
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

IMMUNOTRACE: A META-AGENT FOR IMMUNE HIS-
TORY TRACKING

Anonymous authors
Paper under double-blind review

ABSTRACT

The adaptive immune system encodes an individual’s exposure history in the
T-cell receptor (TCR) repertoire. We present ImmunoTrace, an AI agent for
immune history tracking that estimates past pathogen exposure from a single
time-point repertoire by linking TCRs and HLA alleles to proteome-scale pep-
tide libraries. A shared protein language model encodes TCR CDR3 sequences,
HLA pseudo-sequences, and candidate peptides. Three high-capacity projection
heads adapt these embeddings, and two cross-attention modules explicitly model
TCR–peptide and HLA–peptide interactions. The fused representation is passed
to a deep classifier to produce binding probabilities, while a contrastive branch
with an InfoNCE objective and a learnable temperature sculpts the embedding
space; we jointly optimize the contrastive and BCE losses while partially fine-
tuning ESM2. For subject-level tracking, scores are calibrated into probabili-
ties and evidence is aggregated across the repertoire with a probabilistic fusion
scheme, yielding pathogen-level exposure estimates together with interpretable
peptide-level evidence. On a multi-pathogen benchmark that includes Treponema
pallidum (syphilis) and Neisseria gonorrhoeae (gonorrhea), ImmunoTrace sur-
passes strong baselines, generalizes under protein and HLA distribution shifts,
maintains well-calibrated predictions, and scales to proteome-sized libraries with
practical latency. We will release code and data-preparation recipes to facilitate
reproducibility.

1 INTRODUCTION

Immunological memory imprints a subject’s exposure history into the T-cell receptor (TCR) reper-
toire. Each TCR encodes sequence-level constraints that govern recognition of peptide–MHC
(pMHC) complexes (Dan et al., 2021). Accurately linking repertoires to peptides across entire
pathogen proteomes would enable a new class of computational immunological history trackers that
complement serology and nucleic acid tests for routine checkups, diagnosis, vaccine-effectiveness
assessment, and personalized therapy. In human syphilis, antigen-specific CD4+ T cells in blood
and skin persist long after curative therapy (at least 6 months in skin and up to 10 years in blood)
and frequently target periplasmic or membrane proteins, underscoring the feasibility of retrospective
inference from immune repertoires (Reid et al., 2024).

Traditional statistical approaches to repertoire analysis—such as k-mer or motif enrichment, public-
clonotype lookups, TCR-distance nearest-neighbor classifiers, and pipelines that combine MHC-
binding predictors with heuristic TCR features—have yielded useful associations, but they face
structural limitations for proteome-scale retrospective inference: (i) they rarely model the full
TCR–peptide–MHC triad and cross-reactivity jointly, often omitting the allele sequence or treat-
ing it as a coarse label (Montemurro et al., 2021); (ii) they do not naturally scale or calibrate for
retrieval over millions of peptides, typically assuming independence across candidates and lacking
well-calibrated probabilities; and (iii) they depend on curated epitope labels and immunodominance-
biased datasets, limiting generalization to unseen proteins and HLA alleles. These constraints mo-
tivate a new AI problem: repertoire-to-proteome linking for retrospective exposure inference (Za-
slavsky et al., 2025). Given a single time-point TCR repertoire and optional MHC alleles, and a
target pathogen proteome (e.g., Treponema pallidum or Neisseria gonorrhoeae), the task returns (a)
a calibrated subject-level probability of prior exposure and (b) an interpretable, ranked set of candi-
date peptides with per-peptide probabilities that support the decision. The formulation emphasizes
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scalability, calibration, and generalization to unseen proteins and HLA, while aligning with routine
clinical workflows.

We introduce ImmunoTrace, an AI agent that orchestrates retrieval, interaction modeling, calibra-
tion, and evidence fusion behind a single interface. Concretely, ImmunoTrace: (1) ingests a subject’s
single time-point TCR repertoire together with an optional MHC allele sequence; (2) constructs a
task-specific peptide library from a target pathogen’s proteome (e.g., Treponema pallidum); (3) per-
forms retrieval with a dual-encoder trained using a contrastive objective; (4) performs re-ranking via
either a conditional cross-encoder language model that estimates peptide token likelihoods condi-
tioned on (TCR, MHC), or a discriminative interaction module built on a shared protein language
model with multi-branch projections and cross-attention; (5) calibrates model scores into probabil-
ities; and (6) aggregates evidence across the repertoire using probabilistic fusion to yield a subject-
level exposure probability together with interpretable peptide-level evidence. This decomposition
turns a combinatorial search into a scalable two-stage pipeline with calibrated probabilistic output.

Contributions.

• We formalize a new AI problem: repertoire-to-proteome linking for retrospective ex-
posure inference, which outputs a calibrated subject-level probability together with an
interpretable, ranked set of peptide-level evidence; the formulation targets scalability to
proteome-sized libraries and generalization to unseen proteins and HLA alleles.

• We present ImmunoTrace, an orchestration agent that combines contrastive retrieval with
conditional re-ranking (or a discriminative interaction module), followed by probability
calibration and probabilistic fusion, delivering a single end-to-end interface for repertoire-
based exposure estimation.

• We establish a multi-pathogen evaluation using Treponema pallidum (syphilis) and Neis-
seria gonorrhoeae (gonorrhea) as demonstrations, with epitope-level leakage-free splits
and out-of-distribution holds (unseen proteins and unseen HLA alleles), release data-
preparation recipes, and report strong overall performance with well-calibrated probabili-
ties and practical end-to-end latency.

2 RELATED WORK

We organize prior art along three strands that mirror our pipeline: (i) models of TCR–epitope recog-
nition, which target specificity; (ii) pMHC binding and immunopeptidomics, which constrain pep-
tide availability; and (iii) probability calibration, which turns model scores into repertoire-level,
decision-ready outputs.

TCR–epitope prediction. Classical similarity-based methods group receptors by conserved se-
quence features using alignment or distance metrics (e.g., TCRdist) and motif-oriented clustering
(e.g., GLIPH/GLIPH2); they can recover convergent specificity signals but typically do not explicitly
model the full TCR–peptide–MHC triad (Dash et al., 2017). Deep models learn joint embeddings
for TCRs and peptides (e.g., ERGO, TITAN, DeepTCR, TCRGP, NetTCR, ImRex); some meth-
ods incorporate HLA pseudo-sequences or structure-inspired features, yet generalization to unseen
epitopes remains challenging (Springer et al., 2020; Weber et al., 2021; Sidhom et al., 2021; Mon-
temurro et al., 2021). Structure-aware resources and methods (e.g., STCRDab-backed pipelines, or
docking-and-scoring of TCR–pMHC) can complement sequence-only predictors by providing inter-
face cues and cross-reactivity hypotheses, but they involve throughput trade-offs (Leem et al., 2018;
Negi & Braun, 2017). In contrast, our formulation: (a) decouples open-world candidate generation
from conditional sequence likelihood by first performing scalable retrieval and then re-ranking; and
(b) aggregates pairwise evidence across the entire subject’s repertoire to yield calibrated subject-
level probabilities. To ensure fairness in benchmarking and data setup, we reference curated TCR–
epitope dictionaries and triad-binding datasets from the Fusion-pMT article and VDJdb, and adapt
them into leakage-controlled splits that prevent memorization across TCRs, peptides, or HLA con-
texts (Ma et al., 2025; Bagaev et al., 2020).

pMHC binding and immunopeptidomics. Predictors such as NetMHCpan and MHCflurry es-
timate peptide–HLA presentation or binding and are widely used to constrain candidate peptides
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before any TCR modeling (Reynisson et al., 2020; O’Donnell et al., 2020). Orthogonally, im-
munopeptidomics identifies naturally presented ligands by mass spectrometry; public repositories
(e.g., PRIDE via ProteomeXchange) and turnkey pipelines (e.g., MHCquant) improve scalability
and reproducibility, while rescoring frameworks (e.g., MS2Rescore) and multi-engine strategies
increase discovery sensitivity in infected-cell ligandomes. In our system, these resources act as
optional priors that reduce the retrieval search space without encoding TCR specificity;

Calibration. Accurate downstream use of repertoire-level outputs requires well-calibrated prob-
abilities. Post-hoc methods such as Platt scaling, isotonic regression, and temperature scaling are
standard tools; temperature scaling in particular is a strong, single-parameter baseline for modern
neural networks (Platt et al., 1999; Zadrozny & Elkan, 2002; Guo et al., 2017). We adopt post-
hoc calibration on a held-out set and report reliability diagrams, expected calibration error, and
probability–accuracy curves at both peptide and subject levels. Practically, calibration stabilizes
rule-in/rule-out thresholds for clinical-style readouts. Our focus here is in-distribution calibration;
uncertainty quantification under distribution shift is left to future work.

3 PRELIMINARIES

Problem setup and notation. For a subject, let the repertoire be a multiset of TCR sequences
with counts, denoted R = {(ti, ci)}Ni=1, where ti is a TCR sequence and ci ≥ 0 is its clone count
(or UMI-derived abundance). We normalize counts into weights wi = ci/

∑
k ck for downstream

aggregation. Let m denote an optional MHC pseudo-sequence for the subject; when unavailable
we use an uninformative placeholder. Given a pathogen proteome, we form a candidate peptide
library P = {pj}Mj=1 by applying variable-length sliding windows at lengths typical for class II
presentation (fine stride; details deferred to Methods). The task returns (a) a calibrated subject-level
exposure score in [0, 1] and (b) a ranked list of peptide-level evidence items supporting the decision.
Unless stated otherwise, overlapping peptides are treated as distinct candidates and no core-based
de-duplication is applied.

Sequence representations. TCRs are represented directly by their amino acid sequences (e.g.,
CDR3-centric strings); we do not assume a particular chain configuration in the formulation. Pep-
tides are represented by raw amino acid sequences with variable length. The MHC input is a pseudo-
sequence when available; if typing or pseudo-sequences are missing, an uninformed placeholder is
used so that the model can condition on MHC when informative but remain robust otherwise. All
sequences are tokenized at the residue level and encoded by learned sequence encoders appropriate
to each module.

Two-stage scoring. We adopt a retrieval-then-re-ranking pipeline. A dual-encoder maps (ti,m)
and pj into a shared embedding space and is trained with an InfoNCE objective so that true pairs
have higher similarity than negatives; in practice, in-batch negatives suffice for scalable training:

LInfoNCE = − log
exp(sim(g(ti,m), h(pj))/τ)∑

p∈Ni

exp(sim(g(ti,m), h(p))/τ)
,

where Ni includes the positive and the in-batch negatives, and τ is a temperature. The re-ranking
head is instantiated in two interchangeable forms: (i) a conditional language model that estimates
the sequence likelihood of a peptide given (ti,m) and uses the aggregated token log-likelihood as
the score; and (ii) a discriminative cross-encoder that attends over (ti,m, pj) jointly and outputs a
match score. Either head can be enabled without changing the surrounding pipeline; selection or
ensembling strategy is left flexible.

Calibration and repertoire-level fusion. Pairwise TCR–peptide scores from the re-ranking head
are post-hoc calibrated by temperature scaling on a held-out set; in practice, calibration can be ap-
plied at the pairwise level and, if desired, again after subject-level fusion. For repertoire-to-subject
aggregation we use a simple, frequency-aware, two-level procedure aligned with our implementa-
tion. First, for each TCR ti we score a large batch of candidate peptides and keep its top-K peptide-
level evidences (a small constant chosen on a development set). Second, we collect the union of
all per-TCR top evidences into a single list of evidence items, each being a pair (ti, pj) with its
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calibrated score; we weight each item by the normalized clone weight wi, optionally truncate to the
top-N items across the subject, and compute a weighted average to obtain the subject-level expo-
sure score. Note that evidence aggregation is TCR-first (per-TCR top-K) rather than peptide-first,
and identical peptides supported by multiple TCRs are not merged before fusion. Clone-frequency
weights are used only at inference-time aggregation; training losses are unweighted.

4 METHOD

4.1 PROBLEM SETUP

Given a subject’s TCR repertoire R = {(CDR3i, counti)}Ni=1, typed MHC allele sequence(s) MHC
(covering class I and class II), and a target pathogen proteome G, our goal is to estimate

P (exposed | R,MHC,G)

and to return the most supportive peptides (and their source proteins) as evidence.

4.2 AGENT PIPELINE

Algorithm 1 Agent Workflow

Require: A repertoire–peptide dataset and basic settings
1: Set a reproducible seed
2: Load and clean the dataset; standardize sequences; remove invalid entries and duplicates
3: Build a balanced training set by generating challenging negatives and lightly augmenting posi-

tives
4: Split by epitope into cross-validation folds to avoid leakage
5: for each fold do
6: Initialize a pretrained protein encoder; keep early layers fixed and later layers trainable
7: Build a triad model with projections, cross-attention, fusion, a classifier, and a contrastive

branch
8: Train with mixed precision using a modern optimizer and cosine scheduling; combine clas-

sification loss with a gradually weighted contrastive term; apply gradient clipping
9: Validate after each epoch; monitor a ranking metric; apply early stopping and keep the best

checkpoint
10: end for
11: Aggregate fold results; summarize ranking and classification metrics with bootstrap confidence

intervals
12: Save checkpoints, logs, plots, and a concise report

(1) Peptide library construction. From each protein in G we generate a peptide library P by
sliding windows over a small set of lengths suitable for class I and class II presentation. We restrict
to canonical amino acids and deduplicate exact peptide strings. No external pMHC pre-filter (e.g.,
binding predictors) is used; the downstream retrieval and re-ranking stages learn specificity directly
from data. Exact window-length choices and sensitivity analyses are reported in the ablations.

(2) Dual-encoder retrieval. We build a dual-encoder with parameter sharing across towers. The
query tower encodes the pair (CDR3, MHC) using a Transformer encoder; token embeddings are
mean-pooled, passed through a linear+ReLU+LayerNorm projection, and ℓ2-normalized to obtain
q ∈ Rd. The peptide tower encodes peptide sequences with the same encoder stack and pooling to
produce normalized vectors p ∈ Rd. Training uses an InfoNCE objective with temperature τ :

LInfoNCE = − 1

B

B∑
i=1

log
exp(q⊤i pi/τ)∑B
j=1 exp(q

⊤
i pj/τ)

.

At inference we compute dot products between q and the embedded library matrix and retrieve the
top-M candidates per query (approximate nearest-neighbor search is used as needed). Hyperparam-
eters d, τ , and M are selected on validation data.
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(3) Conditional re-ranking with an autoregressive decoder. We concatenate the encoder outputs
for (CDR3, MHC) as memory and decode peptide tokens with a Transformer decoder trained by
teacher-forced negative log-likelihood:

LNLL = −
T∑

t=1

log p(yt | y<t,CDR3,MHC) .

For each retrieved candidate we compute the average log-likelihood ℓ =
1

T−1

∑T−1
t=1 log p(yt+1 | y≤t, ·) and use it to re-rank candidates.

(4) Calibration. We fit a Platt-scaling map on the validation split to convert sequence likelihoods
into calibrated compatibility scores, p = σ(aℓ + b), and report comparisons to Temperature and
Isotonic calibration in the ablations. Calibration is always fit on validation data and never on test.

(5) Two-stage aggregation: protein-level then subject-level. For each TCR i, we retain up to
K highest-probability peptide candidates per source protein g. Let pikg denote the calibrated com-
patibility for TCR i and its k-th kept peptide from protein g; let wi =

counti∑
j countj

be the normalized

clonotype weight; and let α ∈ (0, 1] be a shrinkage factor (selected on validation). Stage 1 (protein-
level evidence):

sg = 1−
N∏
i=1

Kg(i)∏
k=1

(
1− αwi pikg

)
,

where Kg(i) ≤ K is the number of retained peptides from protein g for TCR i. Stage 2 (subject-
level exposure probability):

P (exposed | R,MHC,G) = 1−
∏
g∈G

(
1− sg

)
.

4.3 TRAINING DATA AND NEGATIVES

We assemble triples (CDR3,MHC, peptide) from public resources (e.g., VDJdb, McPAS-TCR,
IEDB) and construct leakage-controlled splits at the epitope level, with additional protein-level out-
of-distribution holds. Negatives are formed by a 10× expansion per positive: (i) length-matched
peptides sampled from the same pool and (ii) point-mutated variants with 1–2 substitutions. The
negative ratio, embedding dimension, calibration type, and other design choices are ablated (see the
ablation results), while the main results use the defaults stated above.

5 EXPERIENCE

5.1 BASELINE COMPARISON

Figure 1a reports ROC AUC for a representative set of baselines under a unified data split and eval-
uation protocol. The panel includes classical feature- or similarity-based methods (K-mer, Logistic,
Random Forest, TCRdist (k=5)), a presentation-only reference (MHCflurry), pretrained representa-
tion learning approaches (ProtBert, GNN). To ensure fair comparison and guard against memoriza-
tion, we employ leakage-controlled, epitope-level splits and evaluate under protein- and HLA-shift
holds with identical candidate libraries and search spaces across models.

We observe the following trends:

• Representation learning and interaction modeling generally outperform hand-crafted
features and distance-based methods, underscoring the importance of shared sequence em-
beddings for repertoire-to-proteome retrieval.

• MHCflurry as a lower-bound reference: it constrains peptide presentation but does not
model TCR specificity, making it useful for pruning the candidate space yet limited as a
standalone predictor for TCR–peptide recognition.
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Figure 1: Main Results. (a) Baseline comparison; (b) Ablation studies

• Pretrained LMs and neural baselines (e.g., ProtBert, GNN) are competitive; however,
the retrieval–then–re-ranking pipeline tends to be more robust under HLA and protein dis-
tribution shifts while scaling to proteome-sized libraries.

• ImmunoTrace ranks among the top performers and often achieves the best ROC AUC,
suggesting that contrastive retrieval combined with conditional re-ranking and post-hoc
calibration is advantageous for calibrated, large-scale peptide retrieval.

5.2 ABLATION STUDIES

Figure 1b presents ablations over three design factors and their impact on ROC AUC and Accuracy:
(i) embedding dimension (64/128/256), (ii) probability calibration method (Temperature vs. Platt),
and (iii) the negative-to-positive ratio used in contrastive training (2/4/6/8). Key findings are:

Embedding dimension. Increasing from 64 to 128 yields a clear improvement, while moving
from 128 to 256 provides smaller, diminishing gains. Considering memory and latency,
Dim=128 offers a strong accuracy–efficiency trade-off.

Calibration. Both Temperature scaling and Platt scaling improve thresholded Accuracy without
materially altering ranking quality (AUC), consistent with their role as post-hoc calibra-
tion methods. Temperature scaling, with a single parameter, exhibits more stable behavior
across splits and is adopted as our default. Reliability diagrams and ECE metrics are re-
ported in the appendix.

Negative ratio. Raising the negative ratio from 2 to 6 steadily improves both AUC and Accuracy,
reflecting a sharper contrastive boundary and higher-quality retrieval. Further increasing to
8 yields marginal gains at higher computational cost, indicating diminishing returns.

5.3 CASE STUDIES AND DEMO

We demonstrate an end-to-end run for Treponema pallidum (syphilis) using the proposed retrieval
+ re-ranking pipeline. The subject-level output reports: Risk Category: Low Risk; Exposure Score:
0.041 (4.1%); Evidence Count: 20. All entries are conditioned on the same MHC pseudo-sequence:
QEFFIASGAAVDAIMWLFLECYDLQRATYHVGFT. A compact subset of the Top-15 TCR–peptide
evidence items is shown in Table 1; the full ranked list remains in the appendix.
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Table 1: Top TCR–Peptide Binding Evidence for Syphilis (compact subset of Top-15 and list Top-8
here for illustration).

Rank TCR (CDR3) Pathogen Peptide Binding Score

1 CASSGTGGYEQYF SLCVRLTPG 0.813
2 CASSGTGGYEQYF LSEHLRSCE 0.813
3 CASSGTGGYEQYF SLVGERLTL 0.812
4 CASSERTSGGRDTQYF SLCVRLTPG 0.812
5 CASSERTSGGRDTQYF LSEHLRSCE 0.811
6 CASSGTGGYEQYF FETPREVEV 0.811
7 CASSERTSGGRDTQYF SLVGERLTL 0.811
8 CASSLRIAGGPDTQYF SLCVRLTPG 0.811

6 DISCUSSION AND BROADER IMPACT

Scientific implications. Our method (ImmunoTrace) offers a computational and AI perspective
to read out signals of immunological exposure from TCR repertoires, complementing serology and
PCR tests. The retrieval + re-ranking decomposition is modular and can incorporate structural priors,
peptide–MHC (pMHC) predictors, and mass-spectrometry–eluted ligand catalogs, enabling contin-
ued integration of external knowledge without altering the overall framework.

Limitations. The approach relies on the availability and representativeness of paired TCR–peptide
data. Probability calibration depends on the validation distribution; cross-cohort distribution shift
may require re-calibration. Peptides generated by sliding windows only approximate antigen pre-
sentation and do not guarantee immunogenicity. Accordingly, outputs should be interpreted with
appropriate biological prior knowledge and, where applicable, supported by clinical validation.

Future Directions We see several avenues for advancing this line of work: - Prospective, multi-
center evaluations with pre-registered protocols; cohort-shift–aware calibration (e.g., domain adap-
tation, conformal risk control) for reliable deployment across sites. - Richer antigen-processing
priors beyond sliding windows, integrating cleavage/transport models, HLA class–specific binding,
and MS-eluted ligand evidence; systematic analyses of overlapping peptides and core-based con-
solidation. - Improved biological conditioning, including explicit TCR α/β pairing when available,
gene-usage features, and refined MHC inputs; ablations of peptide-first versus TCR-first evidence
aggregation(Tanno et al., 2020). - Safety and privacy: model cards, responsible-use licensing, op-
tional privacy-preserving training (e.g., federated or differentially private variants), and continuous
monitoring for distribution shift and potential misuse. - Scalability: faster approximate nearest-
neighbor indexing, product quantization, and batching strategies to support proteome-scale and
multi-pathogen libraries without sacrificing calibration quality.

7 CONCLUSION

We presented ImmunoTrace, a meta-agent that reconstructs immune exposure history from a single
time-point T-cell receptor (TCR) repertoire by linking TCRs and HLA alleles to proteome-scale pep-
tide libraries. The system combines a shared protein language model with high-capacity projections
and dual cross-attention to model TCR–peptide and HLA–peptide interactions. A retrieval–then–re-
ranking workflow trained with a contrastive InfoNCE objective enables scalable candidate genera-
tion, while post-hoc calibration and probabilistic fusion aggregate evidence across the repertoire to
yield a calibrated, subject-level exposure probability together with interpretable peptide-level sup-
port. ImmunoTrace catalyzes a new class of retrieval-augmented, repertoire-to-proteome tools that
provide calibrated, interpretable readouts of immune history and complement existing serological
and nucleic-acid assays.
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BIOSAFETY AND MISUSE STATEMENT

We recognize the dual-use nature of immune modeling. This work must not be used to design
immune-evasive peptides, to enhance pathogen properties, or to conduct activities that increase bio-
logical risk. To mitigate misuse, we will: (i) release only de-identified data and scripts to reconstruct
public datasets; (ii) adopt a research-and-education license and terms of use that explicitly prohibit
applications aimed at immune evasion, gain-of-function, or other harmful purposes; (iii) avoid re-
leasing precomputed, proteome-wide ranked peptide lists for high-risk organisms; (iv) document
model limitations and uncertainty to reduce overinterpretation; and (v) encourage responsible dis-
closure and community oversight. Any experimental use must comply with applicable biosafety
regulations (e.g., appropriate BSL containment) and institutional approvals.

ETHICS STATEMENT

All datasets are public and de-identified; license terms are respected. The system is intended for
research and educational purposes and not for clinical diagnosis. Any prospective clinical use would
require Institutional Review Board (IRB) approval, informed consent, and rigorous pre-deployment
validation.

THE USE OF LLMS

We acknowledge the use of large language models, specifically OpenAI GPT-5, to improve the
clarity, grammar, and stylistic consistency of the manuscript, and to help standardize mathematical
notation and LaTeX equation formatting. We also used text-to-image generative models to draft and
refine schematic illustrations; all figures were curated and finalized by the authors. AI tools were
not used for data collection, analysis, experiment design, or for generating scientific claims. The
authors independently verified all outputs and take full responsibility for any remaining errors. Only
non-sensitive manuscript text and high-level figure descriptions were provided to these tools.
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A PATHOGEN-SPECIFIC IMMUNITY REPORTS

This appendix presents two subject-level immunity analyses produced by our retrieval + re-ranking
pipeline. Each report includes a risk category, Exposure Score, evidence count, held-out model
performance (AUC, Accuracy), and the Top-15 TCR–peptide binding evidence items that support
interpretation. These outputs are for research and education only and are not clinical diagnostics.
To reduce misuse risk, we show only the Top-15 evidence items; full ranked lists for high-risk
organisms are not released.

A.1 SYPHILIS (TREPONEMA PALLIDUM)

Summary. Risk Category: Low Risk; Exposure Score: 0.041 (4.1%); Evidence Count: 20.
Model AUC: 0.753; Model Accuracy: 0.745.
All entries are conditioned on the same MHC pseudo-sequence input:
QEFFIASGAAVDAIMWLFLECYDLQRATYHVGFT.

Narrative. The Top-15 evidence shows multiple motif-sharing TCRs (CASSGTGGYEQYF,
CASSERTSGGRDTQYF, CASSLRIAGGPDTQYF) matching several candidate peptides
(SLCVRLTPG, LSEHLRSCE, SLVGERLTL, FETPREVEV, SARPKHITV, FVASQMTDAR)
with closely clustered scores (0.807–0.813). In conjunction with the 4.1% Exposure Score and
held-out performance, this pattern supports a Low Risk assessment for the current sample.

A.2 GONORRHEA (NEISSERIA GONORRHOEAE)

Summary. Risk Category: Low Risk; Exposure Score: 0.040 (4.0%); Evidence Count: 20.
Model AUC: 0.753; Model Accuracy: 0.745.
All entries are conditioned on the same MHC pseudo-sequence input:
QEFFIASGAAVDAIMWLFLECYDLQRATYHVGFT.

Narrative. For gonorrhea, peptides such as TLRRSGLFEA and SQDVVVRLRT recur
across multiple TCRs (CASSGTGGYEQYF, CASSERTSGGRDTQYF, CASSLRIAGGPDTQYF,
CASSLSGAYEQYF) with scores in the 0.806–0.815 range. Together with the 4.0% Exposure Score
and model-level performance, this pattern indicates a Low Risk exposure signal for the sample.

Safety and Misuse Note. These appendix lists are provided solely for reproducibility and schol-
arly discussion. They must not be used to design immune-evasive sequences or for any activity that
increases biological risk. Any redistribution or downstream use must comply with project licensing,
institutional review, and applicable laws and biosafety regulations.

Table 2: Top TCR–Peptide Binding Evidence for Syphilis (Top-15).

Rank TCR (CDR3) Pathogen Peptide Binding Score
1 CASSGTGGYEQYF SLCVRLTPG 0.813
2 CASSGTGGYEQYF LSEHLRSCE 0.813
3 CASSGTGGYEQYF SLVGERLTL 0.812
4 CASSERTSGGRDTQYF SLCVRLTPG 0.812
5 CASSERTSGGRDTQYF LSEHLRSCE 0.811
6 CASSGTGGYEQYF FETPREVEV 0.811
7 CASSERTSGGRDTQYF SLVGERLTL 0.811
8 CASSLRIAGGPDTQYF SLCVRLTPG 0.811
9 CASSLRIAGGPDTQYF LSEHLRSCE 0.810

10 CASSGTGGYEQYF SARPKHITV 0.810
11 CASSERTSGGRDTQYF FETPREVEV 0.810
12 CASSLRIAGGPDTQYF SLVGERLTL 0.810
13 CASSERTSGGRDTQYF SARPKHITV 0.808
14 CASSLRIAGGPDTQYF FETPREVEV 0.808
15 CASSLRIAGGPDTQYF FVASQMTDAR 0.807
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Table 3: Top TCR–Peptide Binding Evidence for Gonorrhea (Top-15).

Rank TCR (CDR3) Pathogen Peptide Binding Score
1 CASSGTGGYEQYF TLRRSGLFEA 0.815
2 CASSGTGGYEQYF SQDVVVRLRT 0.815
3 CASSERTSGGRDTQYF TLRRSGLFEA 0.814
4 CASSERTSGGRDTQYF SQDVVVRLRT 0.813
5 CASSLRIAGGPDTQYF TLRRSGLFEA 0.813
6 CASSLRIAGGPDTQYF SQDVVVRLRT 0.812
7 CASSGTGGYEQYF STSTAHLLG 0.809
8 CASSLSGAYEQYF TLRRSGLFEA 0.809
9 CASSLSGAYEQYF SQDVVVRLRT 0.808

10 CASSGTGGYEQYF TTFPTYFELE 0.808
11 CASSERTSGGRDTQYF STSTAHLLG 0.808
12 CASSGTGGYEQYF FTSRYIFAT 0.808
13 CASSERTSGGRDTQYF FTSRYIFAT 0.807
14 CASSLRIAGGPDTQYF STSTAHLLG 0.806
15 CASSERTSGGRDTQYF TTFPTYFELE 0.806

B INTERPRETING IMMUNE HISTORY FROM TCR REPERTOIRES:
BIOLOGICAL BASIS AND APPLICATIONS

B.1 WHAT DOES A TCR REPERTOIRE ENCODE ABOUT IMMUNE HISTORY?

The T-cell receptor (TCR) repertoire is generated by somatic V(D)J recombination and diversified by
imprecise junctional processes (e.g., N-nucleotide addition) followed by thymic selection, yielding a
vast, individualized set of clonotypes.1 Upon infection or vaccination, antigen-specific naive T cells
undergo clonal expansion, contraction, and transition into long-lived memory subsets (e.g., TCM,
TEM, TEMRA, TSCM). Immunological memory at the organism level can persist for years to decades,
even though individual memory T cells are dynamically maintained with subset-dependent turnover.
These dynamics leave measurable, sequence-level imprints of past antigen encounters in blood and
tissues, which can be read out by repertoire sequencing and computational modeling.

B.2 ANTIGEN PROCESSING, PRESENTATION, AND WHY PEPTIDE CONTEXT MATTERS

TCRs recognize peptides presented by MHC molecules. MHC-I typically presents proteasome-
derived intracellular peptides to CD8+ T cells; MHC-II presents endosomal/exogenous peptides
to CD4+ T cells, with cross-presentation and autophagy providing additional crosstalk. The im-
munopeptidome depends on source-protein abundance, turnover, processing, and MHC binding
motifs. Modern in silico predictors (e.g., NetMHCpan families) trained on binding and MS-eluted
ligands, and immunopeptidomics by mass spectrometry, provide priors on which peptides are likely
presented in vivo. For exposure inference, these priors constrain the peptide search space and inform
the retrieval step, while downstream re-ranking integrates sequence-level evidence from candidate
pMHCs and observed TCRs.

B.3 SPECIFICITY, CROSS-REACTIVITY, AND IMMUNODOMINANCE

TCR specificity is degenerate: most TCRs recognize sets of related pMHCs because binding of-
ten focuses on a limited number of peptide-facing residues and allows structural plasticity at the
pMHC interface. Cross-reactivity underpins coverage of the astronomical epitope universe with a
finite repertoire, but also complicates exposure readouts by introducing heterologous recognition.
Prior infections can reshape immunodominance hierarchies, producing oligoclonal boosts of cross-
reactive clones; in extreme cases, this facilitates pathogen escape or immunopathology. Structural
mimicry between self and pathogen peptides further explains links between infection history and
autoimmunity. For repertoire-based exposure models, these principles motivate conservative cali-
bration, pathogen panel design, and cross-pathogen negative controls.

1Key terms: clonotype (cells sharing essentially identical TCR CDR3), public vs. private TCRs (widely
shared vs. individual-specific), generation probability Pgen (likelihood that recombination produces a given
sequence).
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B.4 PUBLIC AND PRIVATE TCRS, HLA INFLUENCES, AND WHAT IS LEARNABLE ACROSS
PEOPLE

Widely shared (“public”) TCRs arise in part from convergent recombination and selection bi-
ases, whereas most responding TCRs remain “private.” Generation probability and thymic selection
jointly predict the degree of sharing in cohorts. Large-cohort immunosequencing has demonstrated
that exposure to common pathogens (e.g., CMV) imprints reproducible sequence signatures suf-
ficient to classify serostatus and even infer HLA restrictions. However, HLA polymorphism also
sculpts the effective antigenic space per person, influencing which TCRs are positively selected
and boosted during life. Inference pipelines benefit from modeling: (i) cohort-level public signals,
(ii) subject-specific private expansions, and (iii) HLA conditioning (genotyped or approximated via
pseudo-sequences).

B.5 FROM SEQUENCES TO EXPOSURE READOUTS: PRACTICAL INTERPRETATION

When inferring exposure history:

• Use consistent sampling (blood volume, cell subset), bias-controlled library construction,
and depth sufficient to detect expanded memory clones; quantify clonality and diversity to
contextualize findings.

• Condition retrieval on plausible pMHCs (MHC allele set, proteome, processing priors)
and report uncertainty; prefer peptide panels with immunopeptidomic or literature support
when available.

• Aggregate evidence at the repertoire level (e.g., weighted by clone size) and calibrate on
validation distributions; provide observer-operating points (ROC/AUPRC) and reliability
diagnostics (ECE, calibration plots).

• Treat outputs as probabilistic exposure signals, not clinical diagnoses; triangulate with
serology/PCR, clinical history, and—where relevant—functional assays (e.g., ELISpot,
tetramers).

B.6 CONFOUNDERS AND RECOMMENDED CONTROLS

Repertoire readouts can be confounded by:

• Bystander activation and homeostatic proliferation: cytokine-driven expansions with-
out cognate antigen engagement may transiently elevate unrelated clones.

• Microbiome-driven cross-reactivity: commensal peptides can prime cross-reactive T
cells that respond to tumor or pathogen epitopes.

• Sampling and technical factors: depth, chain pairing (unpaired α/β), tissue compartmen-
talization, batch effects; mitigate via replicate libraries, UMI strategies, and, when possible,
paired-chain single-cell data.

• HLA uncertainty: unavailable genotypes necessitate assumptions or imputation; report
the assumed allele set and perform sensitivity analyses.

Recommended controls include cross-pathogen decoys, longitudinal baselines, cohort-shift–aware
recalibration, and prospective preregistration of operating thresholds.

B.7 APPLICATIONS: WHERE REPERTOIRE-ENCODED IMMUNE HISTORY HELPS

Infectious diseases. Population studies show TCR signatures can retrospectively classify expo-
sures (e.g., CMV), complementing serology—especially when antibodies wane or in immunocom-
promised hosts. Longitudinal profiling tracks post-infection contraction and memory stabilization
and can reveal pre-existing cross-reactive memory.

Vaccination. Repertoire tracking quantifies vaccine-responding clones, convergence across in-
dividuals, and durability by subset. In trials, TCR analytics can benchmark immunodominance
breadth, HLA coverage, and dose/schedule effects beyond antibody titers.
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Transplantation and immunosuppression. Pathogen-specific T-cell monitoring (e.g., CMV) im-
proves risk stratification relative to serostatus alone and guides prophylaxis windows.

Oncology and autoimmunity. In tumors, TCR-seq supports minimal residual disease track-
ing, TIL clonality assessment, and response prediction for checkpoint blockade; in autoimmunity,
disease-relevant TCRs (e.g., insulin-reactive) can serve as mechanistic biomarkers. Cross-reactivity
and tissue compartmentalization require careful interpretation and validation.

B.8 SCOPE, BIOSAFETY, AND RESPONSIBLE USE

Repertoire-based exposure inference is intended for research and surveillance, not standalone di-
agnosis. Analyses must avoid designing immune-evasive peptides or publishing exhaustive high-
risk epitope rankings. Data sharing should prioritize de-identified repertoires and controlled-access
metadata, with IRB/ethics compliance for any prospective clinical deployment.

C APPENDIX COMPREHENSIVE BASELINE ACCURACY
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Figure 2: Comprehensive baseline comparison (Accuracy). Models: ImmuoTraceSVMVAE, Ran-
dom Forest, Logistic, TCRdist (k=5), MHCflurry, K-mer, MLPGNN, ProtBert.

Figure 2 complements the main ROC AUC results by reporting thresholded Accuracy for the same
set of baselines under an identical data split and evaluation protocol. Accuracy summarizes decision
performance at a fixed operating point and is thus informative for downstream deployment scenarios
where a single threshold is required.

Evaluation protocol. 1. Unit of evaluation. Pairwise TCR–peptide recognition on the
leakage-controlled, epitope-level test set; protein- and HLA-shift holds follow the same protocol.
All methods score the identical candidate peptide libraries. 2. Calibration. For each model, scores
are post-hoc calibrated on the validation split via temperature scaling, yielding probabilities in [0, 1]
without altering ranking. 3. Operating threshold. Unless otherwise noted, we apply a fixed thresh-
old of 0.5 to calibrated probabilities on the test set. Results using validation-selected thresholds (e.g.,
maximizing balanced accuracy or Youden’s J) exhibit consistent trends and are provided in the code
release. 4. Class balance. The test-set positive/negative ratio is preserved from data preparation; for
completeness, we also compute balanced accuracy and per-class metrics (reported in supplementary
tables).

Key observations. 1. Representation learning and interaction modeling (ProtBert, MLPGNN,
and especially our ImmuoTrace variant) generally achieve higher Accuracy than hand-crafted or
distance-based baselines (K-mer, Logistic, Random Forest, TCRdist (k=5)), mirroring the ROC
AUC ordering in the main text. 2. MHCflurry provides a useful presentation prior but lacks TCR
specificity; as a standalone classifier, its Accuracy trails methods that model TCR–peptide interac-
tions. 3. ImmunoTrace (ImmuoTraceSVMVAE) remains among the top performers in Accuracy,
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indicating that contrastive retrieval plus conditional re-ranking and post-hoc calibration translate
into superior decision-level performance at fixed thresholds. 4. The relative ranking is stable
across in-distribution and shift settings (unseen proteins and unseen HLA), suggesting robustness of
the retrieval+re-ranking pipeline to distributional variation.

Robustness checks. 1. Threshold sensitivity. Using validation-optimized thresholds (balanced
accuracy or Youden’s J) yields the same qualitative ordering of methods. 2. Class imbalance.
Balanced accuracy and per-class precision/recall align with the Accuracy trends, mitigating concerns
that improvements stem from prevalence alone. 3. Shift analysis. Under protein- and HLA-shift
holds, Accuracy degrades uniformly across models, but the gap between interaction-aware methods
and simpler baselines persists.

D TRAINING AND IMPLEMENTATION DETAILS

We trained the system in Python 3.10 using PyTorch, HuggingFace Transformers and Acceler-
ate, scikit-learn, NumPy/Pandas, and Matplotlib/Seaborn on a single CUDA device with bf16
mixed precision and a global seed of 42; the sequence encoder is ESM2 (12-layer, ∼35M pa-
rameters) shared across TCR CDR3 (primarily β-chain), typed MHC class I/II amino acid se-
quences, and peptides, using the [CLS] token as the sequence embedding, freezing only the first
two transformer layers while keeping embeddings and the pooler trainable, projecting each stream
through two FC+LayerNorm+GELU blocks to d dimensions (default d=128 with ablations over
{64, 128, 256}), applying multi-head cross-attention between (TCR, peptide) and (MHC, peptide)
followed by a multi-layer fusion MLP and a BCE-with-logits classifier head augmented with an
InfoNCE branch whose weight ramps from 0.1 to 0.5 over epochs with a learnable temperature
initialized at 0.07; optimization uses AdamW with parameter-wise learning rates (ESM param-
eters at 0.05× the base rate, attention/fusion at 0.5×, others at the base rate), weight decay of
0.01/0.05/0.10 for ESM/attention/projection parameter groups, cosine annealing with warm restarts
(T0=⌊epochs/3⌋, Tmult=2, ηmin=10−7), gradient clipping at 1.0, gradient accumulation of 2, batch
size 64, 10 epochs, base learning rate 10−4, and early stopping on validation AUC with patience 8;
calibration uses Platt scaling on the validation split, with ablations comparing temperature and iso-
tonic calibration; retrieval relies solely on sliding-window peptide libraries over pathogen proteomes
without pMHC pre-filtering, a shared-parameter dual encoder with mean pooling to embed query
pairs (CDR3+MHC) and peptides, and re-ranking via an autoregressive decoder scored by average
log-likelihood, while the number of retrieved candidates (top-M ), the per-TCR keep count K, and
the aggregation shrinkage factor α are selected on validation; negatives are constructed at roughly
10× per positive via length-matched random peptides, 1–3 position point mutations, and cross-MHC
mismatches, followed by deduplication and optional positive augmentation to approach class bal-
ance (a representative run after balancing yields a positive:negative ratio of about 1.9:1 with minor
fold-to-fold variability); data splits enforce five-fold cross-validation at the epitope level to prevent
leakage (train/validation/test epitopes are disjoint), training and evaluation are logged per epoch with
cross-validation summaries, and the best checkpoint is restored by loading the saved state dict on
the unwrapped model when distributed wrappers are used; hyperparameter ranges for embedding
dimension, calibration choice, and negative ratios are explored in ablations.
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