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Abstract

We consider Wasserstein generative adversarial networks (WGAN) with a gradient-
norm penalty and analyze the underlying functional optimization problem within
a variational setting. The optimal discriminator in this setting is the solution to a
Poisson differential equation, and can be obtained in closed form without having
to train a neural network. We illustrate this by employing a Fourier-series ap-
proximation to solve the Poisson differential equation. Experimental results based
on synthesized low-dimensional Gaussian data demonstrate superior convergence
behavior of the proposed approach in comparison with the baseline WGAN variants
that employ weight-clipping, gradient or Lipschitz penalties on the discriminator.
Further, within this setting, the optimal Lagrange multiplier can be computed in
closed-form, and serves as a proxy for measuring GAN generator convergence.
This work is an extended abstract, summarizing Asokan & Seelamantula (2023).

1 Introduction

The optimization of a generative adversarial network (GAN), originally proposed by Goodfellow
et al. (2014), is a min-max game between two players — a generator (G) and a discriminator (D).
The role of the generator is to create fake samples that mimic the ones coming from the training data
distribution. The discriminator D is tasked with telling apart the real samples from the fake ones.
The optimal G is the one that outsmarts D into confusing the fake samples for real. The generator
G accepts high-dimensional noise z ∼ p` as input and generates fake samples G(z) ∼ pg. The
discriminator D accepts an input x, which could come from either the data distribution pd, or the
generator distribution pg , and outputs a value D(x). Effectively, the generator must learn a mapping
from the noise distribution to the data distribution, whereas the discriminator must learn the optimal
two-class classifier. Over the past decade, numerous variants of GANs have been proposed with
several successful applications.

GAN Losses: Almost all known GAN flavors minimize either a divergence metric (Goodfellow
et al., 2014; Mao et al., 2017; Nowozin et al., 2016) or an integral probability metric. In the work,
we consider integral probability metric (IPM) GANs, wherein the discriminator is a real-valued
critic that differentiates between the generator and data distributions. The choice of the class of
critics gives rise to variants such as the Wasserstein GAN (WGAN) (Arjovsky et al., 2017) with a
Lipschitz-1 critic, the minimum-mean discrepancy GAN (MMD-GAN) (Li et al., 2017) where the
critic is bounded by a ball in a reproducing-kernel Hilbert space, or the Fisher GAN (Mroueh & Sercu,
2017) in which the second-order moments of the critic are constrained to be bounded. Sobolev GANs
(Mroueh et al., 2018) favor critics with a finite energy in the gradient. The constraints are enforced
either by means of an adjustment of the network weights (Arjovsky et al., 2017; Roth et al., 2019;
Wang & Liu, 2016), or through a suitable penalty incorporated into the loss function (Gulrajani et al.,
2017; Roth et al., 2017; Mescheder et al., 2018). IPM based GANs have classically been analyzed
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within the framework of optimal transport (Sanjabi et al., 2018; Bousquet et al., 2017; Lei et al.,
2019), while Unterthiner et al. (2018); Asokan & Seelamantula (2022) analyze the discriminator
gradient-penalized GANs as a Coulomb potential function. Along a similar vein, Mroueh et al. (2018)
established connections between the Sobolev GAN and the Fokker-Planck PDE. In this work, we
show how the PDE connection can be leveraged to make the GAN optimization more insightful.

1.1 Our Contribution

This extended abstract summarizes the findings of Asokan & Seelamantula (2023). In the context of
gradient-norm-penalized WGAN, leveraging the Euler-Lagrange equation from functional Calculus,
we show that the optimal discriminator, given the generator, solves a Poisson PDE. The solution
relates to n-D potential functions between the generator and data distributions. We propose to solve
the discriminator PDE using a truncated Fourier-series model (and hence the name WGAN-FS),
whose coefficients are obtained in closed form. This allows one to determine the optimal discriminator
given the generator. We also show that the optimal value of the Lagrange multiplier can also be
computed in closed form using a primal-dual approach, and tracking the optimal Lagrange multiplier
becomes a viable alternative for measuring training convergence. Experimental validations on
synthetic Gaussian datasets shows that training a GAN with the proposed Fourier-series discriminator
outperforms baseline methods that consider a neural network discriminator. The source code is
available online at https://github.com/DarthSid95/ELF_GANs

2 Gradient-regularized Wasserstein GANs

The WGAN minimizes earth mover’s distance (EMD) between the generator and the target data
distributions, pg and pd, respectively. Earth mover’s distance is a special case of the Wasserstein dis-
tance between two distributions. Through Kantorovich-Rubinstein duality, the WGAN optimization
is specified via the min-max problem:

min
pg

{
max
D

{
Ex∼pd [D(x)]− Ex∼pg [D(x)]

}}
,

which is equivalent to the sequential minimization:

D∗(x, pg) = arg min
D: ‖D‖L≤1

LWGAN
D , where LWGAN

D = −Ex∼pd [D(x)] + Ex∼pg [D(x)], and

p∗g(x) = arg min
pg
LWGAN
G , where LWGAN

G = Ex∼pd [D∗(x, pg)]− Ex∼pg [D∗(x, pg)]

where in turn, ‖D(x)‖L ≤ 1 denotes the Lipschitz constraint on the discriminator and D∗(x, pg) is
the optimal discriminator for a given generator distribution pg. The optimal discriminator D∗ is the
one that penalizes regions of the input space where pg differs from pd, while satisfying the Lipschitz
constraint. The constraint is typically imposed by clipping the weights of the discriminator network.
Subsequent work (Gulrajani et al., 2017; Kodali et al., 2017; Mescheder et al., 2018; Petzka et al.,
2018; Mroueh et al., 2018; Terjék, 2020) replaced the Lipschitz constraint with a gradient penalty to
avoid exploding gradients in a neural-network setting. For example, in WGAN-GP (Gulrajani et al.,
2017), the gradients are evaluated over an interpolated distribution. Let X denote the convex hull that
contains the supports of pd and pg . In this work, we consider the gradient-norm penalty (GNP):

ΩD :

∫
X

(
‖∇D(x)‖22 − 1

)
dx. (1)

The proposed penalty can be viewed as a particular case of the penalty considered in the Sobolev
GAN formulation. While WGAN-Rd and WGAN-Rg (Mescheder et al., 2018) enforce the penalty
on the supports of pd and pg , respectively, the proposed WGAN-FS considers a uniform distribution
on X , resulting in a closed-form solution to the discriminator, given the generator. Incorporating ΩD
gives rise to the following regularized WGAN-FS discriminator cost:

LD = −Ex∼pd [D(x)] + Ex∼pg [D(x)] + λd

∫
X

(
‖∇D(x)‖22 − 1

)
dx. (2)
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3 The Fourier-series-based WGAN-FS Formulation

Consider the WGAN-FS loss LD. The optimal discriminator corresponding to the loss given in
Equation (2) is given by the following Theorem.
Theorem 3.1. Optimal WGAN-FS discriminator: Consider the WGAN-FS discriminator loss sub-
ject to the gradient-norm penalty as given by Equation (2). The optimizer of LD solves Poisson’s
partial differential equation given by

−∆D (x) =
pd(x)− pg(x)

2λd
, (3)

where ∆ = ∇.∇ =
(
∂2x1

+ ∂2x2
+ . . .+ ∂2xn

)
denotes the Laplacian operator.

Consider the integrand in Equation (2). Applying the Euler-Lagrange condition from the Calculus of
Variations yields the optimality condition that the optimal discriminator solved a Poisson’s partial
differential equation (PDE) given in Equation (3). While we summarize the proof in Appendix C.1,
additional details are given in (Asokan & Seelamantula, 2023). While kernel-based solutions to the
above were explored by (Asokan & Seelamantula, 2022) in the context of RBF-CoulombGANs, in
this work, we explore a Fourier-series-based solution.

Motivated by the Fourier series expansion to solve the heat equation in a metal (Fourier, 1807), based
on the fact that they are eigenfunctions of the Laplace operator, we solve the discriminator PDE in
Equation (3) using a Fourier-series expansions of pd, pg and D(x):

pd(x)=
∑

m∈Zn
αme

j〈ωm,x〉, pg(x)=
∑

m∈Zn
βme

j〈ωm,x〉, and DFS(x)=
1

λFS

∑
m∈Zn

γme
j〈ωm,x〉

with frequency harmonics ωm = ω0 m = ω0[m1,m2, . . . ,mn]T, m ∈ Zn − {0}. Substituting the
Fourier-series expansions in (3) and comparing terms on both sides gives

γm =
1

2

(
αm − βm
‖ωm‖2

)
, m ∈ Zn − {0}. (4)

The value of γ0 introduces a DC offset inDFS(x), and without loss of generality, we set γ0 = 0. The
Fourier coefficients of pd and pg are given by αm =

(
1
T

)n
ϕ∗pd(ωm) and βm =

(
1
T

)n
ϕ∗pg (ωm),

respectively, where ϕ∗ represents the complex conjugate of the characteristic function of the corre-
sponding distribution. The Fourier-series approximation yields the particular solution to the PDE.
Including the family of homogeneous solutions Dh(x) = 〈a,x〉 + aconstant, the general solution
becomes D∗(x) = D∗FS(x) +Dh(x). In computing (a, aconstant), we have the following result:
Lemma 3.2. Optimal WGAN-FS generator: Consider the optimization of the generator loss
LG = −LD, with respect to pg , where D∗(x) is as given above. Then, the optimal solution is given
by p∗g(x) = pd(x), ∀ x ∈ X , and the solution is optimal for all finite real values of (a, aconstant).

The proof is given in Appendix C.2. Upon convergence of the GAN, p∗g(x) = pd(x), which implies
D∗opt(x) = D∗h(x) = 0. Therefore, without loss of optimality, we set (a, aconstant) = (0, 0).

For n ≥ 4, in order to reduce the number of terms in the Fourier summation, we consider two trunca-
tion frequencies, Mlow and Mhigh. We deterministically include all low-frequency components along
each dimension to Mlow, while uniformly sampling coefficients between Mlow and Mhigh (together
denoted by the setM). Further, from an implementation perspective, to avoid complex arithmetic,
we use a trigonometric Fourier-series expansion, and the resulting Fourier-series discriminator is:

D∗FS(x) ≈ 1

λ∗FS

(
γ0
2

+
∑

m∈M
γrm cos(ωo〈m,x〉) +

∑
m∈M

γim sin(ωo〈m,x〉)
)
, (5)

where γrm and γim are the real and imaginary part of γm, respectively. Enforcing the gradient-norm
penalty ΩD on (5) results in a bound on λ∗FS . The worst-case value of λ∗FS satisfies:

λ∗FS ≈

√√√√(2|M|+ 1)

( ∑
m∈M

(τ im + τ rm) +
1

N

N∑
k=1

∑
m∈M

(τ im − τ rm) cos(2ωo〈m,xk〉)
)
,

where τ rm = 1
2 (γrm)2ω2

o‖m‖2, and τ im = 1
2 (γim)2ω2

o‖m‖2, and the samples xk are drawn from
the uniform mixture of pd and pg. Based on the approximation- and truncation-error analysis
presented by Asokan & Seelamantula (2023), we set Mlow = 2, Mhigh = 10, and L = 103.
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Figure 1: ( Color online) Experiments on 2-D Gaussian data: (a) & (b) Wasserstein-2 distance
(W2,2(pd, pg)) between WGAN-FS and (a) baseline WGAN variants, (b) trainable variants of the
proposed WGAN-FS. The closed-form Fourier-series approach to enforcing the gradient-norm
penalty converges an order faster than the baselines and trainable variants of the same loss. (c)
Convergence of the optimal Lagrange multiplier λ∗FS alongside Wasserstein-2 distance between
pd and pg (W2,2(pd, pg)). When the model appears converge in the sense ofW2,2(pd, pg), it is a
measure of second-order statistics, while for λ∗FS , the distributions converge in the L2 sense (the
Fourier representation of pg converging to that of pd).

3.1 Illustration Using Synthetic 2-D Data

As part of this extended abstract, we demonstrate performance on 2-D Gaussian learning problems.
An in depth experimental validation, on latent-space modeling with Wasserstein autoencoders, is
presented in Journal version (Asokan & Seelamantula, 2023).

We conduct experiments on 2-D Gaussian and 8-component Gaussian mixture models (GMM). We
draw Gaussian data from N (0.7512, 0.1I2), where 12 denotes a 2-D vector with both entries equal
to 1, and I2 denotes the 2 × 2 identity matrix. The noise that is input to the generator is drawn
from a Gaussian N (02, I2). The baselines are discussed in Appendices B and D.1, while training
specifications are provided in Appendix D.1.

Figures 1(a) and (b) show the Wasserstein-2 distance W2,2(pd, pg) between the generator and
true data distributions as a function of the iterations for the WGAN and WGAN-FS flavors under
consideration, respectively, for 2-D Gaussian data. The Wasserstein-2 distance decays much faster in
the case of WGAN-FS compared with the baseline variants. We observe that replacing the baseline
gradient-norm penalty with that of WGAN-FS (denoted by WGAN-GNP) results in a performance
on par with the best-case baseline. Similarly, training a single-layer discriminator with a sinusoidal
activation function (WGAN-GNP (1S)) to approximately learn the Fourier coefficients results in
poorer performance compared with WGAN-FS, as the suboptimal coefficients cannot represent the
distributions pd or pg accurately. Figure 1(c) shows λ∗FS and the Wasserstein-2 distance (W2,2)
between pd and pg as a function of iterations. WhileW2,2(pd, pg) measures second-order statistics
between pd and pg , λ∗FS measures the coefficient-wise convergence between the Fourier-series of pd
and pg , which indirectly measures the L2 error between the generator and target densities.

4 Discussions and Conclusion

In this work, we analyzed the Wasserstein GAN subjected to a novel variant of the gradient-norm
penalty, leveraging results from functional Calculus. Within this framework, the optimal discrimi-
nator was shown to be the solution to a second-order partial differential equation (PDE). The PDE
connection for the optimal discriminator provides a novel viewpoint for GAN optimization. By
employing a Fourier-series approximation, we showed that a single-shot solution can be obtained
for the discriminator, given the generator. The solution relies on the estimates of the characteristic
functions of the data and generator distributions. The superior performance of this novel approach
was demonstrated in low-dimensional multivariate Gaussian settings, while experiments on latent-
space image data, and the variational analysis of various f -GAN (Nowozin et al., 2016) variants are
presented in the Journal version. The choice of Fourier bases was motivated by Laplace operator and
employing alternative bases representations is a promising direction for future research.
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A Mathematical Preliminaries

The cornerstone of our analysis is the Euler-Lagrange (EL) framework, which is at the heart of
Calculus of Variations (Gel’fand & Fomin, 1964). The EL conditions are of fundamental importance
in solving several problems in physics (Goldstine, 1980; Ferguson, 2004).

Consider the functional optimization of a cost L defined as

L (y(x), y′(x)) =

b∫
a

F (x, y(x), y′(x)) dx, (6)

with respect to y(x), x ∈ [a, b], which is assumed to be continuously differentiable or at least
continuous with a piecewise-smooth derivative y′(x), with finite Dirichlet boundary conditions. Let
y∗(x) denote the optimizer of L. The first variation of L at the optimum y∗, is defined as the Gateaux

derivative δL(y∗, η) =
∂Lε(y∗)
∂ε

∣∣∣∣
ε=0

, where

Lε(y∗) = L
(
y∗(x) + ε η(x), y∗

′
(x) + ε η′(x)

)
=

b∫
a

F
(
x, y∗(x) + ε η(x), y∗

′
(x) + ε η′(x)

)
dx,

where, in turn, η(x) is a family of compactly supported, infinitely differentiable functions that are
identically zero at the boundaries x = a and x = b. Setting the first variation to zero and invoking
the fundamental lemma of Calculus of Variations gives rise to the Euler-Lagrange condition. The
fundamental lemma of Calculus of Variations states that if a function f(x) satisfies the condition∫ b

a

f(x) η(x) dx = 0

for all compactly supported, infinitely differentiable functions η(x), then f must be identically zero
almost everywhere in [a, b].

The Euler-Lagrange condition that the optimizer y∗(x) must satisfy is given as follows:

∂F
∂y
− ∂

∂x

(
∂F
∂y′

) ∣∣∣∣∣
y=y∗(x)

= 0. (7)
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In the special case where the cost L does not involve the derivative of y, the EL condition reduces to
the degenerate version:

∂F
∂y

∣∣∣∣∣
y=y∗(x)

= 0,

which simply corresponds to a point-wise optimization of y over x ∈ [a, b].

In the multivariate case, that is, x ∈ Rn, the cost is of the type

L
(
y (x) , {y′i}

n
i=1

)
=

∫
X⊆Rn

F
(
x, y, {y′i}

n
i=1

)
dx,

where X is the domain of integration and y′i denotes the partial derivative of y(x) w.r.t. the ith entry
of x, that is, xi. The corresponding EL condition is

∂F
∂y
−

N∑
i=1

[
∂

∂xi

(
∂F
∂y′i

)]∣∣∣∣∣
y=y∗(x)

= 0. (8)

The EL condition is a first-order condition and enforcing it yields the optimum. Whether the optimum
corresponds to a minimizer or maximizer of the cost must be checked by invoking the second-order
condition, more specifically the Legendre-Clebsch necessary condition for a minimizer. In the 1-D

case, the condition is given by
∂2F
∂y′2

≥ 0. In the multivariate setting, this condition translates to the

positive-semi-definiteness (p.s.d.) of the Hessian matrix H of the Hamiltonian H, computed with

respect to {y′i(x)}ni=1 and evaluated at y(x) = y∗(x): Hy,H
∣∣∣∣
y=y∗

� 0, where � denotes the p.s.d.

property. The Hamiltonian is given by

H =

n∑
i=1

(
y′i
∂F
∂y′i

)
−F ,

and the entries of the Hessian are given by

[Hy,H]i,j =
∂2H
∂y′i∂y

′
j

.

Together, these results are leveraged to derive the optimal discriminator in WGAN-FS.

B An Overview of Wasserstein GANs

The WGAN minimizes earth mover’s distance (EMD) between the generator and the target data
distributions, pg and pd, respectively. Earth mover’s distance is a special case of the Wasserstein dis-
tance between two distributions. Through Kantorovich-Rubinstein duality, the WGAN optimization
is specified via the min-max problem:

min
pg

{
max
D

{
Ex∼pd [D(x)]− Ex∼pg [D(x)]

}}
,

which is equivalent to the sequential minimization:

D∗(x, pg) = arg min
D: ‖D‖L≤1

LWGAN
D , where LWGAN

D = −Ex∼pd [D(x)] + Ex∼pg [D(x)], and

p∗g(x) = arg min
pg
LWGAN
G , where LWGAN

G = Ex∼pd [D∗(x, pg)]− Ex∼pg [D∗(x, pg)]

where in turn, ‖D(x)‖L ≤ 1 denotes the Lipschitz constraint on the discriminator and D∗(x, pg) is
the optimal discriminator for a given generator distribution pg. The optimal discriminator D∗ is the
one that penalizes regions of the input space where pg differs from pd, while satisfying the Lipschitz
constraint. The constraint is typically imposed by clipping the weights of the discriminator network.
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Table 1: Discriminator loss functions corresponding to various WGAN variants considered in the
literature alongside the proposed WGAN with gradient-norm penalty (WGAN-FS). The key difference
lies in how the Lipschitz penalty is enforced on the discriminator. While the vanilla WGAN clips the
discriminator network weights, the other WGAN flavors, including ours, consider gradient-based
regularization.

WGAN flavor Discriminator loss

WGAN LWGAN
D = −Ex∼pd [D(x)] + Ex∼pg [D(x)]

WGAN-GP LWGAN
D + λEx∼αpg+(1−α)pd

[
(‖∇D(x)‖2 − 1)2

]
; 0 ≤ α ≤ 1

WGAN-RdRg LWGAN
D + λ1

2 Ex∼pd
[
‖∇D(x)‖22

]
+ λ2

2 Ex∼pg
[
‖∇D(x)‖22

]
Sobolev GAN LWGAN

D +λEx∼νp(x)
[
‖∇D(x)‖22

]
, where νp(x) ≥ 0;

∫
X νp(x)dx = 1

WGAN-LP LWGAN
D + λEx∼αpg+(1−α)pd

[
(max(‖∇D(x)‖2 − 1, 0))2

]
; 0 ≤ α ≤ 1

WGAN-ALP LWGAN
D + λEx∼pd

[(
max

(
D(x)−D(x+radv)

‖radv‖2 − 1, 0
))2]

,

where radv = max
r:‖r‖2>0

{
D(x)−D(x+r)

‖r‖2

}
WGAN-FS
(Proposed)

LWGAN
D + λd

∫
x∈X

(
‖∇D(x)‖22 − 1

)
dx

An alternative to weight-clipping is spectral normalization of the weights (Roth et al., 2019). Sub-
sequent works (Gulrajani et al., 2017; Petzka et al., 2018; Terjék, 2020) replaced the Lipschitz
constraint with a gradient penalty to avoid exploding gradients in a neural-network setting. For exam-
ple, Gulrajani et al. (2017) replaced the Lipschitz-1 penalty with the gradient penalty (WGAN-GP):
(‖∇D(x)‖2−1)2 =0. It is well-known that a function whose gradient has a bounded norm satisfies
the Lipschitz constraint (Adler & Lunz, 2018).

Table 1 lists a few important gradient-based regularizers proposed in the WGAN literature, which are
considered in this paper. The original WGAN-GP empirically evaluated the discriminator gradient
on samples drawn from the interpolated distribution αpg + (1 − α)pd, 0 ≤ α ≤ 1, and penalizes
values far away from 1 in the norm-squared sense. Petzka et al. (2018) incorporated a one-sided
hinge-like penalty in the WGAN-LP formulation (LP stands for Lipschitz penalty). The gradient
magnitude is upper-bounded by 1, by penalizing the discriminator only when the gradient magnitude
exceeds 1. The gradients were evaluated empirically on an interpolated distribution as in the case of
WGAN-GP. In the adversarial Lipschitz regularization proposed in WGAN-ALP (Terjék, 2020), for
a sample drawn from either the data or generator distributions, the regularizer was evaluated along
the adversarial penalty direction radv — the one along which the Lipschitz constraint is maximally
violated.

Mroueh et al. (2018) considered a gradient-norm penalty in the Sobolev GAN formulation, where
they bounded the energy in the gradient of the discriminator, evaluated with respect to a base measure
νp(x). From an implementation standpoint, they considered two base measures: (a) The midpoint
distribution νp(x) =

pd+pg
2 , which is a special case of the WGAN-GP penalty (Gulrajani et al.,

2017); and (b) A noise-convolved version of pd, also considered in DRAGAN (Kodali et al., 2017).
Mescheder et al. (2018) employed gradient penalties evaluated independently over real data (WGAN-
Rd), over the generated data (WGAN-Rg), or a weighted combination of both (WGAN-RdRg) which
can be seen as special cases of the Sobolev GAN penalty. Subsequent works extended the Wasserstein-
1 distance based GAN to general Lp-norm spaces (Adler & Lunz, 2018) or propose solving the primal
problem through Sinkhorn fixed-point iterations (Genevay et al., 2018).
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C Optimality of WGAN-FS

In this appendix, we present the proofs for the optimal discriminator, generator, and Fourier-series-
based Lagrange multiplier in WGAN-FS.

C.1 Optimal WGAN-FS Discriminator

Consider the n-dimensional WGAN-FS scenario, the discriminator loss takes the form:

LD = −Ex∼pd [D(x)] + Ex∼pg [D(x)] + λd

∫
X

(
‖∇D(x)‖22 − 1

)
dx

=

∫
X

(
D(x) (pg(x)− pd(x)) + λd

(
‖∇D(x)‖22 − 1

))
dx. (9)

To determine the optimal discriminator corresponding to the loss given in Equation (9), Consider
the integrand: D(x)(pg(x)− pd(x)) + λd‖∇D(x)‖22. Applying the Euler-Lagrange condition from
Equation (8) for obtaining the optimum results in Poisson’s partial differential equation (PDE) given
in Equation (3).

A closed-form solution to Poisson’s equation is obtained similar to Coulomb GAN (Unterthiner
et al., 2018) and RBF-Coulomb GAN formulations (Asokan & Seelamantula, 2022), by solving the
n-D inhomogeneous differential equation −∆D(x) = δ(x). In polar coordinates, this yields the
fundamental solution φ(x) given by (Evans, 2010):

φ(x) =


− 1

2π
ln(‖x‖), for n = 2, and

1

n(n− 2)v(n)

1

‖x‖n−2 , for n ≥ 3,

(10)

where ‖x‖ =
√
x21 + x22 + . . .+ x2n and v(n) is the volume of the unit sphere in Rn given by

v(n) = π
n
2

(
Γ
(
n
2 + 1

))−1
, with Γ(n) denoting the gamma function. The solution to Poisson’s

equation −∆D(x) =
pd(x)−pg(x)

2λd
is the convolution between φ(x) and pd(x)−pg(x)

2λd
, which results:

D∗p(x) =
1

2λd

∫
X
φ(x− y) (pd(y)− pg(y)) dy, (11)

Including the family of homogeneous solutions D∗h(x) = 〈a,x〉 + constant, the general solution
becomes

D∗(x) = D∗p(x) + 〈a,x〉+ constant. (12)

C.2 Optimal WGAN-FS Generator

The derivation of the optimal generator p∗g proceeds along the lines of the first-variation analysis,
taking into account the fact that the generator cost does not involve terms containing the derivatives
of pg . Consider the Lagrangian

LG =

∫
X

(pd(x)− pg(x))D∗(x) dx,

where D∗(x) is as given in Equation (12):

D∗(x) =
1

λd

∫
X
φ(x− y) (pd(y)− pg(y)) dy + 〈a,x〉+ constant,

with φ(x) = κn‖x‖2−n, where x ∈ Rn, n ≥ 3, κn = 1
n(n−2)v(n) , v(n) is the volume of the unit

sphere in Rn, and X is the convex hull of the supports of pd and pg . Denote the optimal generator as
p∗g(x). Consider the perturbation p∗g(x) + ε η(x), where η(x) is a family of compactly supported,
absolutely integrable, infinitely differentiable functions that are identically zero at the boundaries of
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X . The first variation ∂LG is given by

∂LG =

∫
X

∫
X
φ(y)η(x− y)(p∗g(x)− pd(x)) dy dx

+

∫
X

(
〈a,x〉 −

(
φ ∗ (pd − p∗g)

)
(x)

)
η(x) dx

= T1 + T2,

where αd =
λ∗d
4

. The term T1 involves a convolution with a singular kernel φ(y), with the singularity
at the origin. The integrals therefore have to be evaluated in the Cauchy principal-value sense. We
make the interpretation explicit by defining:

p.v.
∫
X

( · ) dx = lim
ξ→0

∫
X ξ

( · ) dx,

where X ξ = X − B(0, ξ), which is formed by removing a ball of radius ξ centered at the origin.
Recall that X is assumed to be compactly supported, and hence X ξ is compactly supported as well.
Consider η to be absolutely integrable over X ξ. Applying Fubini’s theorem to T1 yields

T1 = lim
ξ→0

∫
X ξ
φ(y)

∫
X ξ

(
p∗g(x)− pd(x)

)
η(x− y) dx dy,

= lim
ξ→0

∫
X ξ

∫
X ξ
φ(y)

(
p∗g(x + y)− pd(x + y)

)
η(x) dx dy.

Swapping the order of integration yields

T1 = lim
ξ→0

∫
X ξ
η(x)

(
φ ∗
(
p∗g − pd

)
(x)
)

dx,

since φ is radially symmetric. Substituting T1 back into ∂LG, setting it to zero, and invoking the
fundamental lemma of calculus of variations (cf. Appendix A), we obtain the condition(

φ ∗ (p∗g − pd)
)

(x) =
1

2
〈a,x〉, (13)

which the optimal generator p∗g must satisfy. Applying the Laplacian operator ∆ on both sides of
Equation (13), we get

p∗g(x) = pd(x), (14)

which is the desired optimality condition of the generator distribution, and is independent of the
choice of the homogeneous component Dh(x).

C.3 Optimal Lagrange Multiplier in WGAN-FS

Consider the Fourier-series (FS) discriminator D∗FS(x) in the multivariate case:

D∗FS(x) ≈ 1

λ∗
2

FS

(
〈a,x〉+ constant +

∑
m∈M

(
γrm cos(ωo〈m,x〉) + γim sin(ωo〈m,x〉)

))
.

Taking the derivative with respect to x` and squaring, we get:(
∂D∗FS
∂x`

)2

=
1

λ∗
2

FS

(
a` −

∑
m∈M

(
γrmωom` sin(ωo〈m,x〉) + γimωom` cos(ωo〈m,x〉)

))2

.

Using the Cauchy-Schwartz inequality:(
n∑
`=1

u`.1

)2

≤ n

n∑
`=1

u2` ,
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we obtain the following bound:(
∂D∗FS
∂x`

)2

≤ 2|M|+ 1

λ∗
2

FS

(
a2` +

∑
m∈M

ω2
om

2
`

(
γr

2

m sin2(ωo〈m,x〉) + γi
2

m cos2(ωo〈m,x〉)
))

,

where |M| is the cardinality of the setM of the selected harmonics. Summing over ` yields:

‖∇D∗‖22 ≤
2|M|+ 1

λ∗
2

FS

(
‖a‖2 +

∑
m∈M

ω2
o‖m‖2

(
γr

2

m sin2(ωo〈m,x〉) + γi
2

m cos2(ωo〈m,x〉)
))

⇒ ‖∇D∗‖22 ≤
2|M|+ 1

λ∗
2

FS

(
‖a‖2 +

∑
m∈M

((
τ im + τ rm

)
+
(
τ im − τ rm

)
cos(2ωo〈m,x〉)

))
,

where τ rm =
1

2
(γrm)2ω2

o‖m‖2, and τ im =
1

2
(γim)2ω2

o‖m‖2.

Enforcing the gradient-norm penalty:
∫
X
(
‖∇D∗‖22 − 1

)
dx = 0, gives

0 ≤

∫
X

(
(2|M|+ 1)

(
‖a‖2 +

∑
m∈M

((
τ im + τ rm

)
+
(
τ im − τ rm

)
cos(2ωo〈m,x〉)

))
− λ∗2FS

)
dx.

Simplifying the above gives the condition on the optimal Lagrange multiplier:

λ∗
2

FS ≤
(2|M|+ 1)

|X |

∫
X

(
‖a‖2 +

∑
m∈M

((
τ im + τ rm

)
+
(
τ im − τ rm

)
cos(2ωo〈m,x〉)

))
dx.

= (2|M|+ 1)

(
‖a‖2 +

∑
m∈M

(
τ im + τ rm

)
+
∑

m∈M

((
τ im − τ rm
|X |

)∫
X

cos(2ωo〈m,x〉)dx
))

.

Given the data

D = {xk} = {xd, s.t. xd ∼ pd}
⋃
{xg, s.t. xg ∼ pg}

of cardinality |D| = N , we can estimate the upper bound on λ∗FS as follows:

λ∗FS ≤

√√√√(2|M|+ 1)

(
‖a‖2 +

∑
m∈M

(τ im + τ rm) +
1

N

N∑
k=1

∑
m∈M

(τ im − τ rm) cos(2ωo〈m,xk〉)
)
.

Recall that ‖a‖ = 1 for the optimal discriminator to satisfy the gradient-norm penalty ΩD when
p∗g = pd (cf. Section 3). In practice, the contribution of ‖a‖ was found to be negligible in comparison
with the other terms. The worst-case choice for the Lagrange multiplier is

λ∗FS =

√√√√(2|M|+ 1)

( ∑
m∈M

(τ im + τ rm) +
1

N

N∑
k=1

∑
m∈M

(τ im − τ rm) cos(2ωo〈m,xk〉)
)
.

D Additional Experimentation

In this appendix, we present additional experiments and results on univariate and multivariate
synthetic Gaussian data, and on learning the image-space distributions with WGAN-FS. We also
provide additional details on the evaluation metrics used.

D.1 Experimental Setup

We compare WGAN-FS with the following two categories of baselines: (i) WGAN and its variants
with different penalties, such as the gradient penalty (WGAN-GP), Lipschitz penalty (WGAN-LP),
Sobolev GAN and stable alternatives to GP, such as WGAN-Rd and WGAN-Rg; and (ii) base WGAN
with variations of the proposed gradient-norm penalty (GNP), evaluated empirically on sample
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points drawn from the two datasets. WGAN-GNP implements the WGAN-GP algorithm with the
GNP cost. While we compute the optimal Lagrange multiplier λd in closed-form in WGAN-FS,
in Sobolev GANs, λd is optimized to maximize the discriminator loss through stochastic gradient-
descent (Mroueh et al., 2018). Recently, multi-layer networks with periodic sinusoidal activations
(SIREN) have been shown to achieve state-of-the-art performance in learning image, sound and
wavefield representations (Sitzmann et al., 2020). We therefore adopt two variants of SIREN for the
discriminator: (a) A three-layer fully connected network with sin activation, called WGAN-GNP
(3S); and (b) A single-layer fully connected network with sin activation and the same number of
nodes as terms in the Fourier-series expansion, called WGAN-GNP (1S). Training WGAN-GNP (1S)
is equivalent to learning the Fourier coefficients in the WGAN-FS formulation.

Gaussian noise z that is input to the generator is sampled from the standard Gaussian N (0, 1). While
WGAN-FS uses a closed-form Fourier-series discriminator, the baselines use a three-layer fully
connected discriminator network with leaky ReLU activation. The batch size is 500. For the baseline
techniques, each training step involves 5 iterations of the discriminator network optimization followed
by one iteration of the generator. WGAN-FS, on the other hand, uses a single-shot discriminator
during each training step. The Adam optimizer (Kingma & Ba, 2015) is used with a learning rate
η = 0.05, and the exponential decay parameters for the first and second moments are β1 = 0.5 and
β2 = 0.999, respectively. The implementation was carried out using TensorFlow 2.0 (Abadi et al.,
2016).

D.2 Additional Experiments on 1-D and 2-D Gaussians

To begin with, we present results on learning 1-D and 2-D Gaussians and Gaussian mixtures with the
WGAN-FS algorithm.

Accuracy of the Fourier-series approximation: For this experiment, Gaussian training data is
drawn from N (10, 1). The fundamental period T is set to 7 in all the experiments. In Figure 2, we
present the target distribution pd and its Fourier-series approximation for various choices of truncation
order M and batch size N to illustrate the trade-off between truncating the Fourier series at low
frequencies, and the error in approximating high-frequency coefficients with sparse samples. We
observe that, when M is small (e.g., M = 5), introducing additional samples does not improve the
quality of the approximation. For larger M , (e.g., M ≥ 25), we observe that, in line with the theory,
the high-frequency terms have a larger variance in their estimate and require larger N to be estimated
accurately. This is the statistical component of the error, which can be reduced by increasing N .
The artifacts can be suppressed from the approximation by setting N > Mn+1 (for example, with
N = 500 for M = 10 and N = 1000 for M = 25). We observe similar performance trade-offs in
the case of learning a bimodal Gaussian mixture in 1-D, as shown in Figure 3. Additionally, when
N and M are both small, the Fourier-series approximation fails to capture the smaller mode. Based
on these observations, we expect WGAN-FS to perform relatively better with lower M even in the
high-dimensional setting. Analytical bounds on the truncation and approximation error are derived in
the Journal version (Asokan & Seelamantula, 2023).

Choosing the fundamental period T : We next present results on varying the assumed period T ,
given truncation order M and batch size N . Based on the previous experiments, we set M = 10
and N = 100. We consider the 1-D Gaussian learning scenario as above. The target is a Gaussian
N (5, 1), while the noise distribution is N (0, 1). We compare results for various choices of the time
period T ∈ {2, 5, 7, 11, 25, 75}. Figure 4 compares the quality of the Fourier-series approximation
of the target distribution for each value of T . Since a Gaussian is infinitely supported, there will be
aliasing in the Fourier representation no matter what the choice of the period is. In order to capture
maximum area under the curve, to keep the aliasing error small, and to prevent the generator from
latching on to an aliased version of the target density, we choose T to encompass 12σ supports of
both the generator and the target densities in the fundamental period (for example, T ≥ 6 for the
standard normal distribution). A good choice of the fundamental period T is one that is centered
around the generator distribution, but also encompasses the target distribution. For the scenario where
the standard normal N (0, 1) is chosen as the noise distribution when learning a target N (µ, σ) we
observe that T ≈ max{6, µ+ 6σ} results in a superior quality of the Fourier-series approximation
of the target.

Figures 5(a) and (b) plot the Wasserstein-2 distanceW2,2 and generator loss LG, respectively, as
a function of iterations for various T . We observe that, for small T , the generator latches on to an
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aliased version of the target, resulting in a large value forW2,2, although the loss LG converges to
zero. Choosing a large value of T makes the distribution appear like a spike (high-frequency) in the
fundamental period and therefore, an accurate representation requires a larger value of M . For large
M , although the Fourier-series approximation is not accurate, the generator samples converge to the
desired target samples in terms ofW2,2 and LG by virtue of uniqueness of the Fourier representation
for a given set of samples. Figure 5(c) shows the learnt discriminator for various choices of T . For
small T , the learnt discriminator is unable to classify the target and generator distributions accurately.
By virtue of the truncated Fourier-series approximation, the discriminator always learns a smooth
approximation of the target classifier.

Convergence of the optimal Lagrange multiplier: We next illustrate the suitability of the optimal
Lagrange multiplier λ∗FS to serve as a proxy to measure convergence of the GAN generator during
training. Figure 6 shows λ∗FS and the Wasserstein-2 distance (W2,2) between pd and pg as a function
of iterations. We observe that, for higher learning rates (lr ≈ 10−1), λ∗FS does not converge to zero,
which may be attributed to the fact that theW2,2 metric measures the convergence only between
the first- and second-order statistics, while λ∗FS measures the coefficient-wise convergence between
the Fourier-series of pd and pg, which indirectly measures the L2 error between the generator and
target densities. This suggests that, while the models converge in the Wasserstein-2 sense for higher
learning rates, convergence in the L2 sense occurs for lower rates (here, lr ≤ 10−2). Based on these
results, we set the learning rate to 10−3 for the generator in the subsequent experiments.

Experiments on 8-component Gaussian mixtures: In the 8-component GMM experiment, isotropic
Gaussians are considered with standard deviation 0.05 and means lying in [0, 1]× [0, 1]. The noise
that is input to the generator is drawn from N (0100, I100). The generator architecture for all WGAN
models under consideration consists of three fully connected layers of 128, 64, and 32 nodes with
LeakyReLU activation in each layer. The output layer has two nodes and a sigmoid activation.
Figures 8(a) and (b) depict the W2,2 metric and KL divergence, respectively, as a function of
iterations for the WGAN baseline models and the proposed WGAN-FS on the GMM learning task.
The KL divergence is estimated parametrically by binning batches of samples to form histograms.
The Wasserstein-2 distance is computed as a sample estimate using the publicly released Python
optimal transport library (Flamary et al., 2021). We observe that, for the given choice of parameters,
the baseline WGAN and WGAN-GP models latched on to different modes of the GMM at different
stages of the optimization, failing to capture the entire distribution. We observe that WGAN-FS
converges to lower values of the metrics compared with the baselines. Figure 7 shows the convergence
of the generator distribution to the target data distribution in each case, while the associated heat-map
represents the level-set of D∗(x) at the given iteration. We observe that, during the initial iterations
of training, WGAN-FS learns a significantly better representation of the underlying distributions
compared with the baselines. This is evident from the fact that, while the baselines require optimizing
a neural network for the discriminator, WGAN-FS provides the optimal discriminator for a given
generator in closed form/single-shot at each iteration. Figure 8(c) compares the difference in
performance of WGAN-FS with and without the homogeneous solution included. The generator
optimization is independent of the homogeneous solution, with nearly identical performance in both
cases, which is in accordance with the theoretical results.
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Figure 2: ( Color online) Comparison of the quality of the Fourier-series approximation of a
Gaussian pd(x) for various batch sizes N and truncation frequencies M .
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Figure 3: ( Color online) Comparison of the quality of the Fourier-series approximation of a bimodal
Gaussian pd for various batch sizes N and truncation frequencies M .
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Figure 4: ( Color online) Comparison of the quality of the 10-component Fourier-series approxima-
tion of a Gaussian pd(x) for various choices of the fundamental period T . Underestimating the time
period results in aliasing, while overestimating it results in worse approximations of the distribution
and requires additional high-frequency components in the expansion to improve upon the quality.
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Figure 5: ( Color online) Experiments on 1-D Gaussian data: Comparison of (a) Wasserstein-2
distanceW2,2(pd, pg); and (b) Generator loss LG as a function of iterations when training WGAN-FS
for various choices of T . For small T , the generator latches on to periodic replicas of the target,
resulting in higherW2,2 values but low LG. (c) Comparison of the learnt discriminator when training
WGAN-FS for various choices of T . WGAN-FS learns a smooth approximation of the true classifier
for all T that contain 12σ windows of the generator and target distribution, thereby avoiding aliasing.
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Figure 6: ( Color online) Convergence of the optimal Lagrange multiplier λ∗FS alongside
Wasserstein-2 distance between pd and pg (W2,2(pd, pg)) for various learning rates. For higher
learning rates, while the model appears to converge in the sense ofW2,2(pd, pg), which is a measure
only up to second-order statistics, we observe from λ∗FS that the distributions converge in the L2

sense (the Fourier representation of pg converging to that of pd) only for learning rates lower than
10−2. For very low rates (such as 10−5), the convergence is not smooth. Therefore, we use learning
rates in the range [10−2, 10−4] in the subsequent experiments.
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Figure 7: ( Color online) Convergence of generator distribution (green) to the target multimodal
Gaussian data (red) on the considered WGAN variants. The heat map represents the values taken
by discriminator. The ideal D(x) is the one that takes larger values at locations where pd > pg and
vice versa, converging to a constant after p∗g approaches pd. The Fourier-series approximation of
WGAN-FS approach leads to a better representation of the discriminator during the initial iterations
than the baselines, leading to faster convergence. 1K = 1000.
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Figure 8: ( Color online) Experiments on 2-D Gaussian-mixture data: Comparison of (a) Wasserstein-
2 distance (W2,2(pd, pg)), and (b) Kullback-Leibler divergence between the data and generator
distributions for WGAN-FS and baseline WGANs. WGAN-FS converges to a lower (better) value
than the baselines in terms of both metrics. (c) Comparison ofW2,2(pd, pg) versus iterations for
WGAN-FS with and without the homogeneous solution Dh(x). The convergence of the WGAN-FS
generator is relatively unaffected by the homogeneous component.

D.3 Experiments on n-dimensional Gaussians

We now present experimental results on learning multivariate Gaussian data with truncated
Fourier-series expansions for WGAN-FS.

Experimental Setup: The experiments are conducted on n-D Gaussian data drawn from
N (0.751n, 0.2In), where 1n denotes an n-dimensional vector with all entries equal to 1, and In
is the n-dimensional identity matrix. The input to the generator is 100-D Gaussian noise. To
simulate the scenario of training on real-world images with the WAE Encoder (Tolstikhin et al.,
2018), the noise input is provided to a fully connected layer with 32× 32× 3 nodes, whose output is
reshaped to (32, 32, 3). Subsequently, the reshaped noise vectors are provided as input to a network
consisting of four convolution layers with 1024, 256, 128, and 64 filters in successive layers. The
output of the convolution layers is flattened and provided to a fully connected layer with n output
nodes. The learning rate is set to 10−2, and batch size to N = 100. Recall that the Fourier-series
expansion consists of two levels of approximation, one for the low-frequency part and the other for
the high-frequency part. We consider all harmonics up to Mlow, and a set of L distinct uniformly
drawn/sampled harmonics between Mlow and Mhigh. We pick 10 ≤ n ≤ 256 to represent different
latent space dimensions used in standard autoencoder architectures for images (Tolstikhin et al., 2018).

Results: Figure 9 shows the Wasserstein-2 metric W2,2, generator loss LG and Lagrange mul-
tiplier λ∗FS as a function of iterations, when training WGAN-FS to learn 10-D Gaussian data.
We set Mlow = 2 and Mhigh = 10. We experiment on multiple choices of the sample size:
L ∈ {5, 10, 20, 100, 500, 1000, 10000, 25000}. We observe from Figure 9(a) that the model con-
verges faster for smaller L (for example L ≤ 500 in the experiments). However, as seen in Figure 9(b),
for small L, the value of LG is higher. From Figure 9(c), we see that for large L (such as L > 103),
the convergence of the model in terms of λ∗FS is slower. We attribute this to the slower convergence
of the high-frequency components in the Fourier-series expansions due to increased variance in
estimating these components for a given batch size N . This disparity is more pronounced when λ∗FS
is plotted on the logarithmic scale, as seen in Figure 9(b). We therefore chose 102 ≤ L ≤ 104 to be
a good compromise between achieving lower values of the generator loss and faster convergence
of the model. The findings were similar when training the WGAN-FS model on 64-D and 128-D
Gaussians (cf. Figures 10 and 11, respectively). We compare the performance of WGAN-FS for
various n, given the sampling parameters Mlow = 2, Mhigh = 10 and L = 1000. From Figure 12,
we observe that, as n increases, bothW2,2 and λ∗FS exhibit poorer convergence (saturation to higher
values). There is also increased jitter in the convergence of the loss and λ∗FS as n increases.
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Figure 9: ( Color online) Experiments on 10-D Gaussian data: Plots comparing the convergence
of: (a) Wasserstein-2 distanceW2,2; (b) Generator loss LG; (c) Optimal Lagrange multiplier λ∗FS ,
and (d) the natural logarithm of λ∗FS as a function of iterations when training WGAN-FS with L
randomly sampled high-frequency components. The convergence is slower for large L as the error in
estimating the coefficients increases with an increase in the number of high frequency terms.
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Figure 10: ( Color online) Experiments on 64-D Gaussian data: Plots comparing the convergence
of: (a) Wasserstein-2 distanceW2,2; (b) Generator loss LG; (c) Optimal Lagrange multiplier λ∗FS ,
and (d) the natural logarithm of λ∗FS when training WGAN-FS on 64-dimensional Gaussian data
for various number of sampled high-frequency coefficients, L. We observe that λ∗FS converges to a
worse (higher) value for larger L, while Wasserstein-2 distanceW2,2(pd, pg) and generator loss LG
are worse for small L. Setting L to be around 103 is a viable compromise.
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Figure 11: ( Color online) Experiments on 128-D Gaussian data: Plots comparing the convergence
of: (a) Wasserstein-2 distanceW2,2; (b) Generator loss LG; (c) Optimal Lagrange multiplier λ∗FS ,
and (d) the natural logarithm of λ∗FS when training WGAN-FS on 128-dimensional Gaussian data
for various number of sampled high-frequency coefficients, L. We observe that the models converge
to worse (higher) values of λ∗FS as L increases. This suggests that Fourier-series-based discriminator
performs better when fewer high-frequency components are included in the approximation.
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Figure 12: ( Color online) Plots comparing the convergence of (a) Wasserstein-2 distance
W2,2(pd, pg), (b) Generator loss LG, (c) the optimal Lagrange multiplier λ∗FS , and (d) the nat-
ural logarithm of λ∗FS when training WGAN-FS on n-dimensional data, for various n. Across all
three metrics, we observe that the models converge to worse (higher) values as the dimensional-
ity of the data increases. This suggests that Fourier-series-based discriminator performs better on
lower-dimensional latent-space matching.
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