSA pipeline to generate attention mask. Given a trained LLM, SemSA first evaluates
the effect E of each attention matrix A to the loss L. Then it generates a set of candidate masks for
each attention head and evaluates their quality score s. Finally, it solves an optimization problem to
select the masks that preserve the most important attentions under the average density bound d;.

popular for the BERT (Devlin et al.| 2018) small encoder model family. However, the new computa-
tion scheme needs different weights from the vanilla transformers, posing much re-training overhead
for large language models. Besides, some assumptions, like the low rank assumption of the attention
matrices (Wang et al.,|2020), do not hold for generative models (Dong et al., 2021).

The other branch of work use sparse masks to substitute the casual mask M to skip the computation
of some attention values. Dynamical sparse attention (Kitaev et al., [2020; Roy et al., 2021} Wang
et al., 2021} |Lu et al} [2021}; |Qu et al.l [2022) uses low-cost operations to decide the mask for each
sentence. Forexample, (Kitaev et al., 2020; Roy et al., 2021)) use hashing to chunk the sentences
and mask out attentions between different chunks. However, due to the complex control and compu-
tation flow, dynamic sparse attention methods often require specific hardware to achieve wall-time
speedup (Wang et al., 2021} [Lu et al.l 2021} |Qu et al., [2022). Static sparse attention (Zaheer et al.,
2020; [Beltagy et al., 2020; (Child et al., |2019; |Dai et al.l |2023) manually pre-defines masks and
directly use them for all sentences. Thanks to the fixed computation flow, static sparse attention is
generally more efficient and GPU-friendly. However, manually designed masks have no awareness
of the sentence data distribution, which limit their performance with low mask density. Trivial GPU
kernel implementations also show limited acceleration due to load imbalance and random attention
data access.

2.3 ATTENTION ACCELERATION FRAMEWORK

Previous works also propose acceleration frameworks using system optimizations. Flexgen (Sheng
et al.;[2023) minimizes GPU memory requirements with active memory swap. Flash attention 1 (Dao
et al.,|2022) and 2 (Dao} [2023)) use different dataflow optimizations to reduce memory footprint for
attention speedup. xFormer (Lefaudeux et al., 2022)) uses block sparse GPU kernels to regulate the
memory and computation of sparse attention.

3  SEMANTIC SPARSE ATTENTION (SEMSA)

In this section, we introduce each step of the semantic sparse mask generation pipeline as shown in
Figure[2] SemSA first evaluates the effect £ of each attention value to the model’s final prediction.
Given the density d for an attention head, SemSA generates the corresponding candidate mask
based on the effect. Then, SemSA calculates the quality score s of each mask M. Finally, after
calculating the quality scores for the mask corresponding to each density choice in each attention
head, SemSA optimizes the overall quality under a constraint of the overall density to decide the
suitable density for each head.

3.1 ATTENTION EFFECT EVALUATION

Given a trained LLM with dense attention, SemSA first analyzes each attention value and its gradient
to identify the unimportant attention positions to mask out. We assume that the change of the model
prediction loss L, caused by attention mask, can be approximated as the first-order Taylor expansion
of the change of attention matrices A, as shown in equation 2]

) J T
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where h € [0, #layer x #head per layer) denotes the attention head index, and i, j denote the row
and column index of the attention matrix.

Because the softmax function normalizes the summation of each row of attention matrix to one,
masking out one attention value Ay, ; ; to zero will increase other attention values in the same row
Apim;n # j. We can simply model such intra-row influence on A A with Lemma 3.1}

Lemma 3.1. When masking out attention value Ay, ; ; at head h, row i, and column j, it also
influences the attention values in the same row by AAy, ; p|;.

eSh.in
Ah,i,n = Z _ eSh iy
’ | 3)
AApinj = {_Ah’i’m S, . S, . ne Z.
v Ah,i,n(zj‘ evhhd /Zj;én e?mis — 1), n#j

We define the effect matrix E}, to quantify how much influence will masking each attention value
cause to the final prediction loss based on equation[2] Note that the influence considers the attention
value variance of the value itself and the values in the same row.

Epij= 4

oL
; aTh,z,n : AA}L,i,nU

Given equation[d]and Lemma 3.1] we derive the following theorem.

Theorem 1. Given attention matrix Ay, € RN*N of head h and its gradient 0L/0A;, € RN*N,
the effect Ey, € RN*N of masking each attention value is defined as follows.

Av_ (0L _ 0L
1-A, \o4, ‘o4,

B, - ‘ ~Ah)ILNXN>’ )

With theorem [T} we design the evaluation step to quantify the attention values’ impact on the final
prediction. SemSA performs the standard next-token-prediction task on a small dataset to calculate
the cross entropy loss L. The effect is averaged over different sentences. The average attention
effect E/ guides how SemSA generates the masks to only skip the attention values with the minimum
average impact on the final prediction.

3.2 ATTENTION MASK GENERATION

Given a density, SemSA generates candidate sparse masks based on the attention effect for each
attention head. We follow previous work (Zaheer et al., 20205 |Child et al., |2019) to use the block
sparse matrix, so as to avoid random memory access and maximize wall-time speedup. For each
block of size b, all the attention values are either all masked or not masked. We use the average
attention effect of each block to quantify the importance of the block.

For notion simplicity, we define the layout I, € R *N/®XN/b matrix to represent the effect of each

block of the attention matrix. Note that generative LLMs only calculate the attention value as lower
triangular matrix (Brown et al.,2020; Zhang et al.;{Touvron et al.,[2023)), Thus their diagonal blocks
have fewer elements than others.

Lnij= > > Bhmm/ Y. > 1 (©

melbi,b(i+1)) n€[bj,b(j+1)),n<m melbi,b(i+1)) n€bj,b(j+1)),n<m

SemSA preserves k blocks in each row that have the largest average attention effect and masks out
the others. Note that SemSA can generate different candidate masks with different k, which controls
the density of the masks. In practice, SemSA generates a set of candidate masks for each head with
a given set of density {d;}.
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Figure 3: Semantic analysis on Llama2. (a) SemSA’s mask density of different heads and layers. (b)
A typical position-dominated head, where each token always attends to its previous token. SemSA
aggressively masks out attention values at other positions. (c) A typical token-dominated head,
where different input tokens results in different attention pattern. SemSA preserves most attention
values since important attention positions are hard to pre-determine.
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To achieve the balance between efficiency and prediction quality, SemSA evaluates the quality of
each candidate masks to perform overall optimization in the next step. Each mask is given a quality
score s to evaluate how much variation it will cause to the loss of the final prediction. Recall that the
mean effect matrix E' already provides such information for each attention value, SemSA defines

(d)
h

the scoring function S to get the score s; ’ of the density d for the attention head h in equation

ngd) _ S(M;(Ld)‘Eh) _ (]llxs(Mlgd) 'Eh)]lSX1) / (]llxsEh]lsxl) (8)

After the generation step, SemSA assigns each attention head a set of candidate masks with different
densities, along with the respective mask quality score. SemSA solves an optimization problem to
select the mask for each head to achieve both low mask density and high prediction quality.

3.3 ATTENTION DENSITY OPTIMIZATION

With the generated mask and its score, SemSA optimizes the overall mask quality given the overall
density bound d;. It is done by selecting the density for each head to maximize the summation of
mask quality score under the constraint for the overall density as shown in equation 9}

1
maXS:Zsh,sh6{sgldh)|dhE{do,dl,...,ds}} s.t.ﬁZthdt 9)
h h

Intuitively, some attention heads are more concentrated, meaning that most attention values are
small while few values are very large. Such heads only need a small density to preserve most of the
important attentions. In contrast, some attention heads are more dispersive with few small attention
values. Such heads require more density to preserve most attention values. Note that the density d,
for candidate masks is selected from a pre-defined set, so we use mixed integer planning to formulate
and solve the optimization problem.

4 SEMANTIC ANALYSIS

In this section, we invest the masks acquired with SemSA and show the interpretable semantics of
the masks. Previous works manually restrict the attention pattern of the model, which may harm
the semantics learned by the dense model. In contrast, SemSA preserves the semantics with statistic
analysis and optimization. We use visualization, human interpretation and quantitive methods to
analyze the semantics of the original model and to verify whether SemSA captures such semantics.

4.1 MASK VISUALIZATION AND SEMANTIC CATEGORIZATION

Given any token, two kinds of information are used as the model inputs: position encoding and token

embedding. Position encoding indicates the absolute (Zhang et all)) or relative positions
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et al.| 2023)) of tokens in the sentence. Token embedding maps different tokens as different vectors.
The attention head h responds to both information and output the corresponding attention value Ay,.
As shown in equation[I0} we denote the influence of position and token of head h as function Py, and
Ty, respectively. The attention value Ay, ; ; between the ith and jth token ¢; and ¢; is determined by
the combination f, of position and token influence functions.

Anig = An(ti ty,i,73) = frn (Pu(i, 5), Tn(ts, t5)) (10)

Figure [3] visualizes two typical heads that are either dominated by position P or token 7" function. It
shows the largest attention values between tokens of the example sentence, as well as the attention
matrix averaged over 128 different sentences on the RedPajama dataset (Computer, [2023)).

For the attention head in Figure [3[b), the local and global positional attention is clearly observed.
In this head, whatever sentences are given, each token pays major attention to the first token and
the prior token. As a result, the mean attention matrix accumulates extremely large attention values
at the first column and the sub-diagonal. In contrast, the attention head in Figure [3|c) lays more
emphasis on content-based attention. In this example, most tokens pay attention on definite article
the, pronoun their and conjunction and. These words play important rule in the sematic structure of
the sentence. Since the position distribution of important tokens are generally random, the attention
matrix can show large attention values at any position. It results in a mean attention matrix without
extreme mean attention values.

In conclusion, the mean attention matrix of different sentences provides a valuable insight of whether
attention values of an attention head is more position-based or content-based. Intuitively, the more
uneven the attention matrix value distribution is, the more position-based the head is.

4.2 QUANTITATIVE SEMANTIC ANALYSIS

We quantify how much the attention head is position-based and analyze whether SemSA success-
fully utilizes such semantics through the evaluate-generate-optimization pipeline. We model equa-
tion 10| with a linear approximation. P, and 7}, are random variables with the same expectation
1 and standard variance § for all heads. For attention head h, the weight factor «, evaluates the
relatively influence of position and token to the final attention value.

A= anPu(i,j) + (1 — an)Th(ti, t;) (11)

Given the randomness of token positions in long context, we assume that the token position and
its content are irrelevant. For different sentences s, the expectation E; of the attention value be-
tween position ¢ and j can be expressed as follows. Note that it excludes the matrix diagonal since
Ty (ti,t;), 4 # j and Tj, (¢;,t;) may follow different distributions.

b= 435 (a9 0 - 9)

HMm

=apPr(i,7) + (1 —ap)= ZT t( s) t(s (12)

:ahph(iaj) (17C¥h),UIT,VZ >j

The standard division o), of E; over different positions of the attention matrix is

2 ..
Bl = TN, D2 (9 + () ~(enpe + (- copr)?
] »IN )51 >]g

= ah(Sp
13)
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Expectation (SoE) of head h. Note that the expec-
tation is taken over different sentences, while the
standard division is taken over different attention
positions. Since J,, is the same for all heads, we
derive that the position impact «;, is proportional
to the SoE of different heads.

We name o, (E.[Ap ; ;]) the Standard division of \/\

The conclusion quantifies the observation stated
in Section @ Intuitively, SoE shows how un- I

even the mean attention matrix is, thus showing 025 030 075 100 135 130 17

the influence of position to the attention values.

SemSA’s generated mask density shows positive Fjgure 4:  Positive correlation between
relation with SoE, suggesting that SemSA suc-  SemSA’s mask sparsity and head’s depen-
cessfully captures the semantic information of the  dency on position (SoE).

dense language model as shown in Figure 4]

5 SPARSE KERNEL DESIGN

We drew inspiration from the computational framework of Flash Attention (Dao et al., [2022) and
develop our own sparse kernel. In the Flash Attention algorithm, the inputs Q, K, V are partitioned
into blocks. Each block of Q is then multiplied with the corresponding blocks of K. The output of
each block is scaled and aggregated to yield the correct result. This design allows for parallelization
of computations, facilitating efficient acceleration on GPU architectures.

To skip unnecessary data loading and computation of zero-blocks, we introduced a Look Up Table
(LUT). In the aforementioned process, only the non-masked blocks of K need to be loaded. The
LUT serves as a guide, indicating which blocks of K should be loaded into SRAM for multiplication
with Q.

SemSA also optimizes workload load balance of the kernel. For each head, the LUT has the same
shape [V, n], where N is the number of blocks of Q, while 7 is the number of blocks of K that will
be loaded into SRAM. For each row, the number of blocks to be loaded and computed is the same,
which helps to balance the GPU workload as mentioned in equation

We implement our sparse kernel based on Triton (Tillet et al., |2019) and Flash Attention. In Flash
Attention, inputs Q, K,V are split into blocks, and the non-masked blocks are computed. Since
not all the blocks contribute the same, SemSA’s evaluate-generate-optimization pipeline masks out
most blocks. So we design our sparse kernel, using lut € R xnumblocksxnnz tq jndicate which
block in K will be loaded into SRAM. The less block is computed, the more acceleration we can
achieve.

6 EXPERIMENT

We evaluate the effectiveness of SemSA from the perspective of both accuracy and efficiency. The
comprehensive evaluation is done via perplexity analysis, as well as long sequence generation tasks.
We also analyze the validity of each component of SemSA through extensive ablation studies.

6.1 EXPERIMENT SETUP

In this section, we describe the experimental setup and results employed to evaluate the performance
of our approach. SemSA’s attention effect evaluation is performed on a small sampled subset of Red-
Pajama dataset (Computer| (2023 with 128 rows (3.5M tokens). For finetuning, all the models are
finetuned with another sampled RedPajama dataset consisting of 8192 rows (56M tokens) We run
the perplexity evaluation on error-sensitive (Yao et al., [2022) WikiText-103 and WikiText2 (Merity
et al.,2016)) dataset. We also use 3 datasets from LongBench (Bai et al.,|2023)) for long-context text
generation tasks, covering a wide range of code completion(lcc), single-document QA (multifieldqa
en) and few-shot learning(samsum) tasks. We apply SemSA on state-of-the-art large language mod-
els, including OPT-6.7B (Zhang et al.)) and Llama2-7B (Touvron et al., [2023)).
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6.2 OVERALL PERFORMANCE

Model Method Density WikiText-103 ppl | WikiText2 ppl | Attention Speedup 1
(%) w finetune \ w/o finetune | w finetune \ w/o finetune
Casual (Zhang et al.) 100 - 10.97 - 10.02 1.00
OPT-6.7B-2k SpTrans (Child et al.|[2019) 30 12.87 46.78 12.20 38.03 3.48
. Bigbird (Zaheer et al.|[2020) 33 11.38 12.77 10.81 11.74 4.01
Ours 26 11.05 12.70 10.50 11.72 4.18
Casual (Touvron et al./|2023) 100 - 8.39 - 23.84 1.00
Llama2-7B-4k SpTrans (Child et al.|[2019) 28 8.61 50.51 24.03 overflow 4.31
Bigbird (Zaheer et al.|[2020) 15 8.36 11.27 20.61 28.15 8.18
Ours 10 8.40 10.89 20.51 27.49 11.67

Table 1: The perplexity and the attention speedup of different large language models with different
sparse attention methods.

We evaluate different sparse attention methods in terms of both performance and wall-time speedup.
For baseline methods, we choose Bigbird (Zaheer et al.| [ 2020), the best BERT-based sparse attention
method reported in [Tay et al.| (2020). We also include Sparse Transformer(SpTrans) designed for
text generation tasks. As shown in Table [, SemSA generates the sparse attention mask with the
lowest density, while preserving good performance in terms of perplexity. Note that the official
implementation of the Bigbird and Sparse Transformer algorithm hardly provides any speedup (Tay
et al., [2020). Thus, we adopt the state-of-the-art framework, xFormers (Lefaudeux et al.| [2022), to
accelerate the sparse baseline methods. We can see that: (1) On OPT-6.7B with 2k tokens, SemSA
obtains 26% density (4% |) of the attention map and 11.05 perplexity (0.33 1) after finetuning
the model weights. (2) On Llama2-7B with 4k tokens, SemSA achieves 10% density (6% J) and
8.40 perplexity (1.99 1) after finetuning. With our kernel design, SemSA can achieve up to 4.18x
and 11.67x attention speedup on OPT-6.7B-2k and Llama2-7B-4k, respectively. On wikitext-103
and wikitext2 datasets, we achieve lower perplexity at a lower density compared with spTrans and
Bigbird, and demonstrate performance close to the original model on three subtasks of Longbench.

6.3 RUNTIME EFFICIENCY

PyTorch Model | Baseline | 2k token | 4k token
RlashiAtta L PyTorch 1.00 1.00
Flash Attn 2 Flash Attn 1 1.10 2.00
16% 2.2% xFormers OPT-6.7B Flash Attn 2 1.50 2.29
O 3,2@ ours xFormers 1.55 2.32
o Ours 1.58 2.34
Attention FFN PyTorch 1.00 1.00
Flash Attn 1 1.16 1.54
Llama2-7B | Flash Attn 2 1.25 1.72
xFormers 1.27 1.81
Ours 1.36 1.94

Figure 5: Runtime breakdown of Table 3: End-to-end first-token-speedup of model with different
Llama2-7B with 4k input length attention implementations on A100.

Method | Code Completion | Document QA | Few-shot Learning

Casual | 51.20 \ 36.56 \ 40.79
SpTrans 52.31 26.17 38.58
Bigbird 55.25 18.98 37.87
Ours 56.91 24.37 39.18

Table 2: The evaluation results on Longbench datasets of Llama2-7B-4k with different sparse atten-
tion methods.



Under review as a conference paper at ICLR 2024

12.00 (a) (b) 11.67
8.18
s 8.00
3 5.77
a 4.10 431
a2 4.00 254 267 3.11 3.27
1.91 ) )
= [] I - i
0.00
& N v 3 & < X N v o > o
& &g o & & g
QA \a N R & Q N N R >
< <® NS ®

Figure 6: Attention speedup on Llama2-7B with (a) 2k tokens length and (b) 4k tokens length.

In this section, we reveal the efficiency of our attention kernel. Specifically, we adopt the sparse
attention mask of SemSA, and implement it xFormer and our GPU kernels. We compare their
runtime ratios and end-to-end speedups. We also add the Flash Attention for dense models. As
shown in Figure [f] our kernels significantly reduce the runtime ratio to 4.6%, compared with the
PyTorch (53%) and the state-of-the-art framework xFormers (8%). From Table @ we can see that
our kernels can consistently achieve higher end-to-end first-token-speedups on different models and
with different token lengths.

6.4 ABLATION STUDY

We perform ablation study on Llama2-7B and use the perplexity results of WikiText-103 to validate
the effectiveness of SemSA’s components.

Effect | Density(%) | Perplexity Density Choice | Density(%) | Perplexity

w/o LP, w/o SC 10.9 11.42 Same for whole model 10.7 11.03

w/o LP, w SC 10.7 10.82 Same for each layer 10.7 10.88

wLP, wSC | 10.5 | 10.69 Ours | 10.5 | 10.69
Table 4: Ablation study on loss prop- Table 5: Ablation study on mask generation and
agation (LP) and softmax calibration optimization. The effectiveness of using different
(SC) for attention effect. masks for different heads.

6.4.1 EFFECTIVENESS OF EFFECT EVALUATION

SemSA’s evaluation method in Theorem T|considers the importance of each attention value through
Loss Propagation (LP,e equation [2)) and Softmax Calibration (SC, equation[3)). As shown in Table[4]
we evaluate LP and SC by directly substituting the attention effect &/ of SemSA with different
metrics: attention matrix A (without LP, without SC) and (0L/9A) - A (without LP, with SC).

6.4.2 EFFECTIVENESS OF MASK GENERATION AND OPTIMIZATION

SemSA generates different masks with different density for different heads and layers. The influence
of masks for the loss is minimized through by choosing the most suitable mask through optimization.
We evaluate the effectiveness of such scheme by forcing SemSA to choose masks of the same density
for each layer and for the whole model in Table[5]

7 CONCLUSION

In contrast to existing sparse attention methods that manually design uniform attention masks, our
work proposes the semantic sparse attention (SemSA) method that decide non-uniform density and
mask patterns for different attention heads. It accomplishes this by formulating and solving an
optimization problem aimed at minimizing the loss change caused by sparsification. Compared with
previous masks that manually define uniform attention mask pattern or density, SemSA preserves
different semantics for different heads, yielding higher sparsity. Specifically, it achieves a 1.27x to
1.6 higher sparsity while maintaining superior accuracy. Furthermore, we implement GPU kernels
to support the efficient computation of SemSA, and achieve a 1.36x to 2.34x end-to-end speedup
for the first-token latency across multiple LLMs with varying context lengths.
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