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Abstract

To address issues of group-level fairness in machine learning, it is natural to
adjust model parameters based on specific fairness objectives over a sensitive-
attributed validation set. Such an adjustment procedure can be cast within a
meta-learning framework. However, naive integration of fairness goals via meta-
learning can cause hypergradient conflicts for subgroups, resulting in unstable
convergence and compromising model performance and fairness. To navigate
this issue, we frame the resolution of hypergradient conflicts as a multi-player
cooperative bargaining game. We introduce a two-stage meta-learning framework
in which the first stage involves the use of a Nash Bargaining Solution (NBS) to
resolve hypergradient conflicts and steer the model toward the Pareto front, and
the second stage optimizes with respect to specific fairness goals. Our method is
supported by theoretical results, notably a proof of the NBS for gradient aggregation
free from linear independence assumptions, a proof of Pareto improvement, and
a proof of monotonic improvement in validation loss. We also show empirical
effects across various fairness objectives in six key fairness datasets and two image
classification tasks.

1 Introduction

The traditional formulation of machine learning is in terms of a system that improves its predictive and
decision-making performance by interacting with an environment. Such a formulation is overly narrow
in emerging applications—it lumps the social context of a learning system into the undifferentiated
concept of an “environment” and provides no special consideration of the collective nature of learning.
Such social context includes notions of scarcity and conflict, as well as goals such as social norms
and collaborative work that are best formulated at the level of social collectives. The neglect of
such considerations in traditional machine learning leads to undesirable outcomes in real-world
deployments of machine learning systems, including outcomes that favor particular groups of people
over others [44, 7, 31, 10, 38, 51], the amplification of social biases and stereotypes [28, 14, 47], and
an ongoing lack of clarity regarding issues of communication, trust, and fairness.

Our focus of the current paper is fairness, and we take a perspective on fairness that blends learning
methodology with economic mechanisms. The current favored methodology for addressing fairness
recognizes that it is not a one-size-fits-all concept—different fairness notions are appropriate for
different social settings [49, 32, 50]—and treats fairness via meta-learning ideas. Meta-learning is
implemented algorithmically with the tools of bi-level optimization. Specifically, fairness-aware
meta-learning employs outer optimization to align with a specific fairness goal over a small, demo-
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Figure 1: Overview: We illustrate the problem of hypergradient conflicts in conventional one-stage
fairness-aware meta-learning, which we find can lead to erratic performance and/or convergence at
suboptimal, unfair local minima. Left: Graphical depiction of group-wise hypergradient conflicts (I,
II) showing different scenarios where conflicts arise in one-stage meta-learning, affecting performance
stability; (III) provides a depiction of the contrast case where the aggregated direction is not
conflicting with any of the groups, which leads to a more stable, fair, and performant model. Right: (a,
b) Comparison of conventional one-stage meta-learning (Vanilla showcased by FORML, highlighted
in gray ) with our proposed two-stage meta-learning approach (Ours, highlighted in green ) which
resolves hypergradient conflicts through a bargaining process. In our evaluation, we show the efficacy
of our method in enhancing fairness-aware meta-learning, with improvements in performance by up
to 10% and fairness by up to 67%, by initially focusing on conflict resolution in Stage 1 to steer the
model towards the Pareto front followed by focusing on fairness goals in Stage 2.

graphically balanced validation set to adjust a set of hyperparameters, while the inner optimization
minimizes the hyperparameter-adjusted training loss [43, 52, 53]. This approach addresses two
central challenges in group-level algorithmic fairness. First, it can integrate distinct fairness goals
into the outer optimization. This flexibility allows customization of the focus of objectives, including
enhancing the averaged loss across demographic- and label-balanced groups [43] and minimizing
disparities [53]. This is a conceptual improvement over methods confined to a single fairness objective
[18, 27]. Additionally, meta-learning reduces the reliance on sensitive attribute labels in the training
data. This circumvents the label dependence in conventional methods [30, 22, 21] and addresses
ethical concerns over the acquisition of sensitive attributes [1].

Although these arguments suggest that a meta-learning approach is promising for group-level fairness,
it stops short of providing an economic mechanism which embodies fairness in terms of allocations
and the management of conflict. Our work aims to bridge this gap by bringing a concept from
economic mechanism design—that of Nash bargaining—into contact with meta-learning. Specifically,
in our initial empirical explorations of meta-learning algorithms, we found that performance and
fairness can vary substantially according to the choice of fairness metric across different datasets,
suggesting a form of conflict that is not being resolved effectively via basic meta-learning procedures.
Investigating further, we identified a phenomenon that we term hypergradient conflict which we
believe is a pivotal factor in driving the contrast in effectiveness among different fairness goals when
integrated with meta-learning. Briefly, the aggregated gradient of the outer optimization objective
(the hypergradient) conflicts with the desired update associated with particular groups (Figure 1). To
address this, we propose a novel framework that resolves hypergradient conflicts as a cooperative
bargaining game. Specifically, we present a two-stage meta-learning framework for fairness: first
incorporate the Nash Bargaining Solution (NBS) at an early training stage to mitigate conflicts and
steer the model toward the Pareto front, and then engage in the pursuit of specified fairness goals.

Our work also introduces a new derivation of the NBS for gradient aggregation, one that dispenses
with gradient independence assumptions made in the past work so that it is applicable to broader
contexts. This derivation may be of independent interest, and accordingly we present material on
game-theoretic justification, Pareto improvement, and monotonic improvement in validation loss
that help to relate the NBS to our gradient-based learning setting. Our analysis sheds light on
the convergence exhibited in empirical studies and provides an understanding of how our method
improves meta-learning for fairness.
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Baseline LtR FORML Meta-gDRO

Adult Income [3], (sensitive attribute: race)
Overall AUC (↑) 0.668 0.803 (+20%) 0.710 (+6.2%) 0.775 (+16%)
Max-gAUCD (↓) 0.225 0.090 (-96%) 0.290 (+29%) 0.163 (-28%)
Worst-gAUC (↑) 0.544 0.755 (+38%) 0.540 (-0.7%) 0.694 (+28%)

Titanic Survival [12], (sensitive attribute: sex)
Overall AUC (↑) 0.972 0.967 (-0.5%) 0.950 (-2.3%) 0.961 (-1.1%)
Max-gAUCD (↓) 0.056 0.044 (-21%) 0.033 (-41%) 0.033 (-41%)
Worst-gAUC (↑) 0.944 0.944 (-) 0.933 (-1.2%) 0.944 (-)

(a) Comparison of the model performance of three
conventional one-stage meta-learning methods (LtR,
FORML, and Meta-gDRO) across various fairness no-
tions (results averaged from 5 runs, % relative to the
baseline only using the training set w/o meta-learning)
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(b) Trajectory of 1000-step optimizations. X and y-axis:
validation losses for groups 1 and 2, rsp. Gray curves
(lower left): the Pareto front. x=y: fairness (equal
validation loss). Ideal endpoint: their intersections.
Undesirable endpoints: “➜”. 6 random initials.

Figure 2: The unreliable performance of conventional one-stage fairness-aware meta-learning.

Finally, we present a thoroughgoing set of empirical studies that evaluate our method using synthetic
and real-world datasets, encompassing six key fairness datasets and two image classification tasks. As
we’ll show, our framework uniformly enhances the performance of one-stage meta-learning methods,
yielding up to 10% overall performance improvement and a 67% drop in disparity (Figure 1).

The remainder of this paper is structured as follows: Section 2 describes the problem. Section 3
details our method, including the bargaining game formulation, solution, and theoretical analyses
(§3.1-3.3), and our two-stage meta-learning framework, its theoretical foundations, and dynamical
issues (§3.4-3.6). Section 4 presents empirical results and analysis. Related work is deferred to
Appendix A.1.

2 Problem Statement

Let θ denote a vector of model parameters, let D(train) denote the training data and let D(val) a
validation set, with K sensitive groups D

(val)
i , for i ∈ [K]. Let L be a vector-valued function

where each entry corresponds to the per-example conventional loss (e.g., cross-entropy). Define
group-wise validation loss L(val) as a vector of size K where L

(val)
i = 1

|D(val)
i |

L(D
(val)
i |θ∗(w))⊤1

(the averaged loss over samples in group i). Define Lβ = β⊤L(val) as the fairness loss with vector β
of size K encoding the fairness objectives under consideration. Following established work [43, 53],
we target group-level fairness objectives via meta-learning as follows:

w∗ = argmin
w≥0

Lβ(D
(val)|θ∗(w)), (1)

θ∗(w) = argmin
θ

w · L(D(train)|θ). (2)

The vector w is a set of hyperparameters that reweigh each training example in the current minibatch
when updating θ, optimized on D(val) to improve group-level fairness.

Existing fairness-aware meta-learning work can be characterized as different protocols for β. LtR
[43] computes the average of all group-losses with demographic and label balanced D(val) (i.e.,
βLtR = 1

K1). FORML [53] calculates the difference between the maximum and minimum group-
loss (i.e., βFORML has 1 for max, -1 for min, and 0 otherwise), emphasizing parity. Meanwhile,
group-level Max-Min fairness inspired from [41] focuses solely on the maximum group-loss
[44], yielding a procedure referred to as Meta-gDRO, with βMeta-gDRO set equal to one for the
max and zero otherwise. Throughout the training process, the hypergradient of these methods,
∇wLβ(D

(val)|θ∗(w)), is derived by applying the aggregation protocol β to the group-wise hyper-
gradients, ∇wL

(val)
i (D(val)|θ∗(w)). Their training process, wherein the aggregated hypergradient is

iteratively utilized to update w, is referred to as a one-stage method. They differ from our two-stage
method, which employs distinct hypergradient aggregation rules at two separate stages.

Unreliability of one-stage meta-learning for fairness. The traditional approach of plugging a
fairness objective into Lβ seems natural. However, we find that the effect of this approach on
performance and fairness can be unstable. We evaluate the above three one-stage fairness-aware
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methods based on targeted fairness metrics (detailed settings in §4.2): Overall Area Under the Curve
(Overall AUC) for LtR which also measures prediction performance, maximum group AUC disparity
(Max-gAUCD) for FORML, and worst group AUC (Worst-gAUC) for Meta-gDRO (Figure 2a).

Delving into the cause. After training on real data for several epochs, we find that most subsequent
epochs have fewer than 3% of the aggregated hypergradients aligned to the optimization objectives
of each subgroup. That is, we see hypergradient conflicts:

∃i, s.t. g⊤i ∇Lβ < 0, (3)

with the group-wise gradient gi = ∇wL
(val)
i (D(val)|θ(w)) and aggregated direction ∇Lβ =

∇wLβ(D
(val)|θ(w)). The prevalence of intrinsic hypergradient conflict in one-stage methods is

unsurprising, because their aggregation methods are unable to prevent overlooking or incorrectly
de-prioritizing certain groups. We study this phenomenon in synthetic settings to isolate structural
issues from randomness in stochastic optimization (Figure 2b, settings in Appendix A.6): We define
the performance goal as convergence to the Pareto front, while the fairness goal corresponds to
the line x = y. As observed, alignment issues in synthetic experiments are prominent (Figure 2b):
(I) Averaging (LtR) may induce oscillatory dominance among groups. (II) Parity-based method
(FORML) produces conflicting hypergradients as it subtracts the loss of one group, necessitating
performance trade-offs for fairness. (III) Minimizing the worst-group loss (Meta-gDRO) often
exhibits toggling dominance as it solely prioritizes the current least-performing group, which may
create conflicts and cannot land on the Pareto front.

Hypergradient conflict resolution. Given the observation of hypergradient conflicts and convergence
issues in one-stage meta-learning, we turn to cooperative bargaining and propose a two-stage method
that seeks to attain more reliable improvements by resolving conflicts at the early stage of training.
Our methodology draws inspiration from the Nash Bargaining Solution (NBS), a cornerstone of
axiomatic bargaining in game theory, known for its general applicability and robustness [34]. Nash
Bargaining is chosen for its desirable axiomatic properties, which prohibit unconsented unilateral
gains by Pareto Optimality, and its principled approach of effectively balancing interests, making
it appealing for practical deployment. We provide additional discussion of the game-theoretic
perspective and additional empirical comparisons in Appendix A.2.

While the NBS has been studied in multi-task learning [37], it has yet to be explored in fairness-aware
meta-learning. Unlike the settings in [37], applying the NBS in our context challenges the assumption
of linear independence among tasks, which is generally untenable for group-wise utility towards
the same goal of performance gain (i.e., the settings of fairness). This drives our exploration into
novel proofs and applications of the NBS in hypergradient aggregation, aiming to circumvent the
need for linear independence and optimize shared outcomes through strategic negotiation and nested
optimization.

3 Methodology

3.1 Nash Bargaining framework

We start with some preliminaries. Consider K players faced with a set A of alternatives. If all players
reach a consensus on a specific alternative, denoted as a in set A, then a will be the designated outcome.
In the event of a failure to agree on an outcome, a predetermined disagreement result, denoted as d,
will be the final outcome. The individual utility payoff functions are denoted ui : A ∪ {D} → R,
which represent the players’ preferences over A. Denote the set of feasible utility payoffs as
S = (u1(a), ..., uK(a)) : a ∈ A ⊂ RK and the disagreement point as d = (u1(D), ..., uK(D)).
Nash proposed to study solutions to the bargaining problem through functions f : (S, d) → R. The
unique Nash bargaining solution (NBS), originally proposed for two players [34] and latter extended
to multiple players [15], maximizes the function f(S, d) =

∏
i(xi − di), where xi is the bargained

payoff and di is the disagreement payoff for player i. The NBS fulfills four axioms: Pareto Optimality,
Symmetry, Independence of Irrelevant Alternatives, and Invariant to Affine Transformations. See
Appendix A.3 for detailed definitions, and A.4 for additional assumptions.

In our problem, we want to find w̃ in Algorithm 1, an intermediate vector for the optimal w∗ to reweigh
each training sample. Let L(val)

i be the validation loss and gi = ∇w̃L
(val)
i be the hypergradient of

group i. Let G be the matrix with columns gi. The central question is to find the protocol α as the
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weights applied to individual group i’s loss. It associates an update step ∇Lα to w̃ that improves the
aggregated validation loss among all groups.

We frame this problem as a cooperative bargaining game between the K groups. Define the utility
function for group i as

ui(∇Lα) = g⊤i ∇Lα. (4)
The intuition is that the utility tells us how much of proposed update is applied in the direction of
hypergradient of group i (as it can be written as ∥gi∥∥∇Lα∥ cos δ with angle δ between gi and ∇Lα).
This gives the projection of ∇Lα along gi, or the “in effect” update for group i. If gi and ∇Lα

aligns well, the utility of group i is large (or vice versa). Denote Bϵ the ball of radius ϵ centered
at 0. We are interested in the update ∇Lα in the agreement alternative set A = {∇L : ∇L ∈
Bϵ,∇L⊤

α gi −D⊤gi > 0,∀i ∈ [K]}. Assume A is feasible and the disagreement point is D = 0 (i.e.
the update ∇Lα = 0, staying at w̃). The goal is to find a ∇Lα that maximizes the product of the
deviations of each group’s payoff from their disagreement point. Since ui forms a (shifted) linear
approximation at w̃, we are essentially maximizing the utility of Lα locally. We provide further
discussions on the problem setup and assumptions in Appendix A.4.

3.2 Solving the problem

In this section, we will show the NBS is (up to scaling) achieved at ∇Lα =
∑

i∈[K] αigi, where α ∈
RK

+ solves G⊤Gα = 1
α by the following two theorems, with full proofs available in Appendix A.5:

Theorem 3.1. Under D = 0, argmax∇Lα∈A

∏
i∈[K](ui(∇Lα)− di) is achieved at∑

i∈[K]

1

∇Lα
⊤gi

gi = γ∇Lα, for some γ > 0. (5)

Proof Sketch. We employ the same techniques as in Claim 3.1 of [37].
Theorem 3.2. The solution to Equation 5 is (up to scaling) ∇Lα =

∑
i∈K αigi where

G⊤Gα =
1

α
(6)

with the element-wise reciprocal 1
α .

Proof sketch. Let x = ∇Lα. In line with [37] we observe that x = 1
γ

∑
i∈K(x⊤gi)

−1gi. However,
whereas [37] relied on the linear independence of the gi’s to uniquely determine each coefficient
(x⊤gi)

−1, our technique makes no such assumption. Instead, we multiply both sides of Equation 5 by
gj and obtain

∑
i∈[K](x

⊤gi)
−1(g⊤i gj) = γx⊤gi, j ∈ [K]. Set αi = (x⊤gi)

−1. This is equivalent to
g⊤j

∑
i∈[K] giαi = α−1

j , which is the desired solution when written in the matrix form.

While our solution aligns with that of multi-task learning [37], our proof of Theorem 3.2 circumvents
the necessity for linear independence among gi, one of the core initial assumptions in the previous
work. Linear independence does not hold in general as the goals for individual groups (or tasks)
might overlap (such as sharing common underlying features) or contradict each other (when there is
negative multiplicity). Our proof removes this assumption and sheds light on the effectiveness of
updates based on the NBS in general cases. See Appendix A.5 for extended discussions on linear
independence.

Furthermore, we derive two useful properties of the NBS in additional to its four axioms, with full
proofs available in Appendix A.5:

Corollary 3.3. (Norm of bargained update) The solution in Theorem 3.2 has ℓ2-norm
√
K.

Corollary 3.4. If gj is σ-bounded for j ∈ [K], ∥α−1
j ∥ is (

√
Kσ)-bounded for j ∈ [K].

Informally, the NBS has implicit ℓ2 regularization (Corollary 3.3) which substantiates our empirical
observation that a separate ℓ2-normalization on ∇Lα for meta-learning rate adjustment yields better
performance than ℓ1-normalization (the conventional setting in [43]). Note that we do not impose
any assumptions on the boundedness of the hypergradient gi, ensuring the stability even when certain
hypergradients are extreme. Furthermore, when gi is bounded, Corollary 3.4 implies that ∥αj∥ is
bounded below and no groups are left behind.
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Algorithm 1: Two-stage Nash-Meta-Learning Training

Input: θ(0); D(train); D(val) = {D(val)
1 , . . . , D

(val)
K }

Parameters: β0 (fairness protocol); η(t) (step size);
Tbar (bargaining steps)

1 for step t ∈ {1, . . . , T} do
2 Minibatch D(t) sampled from D(train);

/* 1. Unrolling Inner Optimization */

3 ∇θ(t)(w̃)← BackwardADθ

(
w̃ · L(D(t)|θ(t))

)
;

4 θ̂(t)(w̃)← θ(t) − η(t)∇θ(t)(w̃);
5 β ← β0;
6 if t < Tbar then

/* 2. Validation Group-Utilities */

7 for group k ∈ {1, . . . ,K} do
8 g

(t)
k ← BackwardADw̃

(
L

(val)
k (D(val)|θ̂(t)(w̃))

)
;

/* 3. Bargaining Game */

9 Set G(t) with columns g(t)k ;
10 Solve for α: (G(t))TG(t)α = 1

α
to obtain α(t);

11 if α(t) is not None then
// bargaining succeeded

12 β ← α(t);

13 w̃ ← BackwardADw̃

(
Lβ(D

(val)|θ̂(t)(w̃))
)
;

/* 4. Weighted Update */

14 w ← Normalize
(
max(−w̃, 0)

)
;

15 ∇θ(t) ← BackwardADθ

(
w · L(D(t)|θ(t))

)
;

16 θ(t+1) ← θ(t) − η(t)∇θ(t);
Output: θ(T )

3.3 Game-theoretic underpinnings

The NBS provides incentives for each player to participate in the bargaining game by assuming
the existence of at least one feasible solution that all players prefer over disagreement (∃x ∈ S s.t.
x ≻ d). This aligns players’ interests in reaching an agreement. The constraint g⊤i ∇Lα > 0 resolves
hypergradient conflict upon agreement.

Second, note that Equation 6 shows relationship between the individual and interactive components:

∥αigi∥22 +
∑
j ̸=i

(αigi)
⊤(αjgj) = 1, (7)

for i ∈ [K]. † The relative weights αi emerge from a player’s own impact (∥αigi∥22) and interactions
with others ((αigi)

⊤(αjgj)). This trade-off embodies individual versus collective rationality. Positive
interactions (i.e., g⊤i gj > 0) incentivize collective improvements by downweighting αi. Negative
interactions (i.e., g⊤i gj < 0) increase αi to prioritize individual objectives. Furthermore, each player
accounts for a nontrivial contribution to the chosen alternative ∇Lα under mild assumptions (Corol-
lary 3.4). The negotiated solution balances individual and collective rationality through participation
incentives and conflict resolution. This equilibrium encapsulates game-theoretic bargaining.

3.4 Two-stage Nash-Meta-Learning

We now present our two-stage method (Algorithm 1) that incorporates Nash bargaining into meta-
learning training. Previous one-stage algorithms fix a predetermined Lβ ; our two-stage method
assigns β = α in the NBS in Stage 1 and sets it back to the original β0 in Stage 2. Define θ(t) as the

†To give game-theoretic justifications, we build on a similar expression (Equation 2, [37]).
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model parameter at step t, T as the number of total steps, and T(bar) ≤ T as the number of bargaining
steps in Stage 1. Let BackwardADθ(L) be the backward automatic differentiation of computational
graph L w.r.t. θ, and Normalize(·) be ℓ2-normalization function. Each step t is constituted by four
parts: The first part is unrolling inner optimization, a common technique to approximate the solution
to a nested optimization problem [17]. We compute a temporary (unweighted) update θ̂(t) on training
data, which will be withdrawn after obtaining the udpated w. w̃ is initialized to zero and included
into the computation graph. The second part calculates the hypergradient g(t)k which ascertains the
descent direction of each training data locally on the validation loss surface. The third part is to
aggregate the hypergradients as the update direction for w̃ by α from the NBS. In Stage 1, successful
bargaining grant the update of w̃ by the NBS. If the bargaining game is infeasible or if we are in
Stage 2 (not in the bargaining steps), we calculate w̃ based on the fairness loss Lβ of our choice.
The last part is the update of parameter θ(t+1) using the clipped and normalized weights w for each
training data in the minibatch.

3.5 Theoretical Properties

Theorem 3.5. (Update rule of θ) Denote L
(train)
i = L(D

(t)
i |θ(t)) ∈ R for the i-th sample in

training minibatch D(t) at step t. θ is updated as θ(t+1) = θ(t) − η(t)

|D(t)|
∑|D(t)|

i=1 ∆θi with ∆θi =

max ((∇θ((β
(t))⊤L(val)))⊤∇θL

(train)
i , 0)∇θL

(train)
i .

Theorem 3.6. (Pareto improvement of w̃) Use α(t) for the update. Assume L
(val)
i is Lipschitz-

smooth with constant C and g
(t)
i is σ-bounded at step t. If the meta learning rate for w̃ satisfies

η(t) ≤ 2

CKα
(t)
j

for j ∈ [K], then L
(val)
i (w̃(t+1)) ≤ L

(val)
i (w̃(t)) for any group i ∈ [K].

Theorem 3.7. Assume L(val) is Lipschitz-smooth with constant C and ∇θL
(train)
i is σ-bounded.

If the learning rate for θ satisfies η(t) ≤ 2|D(t)|
C∥β(t)∥σ2 , then Lβ(t)(θ(t+1)) ≤ Lβ(t)(θ(t)) for any fixed

vector β(t) with finite ∥β(t)∥ used to update θ(t).

Informally, the closed-form update rule of θ indicates that the weight of a training sample is de-
termined by its local similarity between the β-reweighed validation loss surface and the training
loss surface (Theorem 3.5). Under mild conditions, w̃ yields Pareto improvement for all groups
for the outer optimization using the NBS (Theorem 3.6). For the inner optimization, under mild
conditions, the fairness loss Lβ(t) monotonically decreases w.r.t. β(t) regardless of the choice of
protocol (Theorem 3.7). This generalizes [43] from β = 1

K1 to any β with finite norm and provides
a uniform property for the fairness-aware meta-learning methods. It entails the flexibility of our
two-stage design that switches β between phases. Setting β = α gives the desired property for
the NBS. The validation loss surface reweighed by the NBS has the maximum joint utility, which
empirically boosts the overall performance when used to update θ. Full proofs are given in Appendix
A.5.

3.6 Dynamics of Two-stage Nash-Meta-Learning

Our method captures the interplay and synergy among different groups. Specifically, previous
methods like linear scalarization (i.e., assigning a fix weight to each group) are limited to identifying
points on the convex envelope of the Pareto front [5]. Our method offers a more adaptable navigation
mechanism by dynamically adjusting the weight with the NBS, which accounts for the intricate
interactions and negotiations among groups. Moreover, the optimal ∇Lα maximizes the utilization of
information on validation loss landscape and leads to empirical faster and more robust convergence to
the Pareto front even with distant initial points. Although first-order methods typically avoid saddle
points [16, 39], if one is encountered, switching to the fairness goal upon unsuccessful bargaining
offers a fresh starting point for subsequent bargaining iterations and helps to escape (Figure 6d,
Appendix A.7). Our synthetic experiments show that Stage 2 training focused solely on the fairness
goal does not deviate the model from the Pareto front (Figure 3). Specifically, the worst group utility
gi∇Lβ tends to concentrate around zero, ensuring the model stays in the neighborhood of the Pareto
front and implying the robustness of our approach. The theoretical understanding of this interesting
phenomenon is an open problem for future study.

7



4 Evaluation

We evaluate our method in three key areas: synthetic simulation (§4.1) for Pareto optimality vis-à-vis
fairness objectives, real-world fairness datasets (§4.2), and two imbalanced image classification
scenarios (Appendix A.7.3).

4.1 Simulation

Under the synthetic settings (§2 and Appendix A.6), we observe the convergence enhancements
compared to Figure 2b and the effect of continuous bargaining throughout the entire training (another
case of one-stage). Figure 3 demonstrates that Nash bargaining effectively resolves gradient conflicts
and facilitates convergence to the Pareto front in comparison to Figure 2b. This is evident from
the reduced number of non-Pareto-converged nodes in both continuous bargaining (Figure 3a) and
early-stage bargaining (our final solution, Figure 3b). Notice that one-stage NBS doesn’t always
enhance fairness, evidenced by the observation that nodes at the Pareto front tend to stagnate. The
NBS does not leverage any information about specific fairness objectives. Our two-stage approach
built on the bargaining steps can further push the model to the ideal endpoints.
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Figure 3: Synthetic illustration of the bargaining effects. “➜”: final point not close to the fairness goal
(x=y). “➜”: final point not at the Pareto front. (a) Bargaining across all 1000 steps; (b) Bargaining
only included in the first 100 steps (two-stage method).

4.2 Standard fairness benchmarks

We test our method on six standard fairness datasets across various sectors of fairness tasks: financial
services (Adult Income [3], Credit Default [54]), marketing (Bank Telemarketing [33]), criminal
justice (Communities and Crime [42]), education (Student Performance [11]), and disaster response
(Titanic Survival [12]). Test sets comprise 3% of each dataset (10% for the student performance
dataset with 649 samples) by randomly selecting a demographically and label-balanced subset. See
Table 2 in Appendix A.6 for data distribution specifics.

General settings and metrics. We compare our two-stage Nash-Meta-Learning with conventional
one-stage fairness-aware meta-learning (i.e., LtR, FORML, Meta-gDRO), baseline training, and
Distributional Robust Optimization (DRO) [18]. All methods share the same model architecture and
training hyperparameters on each dataset. Our approach features a 15-epoch bargaining phase within
the total 50 epochs. See Appendix A.6 for training details. Unlike synthetic experiments, the Pareto
Front of real world datasets could be computationally intractable, so we cannot directly evaluate
regarding this. Three metrics from §2 are used: Overall AUC (↑) , Max-gAUCD (↓) , and Worst-gAUC (↑) ,
corresponding to the goal of LtR, FORML, and Meta-gDRO, respectively.

Results and analysis. Our NBS-enhanced two-stage meta-learning improves the overall performance,
fairness objectives (in color), and stability, as in Table 1, and with 95% CI in Table 4, Appendix
A.7. While the results without bargaining majorly agree with the prior work, bargaining increases
FORML’s Overall AUC by 10.34% (from 0.706 to 0.779) with a tighter 95% CI (from 0.202 to
0.054), and decreases Max-gAUCD by 26% (from 0.039 to 0.029) with a tighter CI (from 0.046 to
0.018). However, our method faced challenges in two datasets: Credit Default, where performance
and fairness occasionally declined, and Communities and Crime, where minimal improvement was
observed (in particular, the Meta-gDRO). We diagnose that these two dataset’s validation set contains
low feature-label mutual information, leading to noisy outcomes (Appendix A.7) and affecting
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Baseline DRO LtR FORML Meta-gDRO
one-stage two-stage (ours) one-stage two-stage (ours) one-stage two-stage (ours)

I. Adult Income [3], (sensitive attribute: sex)

Overall AUC (↑) 0.778 0.761 0.830 0.830 (+.000) 0.801 0.810 (+.009) 0.810 0.837 (+.027)
Max-gAUCD (↓) 0.016 0.029 0.050 0.047 (-.003) 0.075 0.031 (-.044) 0.052 0.046 (-.006)
Worst-gAUC (↑) 0.770 0.747 0.805 0.807 (+.002) 0.763 0.795 (+.032) 0.809 0.814 (+.006)

II. Adult Income [3], (sensitive attribute: race; * one group in training data contains only one positive (favorable) label. )

Overall AUC (↑) 0.668 0.652 0.803 0.805 (+.002) 0.710 0.775 (+.065) 0.775 0.793 (+.018)
Max-gAUCD (↓) 0.225 0.236 0.090 0.090 (-.000) 0.290 0.134 (-.156) 0.163 0.158 (-.005)
Worst-gAUC (↑) 0.544 0.538 0.755 0.760 (+.005) 0.540 0.688 (+.148) 0.694 0.703 (+.009)

III. Bank Telemarketing [33], (sensitive attribute: age)

Overall AUC (↑) 0.697 0.686 0.724 0.728 (+.004) 0.706 0.779 (+.073) 0.698 0.722 (+.024)
Max-gAUCD (↓) 0.013 0.025 0.099 0.083 (-.016) 0.039 0.029 (-.010) 0.098 0.079 (-.019)
Worst-gAUC (↑) 0.691 0.691 0.675 0.686 (+.011) 0.686 0.764 (+.078) 0.649 0.683 (+.034)

IV. Credit Default [54], (sensitive attribute: sex; * val data is more noisy than others, see analysis in Table 5, Appendix A.7. )

Overall AUC (↑) 0.634 0.624 0.630 0.616 (-.014) 0.554 0.611 (+.057) 0.682 0.661 (-.021)
Max-gAUCD (↓) 0.024 0.022 0.037 0.025 (-.012) 0.017 0.033 (+.016) 0.016 0.022 (+.006)
Worst-gAUC (↑) 0.622 0.613 0.612 0.603 (-.009) 0.545 0.595 (+.050) 0.674 0.650 (-.024)

V. Communities and Crime [42], (sensitive attribute: blackgt6pct; * val data is noisy, meanwhile one group in training data are all positive labels )

Overall AUC (↑) 0.525 0.568 0.679 0.700 (+.021) 0.554 0.568 (+.014) 0.686 0.686 (+.000)
Max-gAUCD (↓) 0.050 0.136 0.071 0.129 (+.058) 0.107 0.136 (+.029) 0.114 0.114 (-.000)
Worst-gAUC (↑) 0.500 0.500 0.643 0.636 (-.007) 0.500 0.500 (+.000) 0.629 0.629 (+.000)

VI. Titanic Survival [12], (sensitive attribute: sex)

Overall AUC (↑) 0.972 0.983 0.967 0.978 (+.011) 0.950 0.972 (+.022) 0.961 0.972 (+.011)
Max-gAUCD (↓) 0.056 0.033 0.044 0.044 (-0.00) 0.033 0.011 (-.022) 0.033 0.033 (-.000)
Worst-gAUC (↑) 0.944 0.967 0.944 0.956 (+.012) 0.933 0.967 (+.034) 0.944 0.956 (+.012)

VII. Student Performance [11], (sensitive attribute: sex)

Overall AUC (↑) 0.784 0.816 0.900 0.900 (+.000) 0.828 0.822 (-.006) 0.909 0.912 (+.003)
Max-gAUCD (↓) 0.119 0.106 0.013 0.037 (+.024) 0.056 0.031 (-.025) 0.031 0.025 (-.006)
Worst-gAUC (↑) 0.725 0.762 0.894 0.881 (+.013) 0.800 0.806 (+.006) 0.894 0.900 (+.006)

Table 1: Comparison on standard fairness datasets (averaged from 5 runs). Each of { LtR , FORML ,
Meta-gDRO } is paired with { Overall AUC , Max-gAUCD , Worst-gAUC } rsp. for aligning intended fair-
ness goals. Top results of each row in bold.

most tested methods (e.g., LtR, FORML). Additionally, for Communities and Crime, our method is
influenced by the low bargaining success/feasible rate, possibly due to the lack of favorable (positive)
training samples for the minority groups (Table 2, Appendix A.6). Conversely, our method still yields
the anticipated bargaining results on the adult income dataset with only one positive Amer-Indian
sample. These insights emphasize the importance of validation set quality and representative samples
in the training.

Worst-group hypergradient alignment value
0.603 → 0.800 0.000 → 0.769 0.210 → 0.847 Epoch

(a). (b). % per epoch

AlignConflict AlignConflictAlignConflict
Align 
Rate:

Figure 4: Effects on hypergradient alignment
(Bank Telemarketing). (a) Smallest g⊤i ∇Lβ . Por-
tion of positive values (Align. Rate) at the bottom.
(b) Hypergradient alignment rate per epoch.

Effects of bargaining on hypergradient con-
flicts. Bargaining enhances hypergradient align-
ment by varying degrees among different one-
stage algorithms (Figure 4, 6). For instance,
LtR’s alignment rate improves from 60% to 80%,
and FORML jumps from 0 to 76.9% accompa-
nied with more substantial performance and fair-
ness gains on Bank Telemarketing (Figure 4).
FORML consistently benefits more from bargain-
ing compared to the other two, likely due to its
optimization goal that could intensify hypergradi-
ent conflicts. Moreover, our approach uniformly
promotes hypergradient alignment during Stage 1
(Figure 6). We show that early-stage bargaining,
accompanied by its hypergradient conflict resolu-
tion, is crucial for enhancing model performance and fairness. Further illustrations and analyses are
in Appendix A.7.

Discussions on scalability. To scale up models and datasets, one natural question is whether the
bargaining game can still be feasible. For larger number of groups, although the likelihood of getting
unresolvable conflict may get higher due to the fact that more players are getting involved, we
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conjecture that the feasibility of A depends more on the group structure rather than the number of
groups. For example, the interdependencies and shared factors between groups may cause dependency
in hypergradients to enable the feasibility of A. When goals of groups rely on common resources or
have shared objectives at a higher level, it is still likely to have nonempty A.

5 Discussion & Conclusion

In conclusion, our study offers several key insights: We identified hypergradient conflict as a pivotal
issue undermining stable performance in one-stage fairness-aware meta-learning algorithms. To
mitigate this, we proposed a two-stage framework that initially employs the NBS to resolve these
conflicts, and then optimizes for fairness. Our assumption-free proof of the NBS extended its
applicability to a broader range of gradient aggregation problems. Empirical results demonstrated our
method’s superior performance across synthetic scenarios, seven real-world fairness settings on six
key fairness datasets, and two image classification tasks.

Future directions. First, addressing the absence of a specific label in the training subgroup and
the low quality of the validation set that affected our method’s effectiveness may be mitigated by
fairness-aware synthetic data [48] or data-sifting methods [56]. Pairing our method with them and
exploring more resilient solutions adapted to these extreme cases can be a promising direction.
Second, Theorem 3.7 establishes the validity to switch the choice of β during training. Future
work can focus on designing and flexibly choosing outer optimization goals to delicately improve
performance, fairness, or other metrics in interest. Third, we derive the NBS under D = 0 for conflict
resolution. Future study could investigate general D ̸= 0, which might not be useful for conflict
resolution (the scope of our paper), but could be used in other cases as a gradient aggregation method
that gains advantages from axiomatic properties, as discussed in Appendix A.4.
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Herrera-Viedma, and Francisco Herrera. Connecting the dots in trustworthy artificial intelli-
gence: From ai principles, ethics, and key requirements to responsible ai systems and regulation.
Information Fusion, page 101896, 2023.
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A Appendix

In this section, we first provide background and related work (§A.1), along with context on the
motivation of choosing the NBS (§A.2). Then, we give formal definitions of some preliminaries
mentioned in the main text (§A.3). We supplement discussions on the gargaining game setup and
assumptions (§A.4), followed by the full proofs of corollaries and theorems (§A.5). We then provide
detailed experimental settings (§A.6) and the additional results and analysis on with 95% CI, test
noise, gradient conflict resolution, and experiments on the imbalanced image classification task
(§A.7). Finally, we discuss the broader impact and limitations (§A.8).

A.1 Background & Related Work

Bargaining game in ML. Bargaining has been broadly applied across various ML contexts such as
multi-task learning [37], multi-agent reinforcement learning [46, 40, 9, 45], multi-armed bandits [2],
feature selection [23], and Bayesian optimization [4]. For bargaining-related gradient aggregation,
a key distinction between our work and prior research is our provision of a proof for the NBS that
does not rely on the linear independence assumption, and we further extend from the basic gradient
descent setting to bi-level fairness-aware meta-learning [37]. In the context of meta-learning for
fairness, we critically examine and build upon the work of [43], as detailed in §2. To the best of our
knowledge, we are the first work to incorporate Nash bargaining into fairness-aware meta-learning.

Bias mitigation. Traditional bias mitigation methods such as relabeling [30], resampling [21], or
reweighting [22] hinge upon the availability of sensitive attributes in training data. However, such
attributes can often be inaccurate, incomplete, or entirely unavailable due to privacy and ethical
concerns in the collection process [1]. In response, researchers have developed two lines of proxy-
based strategies over the past decades. The first line of work adopts indirect features associated with
the sensitive feature of interest, such as zip codes for ethnicity [13] or sound pitch for gender [26].
Despite circumventing the requirement of sensitive attributes in training data, the effectiveness of
these proxies critically hinges on their correlation with the actual sensitive attributes. The second line
of work aims at aligning with the Max-Min fairness principle and uses the worst-performing samples
as the proxy of the most disadvantaged groups [41, 18, 27, 8]. Challenges also arise in the potential
bias toward mislabeled data when targeting worst-performing samples [51]. Most importantly, with
the proxy group only aligned with Max-Min fairness, these lines of mitigation cannot be generalized
or adapted to help other fairness notions.

Scope and Notions of Fairness. Our exploration of fairness is specifically tailored to group-
level notions, as fairness-aware meta-learning inherently relies on a representative set of samples
organized by group information for model updates. While Max-Min fairness was chosen as a common
evaluation metric, our paper also encompasses two additional mainstream fairness notions, including
demographic parity [53] and average performance across equally represented groups [43], both
used as one-stage baselines (Section 2). Our proposed two-stage method is also evaluated on its
effectiveness in reducing disparity and improving the overall performance compared to these two
baselines, respectively, as shown in Table 1.

Max-Min Fairness and Rawlsian Justice. Group-level Max-Min fairness is a concept originated
from Rawl’s definition of fairness or, equivalently, justice [41]. Rawls defines the least advantaged
group by primary goods with objective characteristics, which are independent of specific predictors.
The Difference Principle in Rawlsian Justice requires that the existing mechanism always contributes
to the least advantaged group. While Rawlsian Justice has been extended to specific utilities in the
context of ML group-level fairness [18, 27, 51], the worst-performing group in ML fairness may
vary over epochs and depend on the optimization status, unlike the least advantaged group in the
original Rawlsian context. Consequently, the group-level Max-Min fairness approach in ML may
not necessarily create a safety net for the least advantaged group as the original Rawlsian Justice
intends. Rather, the ML group-level Max-Min fairness provides a dynamic optimization strategy that
maximizes the minimum performance across all groups at each epoch. This approach ensures that the
worst-performing group, which may change over time, is prioritized during the optimization process.
While this interpretation of fairness differs from the original Rawlsian context, it remains a valuable
technique for promoting equity in ML systems by preventing any group from being consistently
disadvantaged.
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A.2 Additional Discussions

Why NBS for hypergradient conflict resolution? – A game theory perspective. Game theory offers
two main categories: cooperative and noncooperative games. Cooperative games involve players
forming alliances to achieve common objectives, while noncooperative games (e.g., Nash equilibrium
[36]) focus on players acting independently without contracts. Our problem aligns better with the
cooperative category, where players collaborate to maximize their collective gains from the proposed
hypergradient update. Cooperative bargaining, a subset of cooperative games, studies how players
with distinct interests negotiate to reach mutually beneficial agreements, directly corresponding to
our goal of conflict resolution. Among cooperative bargaining solutions, the NBS stands out for
its general applicability, robustness [34], and unique solution satisfying desirable axioms including
Pareto Optimality, Symmetry, Invariance to Affine Transformations, and Independence of Irrelevant
Alternatives [35]. These properties make the NBS an attractive choice for resolving hypergradient
conflicts in a principled and fair manner.
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Figure 5: Synthetic illustration of each gradient aggregation method in resolving gradient conflicts
and their implication in converging to Pareto front. Red circles imply the nodes that cannot converge
to the Pareto front after 1000 steps of updates.

Why NBS for hypergradient conflict resolution? – An empirical comparison. As far as we
understand, there is no simple way to project or rescale a proposed update (such as LtR, FORML, or
Meta-gDRO) to guarantee conflict resolution. Moreover, the NBS finds a balanced solution on the
Pareto front where no participant can unilaterally improve their position without others’ agreement,
which cannot be achieved by a standard way of linear scalarization (e.g., Example 2.27 in [5],
and [20]) or other gradient aggregation methods like Generalized Mean (GM) [6]. In synthetic
experiments, learning with the NBS effectively steers the model toward the Pareto frontier during
early training stages, which is the foundation of our proposed second stage (in our “two-stage”
fairness-aware meta-learning) to achieve fairness goals without compromising model performance
(the efficacy is illustrated in Figure 3). Empirically comparing optimization trajectories of the NBS
and other baselines of gradient aggregation using the same settings in Section 2: GM, PCGrad [55],
and CAGrad [29] (Figure 5), we find that these methods, except for the NBS, often favor groups with
larger loss magnitudes, resulting in inefficient convergence towards the Pareto frontier. In contrast, the
NBS, with its Pareto Optimality axiom, guides all nodes towards efficient convergence by considering
the relative importance of different objectives and maximizing joint gains while avoiding favoring
large loss value groups at the expense of others’ utility.

A.3 Preliminaries

We give a formal definition of Pareto Optimal and related terms, followed by the details of the four
axioms of the NBS.

We write x ⪰ y as xi ≥ yi for all entry i for vector x, y, and x ≻ y if x ⪰ y and x ̸= y. We use ∥ · ∥
to denote ℓ2-norm.

Pareto optimality. Consider a set of function f1, . . . , fK we want to minimize using some parameter
θ ∈ Θ. Let vector valued function f(θ) = [f1(θ) . . . fK(θ)]. θ is Pareto optimal if for all other
θ′ ∈ Θ satisfies f(θ′) ⪰ f(θ). That is, no other θ′ ∈ Θ satisfies f(θ′) ≺ f(θ), meaning that
objectives cannot be jointly improved without sacrificing any of them.

Pareto front. The set of Pareto optimal models forms the Pareto front. There is no preference of the
models in the Pareto front, unless with extra customized criteria (such as fairness) introduced.
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Pareto improvement. θ′ is an Pareto improvement to θ if f(θ′) ≺ f(θ).

The four axioms of the NBS:

1. Pareto Optimality: The solution is Pareto optimal in S. For solution x ∈ S, it does no
exist y ≻ x for y ∈ S, y ̸= x.

2. Symmetry: The solution is invariant to players’ order.

3. Independence of Irrelevant Alternatives: The solution retains upon superset expansion
if it remains in the original set. That is, if we expand the feasible set S and we know the
solution stays in S, then the solution stays the same.

4. Invariant to Affine Transformations: If we apply affine transformations to the utilities, the
new solution is the original solution with transformed utilities accordingly. Consider affine
transformations g1, . . . , gK . The original solution has utility payoffs [x1, . . . , xK ]. If we
transform the utilities from ui to g ◦ ui, the new solution has payoffs [g1(x1), . . . , gK(xK)].

A.4 Problem Setup & Assumptions

Additional assumptions. Assume that S is convex and compact, and that there exists an x ∈ S
such that xi > di for all players. We also assume that all players have complete information over the
game parameterized as (S, d). Assume without loss of generality gi ̸= 0 for i ∈ [K].

Definition of A. Recall that in Section 3 we define A = {∇L : ∇L ∈ Bϵ,∇L⊤
α gi − D⊤gi >

0,∀i ∈ [K]} with D = 0. As a result, A ⊂ Bϵ and A’s outer boundary lies on the boundary of Bϵ.
For example, in 2D case, A is a set of circular sectors. A natural question is what happens when
considering solutions in Bϵ. First note that we cannot directly take logarithm to obtain Equation 9 as
some ∇L⊤

α gi −D⊤gi are non-positive. Yet, an alternative way is to adjust assumptions on D such
that ∇L⊤

α gi − D⊤gi > 0, i ∈ [K]. For example, a way to guarantee the feasibility of A is to set
D = argminx∈Bϵ x

⊤gi for i ∈ [K] such that (∇Lα − d)⊤gi > 0 for all i ∈ [K]. Here, the feasible
region can always be Bϵ. Assumptions on D will be discussed later in the section. Under current
assumption D = 0, we can use the axiom of Independence of Irrelevant Alternatives to deduce a
result on extending A to Bϵ: if the new NBS stays in A, then it remains unchanged. This would serve
as a theoretical guarantee if one wants to make assumptions on the solution under the constraint set
Bϵ instead.

Feasibility of A. Another assumption is that A is feasible. If A is empty, then we cannot construct
the Bargaining game because it doesn’t satisfy Nash’s assumption that there always exists one payoff
x in the feasible payoff set such that x is better than d for each player. In this case, we use the default
fairness protocol β0 instead of the improved bargained outcome α as in Algorithm 1. Experiment
results show that our mechanism can handle this situation adaptively. In fact, switching to the fairness
protocol upon unsuccessful construction of bargaining offers a fresh starting point for subsequent
bargaining iterations and helps to escape the saddle points (Figure 6d, also discussed in Section 3.6).

Assumption D = 0. We assume disagreement payoff D = 0. This is to address the hypergradient
conflict such that the NBS satisfies ∇L⊤

α gi > 0, i ∈ [K]. We now discuss why we don’t manually
adjust D to make the bargaining problem feasible: Relaxing the constraint set will sacrifice the
gradient alignment guarantee and deviate from our focus of conflict resolution. For D ̸= 0, we are
unsure about whether it would help resolve hypergradient conflict. This is because it may flip the sign
of some terms, which might result in some ∇L⊤

α gi < 0 and instead cause hypergradient conflict.

General D. Though general D may not be suitable for conflict resolution (the problem identified
in our paper), it may be useful for other scenarios as a gradient aggregation method (which is out of
the scope of this work, but can be a future direction). Here, we include a discussion for completeness:
If A is feasible under general D, then we are able to get

∑
i log (∇Lα −D)⊤gi because each term

is positive. The derivative w.r.t. ∇Lα remains
∑

i
1

(∇Lα−D)⊤gi
gi. Though closed-form solution may

not be guaranteed because of the applicability of the tangent slope argument of Equation 5 (that
depends on the shape of A), but it can be solved as an optimization problem. Note that this may give
a very different set coefficient because it is measured in terms of the improvement on D.
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A.5 Proofs

Proof of Theorem 3.1:
Theorem. Under D = 0, argmax∇Lα∈A

∏
i∈[K](ui(∇Lα)− di) is achieved at∑

i∈[K]

1

∇Lα
⊤gi

gi = γ∇Lα, for some γ > 0. (8)

Proof. We follow the same steps in Claim 3.1 of [37], along with additional characterization on the
shape of A under D = 0. Note that this theorem may not work under general D.

By the positivity of each term in A, this is equivalent to maximizing the summation of logarithms:

arg max
∇Lα∈Bϵ

∑
i∈[K]

log(∇Lα
⊤gi). (9)

Taking the derivative of the objective w.r.t. ∇Lα gives
∑

i∈K
1

∇Lα
⊤gi

gi. For any i ∈ [K], we know
x⊤gi > 0 if and only if (cx)⊤g > 0 with any given c > 0. This means that if a point is in A, then
all points in its radial direction in Bϵ are in A (i.e. the boundary of A is a subset of the boundary of
Bϵ). By the Pareto Optimality, the optimal solution must lie on the boundary of Bϵ as the utility is
monotonically increasing in ∥∇Lα∥ for ∇Lα ∈ A. The optimal points on the boundary of Bϵ have
tangent slope 0 (i.e. gradient having the same direction as its normal). Hence, we know the normal is
in parallel to ∇Lα and the desired ∇Lα satisfies∑

i∈[K]

1

∇Lα
⊤gi

gi = γ∇Lα, for some γ > 0. (10)

Proof of Theorem 3.2:
Theorem. The solution to Equation 5 is (up to scaling) ∇Lα =

∑
i∈K αigi where

G⊤Gα =
1

α
(11)

with the element-wise reciprocal 1
α .

Proof. Multiplying both sides with gj , this is equivalent to solving for x in
∑

i∈[K]
g⊤
i gj

x⊤gi
= γx⊤gj

for j ∈ [K]. Observe that x is a linear combination of gi (i.e. x = 1
γ

∑
i∈[K](x

⊤gi)
−1gi). It suffices

to solve for coefficients x⊤gi by the linear system∑
i∈K

(g⊤i gj)(x
⊤gi)

−1 = γx⊤gj (12)

for j ∈ [K]. Without loss of generality, set γ = 1 to ascertain the direction of x. Let α = [α1 . . . αK ]
with αi = (x⊤gi)

−1. Equation 12 becomes

g⊤j
∑
i∈[K]

giαi = α−1
j (13)

for j ∈ [K], or, equivalently,

G⊤Gα =
1

α
(14)

with the element-wise reciprocal 1
α , concluding the proof. Note that −α is also a solution when α is

one, yet we preserve α ∈ RK
+ (i.e. positive contribution of each gi) in implementation.
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Additional Note on Linear Independence Condition for Theorem 3.2:

In Section 3.2, we highlight that linear independence does not hold in general. We also wanted to
note that fine-grained subgroup definitions can make linear independence assumptions more realistic
as they break down larger groups into smaller, distinct units. If subgroups are well-defined and
distinct in their goals, characteristics, or attributes, the vectors representing their goals are more
likely to be linearly independent. However, real-world scenarios may still exhibit interdependencies
or correlations between subgroup goals, especially in the context of fairness, even if subgroups are
finely defined. For example, goals may still rely on common resources or have shared objectives at
a higher level. The interdependencies and shared factors may cause dependency in hypergradients.
Specifically, if one goal can be expressed as a combination of the goals of other groups, then the
corresponding vectors are linearly dependent. Additionally, if the number of subgroups exceeds
the dimension of the hypergradient (i.e. definition too fine-grained), it’s impossible to have linear
independence. Therefore, while fine-grained subgroup definitions can make linear independence
assumptions more realistic, it’s essential to carefully analyze the specific context and relationships
between subgroups to determine the extent to which linear independence holds.

Proof of Corollary 3.3:
Corollary. (Norm of bargained update) The solution in Theorem 3.2 has ℓ2-norm

√
K.

Proof. It follows that

∥
∑
i∈K

αigi∥2 =
∑
i∈K

∑
j∈K

αiαjg
⊤
i gj = K. (15)

Proof of Corollary 3.4:
Corollary. If gj is σ-bounded for j ∈ [K], ∥α−1

j ∥ is (
√
Kσ)-bounded for j ∈ [K].

Proof. By Cauchy-Schwarz inequality, we have

∥α−1
j ∥ =

∥∥∥∥∥∥g⊤j
∑
i∈[K]

αigi

∥∥∥∥∥∥ ≤
∥∥g⊤j ∥∥

∥∥∥∥∥∥
∑
i∈[K]

αigi

∥∥∥∥∥∥ ≤
√
Kσ. (16)

Proof of Theorem 3.5:
Theorem. (Update rule of θ) Denote L

(train)
i = L(D

(t)
i |θ(t)) ∈ R for the i-th sample in train-

ing minibatch D(t) at step t. θ is updated as θ(t+1) = θ(t) − η(t)

|D(t)|
∑|D(t)|

i=1 ∆θi with ∆θi =

max ((∇θ((β
(t))⊤L(val)))⊤∇θL

(train)
i , 0)∇θL

(train)
i .

Proof. Since we use the meta-learning framework in [43] with customized β(t), we first evaluate the
effect of β(t) in the computation graph, following similar steps in Equation 12 and Appendix A of
[43]. We initialize w̃ to 0. For data sample i in training batch D(t) at step t, we perform a single
gradient update as in Algorithm 1:

w̃
(t)
i =

∂

∂w̃
(t)
i

(β(t))⊤L(val)(D(val)|θ̂(t))

∣∣∣∣∣
w̃

(t)
i =0

(17)

=
∂

∂θ
(β(t))⊤L(val)(D(val)|θ)

∣∣∣∣⊤
θ=θ(t)

∂

∂w
(t)
i

θ̂(t)(w̃
(t)
i )

∣∣∣∣∣
w̃

(t)
i =0

(18)

∝ − ∂

∂θ
(β(t))⊤L(val)(D(val)|θ)

∣∣∣∣⊤
θ=θ(t)

∂

∂θ
L(D

(t)
i |θ)

∣∣∣∣
θ=θ(t)

. (19)
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Line 18 comes from chain rule; Line 19 comes from

∂

∂w̃
(t)
i

θ̂(t)(w̃
(t)
i ) =

∂

∂w̃
(t)
i

(
θ(t) − η(t)∇θ(t)w̃(t) · L(D(t)|θ(t))

)
(20)

= −η(t)
∂

∂θ
L(D

(t)
i |θ)

∣∣∣∣
θ=θ(t)

. (21)

Informally, it means that w̃, or w, equivalently, is jointly determined by the β(t)-weighed gradient on
the meta set and the gradient on the training batch. Analogous to Equation 30 of [43], the update rule
of θ is

θ(t+1) = θ(t) − η(t)
∂

∂θ

1

|D(t)|

|D(t)|∑
i=1

max (−w̃
(t)
i , 0)L(D

(t)
i |θ(t)) (22)

= θ(t) − η(t)

|D(t)|

|D(t)|∑
i=1

∆θi (23)

with ∆θi = max ((∇θ((β
(t))⊤L(val)))⊤∇θL

(train)
i , 0)∇θL

(train)
i . (24)

Note that losses and gradients are taken w.r.t. θ(t), and without loss of generality we can disregard
η(t) as if it absorbs the normalization constant.

Proof of Theorem 3.6:
Theorem. (Pareto improvement of w̃) Use α(t) for the update. Assume L

(val)
i is Lipschitz-smooth

with constant C and g
(t)
i is σ-bounded at step t. If the meta learning rate for w̃ satisfies η(t) ≤ 2

CKα
(t)
j

for j ∈ [K], then L
(val)
i (w̃(t+1)) ≤ L

(val)
i (w̃(t)) for any group i ∈ [K].

Proof. We follow similar (and standard) steps in Theorem 5.4 of [37], yet retrieve a slightly different
(and group-wise tighter) upperbound for learning rate. In Theorem 5.4 of [37], the upperbound for
learning rate was mini∈[K]

1

CKα
(t)
j

. Our bound is better with multiplicative constant 2 than that of

[37].

Write ∆w̃ = w̃(t+1) − w̃(t) and use a well-known property of Lipschitz-smoothness:

L
(val)
i (w̃(t+1)) ≤ L

(val)
i (w̃(t))− I1 + I2 (25)

with I1 = η(t)∇L
(val)
i (w̃(t))⊤∆w̃ (26)

= η(t)g
(t)⊤
i

K∑
j=1

α
(t)
j g

(t)
j (27)

=
η(t)

α
(t)
i

, (28)

I2 =
C

2
∥η(t)∆w̃∥2. (29)

By Corollary 3.3,

I2 =
C

2
∥η(t)∆w̃∥2 =

C(η(t))2

2
∥∆w̃∥2 =

CK(η(t))2

2
. (30)

Observe that −I1 + I2 ≤ 0 is equivalent to

CK(η(t))2

2
≤ η(t)

α
(t)
i

(31)

η(t) ≤ 2

CKα
(t)
i

. (32)
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We also have 2

CKα
(t)
i

≤ 2
√
Kσ

CK = 2σ
C
√
K

by Corollary 3.4. Note that L(val)
i (w̃(t+1)) ≤ L

(val)
i (w̃(t))

is strict when Inequality 32 is strict, which yields Pareto Improvement. We just perform one step
of gradient update of w̃ in Algorithm 1, yet this result is applicable to single level optimization that
directly optimize the parameter in interest.

Proof of Theorem 3.7: We will use the following corollary in the proof:
Corollary A.1. Assume f : Rd → RK is Lipschitz-smooth with constant C. Fix β ∈ RK with finite
∥β∥. For g : RK → R, g(x) = β⊤f(x). Then g is Lipschitz-smooth with constant C∥β∥.

Proof. This is a classical result in Real Analysis. By chain rule, we have ∇g(x) = (∇f(x))β. Then
for any x, y ∈ Rd, by Cauchy-Schwarz inequality,

∥∇g(x)−∇g(y)∥ = ∥(∇f(x))β − (∇f(y))β∥ = ∥(∇f(x)−∇f(y))β∥ ≤ ∥∇f(x)−∇f(y)∥∥β∥ ≤ C∥β∥∥x− y∥.
(33)

Thus g is Lipschitz-smooth with constant C∥β∥.

Theorem. (Monotonic improvement of validation loss w.r.t. θ) Assume L(val) is Lipschitz-smooth
with constant C and ∇θL

(train)
i is σ-bounded. If the learning rate for θ satisfies η(t) ≤ 2|D(t)|

C∥β(t)∥σ2 ,

then Lβ(t)(θ(t+1)) ≤ Lβ(t)(θ(t)) for any fixed vector β(t) with finite ∥β(t)∥ used to update θ(t).

Proof. We incorporate β(t) in the computation when following the same (and standard) steps in
Lemma 1 of [43]. We drop the superscript of β(t) for simplicity. By Corollary A.1, we know Lβ

is Lipschitz-smooth with constant C∥β∥. Similar to Theorem 3.6, we use the gradients derived in
Theorem 3.5 and have

Lβ(θ
(t+1)) ≤ Lβ(θ

(t))− I1 + I2 (34)

with I1 = (∇Lβ)
⊤∆θ (35)

= (∇Lβ)
⊤ η(t)

|D(t)|
∑

i∈D(t)

max{(∇Lβ)
⊤∇L

(train)
i , 0}∇L

(train)
i (36)

=
η(t)

|D(t)|
∑

i∈D(t)

max{((∇Lβ)
⊤∇L

(train)
i )2, 0}, (37)

I2 =
C∥β∥
2

∥∆θ∥2 (38)

=
C∥β∥
2

∥∥∥∥∥∥ η(t)

|D(t)|
∑

i∈D(t)

max{(∇Lβ)
⊤∇L

(train)
i , 0}∇L

(train)
i

∥∥∥∥∥∥
2

(39)

≤ C∥β∥
2

(η(t))2

|D(t)|2
∑

i∈D(t)

∥∥∥max{(∇Lβ)
⊤∇L

(train)
i , 0}∇L

(train)
i

∥∥∥2 (40)

≤ C∥β∥
2

(η(t))2

|D(t)|2
∑

i∈D(t)

max{((∇Lβ)
⊤∇L

(train)
i )2, 0}

∥∥∥∇L
(train)
i

∥∥∥2 (41)

≤ C∥β∥(η(t))2σ2

2|D(t)|2
∑

i∈D(t)

max{((∇Lβ)
⊤∇L

(train)
i )2, 0}. (42)

Line 40 and 41 come from the triangle inequality and Cauchy-Schwarz inequality. Note that here the
gradients are taken w.r.t. θ. We know −I1 + I2 ≤ 0 is equivalent to

η(t) ≤ 2|D(t)|
C∥β∥σ2

, (43)

concluding the proof. Here, we generalize Lemma 1 of [43] from a fixed protocol to any protocol
β with finite norm. Setting the bargained α to β gives a new desirable property of the NBS in
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mete-learning, which establishes its validity as a meta-learning protocol. As such, it is a novel result
of the NBS on the monotonicity of validation loss, which has not been presented before as [37] did
not focus on meta-learning.

A.6 Detailed Experimental Settings

Synthetic settings (used in §2, §4). We provide here the details for the illustrative example of
Figure 2b and 3. We use a modified version of the illustrative example in [37]. We first present our
modified learning problem: Let θ = (θ1, θ2) ∈ R2, and consider the following objectives:

ℓ1(θ) = c1(θ)f1(θ) + c2(θ)g1(θ) and ℓ2(θ) = c1(θ)f2(θ) + c2(θ)g2(θ), where
f1(θ) = log(max(|0.5(−θ1 − 7)− tanh(−θ2)|, 5e− 6)) + 6,

f2(θ) = log(max(|0.5(−θ1 + 3)− tanh(−θ2) + 2|, 5e− 6)) + 6,

g1(θ) = ((−θ1 + 7)2 + 0.1 · (−θ2 − 8)2)/10− 20,

g2(θ) = ((−θ1 − 7)2 + 0.1 · (−θ2 − 8)2)/10− 20,

c1(θ) = max(tanh(0.5θ2), 0) and c2(θ) = max(tanh(−0.5θ2), 0)

We now set L1 = ℓ1 and L2 = ℓ2 as our objectives to simulate the case where two participated
groups have the same scale of loss, as a closer reflection of the loss scope may encountered during
inter-group bargaining. In particular, with the loss scale being set to the same, the fairness goal of
the evaluated notions, i.e., LtR, FORML, and Meta-gDRO, becomes the same as x=y. We use six
different initialization points {(−8.5, 7.5), (0.0, 0.0), (9.0, 9.0), (−7.5,−0.5), (9,−1.0), (9,−20)}.
We use the SGD optimizer and train each method for 1000 iterations with a learning rate of 0.1.

Standard fairness benchmark settings (used in §4). The detailed fairness dataset settings are
provided in Table 2. We access these fairness datasets via Library for Semi-Automated Data Science:
https://github.com/IBM/lale. The library is under Apache 2.0 License.

Dataset # samples # features Favor label Attribute Trainning Set Test set (3% of whole data) Validation set

sex M ({0: 22365, 1: 9555})
F ({0: 14060, 1: 1430})

M ({0: 366, 1: 366})
F ({0: 366, 1: 366})

M ({0: 3, 1: 3})
F ({0: 3, 1: 3})

Adult
Income 48842 105 1 race

Black ({0: 3972, 1: 428})
White ({0: 31006, 1: 10458})

Asian ({0: 969, 1: 282})
Other ({0: 233})

Amer-Indian ({0: 289, 1: 1 })

Black ({0: 146, 1: 146})
White ({0: 146, 1: 146})
Asian ({0: 146, 1: 146})
Other ({0: 146, 1: 146})

Amer-Indian ({0: 146, 1: 146})

Black ({0: 3, 1: 3})
White ({0: 3, 1: 3})
Asian ({0: 3, 1: 3})
Other ({0: 3, 1: 3})

Amer-Indian ({0: 3, 1: 3})

Bank
Telemarketing 45211 51 1 age age > 25 ({1: 38564, 0: 4632})

age < 25 ({1: 715, 0: 108})
age > 25 ({1: 339, 0: 339})
age < 25 ({1: 339, 0: 339})

age > 25 ({1: 3, 0: 3})
age < 25 ({1: 3, 0: 3})

Credit
Default 30000 24 0 sex M ({1: 14122, 0: 3542})

F ({1: 8787, 0: 2656})
M ({1: 225, 0: 225})
F ({1: 225, 0: 225})

M ({1: 4, 0: 4})
F ({1: 4, 0: 4})

Communities
and Crime 1994 1929 0 blackgt6pct False ({1: 1002, 0: 0 })

True ({1: 841, 0: 101})
False ({1: 14, 0: 14})
True ({1: 14, 0: 14})

False ({1: 1, 0: 1})
True ({1: 1, 0: 1})

Titanic
Survival 1309 1526 1 sex M ({1: 151, 0: 672})

F ({1: 329, 0: 118})
M ({1: 9, 0: 9})
F ({1: 9, 0: 9})

M ({1: 1, 0: 1})
F ({1: 1, 0: 1})

Student
Performance 649 58 1 sex M ({1: 200, 0: 33})

F ({1: 315, 0: 32})
M ({1: 16, 0: 16})
F ({1: 16, 0: 16})

M ({1: 2, 0: 2})
F ({1: 2, 0: 2})

Table 2: We detail the number of samples per group, categorized by protected attributes and labels.
The student performance dataset allocates 10% for testing due to its smaller size, while others
reserve 3%. Notably, in the adult income training dataset with race as a protected attribute, only
one Amer-Indian sample with the positive (favorable) label. Additionally, after balancing test and
validation sets, the community and crime dataset has no samples in the “False” group labeled “0”.
These training data distribution-wise problems are marked in yellow and were maintained to examine
how extreme imbalances in training data impact various algorithms.

Training specifics for standard fairness benchmarks (used in §4). For the models applied to
these fairness datasets, we consistently employ a 3-layer neural network architecture comprised of an
input layer, one hidden layer, and an output layer. The input layer takes in features and transforms
them to a dimension of size 128. A ReLU activation function and a dropout layer for regularization
follow this. The hidden layer further processes the data, again followed by a ReLU and dropout
layer. Finally, the output layer maps the representation from the hidden layer to the number of classes
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specified (2 for the considered fairness datasets). This architecture utilizes dropout after each ReLU
activation to reduce overfitting, making it suitable for classification tasks.

We fine-tuned the training hyperparameters based on the baseline model. Common hyperparameters
across all algorithms include a total of 50 training epochs, an SGD optimizer momentum of 0.9,
and a weight decay of 5e-4, with the bargaining phase limited to 15 epochs for the three settings
incorporating proposed Nash-Meta-Learning. Hyperparameters that varied are detailed in Table 3.

Switching phases and selection of Tbar. In practice, we determine Tbar by monitoring the bargain-
ing success rate. We observed from real-data experiments that model’s performance would stabilize
when this rate stabilizes. This may serve as a sign of switching to Stage 2 because no significant
improvements could be brought by bargaining. In our real-data experiments, we set Tbar to 15 epochs,
as this allowed all evaluated settings to reach a stable bargaining success rate.

Computing. All experiments were conducted on an internal cluster using one chip of H-100.

Dataset Attribute Learning rate Dropout Probability Batch Size

sex 1e-3 0.2 512Adult
Income race 5e-4 0.4 512

Bank
Telemarketing age 1e-3 0.3 512

Credit
Default sex 1e-3 0.5 512

Communities
and Crime blackgt6pact 1e-4 0.2 32

Titanic
Survival sex 1e-3 0.4 32

Student
Performance sex 1e-3 0.05 32

Table 3: Hyperparameter settings for standard fairness datasets.

A.7 Additional Results

A.7.1 Results with 95% Confidence Intervals (CIs).

The main empirical results are averaged from five independent runs using different random seeds, the
95% CI marked in Table 4. In addition to the key findings shown in Table 1, we find the results from
the two-stage method are often more stable than the one-stage baselines, reflected by tighter CIs.

A.7.2 Additional Analysis

Noise analysis. To analyze the noise presented in validation sets, as referenced in Table 5, we
employ normalized mutual information [24]. This metric offers a measure of the shared information
between features and labels, normalized by the sum of their individual entropies. The normalized
mutual information Inorm between a feature set X and labels Y is computed as:

Inorm(X;Y ) =
I(X;Y )

H(X) +H(Y )

where I(X;Y ) is the mutual information between X and Y , representing the amount of shared infor-
mation, and H(X) and H(Y ) are the entropies of the feature set and the labels, rsp. A higher Inorm
indicates less noise, signifying a stronger relationship between the features and labels. We referred to
https://github.com/mutualinfo/mutual_info (Apache-2.0 license) for implementation.

Referring to Table 5, it is evident that the validation set used from Credit Default dataset and the
Communities and Crime dataset exhibits a notably lower mutual information score, compared to the
other datasets. This suggests a significantly weaker correlation between the features and labels in
these particular validation sets and a higher level of noise. Such a disparity in mutual information
underscores the challenge in achieving high model performance and could explain the varying degrees
of success observed across different fairness interventions within this dataset.
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Baseline DRO LtR FORML Meta-gDRO
one-stage two-stage (ours) one-stage two-stage (ours one-stage two-stage (ours)

I. Adult Income [3], (sensitive attribute: sex)

Overall AUC (↑) 0.778 ± 0.004 0.761 ± 0.010 0.830 ± 0.002 0.830 ± 0.004 0.801 ± 0.009 0.810 ± 0.004 0.810 ± 0.004 0.837 ± 0.004
Max-gAUCD (↓) 0.016 ± 0.012 0.029 ± 0.016 0.050 ± 0.005 0.047 ± 0.003 0.075 ± 0.042 0.031 ± 0.009 0.052 ± 0.007 0.046 ± 0.004
Worst-gAUC (↑) 0.770 ± 0.011 0.747 ± 0.018 0.805 ± 0.004 0.807 ± 0.004 0.763 ± 0.022 0.795 ± 0.007 0.809 ± 0.006 0.814 ± 0.006

II. Adult Income [3], (sensitive attribute: race; * one group in training data contains only one positive (favorable) label. )

Overall AUC (↑) 0.668 ± 0.004 0.652 ± 0.005 0.803 ± 0.005 0.805 ± 0.007 0.710 ± 0.023 0.775 ± 0.008 0.775 ± 0.013 0.793 ± 0.004
Max-gAUCD (↓) 0.225 ± 0.027 0.236 ± 0.011 0.090 ± 0.015 0.090 ± 0.018 0.290 ± 0.006 0.134 ± 0.040 0.163 ± 0.044 0.158 ± 0.029
Worst-gAUC (↑) 0.544 ± 0.019 0.538 ± 0.002 0.755 ± 0.004 0.760 ± 0.018 0.540 ± 0.019 0.688 ± 0.036 0.694 ± 0.047 0.703 ± 0.028

III. Bank Telemarketing [33], (sensitive attribute: age)

Overall AUC (↑) 0.697 ± 0.004 0.686 ± 0.015 0.724 ± 0.009 0.728 ± 0.005 0.706 ± 0.101 0.779 ± 0.027 0.698 ± 0.006 0.722 ± 0.009
Max-gAUCD (↓) 0.013 ± 0.010 0.025 ± 0.010 0.099 ± 0.012 0.083 ± 0.009 0.039 ± 0.023 0.029 ± 0.009 0.098 ± 0.010 0.079 ± 0.008
Worst-gAUC (↑) 0.691 ± 0.008 0.691 ± 0.008 0.675 ± 0.013 0.686 ± 0.005 0.686 ± 0.090 0.764 ± 0.025 0.649 ± 0.009 0.683 ± 0.010

IV. Credit Default [54], (sensitive attribute: sex; * val data is more noisy than others, see Table 5, Appendix A.7. )

Overall AUC (↑) 0.634 ± 0.004 0.624 ± 0.008 0.630 ± 0.019 0.616 ± 0.035 0.554 ± 0.039 0.611 ± 0.018 0.682 ± 0.003 0.661 ± 0.017
Max-gAUCD (↓) 0.024 ± 0.011 0.022 ± 0.010 0.037 ± 0.022 0.025 ± 0.012 0.017 ± 0.012 0.033 ± 0.018 0.016 ± 0.007 0.022 ± 0.016
Worst-gAUC (↑) 0.622 ± 0.005 0.613 ± 0.012 0.612 ± 0.013 0.603 ± 0.032 0.545 ± 0.033 0.595 ± 0.010 0.674 ± 0.004 0.650 ± 0.025

V. Communities and Crime [42], (sensitive attribute: blackgt6pct; * val data is noisy, meanwhile one group in training data are all positive labels )

Overall AUC (↑) 0.525 ± 0.008 0.568 ± 0.006 0.679 ± 0.022 0.700 ± 0.032 0.554 ± 0.010 0.568 ± 0.018 0.686 ± 0.035 0.686 ± 0.035
Max-gAUCD (↓) 0.050 ± 0.015 0.136 ± 0.012 0.071 ± 0.045 0.129 ± 0.073 0.107 ± 0.020 0.136 ± 0.037 0.114 ± 0.073 0.114 ± 0.073
Worst-gAUC (↑) 0.500 ± 0.000 0.500 ± 0.000 0.643 ± 0.000 0.636 ± 0.046 0.500 ± 0.000 0.500 ± 0.000 0.629 ± 0.042 0.629 ± 0.042

VI. Titanic Survival [12], (sensitive attribute: sex)

Overall AUC (↑) 0.972 ± 0.000 0.983 ± 0.012 0.967 ± 0.010 0.978 ± 0.010 0.950 ± 0.018 0.972 ± 0.022 0.961 ± 0.012 0.972 ± 0.016
Max-gAUCD (↓) 0.056 ± 0.000 0.033 ± 0.024 0.044 ± 0.019 0.044 ± 0.019 0.033 ± 0.024 0.011 ± 0.019 0.033 ± 0.024 0.033 ± 0.024
Worst-gAUC (↑) 0.944 ± 0.000 0.967 ± 0.024 0.944 ± 0.000 0.956 ± 0.019 0.933 ± 0.019 0.967 ± 0.024 0.944 ± 0.000 0.956 ± 0.019

VII. Student Performance [11], (sensitive attribute: sex)

Overall AUC (↑) 0.784 ± 0.011 0.816 ± 0.020 0.900 ± 0.007 0.900 ± 0.011 0.828 ± 0.026 0.822 ± 0.032 0.909 ± 0.020 0.912 ± 0.017
Max-gAUCD (↓) 0.119 ± 0.032 0.106 ± 0.037 0.013 ± 0.013 0.037 ± 0.027 0.056 ± 0.032 0.031 ± 0.025 0.031 ± 0.018 0.025 ± 0.011
Worst-gAUC (↑) 0.725 ± 0.020 0.762 ± 0.032 0.894 ± 0.013 0.881 ± 0.020 0.800 ± 0.022 0.806 ± 0.020 0.894 ± 0.028 0.900 ± 0.020

Table 4: Performance comparison on standard fairness datasets (averaged from 5 runs), with 95% CI.

Additional illustration of resolving hypergradient conflict and our dynamics. Figure 6 provides
additional visualizations of the impact of our bargaining strategy on gradient conflict resolution,
utilizing the adult income dataset with sex as the sensitive attribute. The data indicates that FORML
and Meta-gDRO exhibit greater initial conflicts compared to LtR, but also receive more pronounced
benefits from our bargaining steps. In Figure 6d, we observe instances where bargaining was
unsuccessful, yet an external force, aligned with specific fairness goals (shown with Meta-gDRO
as an example), aids in overcoming local sticking points. These observations not only substantiate
the utility of bargaining steps in mitigating conflicts but also empirically demonstrate the dynamic
process of opting for updates over stagnation, which aligns with the analysis of our method discussed
in §3.6.

Attribute # features Normalized Mutual Information (Validation Set)

sex 105 31.007 e-5Adult
Income race 105 43.337 e-5

Bank
Telemarketing age 51 679.576 e-5

Credit
Default sex 24 26.023 e-5

Communities
and Crime blackgt6pact 1929 9.962 e-5

Titanic
Survival sex 1526 63.911 e-5

Student
Performance sex 58 253.198 e-5

Table 5: Mutual information of each dataset’s validation set normalized by the summation of features’
and labels’ entropy.

Sensitivity to the initial weighting protocol β0. Figure 4 demonstrates that the improvement from
bargaining correlates with the initial hypergradient alignment rate (the portion of aligned batches).
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LtR FORML Meta-gDRO

Hypergradients Aligned 759 (59.5%) 0 (0%) 365 (28.6%)
A Non-Empty 1046 (82.0%) 974 (76.4%) 1072 (84.1%)

Table 6: One-stage methods in the first 15 epochs on US Crime dataset. “Hypergradients aligned”
means the proposed update of the batch lies in A (∇L⊤

β gi > 0 for all i). Percentage in parethesis is
the portion out of total number of batches (1275 batches). We observed that approximately 80% of
time the A is nonempty, which gives room for improvement with bargaining.

(i). (ii). (iii). 

(a) How bargaining helps to resolve conflicts (LtR)

(i). (ii). (iii). 

(b) How bargaining helps to resolve conflicts (FORML)

(i). (ii). (iii). 

(c) How bargaining helps to resolve conflicts (Meta-
gDRO)

(d) Bargaining failed (local sticking points) and how
external force helps (Meta-gDRO with Nash)

Figure 6: Visualizations of how Nash bargaining improves gradient conflicts across different methods
(adult income with sex as the sensitive attribute). With (i), (ii), (iii) in (a), (b), (c) depicting the
least value of group-wise hypergradient alignment (min{g⊤i ∇Lβ : i ∈ [K]), the averaged group-
wise hypergradient alignment value ( 1

K

∑
i∈[K] g

⊤
i ∇Lβ), and the maximum value of group-wise

hypergradient alignment (max{g⊤i ∇Lβ : i ∈ [K]}) respectively.

(i). Overall ACC↑ (ii). ACC Disparity↓ (iii). Worst-group ACC↑

(a) CIFAR-10 imbalanced training results.

(i). Overall ACC↑ (ii). ACC Disparity↓ (iii). Worst-group ACC↑

(b) CIFAR-100 imbalanced training results.

Figure 7: Comparative analysis of accuracy and fairness during CIFAR-10 and CIFAR-100 imbal-
anced training (results averaged from 5 seeds). Subfigures (a) depict the CIFAR-10 results and (b)
show CIFAR-100. Each plot tracks the evolution of overall ACC, ACC disparity, and worst-group
ACC over training epochs, highlighting performance dynamics under a 99%-1% class imbalance for
CIFAR-10 and a 95%-5% for CIFAR-100. The shaded regions represent the 95% CI, offering insight
into the consistency of each method. The efficacy of Nash bargaining in the two-stage approach is
evident, particularly in enhancing the worst-group ACC, vital for fairness in imbalanced settings.

When this initial rate is low, the bargaining process yields significant improvements (for example,
FORML). Conversely, when the initial alignment rate is high, the gains from bargaining are more
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modest. This relationship may provide insight into the varying effectiveness of our approach across
different scenarios.

Computational costs. Our analysis shows that the entire training process takes approximately
1.2-1.4 times as long as training with bargaining does, with the bargaining steps takes 2-10 times
as regular training takes per epoch. We view this as a worthwhile trade-off given the enhanced
performance and fairness achieved.

A.7.3 Imbalanced Image Classification

To further validate our framework, we extend our evaluation to imbalanced image classification on
subsets of the CIFAR-10 and CIFAR-100 datasets [25]. For CIFAR-10, we construct a training set
of 5000 samples with an imbalanced class distribution of 99% to 1%. Due to the smaller per-class
sample size in CIFAR-100, we create a 500-sample training set with a 95%-5% split. Test sets
are balanced, containing an equal number of samples from each class (1000 for CIFAR-10, 100
for CIFAR-100), and validation sets are composed of five samples from each group. We utilize
ResNet-18 [19] for modeling and employ SGD with a learning rate of 5e-4, momentum of 0.9, and
a weight decay of 5e-4. All methods are trained for 100 epochs with a batch size of 128, and for
two-stage algorithms, the initial 30 epochs incorporate bargaining.

Figure 7a delineates the trajectory of accuracy (ACC) for different methods during training epochs
under a 99%-1% class imbalance on CIFAR-10. One-stage meta-learning methods encounter difficul-
ties in converging to a performing and fair model, often underperforming in terms of both ACC and
fairness in this context. In contrast, our two-stage method not only achieves significant improvements
in ACC and fairness but also enhances algorithmic stability, as indicated by the tighter CIs. The
early application of bargaining secures a higher initial ACC, and this advantage is sustained even
as the model later transitions to focus on specific fairness objectives. The consistently improved
trajectory, echoing our synthetic example insights (Figure 3), suggests that reaching the Pareto
front and subsequently focusing on fairness does not degrade the model’s performance. The above
observations underscore the efficacy of the two-stage bargaining approach in managing the trade-offs
inherent in fairness-focused tasks. The challenge of achieving fairness across groups is amplified by
the granular nature of CIFAR-100 (more classes and fewer samples per class) (Figure 7b). Despite
this, the two-stage Nash bargaining approach demonstrates a substantial improvement in aligning
model performance with fairness goals. In contrast, the one-stage baseline methods show limitations
in addressing the imbalance, as evidenced by their fluctuating and often lower ACC trajectories.
Nash bargaining yields a marked improvement in the worst-group ACC, which is critical in such
imbalanced scenarios. This indicates that the bargaining phase helps the model to better navigate the
complex decision space of CIFAR-100, providing a more equitable distribution of predictive accuracy
among the classes. Notably, the early-stage bargaining not only propels the model towards higher
initial accuracy but also prepares it to maintain performance when the fairness objectives become
the primary focus in the later stages of training. This strategic approach ensures that the pursuit of
fairness does not come at the expense of overall accuracy, a balance that is particularly challenging in
the diverse and imbalanced CIFAR-100 environment. The above results from CIFAR-100 reinforce
the generalizable effectiveness of Nash bargaining in our proposed two-stage meta-learning.

A.8 Broader Impact

In this study, we present advancements in ML fairness through the development and analysis of new
fairness-aware meta-learning methods. Our research strictly utilizes synthetic or publicly accessible
open-source datasets, avoiding the use of human subjects. While our method demonstrates notable
improvements over existing approaches in various experimental setups, we recognize that it is not
infallible. As such, any application of our method in real-world decision-making tasks must be
approached with meticulous consideration of the specific context and potential repercussions. It’s
crucial to understand that achieving ML fairness is an ongoing, collective endeavor within the research
community.

Moreover, we also acknowledge that the fairness-aware meta-learning methods developed in this
study are not panaceas for all fairness-related issues in machine learning. There are still several
challenges and open research directions in this area, such as addressing fairness in multimodal
learning, developing better explainability and interpretability techniques, and ensuring fairness
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in model adaptation and transfer learning. Furthermore, there is a need for more diverse and
representative datasets to evaluate the effectiveness and generalizability of fairness-aware methods.
To address these challenges, we call for further research and collaboration among researchers,
practitioners, and policymakers to advance the state-of-the-art in ML fairness and to ensure that AI
systems are fair, transparent, and accountable for all individuals and groups.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No] ”
provided a proper justification is given (e.g., ”error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist”,

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have detailed the specific contributions and the scope of the focus in both
the abstract and the introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: See Section 5 and Appendix A.8, and additional discussion in Appendix A.1
on the difference between the Max-Min fairness and Rawlsian Justice.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: See Section 3 and additional discussions in Appendix A.4.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Appendix A.6 for all the experimental details.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code at https://github.com/reds-lab/
Nash-Meta-Learning with detailed instruction included.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Appendix A.6

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Table 4 and Figure 7.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Computing in Appendix A.6.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have read and ensured to follow the ethics guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Section 5, Appendix A.8.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See Appendix A.6, A.7.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: See the supplemental material, clean code.zip, and the included
clean code/READEME.md file.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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