
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

EXECUTABLE NETWORKS OF THOUGHT: SCALING
REASONING WITH LLM WORKFLOW TEMPLATE

Anonymous authors
Paper under double-blind review

ABSTRACT

Past prompt schemes, such as Chain-of-Thought (CoT) and Tree of Thoughts
(ToT), either lack modularity or rely on manually engineered, task-specific
prompts and fixed solution structures, limiting their scalability. To overcome these
limitations, we propose Executable Network of Thoughts (XNoT), a prompt
scheme that leverages LLMs’ intrinsic capabilities to autonomously plan and ex-
ecute reasoning steps from minimal user input. Central to XNoT is the LLM
Workflow Template (LWT), a format that supports a network of thought depen-
dencies among sequential elementary steps, enabling XNoT to flexibly adapt to
different task complexities and input lengths. XNoT demonstrates superior scal-
ability compared to prior methods. For example, while all methods achieve near
100% accuracy on sorting 16 numbers, XNoT attains 92% on sorting 32 numbers,
substantially outperforming CoT (0%), ToT (12%).

1 INTRODUCTION

Large language models (LLMs) demonstrates a level of reasoning (Qiao et al., 2023) but falter on
multi-step reasoning unless given a clear plan or scaffold (Wei et al., 2022). They suffer from the
hallucination problem, where they produce plausible-sounding yet incorrect output (Huang et al.,
2025), and can be distracted by irrelevant parts of the input (Shi et al., 2023). To improve multi-step
reasoning, prompt engineering (Definition 1) builds prompt schemes that pair fixed instruction text
with an explicit algorithmic procedure (Liu et al., 2023). These schemes define a small, principled
set of actions for the model to execute over several intermediate steps—often called thoughts, i.e.,
discrete units in a multi-step solution (Wei et al., 2022; Besta et al., 2024a;b). Consequently, recent
studies concentrate on mathematical and logical reasoning tasks (Zhou et al., 2023; Shin and Kim,
2025). Success in these settings shows that, under well-designed prompts, LLMs can plan, execute,
and check intermediate steps rather than jumping to a final guess, leading to more reliable solutions.

However, previous works often overlook the scalability issue in prompt engineering. As explained
in Definition 2, scalability concerns whether a prompt scheme remains effective as the input size in-
creases (Chen et al., 2025).1 Existing methods generally fall into two categories. Monolithic prompt-
ing methods—e.g., Chain of Thought (CoT) (Wei et al., 2022) and Least to Most (L2M) (Zhou
et al., 2023)—perform a single (Wei et al., 2022; Kojima et al., 2022; Wang et al., 2023) or fix
number (Wang et al., 2022; Zhou et al., 2024; Dua et al., 2022; Zhou et al., 2023) of inference
passes. Such designs usually scale poorly, as they lack modularity, i.e., the separation of reasoning
steps into distinct inference passes, and are limited to chain-like structures that force information to
accumulate in later steps, increasing the risk of error propagation (Besta et al., 2024b). Algorith-
mic prompting methods—e.g., Tree of Thoughts (ToT) (Yao et al., 2024) and Graph of Thoughts
(GoT) (Besta et al., 2024a)—in contrast, organize reasoning as trees or graphs, coordinating multi-
ple operations through external control scripts, i.e., Python modules. While these methods improve
modularity by separating reasoning steps into separate LLM inferences, they also introduce and
rely on rigid, hard-coded manual workflows that make it difficult to adapt to varying instance sizes.
Consequently, both categories struggle to scale reliably as task size increase.

1While recent works aim to increase the context length (Chen et al., 2023a; 2024; Ding et al., 2024) to
improve LLM performances over long inputs (Levy et al., 2024), a larger context length does not inherently
guarantee effective multi-step reasoning (Liu et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Prompt scheme comparison. While some monolithic prompting methods introduce modu-
lar execution (e.g., L2M), they remain limited to linear, chain-like structures. Algorithmic prompting
supports networked reasoning but relies on rigid, hard-coded scripts. In contrast, XNoT dynamically
generates a network of thought without requiring predefined workflows or complex control scripts.

To address the scalability issue, it is important for a prompt scheme to demonstrate two key capabili-
ties: 1) step-length generalization—the ability to scale the number of reasoning steps while keeping
each step elementary, i.e., the minimal reasoning units into which the problem can be decomposed,
to effectively reduce error (Zhou et al., 2023; Xue et al., 2024) (see the theoretical analysis in Sec-
tion 5); and 2) step-dependency generalization—the ability to maintain correct dependencies be-
tween steps and coordinate them through network-structured reasoning, correctly recombining the
decomposed steps into a final answer as the instance size increases (Zhou et al., 2024; Yao et al.,
2024; Besta et al., 2024a). Real-world tasks vary in size and complexity, requiring scalable prompt
schemes (Ji et al., 2023). For example, in code refactoring, a programmer may efficiently update a
small script by modifying multiple components at once. However, for a larger codebase, breaking
it into steps that process one component at a time reduces errors, but the coordination complexity
between components usually grows beyond linear chains or trees as the system scales.

In this paper, we introduce Executable Network of Thoughts (XNoT), a prompt scheme that addresses
the scalability issue in LLM reasoning through intelligence amplification. Our idea is to transform
prompt engineering from manually hard-coding complete workflows to providing the minimal scaf-
folding that LLMs can autonomously expand. While approaches like ToT (Yao et al., 2024) and
GoT (Besta et al., 2024a) require humans to predefine rigid structures for each task size, XNoT
shifts this burden to LLMs by enabling it to infer both task decomposition and step coordination
from simple examples. This allows step-length generalization, as LLM dynamically determines an
appropriate number of elementary steps without requiring humans to redesign scripts for different
problem sizes. As input complexity increases, XNoT enables LLMs to naturally expand its reason-
ing network with additional elementary steps to match the growing demands of the task.

At the core of XNoT is the LLM Workflow Template (LWT), a structured text format that enables
step-dependency generalization through a simple notation system. LWT allows each reasoning step
to reference outputs from any previous step, forming flexible networks of thought with precisely
defined dependencies. Unlike the rigid chains (Wei et al., 2022), trees (Yao et al., 2024), or split-
then-merge graphs (Besta et al., 2024a) used in prior work, LWT empowers XNoT to construct
instance-specific reasoning networks that capture the exact dependencies required for each query. By
combining elementary step decomposition with dynamic dependency management, XNoT achieves
intelligence amplification: LLM generalizes the user-specified minimal examples to autonomously
build comprehensive solution structures for previously unseen problems, eliminating the need for
hard-coded workflows of each task variation.

Experiments demonstrate that XNoT scales much more reliably to larger input sizes. For exam-
ple, when the sorting task scales from 16 to 64 numbers, most baselines drop to 0% accuracy,
whereas XNoT maintains 27%. XNoT also significantly reduces manual prompt engineering effort
(up to 84.4% less than ToT and 87.3% less than GoT) and lowers the API costs compared to so-
phisticated algorithmic prompting methods. In addition, we provide theoretical analyses showing
how decomposition into elementary steps improves performance under super-linear accuracy decay,
while dynamic merge strategies reduce computational overhead compared to fixed structures.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Table 1: Comparing full (�), partial (�), or no support (é) for each prompt scheme capacity.

Prompt Schemes
Modularized

Steps?
Elementary

Steps?
Network of
Thought?

Intelligence
Amplification?

Chain of Thoughts (CoT) Wei et al. (2022) é é é é
Zero-shot Chain of Thoughts (Zero-CoT) Kojima et al. (2022) é é é é
Plan-and-solve (PS) Wang et al. (2023) é é é é
Self-consistency Chain of Thoughts (CoT-SC) Wang et al. (2022) é é é é
Automatic Chain of Thoughts (Auto-CoT) Zhang et al. (2023) é é é é
Self-discover (SD) Zhou et al. (2024) � é é é
Least to Most (L2M) Zhou et al. (2023) � � é é
Successive Prompting (SP) Dua et al. (2022) � � é é
Skeleton of Thoughts (SoT) Ning et al. (2023) � � é é
Tree of Thoughts (ToT) Yao et al. (2024) � � � é
Algorithm of Thought (AoT) Sel et al. (2024) � � � é
Graph of Thoughts (GoT) Besta et al. (2024a) � � � é
Tree of Problem (ToP) Zebaze et al. (2024) � � � é
Enhancing Graph Of Thought (EGoT) Shin and Kim (2025) � � � é

Executable Network of Thoughts (XNoT) � � � �

2 RELATED WORK

To enable effective reasoning in LLMs, researchers have proposed monolithic prompting, which
arranges steps in a simple sequence. Chain-of-Thought (CoT) (Wei et al., 2022) pioneers this ap-
proach by guiding models to produce intermediate steps in a single pass, instructing LLMs with
“Let’s think step-by-step” and providing few-shot examples. Later work shows even a single in-
struction (e.g., “Let’s think step-by-step” (Kojima et al., 2022), or more structured plan-then-solve
instructions (Wang et al., 2023)) can boost performance without few-shot examples. Self-Consistent
CoT (CoT-SC) (Wang et al., 2022) improves reliability by aggregating multiple runs, while Auto-
CoT (Zhang et al., 2023) automates few-shot example generation for CoT using Zero-CoT.

However, these methods remain constrained because they do not leverage modularized steps: the
multiple intermediate steps are generated within a single-pass, with no explicit control, intermediate
result reuse, or branching. Such approach limits the construction of flexible reasoning networks
that coordinate results across passes. Subsequent methods, such as Least-to-Most (L2M) (Zhou
et al., 2023), Successive Prompting (SP) (Dua et al., 2022), Self-Discover (SD) (Zhou et al., 2024),
and Skeleton-of-Thoughts (SoT) (Ning et al., 2023), increase modularity by decomposing tasks
across passes, but still enforce linear pipelines and lack mechanisms for coordinating multi-branch
reasoning or handling complex dependencies.

On the other hand, algorithmic prompting methods rely on complex control scripts to manage more
elaborate reasoning structures. Tree of Thoughts (ToT) (Yao et al., 2024) introduces tree-structured
reasoning following the breadth-first search algorithm, while Algorithm of Thought (AoT) (Sel et al.,
2024) extends it with the depth-first search algorithm. Both require external evaluators to score and
select branches at each step, adding multiple LLM calls and increasing computational cost. Graph of
Thoughts (GoT) (Besta et al., 2024a) generalizes trees to graphs via split-merge pipelines, while Tree
of Problems (ToP) (Zebaze et al., 2024) simplifies GoT by removing explicit scoring, and Enhancing
Graph of Thought (EGoT) (Shin and Kim, 2025) augments GoT with rationale propagation. Despite
these advances, such methods remain tied to rigid, task-specific algorithms and hard-coded scripts,
limiting flexibility and scalability.2

In contrast, we introduce a lightweight control framework for XNoT that supports richer networked
reasoning than algorithmic prompting by leveraging intelligence amplification to generate LWT-
formatted reasoning plans (Fig.1). Beyond supporting modular and elementary steps within a net-
work of thoughts, XNoT enables LLMs to construct complete solution plans from their own knowl-
edge, given only a single one-shot LWT example. This greatly reduces the need for manual task-
specific redesign, allowing LLMs to scale to larger query inputs of the same task without requiring
length-specific scripts. Table 1 summarizes the comparison, while Appendix A provides a more
detailed and extended discussion. In particular, Appendix A.5 contrasts XNoT with multi-agent
systems (MAS), highlighting its prompt-native focus versus MAS’s role-based orchestration.

2Specifically, ToT, AoT, GoT, ToP require both few-shot examples and hand-crafted scripts; EGoT drops
the former by rationale propagation, but still requires the latter. In contrast, XNoT eliminates both, using a
one-shot LWT example and LLM-generated LWT script as the algorithm, achieving intelligence amplification.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3 PROBLEM FORMULATION

In this work, we aim to reduce human effort in prompt engineering by applying intelligence amplifi-
cation, enabling LLMs to assume a larger share of the workload in complex reasoning tasks. To this
end, we first provide a formal characterization of the human effort required in prompt engineering.
Definition 1 (Prompt Engineering of LLM). Let LLM be a pretrained LLM and T = {t1, . . . , tn}
a set of reasoning tasks. For each task t ∈ T , let Dt = {(qt

i,a
t
i)}

Nt
i=1 be the evaluation set, where

qt
i is the input query, ati the corresponding answer, and Nt the number of samples for task t.

The Prompt Engineering Problem seeks to design a prompt scheme consisting of an algorithm A
that sequences LLM calls, a collection of constant prompts Pconst reusable across tasks, and a
collection of task-specific prompts Pt

task for each t ∈ T , such that

A(LLM,Pconst,Pt
task,q

t
i) = at

i, ∀t ∈ T , i ∈ [1, Nt], (1)

where A may invoke the LLM multiple times, integrating Pconst, Pt
task, qt

i, and intermediate results.

Prompt scheme development involves three essential phases. 1) Prompt scheme design specifies
the algorithm A and constant prompts Pconst, establishing the level of modularization and potential
for networked reasoning. 2) Task-specific design develops task-specific prompts Pt

task for each
task t, typically including task instructions and few-shot examples. 3) Execution applies the prompt
scheme by running the algorithm A together with Pconst and Pt

task to generate task answers.

Developing a prompt scheme requires substantial human efforts, particularly in phase 2, which usu-
ally becomes the bottleneck when adapting to new tasks. This challenge worsens when tasks include
instances of varying sizes, such as arithmetic sequences of length 8 or 32, referred to as different
divisions of the same task. Algorithmic prompting methods are especially rigid, requiring sepa-
rate Python scripts and task-specific prompts for each division, limiting flexibility and scalability.
In contrast, XNoT enables the LLM to dynamically generate part of the algorithm A as a LWT
script, reducing the need for hard-coded procedures. To address the above, we formally define the
scalability problem, focusing on generalization across divisions with minimal human intervention.3

Definition 2 (Scalability of Prompt Engineering). Given different divisions of the same task, the
scalability problem concerns the ability of a prompt scheme to generalize effectively across these
divisions while sustaining performance as instance sizes increase. This involves two critical aspects:
i) minimizing human effort required to adapt the prompt scheme across divisions, and ii) maintaining
reliable performance on larger instance sizes.

To concretize this notion of scalability, we evaluate across benchmark tasks that embody distinct
reasoning challenges: natural language task (e.g., keyword counting) benefits from decomposing
the text into smaller units, but requires careful aggregation of partial results to ensure correct global
counting; symbolic tasks (e.g., sorting with duplicates, set intersection) demand efficient interme-
diate storage and accurate element-wise examination, which become increasingly complex as input
size grows; numerical tasks (e.g., arithmetic calculations, large-digit addition) involve intricate
carry-over management and digit-level operations that scale poorly with longer sequences. 4

4 EXECUTABLE NETWORK OF THOUGHTS

Executable Network of Thoughts (XNoT) aims to (i) reduce manual prompt design via intelligence
amplification, (ii) support flexible networks of thought, and (iii) operate through elementary steps
for precise execution. Concretely, XNoT leverages LLMs to facilitate and automate the production
of a task-specific solution plan and compile it into a LWT script. The LWT script is then used as
the final prompt scheme design that is executed sequentially in separate inference passes to obtain
the final answer. The result is modularization without rigid, hand-written control code: plans are
authored by the LLM and realized as an executable prompt-native program.

To streamline the execution of each reasoning step, XNoT employs the LLM Workflow Template
(LWT), a specialized prompt format that defines placeholders (input fields) for referencing out-
puts from previous steps, supports selecting items in list-based outputs (indexing), and specifies

3Additional discussions on how XNoT alleviates human labor are provided in Appendix A.3.
4We further examine Game of 24, extending it from 4-numbers to 5 numbers, in Appendix D.1.4.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 2: Illustration of Executable Network of Thoughts (XNoT). XNoT first generates an LLM
solution plan based on the input query, then compiles it into an LWT-formatted script. The bottom-
right diagram shows how the LWT-formatted script executes, forming a network of thought pro-
cesses. Straight arrows indicate message passing through input fields, curved arrows indicate in-
dexed field selection, and ⇒ marks LLM operations. Colors highlight different prompt types: con-
stant prompts in black, task-specific prompts in orange, and LLM-generated prompts in blue.

the required operation (instruction). By prompting LLMs to devise fine-grained elementary steps
in LWT-formatted scripts and orchestrate these steps into a generalized knowledgeable network of
thought, XNoT enables flexible and robust problem-solving while avoiding the extensive manual en-
gineering to build separate task-specific scripts for different instance sizes, required by prior prompt
schemes (Sel et al., 2024; Yao et al., 2024; Zebaze et al., 2024; Besta et al., 2024a).

4.1 LLM WORKFLOW TEMPLATE (LWT)

LWT facilitates networks of thought by forming a message-passing network between LWT-
instructions. Each instruction represents a reasoning step, executed in a separate inference pass
for full modularization. LWT defines “input fields” that receive outputs from previous instructions,
forming the directed edges of the network. To enable elementary steps, LWT provides indexing to
select individual elements from the query, supporting operations at the element level.

An LWT-formatted script consists of a list of LWT-instructions, where each instruction may refer-
ence outputs from any preceding instructions using the following notation:

1. “(X)=LLM(...)” marks the Xth LWT-instruction.

2. {(N)} denotes an input field that receives the entire output of the Nth LWT-instruction.

3. {(N)}[I] selects the Ith item when {(N)} is a list.

An example of a LWT-instruction with X>N is illustrated below:

(X)=LLM(“Example LWT-instruction with input field {(N)} and indexed input field {(N)}[I]”)

The proposed LWT format aligns with LLMs’ inference behavior by structuring reasoning as a
sequence of modular steps with explicit data dependencies. Equipped with references like {(N)} and
{(N)}, it defines a directed acyclic reasoning graph entirely in natural language, enabling both LLM
generation and accurate parsing for step-by-step execution. This format encourages elementary
operations, reduces ambiguity, and supports long-range connections, thereby improving stability and
generalization. As a prompt-native abstraction, it can be integrated seamlessly into LLM workflows,
supporting efficient, scalable, and interpretable execution across diverse reasoning tasks.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Algorithm 1 Executable Network of Thoughts.
Input: query q, context C, LWT example E , knowledge extraction prompt K, script compilation prompt T .
Procedure:
1: P← LLM(K ⊕ {q, C}) //Extract LLM solution plan.

2: S ← LLM(T ⊕ {q, C, E ,P}) //Compile solution plan into LWT-formatted script.

3: Initialize list L as empty //Prepare for sequential script execution.

4: for each LWT-instruction in S do
5: Resolve input fields by referencing L[X][I] if indexed, else L[X] //Section 4.1.

6: output← LLM(LWT-instruction); append output to L //Store intermediate result.

7: return output

4.2 DETAILED XNOT MECHANISM

Building on the LWT format, we detail the Executable Network of Thoughts (XNoT). Fig. 2 il-
lustrates XNoT applied to an example arithmetic task.5 XNoT features a three-step process: 1)
knowledge extraction, which captures the LLM’s knowledge as an LLM solution plan P; 2) LWT
compilation, which converts P into an executable LWT-formatted script S; and 3) script execution,
which sequentially performs the LWT-instructions in S to generate the final answer.

The LWT-formatted script S corresponds to the task-instruction component of the task-specific
prompts Pt

task for a task t (see Definition 1). Notably, XNoT automates the generation of S through
its first two stages, substantially reducing the human effort typically required in Task-specific design
and alleviating the bottleneck for scalable adaptation across divisions. Algorithm 1 presents the
pseudo-code, and the prompt texts are provided in Appendix B.

Stage I: Knowledge Extraction. As shown on the left of Fig. 2, Stage I generates an LLM solution
plan P using a Knowledge Extraction Prompt K, which integrates the input query q, a task de-
scription C, and extraction prompts. The task description C serves as Ptask (Definition 1), defining
the objective and providing hints to guide plan generation. For example, in arithmetic, the LLM is
prompted to proceed step-by-step (e.g., two numbers at a time) and prioritize multiplication.

The extraction prompts are constant prompts Pconst, including a node simplicity prompt and an
edge simplicity prompt. The node simplicity prompt promotes elementary steps by directing the
LLM to produce each step “as easy as possible,” without which the LLM might attempt to solve the
entire problem in one step and thereby suffer from the lack of modularity (Levy et al., 2024). The
edge simplicity prompt guides the LLM to identify the simplest valid dependencies between steps,
avoiding unnecessary control structures and ensuring a clear, sequential operation order for LWT
compilation. This modularization reduces error propagation often seen in long, unstructured outputs.
Finally, the LLM is instructed to references query elements by position, reducing hallucination risk
and aligning with LWT’s indexing notation.

Stage II: Script Compilation. As shown in the middle of Fig.2, P is compiled into a LWT-
formatted script S using the LWT Compilation Prompt T , incorporating P, compilation instruc-
tions, LWT example E . The compilation instructions (which are constant prompts Pconst) specify
the LWT format to guide the LLM in producing valid syntax. The LWT example E (which are task-
specific Ptask) demonstrates valid syntax and dependency structure on a small instance, enabling
generalization to the current (larger) input.6 To facilitate elementary steps that parse query com-
ponents, XNoT design the first LWT-instruction to break the query into its elements (e.g., listing
values for sorting tasks), allowing subsequent instructions to index individual elements by referenc-
ing the output of the first step. Because XNoT automatically generates the LWT-formatted script
from the LLM’s own solution plan, it eliminates the need for manual scripting for each new task
division. This fully automated generation of the LWT-formatted script stands in contrast to algorith-
mic prompting methods like ToT and GoT, which require manually defined control flows or Python
scripts for each task or input size. By shifting this design burden to the LLM, XNoT reduces human
effort and scales more easily across varying task divisions without manual redesign.

Stage III: LWT Script Execution. Finally, the LWT-formatted script S is executed sequentially.
XNoT initializes a List L as a cache to store intermediate outputs (Line 13 in Algorithm 1). Specif-

5Full prompt texts are provided in Appendix B.1.
6E.g., 4-number arithmetic case is provided for 16/32/64 numbers.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

ically, L appends each node’s output as the execution proceeds. If a LWT-instruction contains an
input field {N}, the value is retrieved as L[N]. If the input field is indexed as {N}[I], the value is
retrieved as L[N][I], since L[N] holds a list. The LLM then executes the formatted LWT-instruction,
and the output is appended to L for later use. This mechanism enables later instructions to selectively
reference earlier outputs, either fully or element-wise. Multiple input fields can appear in different
positions within a single instruction, allowing flexible composition of the partial results. The output
of the final instruction is returned as the answer to query q. Unlike monolithic prompting, which
processes all steps linearly and struggles to manage complex dependencies, XNoT executes a flexi-
ble network of thought, enabling more reliable reasoning on longer and more structured inputs.

5 THEORETICAL ANALYSIS

While LLM accuracy usually decays super-linearly with query length (Liu et al., 2024; Levy et al.,
2024), XNoT mitigates this issue by (i) decomposing long queries into short, context-efficient
sub-queries and (ii) merging partial results through a LWT index. We now formalize the condi-
tions under which decomposition improves end-to-end success probability with the decay exponent
γ. All proofs are presented in Appendix C.

Theorem 1 (Decomposition Benefit). LLM processes a query of length L correctly with probability

P (L) = exp
(
−aLγ

)
, a, γ > 0. (2)

If we decompose a length-L task into K > 1 equal parts of size L/K, then the joint probability of
correctly executing the decomposed parts surpasses that of the full-sequence iff γ > 1.

Theorem 1 isolates the accuracy benefit of decomposition: splitting pays off precisely when long-
context decay is super-linear (γ > 1). To turn this potential benefit into net gain, we analyze the
cost of the extra LLM calls induced from recombination.

Lemma 1 (Recombination overhead). Suppose a reasoning task of length L is divided into K seg-
ments, each of length L/K. Then, the total number of LLM calls to solve the task may be pro-
portional Kp for some overhead exponent p ≥ 0 due to the need to consolidate each intermediate
steps into the final answer. For instance, a pairwise merging over the K segments (GoT) results in a
balanced tree and incurs O(K +K logK) steps, i.e., super-linear overhead; a branching strategy
repeated K times (ToT) results in p = 2 and incurs O(K + K2) steps, i.e., quadratic overhead.7
Then, the total number of reasoning steps is O(K +Kp), which is at most O(K2).

Lemma 1 caps the worst-case overhead at quadratic in K. Together with Theorem 1, it frames the
key trade-off and demonstrates the importance of the network design whose exponent p stays below
the decay exponent γ. In particular, XNoT adaptively decomposes tasks into the most elementary
steps possible, while dynamically coordinating only the minimal dependencies required by the task.
This enables XNoT to avoid the unnecessary merge complexity of tree- or graph-based strategies,
achieving lower or equal reasoning overhead in common structured tasks.

Lemma 2 (Decay vs. overhead). Under equation 2 and overhead exponent p, an LLM answers a
decomposed task correctly with probability PSPLIT = exp

[
−aLγK p−γ

]
.

Empirically, due to the super-linear decay of LLM performance with large γ (Levy et al., 2024),
decomposition often improves robustness on larger inputs, explaining the shift from monolithic
toward algorithmic prompting that better supports modularization. However, existing methods differ
in how they manage the recombination overhead. ToT incurs p ≈ 2, with overhead growing rapidly
as input length increases. GoT applies a merging strategy, resulting in p ≈ logK. In some cases,
even CoT, despite not decomposing, can outperform these methods by avoiding the extra merge cost
entirely. In contrast, XNoT dynamically adjusts both the number of splits K and the structure of its
merge operations to minimize overhead. By scaling K proportionally with input length, XNoT keeps
each micro-prompt within the short-input regime, reducing the impact of super-linear decay. This
adaptive scaling ensures decomposition remains effective regardless of task size, enabling XNoT to
maintain robust, low-error performance on both small and large instances.

7While ToT process the full query at each step, it explores partial solutions, requiring K repetitions with K-
way branching. Pruning to one branch per step still results in O(K2) evaluations, yielding quadratic overhead.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: Comparison of prompt scheme accuracy across all benchmarks with GPT-3.5-turbo.
keyword sorting set intersection arithmetic large-digit

5 10 20 16 32 64 32 64 128 8 16 32 8 16 32

Zero Shot 0% 0% 0% 86% 0% 0% 0% 0% 0% 16% 0% 0% 40% 20% 12%
Few Shot 0% 0% 0% 88% 1% 0% 2% 0% 0% 22% 0% 0% 43% 25% 20%
L2M 0% 0% 0% 35% 6% 0% 70% 18% 0% 21% 20% 3% 42% 3% 0%
SP 2% 0% 0% 74% 0% 0% 19% 2% 1% 34% 30% 2% 22% 19% 6%
SD 0% 0% 0% 89% 60% 3% 27% 9% 0% 32% 9% 3% 36% 23% 16%
Zero-CoT 2% 0% 0% 92% 0% 0% 2% 0% 0% 26% 0% 0% 45% 25% 21%
PS 0% 0% 0% 0% 0% 0% 4% 0% 0% 20% 1% 0% 18% 16% 8%
CoT 8% 0% 0% 94% 0% 0% 5% 0% 0% 36% 14% 0% 50% 27% 23%
CoT-SC 8% 0% 0% 98% 0% 0% 7% 0% 0% 36% 12% 0% 52% 28% 24%

AoT 0% 0% 0% 24% 22% 0% 46% 0% 0% 84% 0% 0% 47% 33% 0%
ToT 1% 0% 0% 100% 12% 0% 29% 0% 0% 42% 8% 0% 40% 20% 5%
ToP 3% 0% 0% 0% 0% 0% 0% 0% 0% 10% 5% 0% 26% 9% 0%
GoT 34% 8% 6% 100% 31% 1% 44% 7% 1% 12% 5% 0% 9% 0% 0%

XNoT 93% 84% 27% 100% 92% 27% 93% 32% 20% 90% 32% 10% 98% 88% 56%

Table 3: Comparison of API costs, task-specific prompt character (token) count, and accuracy under
GPT-4o with the smallest division of each task. While all methods achieve comparable accuracy
(nea 100%), XNoT requires significantly lower API costs and manual prompt engineering effort.

keyword sorting set intersection arithmetic large-digit

ToT
API costs $1.041 $0.513 $0.320 $0.251 $0.292
Characters (# Tokens) 4986 (1274) 3240 (2014) 4114 (2064) 1609 (550) 2143 (596)
Accuracy 100% 100% 99% 100% 100%

GoT
API costs $0.647 $0.314 $0.132 $0.112 $0.156
Characters (# Tokens) 7534 (1803) 4640 (2534) 5059 (2464) 2434 (791) 3568 (853)
Accuracy 99% 100% 100% 100% 100%

XNoT
API costs $0.526 $0.267 $0.115 $0.091 $0.085
Characters (# Tokens) 1033 (278) 1049 (352) 641 (209) 1542 (395) 945 (356)
Accuracy 100% 100% 100% 100% 100%

6 EXPERIMENT

Dataset. We evaluate the scalability of our kNoT over five benchmarks: 1) Keyword provides an
article with 5–20 sentences. 2) Sorting provides an array of single-digit numbers with duplicates.
3) Set Intersection provides two lists of double-digit numbers. 4) Arithmetic provides a sequence
of double-digit arithmetic. (Floating-point answers are rounded to two decimal places.) 5) Large-
Digit provides a two multi-digit numbers. We define three problem sizes for the last four use cases
and prepare 100 test queries (examples shown in Appendix D.2.1) for each problem size.

Baseline. We compare XNoT against Least-to-most Prompting (L2M) (Zhou et al., 2023), Succes-
sive Prompting (SP) (Dua et al., 2022), Self-discover (SD) (Zhou et al., 2024), Zero-CoT (Kojima
et al., 2022), Plan-and-solve (PS) (Wang et al., 2023), Chain of Thought (CoT) (Wei et al., 2022),
Self-Consistent CoT (CoT-SC) (Wang et al., 2022), Algorithm of Thought (AoT) (Sel et al., 2024),
Tree of Thoughts (ToT) (Yao et al., 2024), Tree of Problem (ToP) (Zebaze et al., 2024), Graph of
Thoughts (GoT) (Besta et al., 2024a), as well as Few-Shot and Zero-Shot prompting.

Environment. Prompt and script design are conducted manually or with GPT-4o assistance. All
prompt executions are conducted with GPT-3.5-turbo. The LLM temperature is set to 0 in all exper-
iments to ensure deterministic and consistent outputs. Experiment results on ablation test and case
studies on (5-number) Game of 24, GSM8K, and Healthcare Triage is presented in Appendix D.

6.1 QUANTITATIVE ANALYSIS

Table 2 summarizes the results across all benchmarks. Overall, monolithic prompting (Zero-CoT,
CoT, CoT-SC, L2M, SP, SD, and PS) perform reasonably on small instances but consistently fail to
scale as input size increases. Their linear, single-pass execution prevents modular coordination of
intermediate results, limiting their scalability across tasks with larger or more complex inputs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

In contrast, algorithmic prompting (AoT, ToT, ToP, and GoT) introduce modular execution with tree
or graph structures, improving over monolithic baselines on certain tasks. However, their reliance
on rigid, hand-crafted execution scripts and fixed solution structure limits adaptability across task
divisions. This reduces their practical scalability when applied to varying problem sizes.

XNoT consistently achieves stronger scalability across all tasks by generating LWT-formatted plans
that adapt both the number of steps and their dependencies to the size and structure of each instance.

For natural language tasks, XNoT achieves the highest accuracy by decomposing articles into
sentences and processing them incrementally. While GoT also performs sentence-level processing,
its fixed merge strategy lacks the adaptive aggregation used by XNoT. In contrast, CoT and ToT
process entire articles as single units, often failing on longer inputs due to LLM capacity limitations.

For symbolic operation tasks, XNoT demonstrates both step-length and step-dependency general-
ization by dynamically generating step-by-step plans. For example, in sorting, XNoT applies count-
ing sort to avoid the quadratic step expansion in GoT’s merge sort approach, maintaining stable
performance even on larger divisions. In set intersection, XNoT checks each element individually,
outperforming baselines that attempt to process all or multiple elements due to coarse splitting.

For numerical tasks, XNoT again outperforms baselines by generating fine-grained, sequential
solution plans. While GoT performs better than monolithic methods on other tasks, its split-and-
merge design is ill-suited for arithmetic and large-digit addition, where operations must be applied
in strict sequence without partitioning the input. XNoT instead produces plans that apply operations
step-by-step, improving reliability on longer sequences. Its flexible planning also correctly manages
carry-over in large-digit addition, which other methods fail to handle effectively.

6.2 COST ANALYSIS

Table 3 compares XNoT with representative algorithmic prompting methods ToT and GoT in API
cost, task-specific prompt size, and accuracy under GPT-4o execution. As shown, all methods
achieve near 100% accuracy on the smallest division, enabling cost comparisons with no trade-
offs in accuracy. XNoT achieves the lowest cost per query by leveraging short, elementary LWT-
instructions that avoid redundant computation. In contrast, ToT and GoT require larger reason-
ing modules and repeated branching, increasing token usage and API costs. On average, XNoT
reduces task-specific prompt size by 69% compared to ToT and 78% compared to GoT. This ef-
ficiency results from XNoT’s intelligence amplification, generating detailed execution plans from
small, reusable examples.

Note that character count alone does not fully capture API costs or total engineering effort. Both
ToT and GoT perform repeated inferences within individual steps—such as branch scoring or prun-
ing—to improve reliability, amplifying execution cost beyond what is visible from prompt size
alone. In contrast, XNoT avoids such runtime repetition by performing two lightweight planning
passes upfront: one to outline the solution structure, and another to compile it into a complete
LWT-formatted execution plan. After this planning stage, execution proceeds in a single pass over
modular, elementary steps without further branching or retries.

Moreover, ToT and GoT require significant task-specific engineering outside the prompt itself, re-
lying on specialized Python scripts to control execution for each task division. These scripts are
not reflected in prompt character counts but represent a substantial hidden cost in human effort and
system complexity. XNoT eliminates this hidden burden by generating the full execution plan in
natural language, making the process both transparent and automation-friendly.

7 CONCLUSION

In this work, we introduce Executable Network of Thoughts (XNoT), a prompt scheme that en-
ables large language models to autonomously generate and execute their own solution plans. XNoT
achieves strong performance across diverse reasoning tasks while reducing human effort in task-
specific prompt engineering. By decomposing tasks into elementary steps, XNoT lowers LLM
usage cost without sacrificing accuracy. This establishes a scalable, adaptive prompting paradigm
that empowers LLMs to self-organize and execute complex reasoning processes, supporting scalable
solutions to increasingly demanding real-world tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

AlgoMonster Contributors. 24 Game - LeetCode Problem 679. https://algo.monster/
liteproblems/679, n.d. Accessed: 2025-05-21.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning
to retrieve, generate, and critique through self-reflection. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
hSyW5go0v8.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages 17682–17690, 2024a.

Maciej Besta, Florim Memedi, Zhenyu Zhang, Robert Gerstenberger, Guangyuan Piao, Nils Blach,
Piotr Nyczyk, Marcin Copik, Grzegorz Kwaśniewski, Jürgen Müller, et al. Demystifying chains,
trees, and graphs of thoughts. arXiv preprint arXiv:2401.14295, 2024b.

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling
test-time compute for enhancing llm reasoning. arXiv preprint arXiv:2412.09078, 2024.

Guanzheng Chen, Xin Li, Zaiqiao Meng, Shangsong Liang, and Lidong Bing. CLEX: Con-
tinuous length extrapolation for large language models. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
wXpSidPpc5.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023a.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. Transactions on
Machine Learning Research, 2023b. ISSN 2835-8856. URL https://openreview.net/
forum?id=YfZ4ZPt8zd.

Zihan Chen, Song Wang, Zhen Tan, Xingbo Fu, Zhenyu Lei, Peng Wang, Huan Liu, Cong Shen,
and Jundong Li. A survey of scaling in large language model reasoning. arXiv preprint
arXiv:2504.02181, 2025.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan
Yang, and Mao Yang. LongroPE: Extending LLM context window beyond 2 million to-
kens. In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=ONOtpXLqqw.

Dheeru Dua, Shivanshu Gupta, Sameer Singh, and Matt Gardner. Successive prompting for de-
composing complex questions. In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 1251–1265, 2022.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=yf1icZHC-l9.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pages 10764–10799. PMLR, 2023.

Yilun Hao, Yang Zhang, and Chuchu Fan. Planning anything with rigor: General-purpose zero-shot
planning with LLM-based formalized programming. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
0K1OaL6XuK.

Ruixin Hong, Hongming Zhang, Xiaoman Pan, Dong Yu, and Changshui Zhang. Abstraction-of-
thought makes language models better reasoners. In EMNLP (Findings), pages 1993–2027, 2024.
URL https://aclanthology.org/2024.findings-emnlp.110.

10

https://algo.monster/liteproblems/679
https://algo.monster/liteproblems/679
https://openreview.net/forum?id=hSyW5go0v8
https://openreview.net/forum?id=hSyW5go0v8
https://openreview.net/forum?id=wXpSidPpc5
https://openreview.net/forum?id=wXpSidPpc5
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=ONOtpXLqqw
https://openreview.net/forum?id=ONOtpXLqqw
https://openreview.net/forum?id=yf1icZHC-l9
https://openreview.net/forum?id=0K1OaL6XuK
https://openreview.net/forum?id=0K1OaL6XuK
https://aclanthology.org/2024.findings-emnlp.110

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information
Systems, 43(2):1–55, 2025.

Md Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. Mapcoder: Multi-agent code
generation for competitive problem solving. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 4912–4944, 2024.

Yunjie Ji, Yong Deng, Yan Gong, Yiping Peng, Qiang Niu, Lei Zhang, Baochang Ma, and Xiangang
Li. Exploring the impact of instruction data scaling on large language models: An empirical study
on real-world use cases. arXiv preprint arXiv:2303.14742, 2023.

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, Wenyue Hua, Yanda Meng, Yongfeng Zhang,
and Mengnan Du. The impact of reasoning step length on large language models. In ACL
(Findings), pages 1830–1842, 2024. URL https://doi.org/10.18653/v1/2024.
findings-acl.108.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics, 2021.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input length on
the reasoning performance of large language models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15339–15353,
2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 4582–4597, 2021.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 11:157–173, 2024.

Pei Liu, Xin Liu, Ruoyu Yao, Junming Liu, Siyuan Meng, Ding Wang, and Jun Ma. Hm-rag:
Hierarchical multi-agent multimodal retrieval augmented generation, 2025. URL https://
arxiv.org/abs/2504.12330.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM computing surveys, 55(9):1–35, 2023.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, and Yu Wang. Skeleton-of-
thought: Large language models can do parallel decoding. NeurIPS 2023 Workshop on Efficient
Natural Language and Speech Processing (ENLSP), 2023.

11

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2024.findings-acl.108
https://doi.org/10.18653/v1/2024.findings-acl.108
https://arxiv.org/abs/2504.12330
https://arxiv.org/abs/2504.12330

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th annual acm symposium on user interface software and technology, pages 1–22, 2023.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 15174–15186, 2024.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei
Huang, and Huajun Chen. Reasoning with language model prompting: A survey. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 5368–5393, 2023.

Swarnadeep Saha, Omer Levy, Asli Celikyilmaz, Mohit Bansal, Jason Weston, and Xian Li. Branch-
solve-merge improves large language model evaluation and generation. In Proceedings of the
2024 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (Volume 1: Long Papers), pages 8345–8363, 2024.

Bilgehan Sel, Ahmad Tawaha, Vanshaj Khattar, Ruoxi Jia, and Ming Jin. Algorithm of thoughts: En-
hancing exploration of ideas in large language models. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=KJL2b6BthC.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed Chi, Nathanael Schärli,
and Denny Zhou. Large language models can be easily distracted by irrelevant context. In Pro-
ceedings of the 40th International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

SungUk Shin and Youngjoon Kim. Enhancing graph of thought: Enhancing prompts with LLM ra-
tionales and dynamic temperature control. In The Thirteenth International Conference on Learn-
ing Representations, 2025. URL https://openreview.net/forum?id=l32IrJtpOP.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Cote, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. {ALFW}orld: Aligning text and embodied environments for interactive learning. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=0IOX0YcCdTn.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of thoughtlessness? an
analysis of cot in planning. In The Thirty-eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024. URL https://openreview.net/forum?id=kPBEAZU5Nm.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. In Proceedings of the 61st Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2609–2634, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

12

https://openreview.net/forum?id=KJL2b6BthC
https://openreview.net/forum?id=l32IrJtpOP
https://openreview.net/forum?id=0IOX0YcCdTn
https://openreview.net/forum?id=0IOX0YcCdTn
https://openreview.net/forum?id=kPBEAZU5Nm

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is less: Under-
standing chain-of-thought length in llms. arXiv preprint arXiv:2502.07266, 2025.

Shangzi Xue, Zhenya Huang, Jiayu Liu, Xin Lin, Yuting Ning, Binbin Jin, Xin Li, and Qi Liu.
Decompose, analyze and rethink: Solving intricate problems with human-like reasoning cycle.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=NPKZF1WDjZ.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pages 2369–2380, 2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Zhangyue Yin, Qiushi Sun, Cheng Chang, Qipeng Guo, Junqi Dai, Xuan-Jing Huang, and Xipeng
Qiu. Exchange-of-thought: Enhancing large language model capabilities through cross-model
communication. In Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 15135–15153, 2023.

Armel Zebaze, Benoı̂t Sagot, and Rachel Bawden. Tree of problems: Improving structured problem
solving with compositionality. arXiv preprint arXiv:2410.06634, 2024.

Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng Shen, Matei Zaharia, Ion Stoica, and Joseph E.
Gonzalez. RAFT: Adapting language model to domain specific RAG. In First Conference on Lan-
guage Modeling, 2024a. URL https://openreview.net/forum?id=rzQGHXNReU.

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu, and Volker Tresp. Webpilot: A versatile and
autonomous multi-agent system for web task execution with strategic exploration. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39, pages 23378–23386, 2025.

Yifan Zhang, Yang Yuan, and Andrew Chi-Chih Yao. On the diagram of thought. arXiv preprint
arXiv:2409.10038, 2024b.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=5NTt8GFjUHkr.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm
agents are experiential learners. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 19632–19642, 2024.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schu-
urmans, Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting
enables complex reasoning in large language models. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
WZH7099tgfM.

Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-Tze Cheng, Quoc V Le, Ed Chi, Denny Zhou,
Swaroop Mishra, and Huaixiu Steven Zheng. Self-discover: Large language models self-compose
reasoning structures. Advances in Neural Information Processing Systems, 37:126032–126058,
2024.

13

https://openreview.net/forum?id=NPKZF1WDjZ
https://openreview.net/forum?id=rzQGHXNReU
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Table 4: Terminology and Notations
Name Notation Definition
Reasoning step – A discrete unit of inference bridging an input or intermediate result to

a partial solution or next conclusion.
Elementary step – The smallest indivisible reasoning unit that transforms input into an

intermediate result, e.g., summing two numbers.
Inference pass – A single forward execution of the LLM that generates output from a

given prompt.
Modularization – Executing reasoning steps in separate inference passes, allowing flex-

ible control over reasoning flow and structure.
Solution structure – A solution structure is the abstract outline which a prompt scheme

follows to arrange reasoning steps into a chain, tree, graph, or network.
Fixed structures are predetermined (e.g., ToT, GoT), while dynamic
structures (e.g., XNoT) are generated at runtime per query.

Sequence length
generalization

– The model’s ability to solve longer queries by expanding the num-
ber of reasoning steps (step-length generalization) while maintaining
correct inter-step dependencies (step-dependency generalization).

Intelligence am-
plification

– Enhancement of human reasoning by LLM assistance. XNoT achieves
this by enabling the LLM to dynamically derive solution structures
using a compact LWT example E , minimizing manual prompt design.

Manual labor – The human effort needed to adapt a prompt scheme to new tasks, quan-
tified by the character or token count of task-specific prompts.

LLM Workflow
Template

LWT The structured format in XNoT that labels each reasoning step and
specifies its input references. Fields are dynamically replaced during
execution.

LWT-instruction – A single step in a LWT script that defines an action and indexed input
dependencies.

LWT-formatted
script

S A network of multiple LWT-instructions, where each instruction
(node) may depend on outputs of earlier steps (edges).

Algorithm A The overarching procedural logic of a prompt scheme. For XNoT, see
Algorithm 1.

Constant prompts Pconst Prompts that encode stable task logic and remain unchanged across
different queries.

Task-specific
prompts

Ptask Prompts manually crafted for new tasks, often including examples or
constraints.

Input query q A task instance submitted to the LLM. For generalization tasks, it of-
ten involves a variable-length sequence.

Task description C A brief task overview with high-level strategy hints, such as “use
counting sort.”

Knowledge Ex-
traction Prompt

K A knowledge extraction prompt for deriving an LLM-generated solu-
tion plan P from its own latent understanding, using q, C, and system
prompt Psys. It enforces step simplicity and acyclic positional refer-
ences.

LLM solution
plan

P A free-text reasoning outline generated by the LLM in response to K,
prior to formalization into LWT.

LWT example E A manually constructed LWT-formatted example on a smaller in-
stance (e.g., a 4-number case for 8/16/32-number arithmetic), used
to guide structure transfer.

LWT Compila-
tion Prompt

T A translation prompt that converts P into an executable LWT S using
E , C, q, and a system prompt Psys.

A EXTENDED RELATED WORK

This section provides a detailed analysis of prior prompt scheme designs, focusing on their struc-
tural assumptions, limitations, and comparisons with our proposed method, Executable Network
of Thoughts (XNoT). We categorize existing approaches into two groups: monolithic prompting,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Figure 3: Additional illustration of prompt schemes.

which performs a fixed number of reasoning steps or traverses subproblems in a single loop, and
algorithmic prompting, which defines complex solution structures such as trees or graphs to co-
ordinate multi-step reasoning. We review the progression of prompt schemes, focusing on their
capabilities across four key dimensions: modularized step, which captures the ability to isolate and
execute reasoning steps separately; elementary step, which measures how finely the method breaks
down computation; network of thought, which refers to the method’s capacity to coordinate and
reuse intermediate steps across complex dependency graphs; and intelligence amplification, which
considers the extent to reduce human prompt engineering by leveraging the LLM’s autonomous
reasoning. Table 4 defines these core dimensions along with key terminology used throughout the
paper.

A.1 MONOLITHIC PROMPTING

Chain-of-Thought (CoT) (Wei et al., 2022) introduces a prompting strategy where LLMs are guided
through reasoning using few-shot step-by-step examples and a corresponding instruction, namely,
“Let’s think step-by-step.” However, CoT executes the entire reasoning process within a single in-
ference pass, lacking modularization and control over the structure or flow of information. As task
complexity increases, this monolithic execution leads to longer prompts and higher error rates due
to the LLM’s reduced reliability over extended contexts (Liu et al., 2024). While some studies (Fu
et al., 2023; Jin et al., 2024) report that longer CoT outputs are associated with higher accuracy—
possibly due to the implicit inclusion of more reasoning steps—they do not explicitly link this to
decomposition into elementary steps. Crucially, CoT offers no mechanism to enforce such granu-
larity; the LLM may ignore the example structure, usually requiring repeated sampling and answer
aggregation to ensure quality (Wang et al., 2022), thereby increasing computational cost. Recent
findings confirm that excessive output length ultimately degrades performance (Wu et al., 2025),
highlighting the limitations of non-modular prompting.

Several extensions of CoT aim to improve its usability and consistency. Zero-shot Chain of Thought
(Zero-CoT) (Kojima et al., 2022) shows that appending only the instruction “Let’s think step by
step,” without the step-by-step reasoning examples, can still elicit intermediate reasoning and im-
proved performances. Automatic Chain-of-Thought (Auto-CoT) (Zhang et al., 2023) leverages
Zero-CoT to automatically generate step-by-step examples, increasing the portability of CoT. Self-
Consistency (Wang et al., 2022) and follow-up works (Fu et al., 2023; Jin et al., 2024) enhance
answer reliability by sampling multiple CoT results and selecting the most consistent response. De-
spite these improvements, all approaches inherit CoT’s core limitations, including monolithic rea-
soning, lack of modular execution, and reliance on a single inference pass. These properties hinder
scalability to complex tasks with many steps, where context length becomes a bottleneck (Wu et al.,
2025). As such, CoT-style methods are also criticized for their weak planning capabilities (Stechly
et al., 2024).

Subsequent work moves toward modularized prompting, either by introducing structured interme-
diate stages that impose planning behaviors (Wang et al., 2023; Zhou et al., 2024), or by iterating
over a decomposed sequence of subproblems (Zhou et al., 2023; Dua et al., 2022; Ning et al., 2023).
To improve planning ability, Plan-and-Solve Prompting (PSP) (Wang et al., 2023) adopts a mono-
lithic format similar to Zero-CoT but introduces more explicit prompts for planning. Self-Discover
(SD) (Zhou et al., 2024) advances this idea with prompt modules that offer conceptual heuristics.
SD applies three separate inference steps: selecting a planning module, adapting it to the query, and

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

executing the adapted plan. Abstraction-of-Thought (Hong et al., 2024) simply provides slightly
more advanced examples to CoT, where the step-by-step process involves abstractions and high-
level ideas. Nevertheless, these methods remain rigid, relying on handcrafted scripts and lacking
runtime structural adaptability.

Least-to-Most Prompting (L2M) (Zhou et al., 2023) uses a single LLM to solve subproblems with in-
creasing difficulty, while Successive Prompting (SP) (Dua et al., 2022) alternates between two (sep-
arately fine-tuned) LLM models to iteratively decompose and solve subproblems. Both approaches
require extensive manual configuration tailored to each decomposition stage (e.g., examples for first-
stage decomposition versus later stages conditioned on earlier subproblem solutions). Moreover, as
they accumulate intermediate outputs in the prompt, context length grows linearly with the num-
ber of steps, eventually encountering the same limitations as CoT. Skeleton-of-Thought (SoT) (Ning
et al., 2023) proposes a two-stage scheme to first generate an outline, then execute each point with
separate inference calls. This strategy achieves significant speedups with parallel inferences. How-
ever, SoT lacks inter-step coherence and ignores the dependencies between points, thus limiting its
applicability to tasks requiring sequential or interdependent reasoning, such as math or logic.

Overall, monolithic prompting methods lack modularity, operate at coarse granularity, and fail to
support alternative solution structures automatically. Their performance degrades with increasing
input complexity or sequence length. On the contrary, XNoT retains the simple, few-step prompt-
ing scheme for planning and a sequential execution, consistent with the simplicity of monolithic
prompting, yet forms a structured network of dependencies between modularized reasoning steps
via indexed fields through the LWT format. The indexing design further enables precise reference
to subcomponents of the input, allowing each instruction to be tailored to an elementary reasoning
step. As a result, XNoT achieves fine-grained decomposition, modular execution, and network of
thought generalization within a linear control flow.

A.2 ALGORITHMIC PROMPTING

Prompt schemes in this category leverage complex algorithm designs to offer modular LLM ex-
ecution and introduce alternative solution structures that arrange reasoning steps following tree
or graph-based abstractions. For instance, Tree-of-Thoughts (ToT) (Yao et al., 2024) employs a
breadth-first search (BFS) algorithm, where the tree search branches out by repeatedly prompting
LLMs to generate the next step, then pruned by prompting the LLMs to evaluate the resulting state.
Algorithm-of-Thought (AoT) (Sel et al., 2024) takes a step beyond ToT to include depth-first search
(DFS) with extensive prompt and code engineering. Forest-of-Thought (FoT) (Bi et al., 2024) dupli-
cates ToT by maintaining parallel ToT trees as separate branches, and iteratively selecting the tree
to continue branching to the next level by scoring with LLMs the intermediate states and comparing
across different trees.

Graph-of-Thoughts (GoT) (Besta et al., 2024a) generalize ToT’s approach with an additional
“merge” module, which allows different branches to be joined back together. However, it only
provides use cases that are all solved by a single split-solve-then-merge workflow. In particular, to
enhance performance, GoT needs to repeat a particular action multiple times and then select the best
result by external or LLM evaluation. Tree-of-Problems (ToP) (Zebaze et al., 2024) is similar to GoT
but removes the repeated inference and selection process to reduce complexity. In addition, while
GoT focuses on dissecting an input query into subproblems, Branch-solve-merge (Saha et al., 2024)
follows the same structure but targets open-ended problems, aiming to evaluate different LLM re-
sponses over several predefined evaluation criteria branches, and merging all evaluations for a final
score.

Although algorithmic prompting often achieves stronger performance, it typically requires task-
specific logic and prompt engineering, limiting adaptability. First, these methods are difficult to
generalize across tasks. For example, both ToT (Yao et al., 2024) and GoT (Besta et al., 2024a)
rely on separate Python files with hard-coded logic tailored to each task, requiring manual imple-
mentation of task-specific reasoning flows. By contrast, XNoT operates with a simple loop structure
similar to monolithic prompting methods, but incorporates more expressive networked dependencies
through the LWT format.

Second, despite their modular design, algorithmic prompting methods are brittle due to reliance on
handcrafted code and static prompt templates. They cannot dynamically and automatically adjust

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Figure 4: Illustrations of human labor (orange block ␣) and LLM operation (blue block ␣) required
for adapting a prompt scheme to a new task. prompt engineering algorithm. Gray blocks ␣ indicate
the labor involved in designing constant prompts, which do not require redesign for new tasks.

Table 5: Delineation of the system versus the task-specific prompts (an average character count) for
XNoT. We highlight constant, task-specific, and LLM-generated prompts in gray, orange, and blue.

Stage Constant Prompt Pconst Task-specific Prompt Ptask

I Extraction instructions (274) Task description C (172)
II Translation instructions (516) LWT Example E (561)
III – LWT-formatted script S (1767)

their solution structures at runtime and lack the flexibility to generalize across varying input lengths
within the same task, failing to preserve elementary steps. For example, ToT is fixed to the 4-
number version of the Game of 24 and cannot be applied to 5-number inputs without substantial
redesign. GoT, in turn, requires different prompt examples for different sequence lengths, such as in
sorting tasks, further limiting scalability.

Remark. A primary limitation of ToT and GoT is their insufficient support for elementary steps
and rigid structure for networks of thought. ToT processes the entire query, branching on partial
solutions and discarding incorrect ones, while GoT imposes a predefined structure, e.g., a four-
way split-then-merge graph. Although four-way splitting can reduce an 8-number addition to 2-
number operations, it forces each step of a 64-number addition to handle eight numbers in zero-shot,
compromising elementary steps and degrading performance (Table 2). Simply increasing a four-way
split to a 32-way split doesn’t address how to merge and chain the resulting partial outputs; while
merging four results may be straightforward, merging 32 is significantly more complex. In contrast,
XNoT applies intelligence amplification (not supported by prior works (Yao et al., 2024; Besta et al.,
2024a)) to generate a dynamic structure for each query. By splitting the query at the outset, XNoT
employs elementary steps for precise execution. XNoT achieves both step-length generalization
by dynamically adding more steps for larger problems and step-dependency generalization through
its flexible indexed input fields that maintain correct relationships between operations regardless of
problem size. The LWT format’s ability to specify precise dependencies through indexing enables
XNoT to organize complex reasoning networks that adapt to varying problem sizes more effectively
than prior approaches that process the entire query (CoT, ToT) or coarse partitions (GoT), thus
improving reliability across varying problem sizes.

Moreover, XNoT leverages intelligence amplification to generalize a single design across a range of
input complexities. A single LWT example for an arithmetic sequence of length four can be reused
to solve instances of length 8, 16, or 32. XNoT dynamically constructs a query-specific LWT-
formatted script by following the structural logic and syntax of the example, scaling the solution to
match the input while maintaining modularity and step granularity.

A.3 OVERALL COMPARISON

In contrast to prior work, XNoT achieves full coverage across all four dimensions: modularization,
elementary step decomposition, networked reasoning, and intelligence amplification (see Table 1).
It requires no handcrafted control logic and supports structural generalization through reusable
prompting. As shown in Section 6, XNoT consistently outperforms baseline methods, especially
in tasks requiring long-sequence processing or dynamic decomposition. For example, a script for a

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

4-number version of Game of 24 can be generalized by the LLM into a 5-number version using a
single prompt. This level of structural transfer and modular reuse is not supported by any existing
method.

Furthermore, we specifically highlight a comparison between XNoT and prior works on the human
effort in prompt engineering. First, we present an illustration that demonstrates how XNoT solves
the Prompt Engineering Problem with less human effort. As shown in Figure 4, unlike prior ap-
proaches that require redesigning both task instructions and few-shot examples for each task, XNoT
only reduces the required manual effort for prompt design by allowing LLM operations to provide
the task instructions within the task-specific design. The second phase usually must be repeated for
each task t ∈ T , creating a bottleneck for scalability. For example, ToT and GoT require separate
manual instructions and few-shot examples for multiple modules. In contrast, XNoT reduces human
effort by leveraging LLMs to automatically generate suitable instructions.

Besides, Table 5 shows a breakdown of the constant and task-specific prompt components in XNoT.
Constant prompts, which remain unchanged across tasks, include extraction and translation instruc-
tions. Task-specific prompts consist of a brief task description, a representative example, and an
LLM-generated script. The average character counts indicate that most of the prompt volume resides
in the automatically generated content, further reducing the human burden in prompt engineering.

A.4 OTHER WORKS

Beyond intrinsic prompting strategies, a variety of alternative approaches have been explored to
enhance LLM reasoning. Nevertheless, they fall outside the scope of this work since they require
fine-tuning the underlying LLMs or external tools or interactive environments (Yang et al., 2018;
Shridhar et al., 2021).

Reactive prompting methods, such as ReAct (Yao et al., 2022) and Reflexion (Shinn et al., 2024),
and ExpeL (Zhao et al., 2024), interleave LLM reasoning with feedback from an external environ-
ment (Yang et al., 2018; Shridhar et al., 2021) to gain experience. These techniques are particularly
effective for embodied agents and sequential decision-making tasks where intermediate actions can
be evaluated and corrected. However, they do not provide a structured decomposition of reasoning
steps and are not applicable in static settings like symbolic computation or pure language under-
standing, where no interactive feedback loop exists.

Tool-use prompting introduces external computation resources into the reasoning pipeline. Program-
aided methods (Chen et al., 2023b; Gao et al., 2023), for instance, offload symbolic subroutines to
interpreters or APIs. While highly precise, these approaches are generally limited to tasks with for-
mal programmatic definitions and are unsuitable for broader language-based reasoning or general-
purpose workflows. Moreover, tool integration introduces operational overhead and additional in-
frastructure requirements.

Open-ended prompting methods aim to enhance LLMs’ reasoning through abstraction, internal di-
alogue, or collaboration. For example, Diagram-of-Thought (DoT) (Zhang et al., 2024b) models
the reasoning process as an internal directed acyclic graph within a single LLM, organizing sub-
problems through refinement and verification cycles. These frameworks aim to improve expressivity
and creativity but often lack structured modularization and introduce complexity in control flow and
evaluation.

Finally, some approaches involve modifying the LLM itself through fine-tuning or reinforcement
learning (Lester et al., 2021; Li and Liang, 2021; Hu et al., 2022). While these methods can enhance
reasoning performance, they incur high computational costs and reduce portability across tasks and
model architectures. In parallel, retrieval-augmented generation (RAG) (Lewis et al., 2020; Asai
et al., 2024; Zhang et al., 2024a) improves factual accuracy by supplying the LLM with external in-
formation retrieved based on the input query. However, RAG requires a comprehensive data source,
which may limit its applicability across diverse or under-resourced tasks.

A.5 RELATION TO MULTI-AGENT SYSTEMS (MAS)

XNoT is a prompt-native, declarative framework that encodes reasoning as an explicit DAG within
the prompt via LLM Workflow Template (LWT). LWT captures decomposition, control flow, and

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 6: Conceptual comparison across paradigms.
Aspect MAS (Multi-Agent

Systems)
XNoT Algorithmic

Prompting
Monolithic Prompt-
ing

Primary
strength

Coordination of roles
and external tools
(memory, retrieval,
APIs).

Prompt-level DAG
(LWT) enabling
long-horizon reason-
ing.

Fixed structures
(trees, split–merge)
for modularization.

Simple linear chains;
efficient but brittle on
long dependencies.

Typical
domains

Software engi-
neering, social
simulation, interac-
tive planning.

Decomposable tasks
with fixed solution
shapes.

Decomposable tasks
with fixed solution
shapes.

Short or open-ended
prompts without con-
trol flow.

Cost
profile

High (orchestration,
memory, retrieval,
tools, planners).

Low (single LLM;
no external infras-
tructure).

Low–medium (mul-
tiple passes, prompt
design).

Lowest (single pass).

Reasoning
pattern

Parallel/linear or-
chestration across
roles.

Versatile Network-
of-Thought

Hard-coded tree or
split–merge; limited
adaptivity.

Linear chain-of-
thought; no branch-
ing.

Main
chal-
lenge

Coordination over-
head, conflict
resolution.

Maintaining co-
herence over long,
interdependent
DAGs.

Inflexibility and per-
task engineering.

Error accumulation,
limited generaliza-
tion.

message dependencies, enabling end-to-end execution by a single model (optionally distributed)
without role dispatch. See Table 6 for a side-by-side comparison of XNoT with MAS and related
prompting paradigms.

By contrast, Multi-agent Systems (MAS) (Wu et al., 2023; Qian et al., 2024; Liu et al., 2025) orga-
nizes fixed or dynamic roles (planner, executor, validator) and coordinates them via message passing
and tools (Wu et al., 2023; Qian et al., 2024), emphasizing system-level orchestration for domains
like software development (Qian et al., 2024; Islam et al., 2024), social simulation (Park et al., 2023;
Yin et al., 2023), and interactive planning (Hao et al., 2025; Zhang et al., 2025). These settings are
largely orthogonal to prompt-native, language-only reasoning.

Because LWT materializes a DAG, XNoT can serve as a control backbone within MAS controllers
(principled sub-task routing, auditable traces, optional parallelization). Thus the two are comple-
mentary: MAS handles system-level coordination, while XNoT provides an interpretable, low-
overhead reasoning core for language-only workflows.

B XNOT DESIGN AND IMPLEMENTATION DETAILS

We present detailed examples of XNoT, providing constant prompt templates, i.e., Knowledge Ex-
traction Prompt and LWT Compilation Prompt , and LLM-generated prompts, i.e., the LLM solution
plan and the LWT-formatted script. Please see Appendix D.2.1 for input query examples. Note that
occurrences of “. . .” in the prompts are part of the actual prompt text rather than abbreviations,
whereas “=====” denotes omitted LLM-generated outputs that obviously follow a repetitive pat-
tern.

B.1 FULL PROMPT EXAMPLES WITH 8-NUMBER ARITHMETIC CALCULATION

Knowledge Extraction Prompt Text in red and orange corresponds to the input query q and
the task description C, respectively, and can be swapped out for other use-case examples. In the
following prompt examples, we follow the color scheme where text in black font color denotes con-
stant prompts that remain unchanged across different tasks, text in orange denotes human-prepared
task-specific prompts, and text in blue denotes LLM-generated prompts.

Given the following question:
Input: 5*5/5*4+8-8+3*9

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Context: Perform the arithmetic result of Input. You can only operate two numbers at a time.
Calculate from left to right. Do multiplication and division first.
The Input is the input query. The Context is the goal we want to achieve.
Please use your knowledge to create a solution in a step-by-step manner without any numbers.
Every step needs to be as easy as possible. Use Step0, Step1, Step2 to represent the result.
Don’t use a for loop to reduce the step. Don’t directly use any element in the Input.

LWT Compilation Prompt Text in blue at the top is the LLM solution plan, whereas text in
orange at the bottom is the LWT example. Note that parts of the prompt (Input and Context) are
identical to the Knowledge Extraction Prompt .

Based on your expert knowledge:
Step0: first number * second number
Step1: Step0 / third number
Step2: Step1 * fourth number
Step3: Step2 + fifth number
Step4: Step3 - sixth number
Step5: Step4 + seventh number * eighth number
and the example below, create a script to solve the following question:
Input: 5*5/5*4+8-8+3*9
Context: Perform the arithmetic result of Input. You can only operate two numbers at a time.
Calculate from left to right. Do multiplication and division first.
The Input is the input query. The Context is the goal we want to achieve.
You have to follow the rules to create a script.
This script should be numbered and contains several instructions to be called line-by-line in a
sequential order.
Use (number) to represent each line. The line numbering starts from 0.
You can use LLM Inference: use LLM(“Your Instruction”) to find the answer.
Use {(index)} to represent the variable you want to replace with the previous result.
Use {(Input)}, {(Set1)}, ... to represent Input, not allowed to use numbers directly.
Use Python indexing to get the element in the list (E.g., {(0)}[0], {(0)}[1]). Do not directly use
numbers.
Here is one example.
(0)=LLM(“Given {(input)}, Split the numbers without operators. Only output list.”)
(1)=LLM(“Add({(0)}[0], {(0)}[2]). Only output number. If contains floating point, round to
two decimal places.”)
(2)=LLM(“Subtraction({(0)}[1], {(1)}). Only output number. If contains floating point, round
to two decimal places.”)
(3)=LLM(“Multiply({(0)}[1], {(1)}). Only output number. If contains floating point, round to
two decimal places.”)
(4)=LLM(“Divide({(0)}[1], {(1)}). Only output number. If it contains a floating point, round to
two decimal places.”)

LWT-formatted script:

(0)=LLM(“Given {(input)}, Split the numbers without operators. Only output list.”)
(1)=LLM(“Multiply({(0)}[0], {(0)}[1]). Only output number. If contains floating point, round
to two decimal places.”)
(2)=LLM(“Divide({(1)}, {(0)}[2]). Only output number. If contains floating point, round to two
decimal places.”)
(3)=LLM(“Multiply({(2)}, {(0)}[3]). Only output number. If contains floating point, round to
two decimal places.”)
(4)=LLM(“Add({(3)}, {(0)}[4]). Only output number. If contains floating point, round to two
decimal places.”)
(5)=LLM(“Subtraction({(4)}, {(0)}[5]). Only output number. If contains floating point, round
to two decimal places.”)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

(6)=LLM(“Multiply({(0)}[6], {(0)}[7]). Only output number. If contains floating point, round
to two decimal places.”)
(7)=LLM(“Add({(5)}, {(6)}). Only output number. If it contains a floating point, round to two
decimal places.”)

B.2 TASK-SPECIFIC PROMPTS AND LLM-GENERATED PROMPTS OF EACH USE CASE

Keyword Counting Every Input in keyword counting contains an article with 14 to 20 sentences.
XNoT divide the whole article into sentences and check the keyword one by one. In the final step,
we will output an array combined with previous results.
Task description:

Output all words about countries in the article. You can separate the article into sentences first.

LWT example:

(0)=LLM(“Split the following article into sentences: ‘{(input)}’. Output an array.”)
(1)=LLM(“Extract all country names (no continents) in the order of their appearance from the
following sentence (repeated is allowed): “{(0)}[0]” Output [] if not exist any country.”)
(2)=LLM(“Extract all country names (no continents) in the order of their appearance from the
following sentence (repeated is allowed): “{(0)}[1]” Output [] if not exist any country.”)
(3)=LLM(“Extract all country names (no continents) in the order of their appearance from the
following sentence (repeated is allowed): “{(0)}[2]” Output [] if not exist any country.”)
...
(20)=LLM(“Extract all country names (no continents) in the order of their appearance from the
following sentence (repeated is allowed): “{(0)}[19]” Output [] if not exist any country.”)
(21)=LLM(“Combine {(1)}, {(2)}, {(3)}, {(4)}, {(5)}, {(6)}, {(7)}, {(8)}, {(9)}, {(10)},
{(11)}, {(12)}, {(13)}, {(14)}, {(15)}, {(16)}, {(17)}, {(18)}, {(19)}, {(20)} in one array.
Repeated is allowed.”)

LLM solution:

Step0: Identify the first sentence in the Input.
Step1: Extract the country names from the first sentence: Norway, Sweden, Norway, Sweden.
Step2: Identify the second sentence in the Input.
Step3: Extract the country names from the second sentence: Canada, United States.
Step4: Identify the third sentence in the Input.
Step5: Extract the country names from the third sentence: Canada, United States.
Step6: Identify the fourth sentence in the Input.
Step7: Extract the country names from the fourth sentence: Portugal, Spain, Portugal.
Step8: Identify the fifth sentence in the Input.
Step9: Extract the country names from the fifth sentence: Spain, Portugal, Norway, Sweden,
Canada, United States.
Step10: Identify the sixth sentence in the Input.
Step11: Extract the country names from the sixth sentence: South Korea, North Korea.
Step12: Identify the seventh sentence in the Input.
Step13: Extract the country names from the seventh sentence: North Korea, South Korea.
Step14: Identify the eighth sentence in the Input.
Step15: Extract the country names from the eighth sentence: Australia, New Zealand.
Step16: Identify the ninth sentence in the Input.
Step17: Extract the country names from the ninth sentence: Australia, New Zealand.
Step18: Identify the tenth sentence in the Input.
Step19: Extract the country names from the tenth sentence: South Africa, Zimbabwe.
Step20: Identify the eleventh sentence in the Input.
Step21: Extract the country names from the eleventh sentence: South Africa, Zimbabwe.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Step22: Identify the twelfth sentence in the Input.
Step23: Extract the country names from the twelfth sentence: Norway, Australia, Canada, Zim-
babwe.

LWT-formatted script:

(0)=LLM(“Split the following article into sentences: ’{(input)}’. Output an array.”)
(1)=LLM(“Extract all country names (no continents) in the order of their appearance from the
following sentence (repeated is allowed): ’{(0)}[0]’. Output [] if not exist any country.”)
(2)=LLM(“Extract all country names (no continents) in the order of their appearance from the
following sentence (repeated is allowed): ’{(0)}[1]’. Output [] if not exist any country.”)
(3)=LLM(“Extract all country names (no continents) in the order of their appearance from the
following sentence (repeated is allowed): ’{(0)}[2]’. Output [] if not exist any country.”)
(4)=LLM(“Extract all country names (no continents) in the order of their appearance from the
following sentence (repeated is allowed): ’{(0)}[3]’. Output [] if not exist any country.”)
(5)=LLM(“Extract all country names (no continents) in the order of their appearance from the
following sentence (repeated is allowed): ’{(0)}[4]’. Output [] if not exist any country.”)
(6)=LLM(“Extract all country names (no continents) in the order of their appearance from the
following sentence (repeated is allowed): ’{(0)}[5]’. Output [] if not exist any country.”)
(7)=LLM(“Extract all country names (no continents) in the order of their appearance from the
following sentence (repeated is allowed): ’{(0)}[6]’. Output [] if not exist any country.”)
(8)=LLM(“Extract all country names (no continents) in the order of their appearance from the
following sentence (repeated is allowed): ’{(0)}[7]’. Output [] if not exist any country.”)
(9)=LLM(“Extract all country names (no continents) in the order of their appearance from the
following sentence (repeated is allowed): ’{(0)}[8]’. Output [] if not exist any country.”)
(10)=LLM(“Extract all country names (no continents) in the order of their appearance from the
following sentence (repeated is allowed): ’{(0)}[9]’. Output [] if not exist any country.”)
(11)=LLM(“Extract all country names (no continents) in the order of their appearance from the
following sentence (repeated is allowed): ’{(0)}[10]’. Output [] if not exist any country.”)
(12)=LLM(“Combine {(1)}, {(2)}, {(3)}, {(4)}, {(5)}, {(6)}, {(7)}, {(8)}, {(9)}, {(10)}, {(11)}
in one array. Repeated is allowed.”)

Sorting Task description:

Sort input in ascending order. You can use counting sort.

LWT example:

(0)=LLM(“Initialize an array of size 10 to zero.”)
(1)=LLM(“Increment the count at index {(input)}[0] in {(0)} (index start from 0). Only output
updated array.”)
(2)=LLM(“Increment the count at index {(input)}[1] in {(1)} (index start from 0). Only output
updated array.”)
...
(16)=LLM(“Increment the count at index {(input)}[15] (start from 0) in {(15)}. Only output
updated array.”)
...
(length+1)=LLM(“Convert {(length)} in English. Output an array.”)
(length+2)=LLM(“The array should contain {(length+1)}[0] 0s, {(length+1)}[1] 1s,
{(length+1)}[2] 2s, {(length+1)}[3] 3s, {(length+1)}[4] 4s. Output in array format.”)
(length+3)=LLM(“The array should contain {(length+1)}[5] 5s, {(length+1)}[6] 6s,
{(length+1)}[7] 7s, {(length+1)}[8] 8s, {(length+1)}[9] 9s. Output in array format.”)
(length+4)=LLM(“Combine {(length+2)} and {(length+3)} in ascending order. Only output
array.”)

LLM plan:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Step0: Start with the input list: [‘first number’, ‘second number’, ‘third number’, ‘fourth num-
ber’, ‘fifth number’, ‘sixth number’, ‘seventh number’, ‘eighth number’, ‘ninth number’, ‘tenth
number’, ‘eleventh number’, ‘twelfth number’, ‘thirteenth number’, ‘fourteenth number’, ‘fif-
teenth number’, ‘sixteenth number’].
Step1: Identify the smallest number in the list and place it at the beginning of a new list.
Step2: Identify the next smallest number in the original list and place it after the first number in
the new list.
Step3: Continue this process, each time finding the next smallest number from the original list
and adding it to the new list.
Step4: Repeat this process until all numbers from the original list are placed in the new list in
ascending order.
Step5: The new list now contains the numbers sorted in ascending order: [‘fifth number’, ‘sev-
enth number’, ‘fourteenth number’, ‘first number’, ‘sixth number’, ‘second number’, ‘third num-
ber’, ‘eighth number’, ‘fifteenth number’, ‘sixteenth number’, ‘ninth number’, ‘eleventh number’,
‘twelfth number’, ‘thirteenth number’, ‘tenth number’, ‘fourth number’].

LWT-formatted script:

(0)=LLM(“Initialize an array of size 10 to zero.”)
(1)=LLM(“Increment the count at index {(input)}[0] in {(0)} (index start from 0). Only output
updated array.”)
(2)=LLM(“Increment the count at index {(input)}[1] in {(1)} (index start from 0). Only output
updated array.”)
(3)=LLM(“Increment the count at index {(input)}[2] in {(2)} (index start from 0). Only output
updated array.”)
(4)=LLM(“Increment the count at index {(input)}[3] in {(3)} (index start from 0). Only output
updated array.”)
(5)=LLM(“Increment the count at index {(input)}[4] in {(4)} (index start from 0). Only output
updated array.”)
==
(15)=LLM(“Increment the count at index {(input)}[14] in {(14)} (index start from 0). Only
output updated array.”)
(16)=LLM(“Increment the count at index {(input)}[15] in {(15)} (index start from 0). Only
output updated array.”)
(17)=LLM(“Convert {(16)} in English. Output an array.”)
(18)=LLM(“The array should contain {(17)}[0] 0s, {(17)}[1] 1s, {(17)}[2] 2s, {(17)}[3] 3s,
{(17)}[4] 4s. Output in array format.”)
(19)=LLM(“The array should contain {(17)}[5] 5s, {(17)}[6] 6s, {(17)}[7] 7s, {(17)}[8] 8s,
{(17)}[9] 9s. Output in array format.”)
(20)=LLM(“Combine {(18)} and {(19)} in ascending order. Only output array.”)

Set Operation Task description:

Find the intersection of two input. You can check every element in set1 one by one.

LWT example:

(0)=LLM(“Find the intersection for [{(Set1)}[0]] and {(Set2)}. Output [] if mutually exclu-
sive.”)
(1)=LLM(“Find the intersection for [{(Set1)}[1]] and {(Set2)}. Output [] if mutually exclu-
sive.”)
...
(length-1)=LLM(“Find the intersection for [{(Set1)}[length-1]] and {(Set2)}. Output [] if mu-
tually exclusive.”)
(length)=LLM(“Combine (0), (1), (2), ... ,{(length-1)} in one array.”)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

LLM plan:

Step0: Start with the first number in Set1. Check if this number is in Set2. If it is, include it in the
result.
Step1: Move to the second number in Set1. Check if this number is in Set2. If it is, include it in
the result.
Step2: Move to the third number in Set1. Check if this number is in Set2. If it is, include it in the
result.
Step3: Move to the fourth number in Set1. Check if this number is in Set2. If it is, include it in
the result.
Step4: Move to the fifth number in Set1. Check if this number is in Set2. If it is, include it in the
result.
Step5: Move to the sixth number in Set1. Check if this number is in Set2. If it is, include it in the
result.
Step6: Move to the seventh number in Set1. Check if this number is in Set2. If it is, include it in
the result.
Step7: Move to the eighth number in Set1. Check if this number is in Set2. If it is, include it in
the result.
==
Step29: Move to the thirtieth number in Set1. Check if this number is in Set2. If it is, include it
in the result.
Step30: Move to the thirty-first number in Set1. Check if this number is in Set2. If it is, include it
in the result.
Step31: Move to the thirty-second number in Set1. Check if this number is in Set2. If it is, include
it in the result.

LWT-formatted script:

(0)=LLM(“Find the intersection for [{(Set1)}[0]] and {(Set2)}. Output [] if mutually exclu-
sive.”)
(1)=LLM(“Find the intersection for [{(Set1)}[1]] and {(Set2)}. Output [] if mutually exclu-
sive.”)
(2)=LLM(“Find the intersection for [{(Set1)}[2]] and {(Set2)}. Output [] if mutually exclu-
sive.”)
(3)=LLM(“Find the intersection for [{(Set1)}[3]] and {(Set2)}. Output [] if mutually exclu-
sive.”)
(4)=LLM(“Find the intersection for [{(Set1)}[4]] and {(Set2)}. Output [] if mutually exclu-
sive.”)
(5)=LLM(“Find the intersection for [{(Set1)}[5]] and {(Set2)}. Output [] if mutually exclu-
sive.”)
(6)=LLM(“Find the intersection for [{(Set1)}[6]] and {(Set2)}. Output [] if mutually exclu-
sive.”)
==
(29)=LLM(“Find the intersection for [{(Set1)}[29]] and {(Set2)}. Output [] if mutually exclu-
sive.”)
(30)=LLM(“Find the intersection for [{(Set1)}[30]] and {(Set2)}. Output [] if mutually exclu-
sive.”)
(31)=LLM(“Find the intersection for [{(Set1)}[31]] and {(Set2)}. Output [] if mutually exclu-
sive.”)
(32)=LLM(“Combine {(0)}, {(1)}, {(2)}, {(3)}, {(4)}, {(5)}, {(6)}, {(7)}, {(8)}, {(9)}, {(10)},
{(11)}, {(12)}, {(13)}, {(14)}, {(15)}, {(16)}, {(17)}, {(18)}, {(19)}, {(20)}, {(21)}, {(22)},
{(23)}, {(24)}, {(25)}, {(26)}, {(27)}, {(28)}, {(29)}, {(30)}, {(31)} in one array.”)

Large Number Addition Task description:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Calculate the result of the input. You can add one digit to a one-digit starting from the least
significant digit.

LWT example:

(0)=LLM(“Split {(input)} by + and output in string format in an array.”)
(1)=LLM(“Calculate {(0)}[0][15]+{(0)}[1][15]. Only output result.”)
(2)=LLM(“Calculate {(1)} divide 10, Only output integer.”)
(3)=LLM(“Calculate {(2)}+{(0)}[0][14]+{(0)}[1][14]. Only output result.”)
(4)=LLM(“Calculate {(3)} divide 10, Only output integer.”)
(5)=LLM(“Calculate {(4)}+{(0)}[0][13]+{(0)}[1][13]. Only output result.”)
(6)=LLM(“Calculate {(5)} divide 10, Only output integer.”)
......
(2*length-1)=LLM(“Calculate {(2*length-2)}+{(0)}[0][0]+{(0)}[1][0]. Only output result.”)
(2*length)=LLM(“Calculate {(2*length-1)} divide 10, Only output integer.”)
(2*length+1)=LLM(“Convert to integer: {(2*length)}{(2*length-1)}[-1]{(2*length-3)}[-
1]{(2*length-5)}[-1]......{(7)}[-1]{(5)}[-1]{(3)}[-1]{(1)}[-1]”)

LLM plan:

Step0: Start with the least significant digits of the first number and the second number. Add them
together.
Step1: Move to the next least significant digits of the first number and the second number. Add
them together, including any carry from Step0.
Step2: Move to the next least significant digits of the first number and the second number. Add
them together, including any carry from Step1.
Step3: Move to the next least significant digits of the first number and the second number. Add
them together, including any carry from Step2.
Step4: Move to the next least significant digits of the first number and the second number. Add
them together, including any carry from Step3.
Step5: Move to the next least significant digits of the first number and the second number. Add
them together, including any carry from Step4.
Step6: Move to the next least significant digits of the first number and the second number. Add
them together, including any carry from Step5.
Step7: Move to the most significant digits of the first number and the second number. Add them
together, including any carry from Step6.
Final Result: Combine all the results from Step0 to Step7 to get the final sum.

LWT-formatted script:

(0)=LLM(“Split ’{(input)}’ by + and output in string format in an array.”)
(1)=LLM(“Calculate {(0)}[0][-1]+{(0)}[1][-1]. Only output result.”)
(2)=LLM(“Calculate {(1)} divide 10, Only output integer.”)
(3)=LLM(“Calculate {(2)}+{(0)}[0][-2]+{(0)}[1][-2]. Only output result.”)
(4)=LLM(“Calculate {(3)} divide 10, Only output integer.”)
(5)=LLM(“Calculate {(4)}+{(0)}[0][-3]+{(0)}[1][-3]. Only output result.”)
(6)=LLM(“Calculate {(5)} divide 10, Only output integer.”)
(7)=LLM(“Calculate {(6)}+{(0)}[0][-4]+{(0)}[1][-4]. Only output result.”)
(8)=LLM(“Calculate {(7)} divide 10, Only output integer.”)
(9)=LLM(“Calculate {(8)}+{(0)}[0][-5]+{(0)}[1][-5]. Only output result.”)
(10)=LLM(“Calculate {(9)} divide 10, Only output integer.”)
(11)=LLM(“Calculate {(10)}+{(0)}[0][-6]+{(0)}[1][-6]. Only output result.”)
(12)=LLM(“Calculate {(11)} divide 10, Only output integer.”)
(13)=LLM(“Calculate {(12)}+{(0)}[0][-7]+{(0)}[1][-7]. Only output result.”)
(14)=LLM(“Calculate {(13)} divide 10, Only output integer.”)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

(15)=LLM(“Calculate {(14)}+{(0)}[0][-8]+{(0)}[1][-8]. Only output result.”)
(16)=LLM(“Calculate {(15)} divide 10, Only output integer.”)
(17)=LLM(“Convert to integer: {(16)}{(15)}[-1]{(13)}[-1]{(11)}[-1]{(9)}[-1]{(7)}[-
1]{(5)}[-1]{(3)}[-1]{(1)}[-1]”)

B.3 PROMPTS AND LLM-GENERATED PROMPTS FOR THE GAME OF 24

For the Game of 24, the planner LLM does not inherently possess the symbolic reasoning ability
required to decompose the task procedurally. To address this, we modify the roles of Stage 1 and
Stage 2. In the adapted setup, Stage 1 immediately works with the LWT example and generates
a candidate LWT-formatted script without access to a specific input query. Given the complexity
of the task, it is challenging to constrain the LLM to output only the structured script format in
this step, as the model tends to include explanations or extra text. Thus, Stage 2 takes the Output
of Stage 1 and extracts the final, clean LWT-formatted script. Notably, we perform Stage 1 and
Stage 2 only once, rather than per input query, as the resulting plan is reusable across all instances.
This adaptation allows XNoT to support 5-number variants of the Game of 24, which prior methods
cannot accommodate due to their rigid control logic and limited flexibility.

Knowledge Extraction Prompt (Stage 1)

Given the following question: [task description]
And a solution structure example for four numbers: [LWT example]
Please use your knowledge to create a solution structure for five numbers
CAREFULLY CHECK EVERYSTEP. MAKE SURE IT HAS THE INPUT FIELD {(N)} IT NEEDS
TO REFERENCE OUTPUT FROM A PREVIOUS STEP. Make sure it is in the correct syn-
tax. E.g., (from (0)) should be {(0)}! MAKE SURE EACH STEP REFERENCES THE COR-
RESPONDING STEP, FOLLOWING THE SOLUTION STRUCTURE FOR FOUR NUMBERS.
MAKE SURE THE EXAMPLE IN THE INSTRUCTION ARE UPDATED FROM FOUR NUM-
BER TO FIVE NUMBER CASE, I.E. ADD ONE MORE NUMBER TO THE EXAMPLE, e.g., [2
× 3 4 8 — 6 4 8] becomes [2 × 3 4 8 1 — 6 4 8 1]

LWT Compilation Prompt (Stage 2)

You have to create a script to solve Game of 24 for five numbers.
Context: [task description]
The script should be numbered and contains several orders to be called line-by-line in a sequen-
tial order.
Use (index) to represent each line.
index starts from 0.
You can use LLM Inference: use LLM(“Your Instruction”) to find the answer.
Here is one example script for four numbers. [LWT example]
Use (index) to represent the variable you want to replace with previous result.
Use {(Input)}, {(1)}, ... to represent Input, not allow to directly use numbers.
Use Python indexing to get the element in the list (E.g., {(0)}[0], {(0)}[1]).
Follow the syntax of the example script.
Use your knowledge in the following:
[Output of Stage 1]
Parse the knowledge;
CAREFULLY CHECK EVERY STEP. MAKE SURE IT HAS THE INPUT FIELD {(N)} IT
NEEDS TO REFERENCE OUTPUT FROM A PREVIOUS STEP. Make sure it is in the cor-
rect syntax. E.g., (from (0)) should be {(0)}!
Output only the final script.

Task description

context = “You are solving for Game of 24. You need to carefully design an arithmetic expression
using ALL the numbers given to you to form 24. Each number must be used exactly once. You

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

may use +, -, ×, and parentheses. Hint: 24 can be obtained by 1×24, 2×12, 3×8, 4×6 or 1+23,
2+22, ..., 12+12. Remember: multiplying by 1 does not change the result. Only use the provided
numbers—nothing else.”

LWT example: To facilitate better performance, we append the task description to each LWT in-
struction, providing additional Context and guidance for the LLM.

(0)=LLM(context+“Given {(Input)}, suggest 12 likely options that combine two numbers using
addition, subtraction, or multiplication.”)
(1)=LLM(context+“Analyze the 12 options from {(0)}. Consider whether the remaining three
values can be used to obtain 24.”)
(2)=LLM(context+“Based on {(1)}, choose the most promising step and Output the state as [ex-
pression — remaining values], e.g., [2×3 — 6 4 8].”)
(3)=LLM(“{(2)} Extract the three remaining values from the right-hand side of the bracket.”)
(4)=LLM(context+“Given {(3)}, suggest 12 possible operations combining two of the three num-
bers.”)
(5)=LLM(context+“Analyze the 12 options from {(4)}. Consider whether the remaining value
can form 24. Reason step by step.”)
(6)=LLM(context+“Based on {(5)}, select the best next step.”)
(7)=LLM(context+“Apply the step from {(6)} and output the result as [expression — two re-
maining values].”)
(8)=LLM(“{(7)} Extract the two remaining values.”)
(9)=LLM(context+“How can you make 24 using the two values in {(8)}?”)
(10)=LLM(“{(2)} Extract the expression from the left-hand side of the bracket.”)
(11)=LLM(“{(7)} Extract the expression from the left-hand side of the bracket.”)
(12)=LLM(context+“Given the steps: Step 1 = {(10)}, Step 2 = {(11)}, Step 3 = {(9)}, combine
them to form a full expression that equals 24.”)

LWT-formatted script:

(0)=LLM(“You are solving a ‘Game of 24’ for five numbers. You must use each number ex-
actly once with +, -, ×, and parentheses to form 24. At each step, you may only combine two
of the available numbers (or partial expressions) into a single new partial expression. Given
{(Input)}, what are 12 most likely options that combine two of the numbers (using +, -, or ×)?”)
(1)=LLM(“You are solving a ‘Game of 24’ for five numbers. You must use each number exactly
once. We are focusing on the same 12 options we just enumerated: {(0)}. Analyze each option
briefly: - Does combining those two numbers in that way keep open a path to 24 with the remain-
ing numbers? - Why or why not? Give me your reasoning for each of the 12 options.”)
(2)=LLM(“{(1)} Take one of the 12 options you find most promising. Perform that operation
and produce a partial solution of the form: [arithmetic expression — four remaining values] For
example: [2 × 3 5 7 8 — 6 7 8 5] Only Output the new partial expression plus the four leftover
numbers in brackets.”)
(3)=LLM(“{(2)} Output the four remaining values on the right side of the bracket.”)
(4)=LLM(“You are solving a ’Game of 24’ now for these four numbers: {(3)}. Give me 12 likely
ways to combine two of them using +, -, or ×. Note: we will continue trying to reach 24 using
exactly these 4 values (plus the partial expression from before).”)
(5)=LLM(“We have the 4 numbers {(3)}. Here are 12 ways to combine two of them: {(4)}.
Analyze each of the 12. Which ones might still allow us to reach 24, given the partial expression
we already have from {(2)}? Give reasoning.”)
(6)=LLM(“{(5)} Pick the most promising operation among the 12. Perform it and produce a
partial solution of the form: [arithmetic expression — three remaining values] Only Output that
bracketed state and nothing else.”)
(7)=LLM(“{(6)} Output the three values on the right-hand side of the bracket.”)
(8)=LLM(“We now have 3 numbers or partial expressions: {(7)}. Provide 12 possible ways
to combine two of them with +, -, or ×. Our goal remains to reach 24 eventually, using each
element exactly once.”)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

(9)=LLM(“Given the 3 items {(7)}, here are 12 ways to combine two of them: {(8)}. Analyze
these 12 carefully. Which ones might still lead to 24, and why?”)
(10)=LLM(“{(9)} Pick the best operation from those 12 to continue. Execute it and produce a
partial solution of the form: [arithmetic expression — two remaining values] Only Output that
bracketed state and nothing else.”)
(11)=LLM(“{(10)} Output the two values on the right-hand side of the bracket.”)
(12)=LLM(“We now have these two items: {(11)}. Show how to combine them (with +, -, or ×)
to reach 24. If it’s feasible, give the final arithmetic step. If not feasible, explain.”)

(13)=LLM(“{(2)} Output the arithmetic expression on the left side of the bracket.”)
(14)=LLM(“{(6)} Output the arithmetic expression on the left side of the bracket.”)
(15)=LLM(“{(10)} Output the arithmetic expression on the left side of the bracket.”)
(16)=LLM(“We have taken these steps: Step 1: {(13)} Step 2: {(14)} Step 3: {(15)} Step
4: {(12)} Combine them appropriately into a single parenthesized expression (or indicate the
correct final expression) that shows how to get 24 from the original five numbers exactly once
each.”)

C THEORETICAL PROOFS

C.1 PROOF OF THEOREM 1

Theorem 1 (Benefit of decomposition). LLM processes a query of length L correctly with proba-
bility

P (L) = exp
(
−aLγ

)
, a, γ > 0. (3)

If we decompose a length-L task into K > 1 equal parts of size L/K, then the joint probability of
correctly executing the decomposed parts surpasses that of the full-sequence iff γ > 1.

Proof. According to Levy et al. (2024); Liu et al. (2024), empirical fits on GPT-class models give
1.1≲ γ ≲ 2 because the error rate compounds superlinearly with sequence length, reflecting limi-
tations in attention stability and context retention over long spans. This compounding arises even
when consecutive calls share no hidden state, as is the case with temperature-0 decoding. The suc-
cess probability of the full-length execution is

PFULL = exp
(
−aLγ

)
. (4)

For the split strategy, each of the K segments has length L/K and succeeds with probability
exp(−a(L/K)γ). Assuming a bounded recombination overhead (e.g., O(Kp) with p < γ), the
joint probability of success is

PSPLIT =
[
exp

(
−a

(
L
K

)γ)]K
= exp

(
−aLγK1−γ

)
. (5)

Comparing the two,
PSPLIT > PFULL ⇐⇒ K1−γ < 1, (6)

which holds for all K > 1 iff γ > 1. Thus, decomposition improves reliability when γ > 1, even
accounting for a modest recombination step. In particular, if the merge step has a sub-quadratic
cost (e.g., O(Kp) for p < γ), the overall probability of success remains higher for the decomposed
strategy. Thus, modular execution (K>1) is expected to improve reliability, explaining why XNoT
attains significantly better accuracy on 32–64-element inputs where monolithic prompt fails.

C.2 PROOF OF LEMMA 1

Lemma 1 (Recombination overhead). Suppose a reasoning task of length L is divided into K seg-
ments, each of length L/K. Then, the total number of LLM calls to solve the task may be propor-
tional to Kp for some overhead exponent p ≥ 0 due to the need to consolidate each intermediate
step into the final answer. For instance, a pairwise merging over the K segments (GoT) results in a
balanced tree and incurs O(K +K logK) steps, i.e., super-linear overhead; a branching strategy

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure 5: Scalability analysis across varying lengths of addition sequences. XNoT (ours) displays
the best consistency performance over extended sequence length.

repeated K times (ToT) results in p = 2 and incurs O(K + K2) steps, i.e., quadratic overhead.8
Then, the total number of reasoning steps is O(K +Kp), which is at most O(K2).

Proof. Solving each of the K segments requires a constant number of LLM calls, contributing O(K)
total cost. The cost of recombining the intermediate results depends on the structure of the solution
strategy. For example, GoT merges results via a balanced tree, requiring O(K logK) recombination
steps. ToT, with repeated branching and pruning, incurs O(K2) recombination steps. In general,
this cost is O(Kp) for some p ≤ 2. XNoT reduces this overhead by dynamically constructing
a dependency graph over elementary steps, reusing intermediate results without rigid merging or
redundant branching. Empirically, this yields p < 2 in most cases. In the worst case, XNoT can
revert to a tree-style merging similar to GoT, yielding p ≤ 2 since K logK < K2 for K ≥ 2.
Therefore, the total number of reasoning steps is O(K) + O(Kp) = O(K +Kp), with p ≤ 2 for
all K ≥ 2.

C.3 PROOF OF LEMMA 2

Lemma 2 (Decay vs. overhead). Under equation 3 and overhead exponent p, an LLM answers a
decomposed task correctly with probability PSPLIT = exp

[
−aLγK p−γ

]
.

Proof. From Eq. equation 2, the probability of correctly processing a length-L input is exp(−aLγ).
Decomposing a length-L task into K segments of size L/K produces K calls, each with suc-
cess probability exp(−a(L/K)γ). By equation 5, the joint success probability across all K seg-
ments is exp

[
−aLγK1−γ

]
. Next, by Lemma 1 we assume that the recombination requires O(Kp)

calls, each also operating on inputs of length L/K. Each merge call contributes a failure factor
exp(−a(L/K)γ), so the final total recombination success rate is exp [−aLγKp−γ], as claimed.

D ADDITIONAL EXPERIMENT AND DETAILS

D.1 ADDITIONAL EXPERIMENTS

D.1.1 LENGTH SCALABILITY EXPERIMENT

XNoT effectively achieves sequence-length generalization, retaining stable performance as prob-
lem sizes grow. In Table 2, baselines often collapse to near 0% accuracy on larger inputs (e.g.,
64-element sorting, 128-element set intersection, or 32-number arithmetic), whereas XNoT still
achieves 27%, 20%, and 10%, respectively. In addition, Fig. 5 shows detailed scalability tests for
computing pure addition sequences ranging from 5 to 65 numbers, confirming XNoT’s robustness in
scaling to longer sequences. While all methods start near 100% accuracy at length 5, most degrade

8While ToT processes the full query at each step, it explores partial solutions, requiring K repetitions
with K-way branching. Pruning to one branch per step still results in O(K2) evaluations, yielding quadratic
overhead.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Table 7: Ablating Knowledge Extraction Prompt .
1⃝ 2⃝ 3⃝ 1⃝+ 2⃝ 1⃝+ 3⃝ 2⃝+ 3⃝ XNoT

keyword counting-5 59% 94% 67% 94% 88% 98% 100%
sorting-16 76% 90% 84% 92% 90% 96% 100%
set intersection-32 68% 91% 75% 93% 92% 97% 100%
arithmetic-8 88% 92% 94% 95% 99% 98% 100%
large-digit-8 51% 91% 60% 94% 85% 98% 100%

Table 8: Ablating LWT Compilation Prompt .
4⃝ 5⃝ 6⃝ 4⃝+ 5⃝ 4⃝+ 6⃝ 5⃝+ 6⃝ XNoT

keyword-5 0% 0% 92% 0% 96% 97% 100%
sorting-16 0% 0% 88% 0% 95% 92% 100%
set intersection-32 0% 0% 91% 0% 97% 99% 100%
arithmetic-8 0% 0% 94% 0% 96% 98% 100%
large-digit-8 0% 0% 92% 0% 93% 97% 100%

quickly between lengths 10 and 20, with CoT and CoT-SC dropping to 0% by 30–45. In contrast,
XNoT remains consistent until beyond length 55, highlighting its stronger scalability.

D.1.2 ABLATION STUDY

Tables 7 and 8 present the ablation study results, evaluating the contribution of individual compo-
nents within XNoT. In Table 7, 1⃝, 2⃝, and 3⃝correspond to the task description C, the node simplic-
ity prompt, and the edge simplicity prompt within the Knowledge Extraction Prompt , respectively.
The results indicate that while the node simplicity prompt alone achieves decent accuracy (greater
than 90%), the complete XNoT significantly outperforms all ablation versions, emphasizing the
importance of all three components.

In Table 8, 4⃝, 5⃝, and 6⃝correspond to the task description C, the compilation instructions, and the
LWT example E within the LWT Compilation Prompt . The results in Table 8 show a more drastic
difference, with the LWT example E proving to be the most critical component. Nevertheless, the
other two components still contribute positively to achieving 100% accuracy obtained by the full
XNoT. These findings collectively demonstrate that XNoT’s design, incorporating all components,
is essential for optimal performance.

D.1.3 QUALITATIVE ANALYSIS

Table 9 presents a qualitative study of the trade-off between computational cost and workflow com-
plexity. Decomposition into finer steps increases the number of LLM calls and therefore runtime
overhead, whereas coarser steps reduce runtime but compromise execution reliability.

Importantly, the structural complexity of the workflow itself does not add runtime overhead during
Stage 3. All message passing and input substitutions are resolved externally prior to LLM invoca-
tion. Once the LWT script is compiled, each instruction executes independently, and the dominant
cost is determined solely by the number of LLM calls, governed by the granularity of decomposition.

The results in Table 9 highlight this trade-off on the addition task. For 1-by-1 decomposition, accu-
racy remains at 100% despite longer runtime. In contrast, 2-by-2 and 3-by-3 decompositions reduce
the number of steps and total runtime by nearly half and two-thirds, respectively, but exhibit severe
degradation in accuracy. The instability arises because multi-number additions per step are less
intuitive for the model, even when explicit contextual prompts are provided.

These findings demonstrate that while coarse decomposition improves efficiency, the correctness
loss is substantial. We therefore conclude that XNoT benefits most from atomic decomposition,
where each step is simple, explicit, and reliably executed by the model.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Table 9: Runtime and accuracy under different decomposition granularities on the addition task.

Decomposition # Steps
Avg. Latency
Per Step (s)

Avg. Total
Runtime (s)

Worst-case
Runtime (s) Accuracy

1-by-1 34 0.55 18.19± 0.87 19.28 100%
2-by-2 19 0.56 9.49± 0.60 10.58 23%
3-by-3 14 0.54 6.65± 0.59 7.48 0%

D.1.4 5 NUMBER GAME OF 24

We demonstrate XNoT’s intelligence amplification capabilities on the Game of 24, a mathematical
puzzle requiring players to combine four numbers with arithmetic operations to yield 24. A key
limitation of existing algorithmic prompting methods (such as ToT and GoT) is their inability to
directly generalize from 4-number to 5-number variants without substantial manual redesign, as
they rely on hard-coded, instance-specific solution structures.

We evaluate whether XNoT can autonomously scale from solving the 4-number task to the more
complex 5-number variant with intelligence amplification. We begin with a LWT example for the
original 4-number setting. Following standard solution strategies (AlgoMonster Contributors, n.d.),
the LWT employs a branch-and-prune approach, prompting the LLM to propose candidate opera-
tions between number pairs, assess the resulting expressions, and iteratively choose the most promis-
ing path. Notably, the versatility of the LWT format enables seamless integration of this algorithmic
structure without altering the XNoT workflow. This illustrates that XNoT not only supports algo-
rithmic prompting techniques but also generalizes to more complex variants with minimal human
intervention. We then apply XNoT to generate a LWT-formatted script for the 5-number Game of
24.9

To ensure solvability, we construct the five-number instances by appending 1 to existing four-number
examples. The resulting 5-number LWT-formatted scripts achieve a 24% success rate without man-
ual algorithm redesign, whereas the baseline methods (Sel et al., 2024; Yao et al., 2024) effectively
achieve 0%, as they are tailored to the 4-number variant and do not provide solutions for the 5-
number variant. This demonstrates XNoT’s intelligence amplification capabilities, allowing it to
harness LLM capabilities and adapt reasoning structures encoded by LWT-formatted scripts au-
tonomously to more complex problem variants.

D.1.5 GSM8K

GSM8K consists of instance-specific grade-school math problems that do not naturally showcase
corpus-level reuse or scalable intelligence amplification. Consequently, this benchmark is not ideal
for evaluating XNoT’s amplification capabilities. Prior work has likewise treated GSM8K as com-
paratively straightforward for well-designed prompting methods (Yao et al., 2024).

Nevertheless, we evaluate an abridged version of XNoT on GSM8K. We employ a constant LWT
script (shared across all problems; shown below) and a zero-shot breadth-first search strategy in-
spired by Tree of Thoughts (ToT): generate five independent candidate solutions and select the best
via an explicit aggregation operator. The key difference from ToT is that LWT specifies the aggre-
gation step declaratively inside the prompt, enabling precise, auditable selection without external
orchestration.

Experimental results are reported in Table 10. Accuracy for Input–Output, Chain-of-Thought, and
Tree-of-Thought baselines is taken from Yao et al. (2024). Our evaluation protocol and model choice
(GPT-4) follow the same setup as Yao et al. (2024). As shown in Table 10, despite using a com-
parable search strategy, XNoT attains higher accuracy, which we attribute to LWT’s prompt-native
aggregation that improves consistency in candidate selection.

(0)=LLM(“You are solving a math problem. Given the question “‘{(input)}“‘, list calculation
process step-by-step then output the final answer.”)

9Details of XNoT’s prompt design for the Game of 24 are provided in Appendix B.3.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Table 10: GSM8K experiment results
Method Input Output Chain of Thought Tree of Thought XNoT
Accuracy 51% 86% 90% 94%

(1)=LLM(“You are solving a math problem. Given the question “‘{(input)}“‘, list calculation
process step-by-step then output the final answer.”)
(2)=LLM(“You are solving a math problem. Given the question “‘{(input)}“‘, list calculation
process step-by-step then output the final answer.”)
(3)=LLM(“You are solving a math problem. Given the question “‘{(input)}“‘, list calculation
process step-by-step then output the final answer.”)
(4)=LLM(“You are solving a math problem. Given the question “‘{(input)}“‘, list calculation
process step-by-step then output the final answer.”)
(5)=LLM(“You are solving a math problem. The problem is “‘{(input)}“‘. You need to carefully
check the following five calculation processes and answers, then choose the best final answer:
‘(0)‘, ‘(1)‘, ‘(2)‘, ‘(3)‘, ‘(4)‘. In the end, extract the numerical value of the final answer you
choose and print the value without anything else.”)

D.1.6 HEALTHCARE TRIAGE

Healthcare triage involves structured decision-making processes where practitioners follow estab-
lished protocols to assess patient severity and determine appropriate care pathways. To evaluate
XNoT’s ability to execute sequential, rule-based reasoning, we construct four synthetic triage work-
flows.

Listing 1: Vitals-First with Comorbidity Overlay
"workflow_name": "Vitals-First with Comorbidity Overlay",
"logic_flow": "If (O2 saturation < 92 OR systolic BP < 90 OR HR > 130):

-> severity = critical
Else If (O2 < 95 OR Temp > 101°F OR RR > 24):

-> severity = moderate
Else:

-> severity = mild

If (>=2 chronic conditions OR age >= 70):
-> risk = high

Else:
-> risk = standard

If (severity = critical):
-> recommend ER referral

Else If (severity = moderate AND risk = high):
-> recommend urgent clinical evaluation

Else If (severity = moderate AND risk = standard):
-> recommend outpatient evaluation

Else:
-> recommend home care"

Listing 2: Symptom Cluster Then Escalation
"workflow_name": "Symptom Cluster Then Escalation",
"logic_flow": "If (chest pain OR shortness of breath OR confusion):

-> red_flag = true
Else If (fever AND cough AND fatigue):

-> viral_cluster = likely
Else:

-> viral_cluster = unlikely

If (red_flag):

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

-> recommend ER referral
Else If (viral_cluster AND symptoms < 3 days):

-> recommend home care
Else If (viral_cluster AND symptoms >= 3 days):

-> recommend outpatient evaluation
Else:

-> recommend clinical judgment follow-up"

Listing 3: Duration-Weighted Symptom Score

"workflow_name": "Duration-Weighted Symptom Score",
"logic_flow": "symptom_score = 0
If (cough): +1
If (fever): +1
If (shortness of breath): +2
If (symptom duration > 7 days): +1

If (symptom_score >= 4):
-> severity = high

Else If (symptom_score >= 2):
-> severity = moderate

Else:
-> severity = low

If (severity = high):
-> recommend urgent clinical evaluation

Else If (severity = moderate):
-> recommend outpatient evaluation

Else:
-> recommend home care"

Listing 4: Immunosuppression Priority Pathway

"workflow_name": "Immunosuppression Priority Pathway",
"logic_flow": "If (on chemotherapy OR HIV+ with CD4 < 200 OR chronic

steroid use):
-> immunosuppressed = true

Else:
-> immunosuppressed = false

If (any sign of infection: fever, chills, or cough):
-> infection_suspected = true

Else:
-> infection_suspected = false

If (immunosuppressed AND infection_suspected):
-> recommend urgent clinical evaluation

Else If (infection_suspected):
-> recommend outpatient evaluation

Else:
-> recommend home care"

We then generate ground-truth input–output pairs for evaluation:

Listing 5: Ground-truth examples

"A 34-year-old patient presents with dry cough for 1 day, rash for 2 days
, diarrhea for 1 day, fatigue for 2 days. Oxygen saturation is 97%,
and body temperature is 98.6°F. Medical history includes CHF, asthma.
Recent hospital stay.",

Workflow: Symptom Cluster Then Escalation,
Answer: Clinical judgment follow-up

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

"A 26-year-old patient presents with headache for 7 days, rash for 6 days
, dry cough for 4 days, chest pain for 9 days. Oxygen saturation is
90%, and body temperature is 98.6°F. Medical history includes none.
Recent travel to

outbreak area.",
Workflow: Duration-Weighted Symptom Score,
Answer: Outpatient evaluation

"A 75-year-old patient presents with chest pain for 7 days, fatigue for 4
days, dry cough for 8 days. Oxygen saturation is 94%, and body

temperature
is 100.4°F. Medical history includes none. No known exposure.",
Workflow: Immunosuppression Priority Pathway,
Answer: Outpatient evaluation

We leverage a LWT example for Vitals-First with Comorbidity Overlay and allow XNoT to auto-
matically generate equivalent LWT scripts for the other workflows. In particular, the LWT example
for Vitals-First with Comorbidity Overlay is as follows.

(0)=LLM(”Extract structured fields from the input. Return a Python dictionary with the follow-
ing keys: ’oxygen’ (int), ’temperature’ (float), ’age’ (int), ’comorbidities’ (list of strings). Input:
(input)”)
(1)=LLM(”Is oxygen saturation less than 92? Based on (0). Output ’yes’ or ’no’.”)
(2)=LLM(”Is oxygen saturation less than 95? Based on (0). Output ’yes’ or ’no’.”)
(3)=LLM(”Is temperature greater than 101F? Based on (0). Output ’yes’ or ’no’.”)
(4)=LLM(”Let Q1 indicate whether oxygen saturation is less than 92. If Q1 = ’yes’, then sever-
ity = critical. Given Q1 = (1), does this branch apply? Output only one of: applies, does not
apply.”)
(5)=LLM(”If oxygen saturation < 95 OR temperature > 101F, then severity = moderate. This
applies only if Q1 is ’no’ and (Q2 is ’yes’ OR Q3 is ’yes’). Given Q1=(1), Q2=(2), Q3=(3), does
this branch apply? Output only one of: applies, does not apply.”)
(6)=LLM(”If none of the previous conditions apply, then severity = mild. This applies only if
Q1 is ’no’, Q2 is ’no’, and Q3 is ’no’. Given Q1=(1), Q2=(2), Q3=(3), does this branch apply?
Output only one of: applies, does not apply.”)
(7)=LLM(”Only one severity level should apply. Severity branch outcomes: - critical: (4) - mod-
erate: (5) - mild: (6) Return the first severity level that applies.”)
(8)=LLM(”Is the patient’s age greater than or equal to 70? Use (0). Output ’yes’ or ’no’.”)
(9)=LLM(”(0). Look at the [’comorbidities’] list and count how many items are in it. If the count
is greater than or equal to 2, output ’yes’. Otherwise, output ’no’.”)
(10)=LLM(”Determine risk level using previous answers: If Q1 is ’yes’ OR Q2 is ’yes’ → risk
= high. Else → risk = standard. Use Q1=(8), Q2=(9). Output only one of: high, standard.”)
(11)=LLM(”Rephrase the decision logic step as follows: If severity is critical → ER referral.
Given severity=(7) and risk=(10), Does this branch applies (applies, does not apply)?”)
(12)=LLM(”Rephrase the decision logic step as follows: If severity is moderate and risk is high
→ Urgent clinical evaluation. Given severity=(7) and risk=(10), Does this branch applies (ap-
plies, does not apply)?”)
(13)=LLM(”Rephrase the decision logic step as follows: If severity is moderate and risk is
standard → Outpatient evaluation. Given severity=(7) and risk=(10), does this branch applies
(applies, does not apply)?”)
(14)=LLM(”Rephrase the decision logic step as follows: If severity is mild → Home care. Given
severity=(7) and risk=(10), does this branch applies (applies, does not apply)?”)
(15)=LLM(”The result of each branch is: ER referral (11). Urgent clinical evaluation (12).
Outpatient evaluation (13). Home care (14). Output the one that is applicable”)

The “Symptom Cluster Then Escalation” workflow generated automatically by XNoT is given as an
example as follows.

(0)=LLM(”Extract structured fields from the input. Return a Python dictionary with the follow-
ing keys: ’age’ (int), ’symptoms’ (list of dicts with ’name’ and ’duration days’), ’oxygen’ (int),

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Table 11: Healthcare triage experiment results.
Method CoT ZeroCoT XNoT
Accuracy 21% 40% 62%

’temperature’ (float), ’comorbidities’ (list of strings), ’recent hospital stay’ (bool). Input: (in-
put)”)
(1)=LLM(”Does the patient have any of the following symptoms: chest pain, shortness of breath,
or confusion? Use the ’symptoms’ list from (0). Output ’yes’ or ’no’.”)
(2)=LLM(”If the patient does not have chest pain, shortness of breath, or confusion, then red flag
= false. Given (1), is red flag false? Output ’yes’ or ’no’.”)
(3)=LLM(”Does the patient have all of the following symptoms: fever, cough, and fatigue? Use
the ’symptoms’ list from (0). Output ’yes’ or ’no’.”)
(4)=LLM(”If the patient does not have all of fever, cough, and fatigue, then viral cluster = un-
likely. Given (3), is viral cluster unlikely? Output ’yes’ or ’no’.”)
(5)=LLM(”If red flag is true, recommend ER referral. Given red flag=(1), does this branch ap-
ply? Output only one of: applies, does not apply.”)
(6)=LLM(”If viral cluster is likely and all symptom durations are less than 3 days, recommend
home care. Use viral cluster=(3) and the ’symptoms’ list from (0). Does this branch apply?
Output only one of: applies, does not apply.”)
(7)=LLM(”If viral cluster is likely and any symptom duration is greater than or equal to 3 days,
recommend outpatient evaluation. Use viral cluster=(3) and the ’symptoms’ list from (0). Does
this branch apply? Output only one of: applies, does not apply.”)
(8)=LLM(”If none of the previous branches apply, recommend clinical judgment follow-up.
Given ER referral=(5), home care=(6), outpatient evaluation=(7), does this branch apply? Out-
put only one of: applies, does not apply.”)
(9)=LLM(”The result of each branch is: ER referral (5). Home care (6). Outpatient evaluation
(7). Clinical judgment follow-up (8). Output the one that is applicable.”)

The modular decomposition approach of XNoT contrasts with CoT and ZeroCoT, which often fail to
disentangle composite conditions or preserve sequential dependencies. As a result, they misclassify
intermediate variables (e.g., severity, risk), leading to incorrect final recommendations. For instance,
given input:

Listing 6: Failure case of CoT
"A 51-year-old patient presents with loss of smell for 1 day,
chest pain for 7 days, headache for 7 days. Oxygen saturation is 90%,
and body temperature is 102.0°F. Medical history includes HIV.
Recent travel to outbreak area."
Workflow: Vitals-First with Comorbidity Overlay

CoT incorrectly reasons:

Check severity:
- O2 saturation < 92
- Temp > 101
-> severity = moderate

Despite the oxygen saturation of 90% clearly satisfying the critical threshold.

In contrast, XNoT avoids such errors by explicitly verifying each condition through fine-grained,
step-wise evaluation. This structured decomposition ensures that intermediate variables such as
severity and risk are assessed consistently, reducing the likelihood of logical oversights or shortcut
reasoning. As a result, XNoT substantially outperforms baselines such as ZeroCoT and CoT, which
often fail to disentangle composite conditions and thus misclassify intermediate states.

Beyond handling a single triage workflow, XNoT generalizes this explicit approach across diverse
healthcare triage protocols, automatically adapting to alternative branching logic without requiring

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Table 12: More experiment results of arithmetic calculation with pure addition as well as “addition
and multiplication.”

method
addition addition and multiplication

8 16 32 8 16 32

Few Shot 94% 76% 4% 24% 0% 0%
CoT 98% 92% 64% 68% 35% 2%
CoT-SC 100% 93% 62% 69% 33% 4%
ToT 100% 23% 0% 52% 19% 6%
GoT 100% 80% 1% 28% 1% 0%

XNoT 100% 100% 100% 98% 56% 20%

task-specific redesign. This demonstrates both robustness and scalability in domains where rule-
based reasoning is critical. Table 11 summarizes the comparative accuracy results.

D.1.7 EXPERIMENT RESULTS ON SEQUENCE OF ONLY ADDITION AND MULTIPLICATION

In the primary arithmetic calculation task, we tested all four arithmetic operations: addition, multi-
plication, subtraction, and division. Here, to evaluate the discrepancy of baselines, we present ad-
ditional experimental results focused on “pure addition” and calculations involving only “addition
and multiplication.” As shown in Table 12, XNoT consistently outperforms all the other baselines in
these scenarios as well. In contrast, existing baselines degrade significantly as sequence length in-
creases, especially in the presence of mixed operations. This experiment highlights that while some
baselines handle simple addition reasonably well, they struggle with scalability and compositional
reasoning, even under restricted operator sets. By isolating these operations, we expose the limita-
tions of prior prompt schemes and demonstrate XNoT’s robustness in handling both long sequences
and compositional arithmetic.

D.2 EXPERIMENT SETUP AND CONFIGURATIONS

In the following, we provide experiment details, including the task query example and manual
prompt designs utilized for the baseline methods. Note that due to budget constraints, we first
evaluate all approaches on GPT-3.5-turbo and then compare them in GPT-4o. Consistent with
findings reported in GoT (Besta et al., 2024a), we also observe that open-source models such as
LLaMA (Touvron et al., 2023) generally perform worse than GPT-3.5 and are slower to run, espe-
cially when applied to larger divisions, which makes them impractical under limited computational
resources. We therefore follow prior works (Zhou et al., 2023; Wang et al., 2023; Yao et al., 2024;
Sel et al., 2024) in using high-performance API-based language models, which remain the standard
choice for evaluating advanced prompting strategies under practical resource constraints.

D.2.1 INPUT QUERY EXAMPLE

In this section, we will provide one input query example for each task.

Keyword counting The input is an article that contains 14 to 20 sentences. We only list one of
them in the following:

John, an avid traveler from Canada, had spent his summer exploring the heart of Australia,
specifically, the Outback. The vast, arid landscapes of Australia presented a stark contrast to
the snow-filled winters of his home in Canada, and he reveled in the difference. He then shared
stories of his trip to Brazil, where he fell in love with the vibrant rhythms and the people’s warm
hospitality. Indeed, Brazil left such a strong impression on him that he visited the country again,
this time to explore the dense Amazon rainforest. As John recounted his travels, his friend Sarah,
a history buff from the United Kingdom, couldn’t help but gush about her trips to Italy and
Greece. She explained how she had spent weeks soaking up the culture, history, and mythology
of Italy and Greece. Intrigued by Sarah’s stories, John revealed his fascination for Northern

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

countries, particularly Norway and Sweden. He cherished his memories of hiking through the
scenic landscapes of Norway and the breathtaking fjords of Sweden. Sarah, not to be outdone,
discussed her recent visit to Mexico and Cuba. Highlighting the unique colonial architecture of
Mexico and the vibrant music scene in Cuba, Sarah couldn’t conceal her wanderlust. She ended
the conversation by expressing her desire to visit South Korea and Japan. She was particularly
interested in the modern cities and ancient temples of South Korea, as well as the unique blend
of tradition and technology in Japan. As they parted ways, both agreed to continue exploring
and understanding the world, one country at a time.

Sorting In the sorting task, the input is an unsorted array containing duplicate numbers.

The following example is length 16:

[1, 2, 6, 1, 1, 6, 0, 3, 7, 4, 5, 2, 9, 2, 1, 5]

The following example is length 32:

[0, 0, 5, 9, 0, 7, 9, 9, 1, 2, 6, 1, 1, 9, 0, 1, 3, 5, 2, 3, 5, 6, 0, 2, 7, 4, 6, 2, 9, 7, 9, 5]

The following example is length 64:

[6, 3, 6, 5, 1, 2, 4, 3, 8, 0, 7, 8, 6, 4, 9, 5, 2, 4, 8, 4, 4, 4, 5, 6, 8, 4, 7, 7, 8, 9, 4, 9, 5, 4, 8, 4, 0, 5,
6, 9, 1, 2, 3, 6, 2, 0, 8, 1, 0, 7, 1, 2, 0, 7, 6, 9, 9, 9, 5, 6, 8, 3, 9, 0]

Set operation The input contains two sets without duplicate numbers.

The following example is length 32:

Set1: [11, 60, 1, 49, 21, 33, 14, 56, 54, 15, 23, 40, 45, 22, 7, 28, 20, 46, 51, 6, 34, 37, 3, 50, 17,
8, 25, 0, 35, 47, 18, 19]
Set2: [31, 11, 4, 63, 38, 58, 59, 24, 61, 14, 32, 39, 27, 46, 48, 19, 52, 57, 50, 56, 3, 2, 53, 29, 5,
37, 62, 41, 36, 12, 49, 16]

The following example is length 64:

Set1: [42, 73, 86, 39, 85, 77, 69, 59, 43, 127, 121, 88, 109, 53, 70, 66, 25, 51, 34, 78, 45, 11, 40,
99, 68, 47, 49, 41, 101, 31, 24, 84, 36, 29, 118, 75, 3, 27, 30, 80, 125, 8, 37, 46, 90, 21, 60, 83,
19, 6, 95, 117, 87, 18, 100, 13, 22, 10, 110, 102, 35, 81, 17, 63]
Set2: [34, 49, 116, 106, 112, 23, 5, 80, 18, 62, 90, 54, 32, 103, 37, 43, 9, 25, 92, 16, 111, 79, 64,
91, 107, 58, 72, 94, 7, 60, 33, 14, 19, 104, 28, 74, 96, 76, 38, 52, 114, 50, 17, 0, 3, 100, 69, 98,
2, 1, 99, 12, 95, 97, 123, 4, 126, 124, 82, 27, 67, 57, 115, 46]

The following example is length 128:

Set1: [132, 75, 157, 25, 199, 202, 147, 109, 221, 110, 220, 251, 213, 11, 224, 101, 200, 170,
155, 71, 119, 122, 39, 1, 29, 113, 189, 212, 10, 219, 49, 28, 151, 40, 103, 8, 145, 214, 114, 91,
175, 107, 152, 163, 148, 246, 176, 181, 18, 106, 74, 115, 144, 0, 205, 121, 46, 234, 142, 223,
228, 162, 96, 97, 130, 156, 172, 241, 33, 186, 137, 150, 65, 161, 226, 116, 111, 12, 146, 38, 167,
4, 108, 169, 61, 93, 190, 252, 22, 31, 3, 9, 13, 35, 23, 141, 129, 198, 85, 84, 62, 158, 201, 67,
117, 59, 41, 191, 56, 90, 51, 227, 143, 83, 184, 174, 125, 98, 232, 238, 57, 225, 54, 179, 177,
237, 37, 95]
Set2: [27, 162, 187, 254, 128, 227, 2, 165, 143, 109, 140, 46, 160, 26, 139, 171, 42, 199, 207,
30, 205, 117, 213, 48, 40, 212, 185, 196, 197, 94, 136, 35, 229, 193, 36, 7, 15, 43, 4, 203, 142,
144, 49, 31, 240, 124, 116, 69, 37, 250, 95, 105, 103, 168, 126, 64, 73, 206, 24, 157, 135, 118,
34, 134, 45, 62, 153, 5, 47, 239, 216, 222, 80, 231, 102, 21, 57, 215, 149, 141, 236, 32, 188, 204,
194, 23, 233, 83, 154, 210, 159, 70, 202, 253, 20, 71, 166, 242, 221, 228, 78, 230, 29, 145, 147,
81, 104, 235, 66, 100, 131, 132, 244, 195, 68, 72, 53, 182, 79, 248, 3, 82, 211, 173, 180, 17, 77,
51]

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Arithmetic sequence calculation The input contains an arithmetic sequence.

The following example is length 8:

6+4+3+3*3+2+4+2

The following example is length 16:

2/9-3-4+6+4-9+8+8-4*5-7+2/1+6+7

The following example is length 32:

8-2/2/9+9*1/7/3*4+2/5-9+4*8+5+8+9+5+5-2+7/2-2+6-8+7+6+5+1+6*3+1

Large digit addition The input is the addition of two large-digit numbers.

The following example is length 8:

57247728+67594862

The following example is length 16:

5465458164972518+8654164596886757

The following example is length 32:

59842829133617473427166884252972+24873376371863371698982744892145

D.2.2 MANUAL PROMPTS DESIGN FOR BASELINE PROMPT SCHEMES

We provide manual designs for tasks not covered in baseline prompt schemes. In particular, the
following template is used for keyword counting, sorting, and set intersection for CoT, ToT, and
GoT based on the open source code provided by GoT (Besta et al., 2024a). The following details
prompt design for the arithmetic calculation task. Please view the detailed prompt for Yelp review
comprehension and large digit addition in our supplementary files.

Few shot arithmetic example for Chain-of-thoughts We provide a step-by-step calculation ex-
ample for the CoT prompt scheme as follows. In particular, we present an example of a problem
size that is the same as the target task. It is worth noting that XNoT leverages the same example
of shorter problem size across different problem sizes, demonstrating its effectiveness in reducing
human labor.

<Example>
Input: 3+5+6+2+4+5*3+2
Answer: 3+5=8, 8+6=14, 14+2=16, 16+4=20, 5*3=15, 20+15=35, 25+2=37.
The final answer is 37.

<Example>
Input: 7+4+1*6+7+3+7+2+2*7+3+3*6+2+5+4
Answer: 7+4=11, 1*6=6, 11+6=17, 17+7=24, 24+3=27, 27+7=24, 34+2=36, 2*7=14,
36+14=50, 50+3=53, 3*6=18, 53+18=71, 71+2=73, 73+5=78, 78+4=82.
The final answer is 82.

<Example>
Input: 7+6+2+7+3+6+5*2+4+2+4+7+2+4+3*3
+3+5+4+7+6+4+6+7+6+5*2*7+7+3+7+7
Answer: 7+6=13, 13+2=15, 15+7=22, 22+3=25, 25+6=31, 52=10, 31+10=41, 41+4=45,
45+2=47, 47+4=51, 51+7=58, 58+2=60, 60+4=64, 33=9, 64+9=73, 73+3=76, 76+5=81,

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

81+4=85, 85+7=92, 92+6=98, 98+4=102, 102+6=108, 108+7=115, 115+6=121, 527=70,
121+70=191, 191+7=198, 198+3=201, 201+7=208, 208+7=215.
The final answer is 215.

Manual module preparation for ToT The detailed mechanism for ToT and GoT is introduced
as follows. ToT first repeatedly use a Calculation Module to perform initial calculation attempts.
Then, it selects the best attempt by prompting the LLM to score its own attempt. Afterwards, ToT
leverages the Improve Module to make improvements based on the current and previous results (i.e.,
a node and its parent node in the tree of thoughts).

Following (Besta et al., 2024a), the Calculation Module includes a few-shot examples for the tar-
geted problem sizes and is prepared as follows.

<Instruction> Calculate the given sequence. Output only the number, no additional text.
<Example>
Input: 3+5+6+2+4+5*3+2
Output: 37
Input: 7+4+7*6+7+3+7+2+7*7+3+3*6+2+5+4
Output: 153
Input: 7+6+2+7+3+6+5*2+4+2+4+7+2+4+3*3+3+
5+4+7+6+4+6+7+6+5*2*7+7+3+7+7
Output: 215

The Improve Module is prepared as follows.

<Instruction> There are some errors in the following calculation sequence. Find the errors in it
and correct them.
<Approach>
To fix the incorrect answer, follow these steps:
1. Check all numbers in the sequence one by one.
2. Attention to the symbol error using.
<Example>
Input: 3+5+6+2+4+5*3+2
Incorrectly Answer: 39
Reason: Add 2 one more time
Output: 37
Input: 7+4+7*6+7+3+7+2+7*7+3+3*6+2+5+4
Incorrectly Answer: 149
Reason: Forgot to add 4, the last number in the sequence
Output: 153
Input: 7+6+2+7+3+6+5*2+4+2+4+7+2+4+3*3
+3+5+4+7+6+4+6+7+6+5*2*7+7+3+7+7
Incorrectly Answer: 202
Reason: The incorrect addition of the first two numbers, remember to add.
Output: 215

Specifically, we record the mistakes that LLMs make under the ToT scheme, and iteratively append
the corrections into the Improve Module.

Manual module preparation for GoT GoT follows ToT to use the same Calculation Module
and Improvement Module. Besides these, it additionally leverages the Split Module and the Merge
Module. Concretely, GoT first splits the input task into several equal-sized chunks, then applies the
initial calculation and repeated improvements to each chunk, and finally merges the results from all
chunks.

The following is the Split Module.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

<Instruction> Split the following sequence of 8 numbers into two sequence of 4 numbers each,
the first sequence should contain the first four numbers and the second sequence the second 4
numbers.
Only output the final 2 sequences in the following format without any additional text or
thoughts!:
“sequence 1”: 3+4+5*1+,
“sequence 2”: 5+2+3*4
<Example>
Input: 3+5+6+2+4+5*3+2
Output:
“sequence 1”: 3+5+6+2+,
“sequence 2”: 4+5*3+2
Input: 7+4+7*6+7+3+7+2+7*7+3+3*6+2+5+4
Output:
“sequence 1”: 7+4+7*6+7+3+7+2+,
“sequence 2”: 7*7+3+3*6+2+5+4

The following is the Merge Module.

<Instruction> Merge the following 2 final answers. Only output the final number without any
additional text or thoughts!
<Approach>
To merge the two numbers, follow these steps:
1. Calculate the answer of 2 numbers
<Example>
Input:
“sequence 1”: 14,
“sequence 2”: 28
Output: 42

It is worth noting that the split-then-merge structure is antithetical to the arithmetic calculation task,
as the operation in the middle of the sequence is not necessarily addition or subtraction. Never-
theless, we designed the addition operation for the merge module and further evaluated all prompt
schemes with pure addition sequences. As shown in Fig. 5 and Table 12, GoT finds better perfor-
mance compared to arithmetic calculations involving all four operations. However, it still fails in
comparison to XNoT as well as CoT-based schemes.

D.3 USE OF LARGE LANGUAGE MODELS (LLMS)

We used OpenAI ChatGPT (GPT-5 Thinking; Aug–Sep 2025) only for (i) light writing polish (gram-
mar, clarity, and style on author-written text) and (ii) literature search via keyword brainstorming.
We did not use LLMs to create technical claims, design methods, run experiments, or write sections
without human verification. All edits and references were checked by the authors; no confidential
data were shared; interactions were inference-only. On the submission form we selected “Yes, to aid
or polish writing” and “Yes, for retrieval and discovery.”

40

	Introduction
	Related Work
	Problem Formulation
	Executable Network of Thoughts
	LLM Workflow Template (LWT)
	Detailed XNoT Mechanism

	Theoretical Analysis
	Experiment
	Quantitative Analysis
	Cost Analysis

	Conclusion
	Extended related work
	Monolithic prompting
	Algorithmic prompting
	Overall comparison
	Other Works
	Relation to Multi-Agent Systems (MAS)

	XNoT Design and Implementation Details
	Full prompt examples with 8-number arithmetic calculation
	Task-specific prompts and LLM-generated prompts of each use case
	prompts and LLM-generated prompts for the Game of 24

	Theoretical Proofs
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Lemma 2

	Additional Experiment and Details
	Additional Experiments
	Length scalability experiment
	Ablation Study
	Qualitative Analysis
	5 Number Game of 24
	GSM8K
	Healthcare Triage
	Experiment results on sequence of only addition and multiplication

	Experiment setup and configurations
	Input query example
	Manual prompts design for baseline prompt schemes

	Use of Large Language Models (LLMs)

