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Abstract

Epistemic Uncertainty is a measure of the lack of knowledge of a learner which diminishes
with more evidence. While existing work focuses on using the variance of the Bayesian
posterior due to parameter uncertainty as a measure of epistemic uncertainty, we argue
that this does not capture the part of lack of knowledge induced by model misspecification.
We discuss how the excess risk, which is the gap between the generalization error of a
predictor and the Bayes predictor, is a sound measure of epistemic uncertainty which
captures the effect of model misspecification. We thus propose a principled framework for
directly estimating the excess risk by learning a secondary predictor for the generalization
error and subtracting an estimate of aleatoric uncertainty, i.e., intrinsic unpredictability. We
discuss the merits of this novel measure of epistemic uncertainty, and highlight how it differs
from variance-based measures of epistemic uncertainty and addresses its major pitfall. Our
framework, Direct Epistemic Uncertainty Prediction (DEUP) is particularly interesting in
interactive learning environments, where the learner is allowed to acquire novel examples
in each round. Through a wide set of experiments, we illustrate how existing methods in
sequential model optimization can be improved with epistemic uncertainty estimates from
DEUP, and how DEUP can be used to drive exploration in reinforcement learning. We also
evaluate the quality of uncertainty estimates from DEUP for probabilistic image classification
and predicting synergies of drug combinations.

∗Equal Contribution
†Work done during an internship at Mila.
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1 Introduction

A remaining great challenge in machine learning research is purposeful knowledge-seeking by learning agents,
which can benefit from estimation of epistemic uncertainty (EU), i.e., a measure of lack of knowledge
that an active learner should minimize. Unlike aleatoric uncertainty, which refers to an intrinsic notion of
randomness and is irreducible by nature, epistemic uncertainty can potentially be reduced with additional
information (Kiureghian & Ditlevsen, 2009; Hüllermeier & Waegeman, 2019).

In machine learning, EU estimation is already a key ingredient in interactive decision making settings such as
active learning (Aggarwal et al., 2014; Gal et al., 2017), sequential model optimization (SMO, Frazier (2018);
Garnett (2022)) as well as exploration in reinforcement learning (RL, Kocsis & Szepesvári (2006); Tang et al.
(2017)), as EU estimators can inform the learner about the potential information gain from collecting data
around a particular area of state-space or input data space.

What is uncertainty and how to quantify it? In the subjective interpretation of the concept of
Probability (De Morgan, 1847; Ramsey, 1926), probabilities are representations of an agent’s subjective degree
of confidence (Hájek, 2019). It is thus unsurprising that probabilities have been widely used to represent
uncertainty. Yet, there is not a generally agreed upon definition of uncertainty, let alone a way of quantifying
it as a number, as confirmed by a meta-analysis performed by Zidek & Van Eeden (2003). In supervised
learning, Bayesian methods, which aim at predicting a conditional probability distribution on the variable to
predict, called the posterior predictive, are natural candidates for providing uncertainty estimates. Bayesian
learning is however more computationally expensive than its frequentist counterpart, and generally relies on
approximations such as MCMC (Brooks et al., 2011) and Variational Inference (Blei et al., 2017) methods.
Prominent uncertainty estimation methods, such as MC-Dropout (Gal & Ghahramani, 2016) and Deep
Ensembles (Lakshminarayanan et al., 2017), both of which are approximate Bayesian methods (Hoffmann &
Elster, 2021), use the posterior predictive variance as a measure of uncertainty: if multiple neural nets that
are all compatible with the data make different predictions at x, the discrepancy between these predictions is
a strong indicator of epistemic uncertainty at x.

Pitfalls of using the Bayesian posterior to estimate uncertainty: Epistemic uncertainty in a
predictive model, seen as a measure of lack of knowledge, consists of approximation uncertainty - due to the
finite size of the training dataset, and model uncertainty - due to model misspecification (Hüllermeier &
Waegeman, 2019), also called bias. The latter is not accounted for when using variance or entropy as a measure
of EU, but has been shown to be important for generalization (Masegosa, 2020) as well as within interactive
learning settings like optimal design (Zhou et al., 2003). Approximate Bayesian methods that are widely used
in machine learning often suffer from model misspecification, for instance due to the implicit bias induced by
SGD (Kale et al., 2021) and the finite computational time. Fig. 1 illustrates with a Gaussian Process (GP)
the suboptimal behavior of the GP to estimate EU under model misspecification. The confidence intervals
provided by the GP are underestimated when the model is misspecified, which can lead to confidently wrong
decisions and poor decisions (see Fig. 1, bottom left).

As a first contribution, we systematically analyze the sources of uncertainty and misspecification, and
analyze the pitfalls of using discrepancy-based measures of EU (such as variance of the Bayesian posterior
predictive), given that they miss out on model uncertainty, which we define as a component of the excess
risk, i.e. the gap between the risk (or out-of-sample loss) of the predictor at a point x and that of the Bayes
predictor at x (the one with the lowest expected loss, that no amount of additional data could reduce).

As a second contribution, we take a step back by considering the fundamental notion of epistemic
uncertainty as lack of knowledge, and based on this, we propose to estimate the excess risk as a measure of
EU. This leads us to our proposed framework DEUP, for Direct Epistemic Uncertainty Prediction,
where we train a secondary model, called the error predictor, with an appropriate objective and appropriate
data, to estimate the point-wise generalization error (the risk), and then subtract an estimate of aleatoric
uncertainty if available, or provide an upper bound on EU otherwise. Fig. 1 illustrates in a toy task in which
held-out is available, that the epistemic uncertainty estimated by DEUP is more useful to an interactive
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learner than those provided by a misspecified GP. It is important to note that, in these settings of interest,
DEUP does not use any additional held-out data.

Figure 1: Top. A GP is fit on (dark blue) points in [0, 0.5] ∪ [1.5, 2]. The shaded area represents the GP
standard deviation, often used as a measure of epistemic uncertainty: note how it fails badly to enclose
the ground function in [0.5, 1.5]. Bottom left. A second GP fit on the same points, with 5 extra points
(green crosses). This second GP predicts almost 0 standard deviation everywhere, even though the first GP
significantly underestimated the uncertainty in [0.5, 1.5], because no signal is given to the learner that the
region [0.5, 1.5] should be explored more. Bottom right. DEUP learns to map the underestimated variances
of the first GP to the L2 errors made by that GP, and yields more reasonable uncertainty estimates that
should inform the learner of what area to explore.

Accounting for bias when measuring EU is particularly useful to an interactive learner whose effective capacity
depends on the training data, for instance a neural network, as it can reduced with additional training data,
especially in regions of the input space we care about, i.e. where EU is large. DEUP is agnostic to the type
of predictors used, and in interactive settings, it is agnostic to the particular search method still needed to
select points with high EU in order to propose new candidates for active learning (Aggarwal et al., 2014;
Nguyen et al., 2019; Bengio et al., 2021), SMO (Kushner, 1964; Jones et al., 1998; Snoek et al., 2012) or
exploration in RL (Kocsis & Szepesvári, 2006; Osband et al., 2016; Janz et al., 2019).

A unique advantage of DEUP, compared with discrepancy-based measures of EU, is that it can be explicitly
trained to care about, and calibrate for estimating the uncertainty for examples which may come from a
distribution slightly different from the distribution of most of the training examples. Such distribution shifts
(referred to as feedback covariate shift in Fannjiang et al. (2022)) arise naturally in interactive contexts such as
RL, because the learner explores new areas of the input space. In these non-stationary settings, we typically
want to retrain the main predictor as we acquire new training data, not just because more training data is
generally better but also to better track the changing distribution and generalize to yet unseen but upcoming
out-of-distribution (OOD) inputs. This setting makes it challenging to train the main predictor but it also
entails a second non-stationarity for the training data seen by the error predictor: a large error initially made
at a point x before x is incorporated in the training set (along with an outcome y) will typically be greatly
reduced after updating the main predictor with (x, y). To cope with this non-stationarity in the targets of
the error predictor, we propose, as a third contribution, to use additional features as input to the error
predictor, that are informative of both the input point and the dataset used to obtain the current predictor.
We mainly use density estimates and model variance estimates, that sometimes come at no additional cost.

The remainder of the paper is divided as follows:
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• In Sec. 2, we describe a theoretical framework for analysing sources of uncertainty and describe a pitfall of
discrepancy-based measures of epistemic uncertainty.

• In Sec. 3, we present DEUP, a principled model-agnostic framework for estimating epistemic uncertainty,
and describe how it can be applied in a fixed dataset as well as interactive learning settings, and propose
means to address the non-stationarities arising in the latter.

• In Sec. 4, we discuss related work on uncertainty estimation as well as error predictors in machine learning.
• In Sec. 5, we experimentally validate that EU estimates from DEUP can improve upon existing SMO

methods, drive exploration in RL, and evaluate the quality of these uncertainty estimates in probabilistic
image classification and in a regression task predicting synergies of drug combinations.

2 Excess Risk, Epistemic Uncertainty, and Model Misspecification

In this section, we analyze the sources of lack of knowledge through the lens of the excess risk of a predictor,
define model misspecification, and discuss the pitfall of using discrepancy-based measures of uncertainty when
the model is misspecified. The section is divided as follows:

• In Sec. 2.1, we define the mathematical framework and notations used in the analysis.
• In Sec. 2.2, we characterize the sources of lack of knowledge, and argue that estimating the excess risk

is a sound measure of epistemic uncertainty. This is the main rationale behind our framework, DEUP,
presented in Sec. 3.

• In Sec. 2.3, we briefly analyze the sub-optimal behavior of the Bayesian posterior when the model is
misspecified, and explain why in practice models are generally biased, even non-parametric ones.

2.1 Notations and Background

Predictive models tackle the problem of learning to predict outputs y ∈ Y given inputs x ∈ X ⊆ Rd using
a function f : X → A estimated from a training dataset zN := (z1, . . . , zN ) ∈ ZN , where Z = X × Y and
zi = (xi, yi), and the unknown ground-truth generative model is defined by P (X, Y ) = P (X)P (Y | X).
In decision theory, the set A is called the action space, and is typically either equal to Y for regression
problems, or to ∆(Y), the set of probability distributions on Y, for classification problems. Given a loss
function l : Y × A → R+ (e.g., l(y, a) = ∥y − a∥2 for regression, and l(y, a) = − log a(y) for classification),
the point-wise risk (or expected loss) of a predictor f at x ∈ X is defined as:

R(f, x) = EP (Y |X=x)[l(Y, f(x))]. (1)

We define the risk (or total expected loss) of a predictor as the marginalization of (1) over x:

R(f) = EP (X,Y )[l(Y, f(X))]. (2)

Given a hypothesis space H, a subset of F(X ,A), the set of functions f : X → A, the goal of any learning
algorithm (or learner) L is to find a predictive function h∗ ∈ H with the lowest possible risk:

h∗ = arg min
h∈H

R(h). (3)

Naturally, the search for h∗ is elusive given that P (X, Y ) is usually unknown to the learner. Instead, the
learner L maps a finite training dataset zN to a predictive function L(zN ) = hzN ∈ H minimizing an
approximation of (2), called the empirical risk:

RzN (h) = 1
N

N∑
i=1

l(yi, h(xi)) where zi = (xi, yi) (4)

hzN = arg min
h∈H

RzN (h). (5)

The dataset zN need not be used solely to define the empirical risk as in (4). The learner can for example
use a subset of zN as a validation set to tune its hyperparameters and thus its effective capacity (Arpit et al.,
2017).
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2.2 Sources of lack of knowledge

Figure 2: Graphical representations of the
two components of epistemic uncertainty.
Inspired by Fig. 4 of Hüllermeier & Waege-
man (2019).

Clearly, a high value of R(hzN , x) indicates lack of knowledge
around x. Similar to Hüllermeier & Waegeman (2019), we char-
acterize the three sources of this lack of knowledge, illustrated
in Fig. 2, as follows:

• (1) has a fundamental limiting lower bound, usually reached
at a function f∗ called the Bayes predictor1:

f∗(x) = arg min
a∈A

EP (Y |X=x)[l(Y, a)]. (6)

R(f∗, x) > 0 indicates an irreducible risk due to the inherent
randomness of P (Y | X = x). R(f∗, x) is thus a measure
of aleatoric uncertainty at x. Note that there might be
more than one Bayes predictor, but by definition, they all
have the same point-wise risk, which we denote as A:

A(x) = R(f∗, x) (7)

• Minimizing the risk over H rather than F(X ,A) induces a discrepancy between the predictor that is
optimal in H, h∗, and the Bayes predictor f∗, usually referred to as model uncertainty (our hypothesis
space could be improved). This can be seen as a form of bias, as the optimization is limited to functions
in H.

• Minimizing the empirical risk instead of the risk induces a discrepancy between hzN and h∗, called the
approximation uncertainty, due both to the finite training set and finite computational resources for
training.

Borrowing terminology from Futami et al. (2022), we use the Bayes predictor to define the excess risk as
follows:

Definition 1 The excess risk of a predictor f : X → A at x is the gap between the point-wise risk and its
fundamental limit:

ER(f, x) = R(f, x)−A(x). (8)

Both model uncertainty and approximation uncertainty are indicative of the epistemic state of the learner,
and can be reduced with better choices (of H) and more data respectively. This implies that an estimator of
the excess risk of f at x (Def. 1) can be used as a measure of epistemic uncertainty. ER is intimately
linked to the minimum excess risk (Xu & Raginsky, 2020), a measure of the gap between the minimum
expected loss attainable by learning from data and A(x), which was shown to decrease and converge towards
0 as the training dataset size grows to infinity, which is a desirable property for EU measures. Using an
estimator of ER as a measure of EU is the main idea behind DEUP, and will be expanded upon in Sec. 3.

The following examples illustrate the concepts introduced thus far:

Example 1 Consider a univariate regression problem with Gaussian ground truth, i.e. Y = R and there
exist functions µ and σ such that P (Y | X = x) = N (Y ; µ(x), σ2(x)), with the squared loss l(y, a) = (y − a)2.
Then, the Bayes predictor is f∗ = µ, which has a point-wise risk x 7→ A(x) = σ2(x), and for any predictor
f : X → R, and for every x ∈ X :

R(f, x) = σ2(x) + (f(x)− µ(x))2

ER(f, x) = (f(x)− µ(x))2

Example 2 Consider a classification problem with K classes, i.e. Y = {1, . . . , K} and there exists a function
µ : X → ∆K , where ∆K is probability simplex of dimension K − 1, such that P (Y | X = x) is the categorical

1An equivalent definition is f∗ = arg minf∈F(X ,A) R(f).
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distribution with probability mass function µ(x), with the log loss l(y, a) = − log a(y). Then, the Bayes
predictor is f∗ = µ, which has a point-wise risk x 7→ A(x) = HP (Y |X=x)[Y |x], the entropy of the ground-truth
label distribution, and for any predictor f : X → ∆K , and for every x ∈ X :

R(f, x) = H(µ(x), f(x))
ER(f, x) = DKL(µ(x), f(x)),

where H(. , .) and DKL(. , .) denote respectively the cross entropy and the Kullback-Leibler (KL) divergence
between two distributions.

It is clear from the definitions above, and from Fig. 2 that the choice of the subset H can contribute to higher
epistemic uncertainty, as it introduces misspecification (Masegosa, 2020; Hong & Martin, 2020; Cervera
et al., 2021):

Definition 2 A learner with hypothesis space H ⊆ F(X ,A) is said to be learning under model misspecification
if f∗ /∈ H, where f∗ is the Bayes predictor.

While there is no agreed upon measure of misspecification, some authors (Masegosa, 2020; Hong & Martin,
2020) focus on Bayesian or approximate Bayesian learners, which maintain a distribution over predictors, and
use a discrepancy measure between the best reachable posterior predictive p(Y | X) defined by functions
h ∈ H, and the ground-truth likelihood P (Y | X). Alternatively, and assuming the function space F(X ,A) is
endowed with a metric, misspecification (or bias) can be defined as the distance between h∗ and f∗.

Additionally, and as argued by many authors (see e.g. Cervera et al. (2021); Knoblauch et al. (2022)), a
common implicit assumption in (approximate) Bayesian methods is correct model specification (i.e., there is
no bias). In the next subsection, we will briefly review why this assumption is rarely satisfied in practice, and
what it entails in terms of uncertainty modelling.

2.3 Bayesian uncertainty under model misspecification

Consider a parametric model p(Y | X; θ) and a learner maintaining a distribution over parameters θ ∈ Θ,
each corresponding to a predictor h in a parametric set of functions H, possibly starting from a prior p(θ)
that would lead to a posterior distribution p(θ | zN ) upon observing data zN . Clearly, the fact that multiple
θ’s and corresponding values of h are compatible with the data and the prior indicates lack of knowledge.
Because the lack of knowledge indicates where an interactive learner should acquire more information, this
justifies the usage of dispersion measures, such as the variance or the entropy of the posterior predictive, as
measures of EU.

While such dispersion measures are indicative of approximation uncertainty, they do not account for model
misspecification, or bias. The sub-optimal behavior of Bayesian methods with misspecified models has already
been studied in terms of the quality of predictions (Grünwald, 2012; Walker, 2013; Grünwald & Van Ommen,
2017) as well as their generalization properties (Masegosa, 2020). These works show that even though the
Bayesian posterior predictive concentrates around the best model p(Y | X; θ̃) with minimum KL divergence
to the ground truth P (Y | X) within H, it does not fit the data distribution perfectly. Additionally, Kleijn &
van der Vaart (2012) provide a theoretical analysis of the sub-optimality of the uncertainty estimates under
model misspecification. More specifically, the authors derive a misspecified version of the Bernstein-Von
Mises theorem, which implies that the Bayesian credible sets are valid confidence sets when the model is well
specified, but prove that under misspecification, the credible sets may over-cover or under-cover, and are
thus not valid confidence sets. More recently, Cervera et al. (2021) showed that a Bayesian treatment of a
misspecified model leads to unreliable epistemic uncertainty estimates in regression settings, while D’Angelo
& Henning (2021) showed that uncertainty estimates in misspecified models lead to undesirable behaviors
when used to detect OOD examples.

Sources of model misspecification: In the Bayesian framework, the hypothesis class H and the corre-
sponding set of posterior predictive distributions p(Y | X) are only implicitly defined, through the choices of
the prior p(θ), the likelihood functions p(Y | X; θ), and the computation budget. Even if in theory, the model
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is well specified, in the sense that that there exists θ∗ ∈ Θ such that p(Y | X; θ∗) = P (Y | X)2, in practice,
the combination of the prior and the finite computational budget limits the set of reachable θ, resulting in
a systematic bias (Knoblauch et al., 2022). This behavior is exacerbated in low data regimes, even with
modern machine learning models such as neural networks, because the learner may not use all of its capacity
due to the implicit (and not fully understood) regularization properties of stochastic gradient descent (SGD,
Kale et al. (2021)), explicit regularization, early stopping, or a combination of these. “All models are wrong,
but some are useful” - Box (1976).

The importance of bias in interactive settings: Naturally, bad uncertainty estimates also have adverse
effects on the performances of interactive learners, that use said estimates to guide the acquisition and
evaluation of more inputs (Zhou et al., 2003). In fact, it has long been known (Box & Draper, 1959) that
model uncertainty (also called bias in Box & Draper (1959)) is just as important as, if not more than,
approximation uncertainty (interestingly referred to as variance in Box & Draper (1959)), for the problem of
optimal design. Therefore, a learner using approximation uncertainty alone, measured by the variance of
the posterior predictive, can be confidently wrong. When the acquisition of more inputs is guided by these
predictions, this can slow down the interactive learning process. In Deep Ensembles (Lakshminarayanan et al.,
2017) for example, if all the networks in the ensemble tend to fail in a systematic (i.e. potentially reducible)
way, this aspect of prediction failure will not be captured by variance, or approximation uncertainty. With
flexible models like neural networks however, the hypothesis space H is defined not only through the chosen
architecture of the network, but also through the pre-defined training procedure (e.g. the hyperparameters of
the optimizer, the stopping criterion based on the performance on a validation set chosen from the training
data...). This means that even though the learning strategy is data-independent, the hypothesis space H
depends on the training data. Arpit et al. (2017) formalized this subtle distinction using the notion of
“effective capacity”. As a consequence, the learner can incorporate new training examples in areas of the input
space where the bias is large, in order to change the hypothesis space H to H′, which can be closer to the
Bayes predictor, thus reducing the bias, and de facto the excess risk ER.

As a consequence of the ubiquity of misspecified models, it is important to question the status quo of relying
on discrepancy-based measures of epistemic uncertainty in machine learning, and explore alternative ways of
measuring EU, such as DEUP, which we introduce in the next section.

3 Direct Epistemic Uncertainty Prediction

As argued in the previous section, the excess risk (8) of a predictor f at a point x can be used as a measure
of EU that is robust against model misspecification. Estimating the excess risk ER(f, x) requires an estimate
of the expected loss R(f, x), and an estimate of the aleatoric uncertainty A(x) (7).

DEUP (Direct Epistemic Uncertainty Prediction) uses observed out-of-sample errors in order to train
an error predictor x 7→ e(f, x) estimating x 7→ R(f, x). These may be in-distribution or out-of-distribution
errors, depending on what we care about and the kind of data that is available. Given a predictor x 7→ a(x)
of aleatoric uncertainty, u(f, x) defined by:

u(f, x) = e(f, x)− a(x), (9)

becomes an estimator of ER(f, x) and as a consequence, an estimator of the epistemic uncertainty of f at x.
Before delving into the details of DEUP, we briefly discuss how one can obtain an estimator a of aleatoric
uncertainty.

How to estimate aleatoric uncertainty? We consider three possible scenarios for the aleatoric uncer-
tainty:

1. If we know that A(x) = 0, i.e. that the data-generating process is noiseless, then u(f, x) is an estimate of
R(f, x), and a(x) can safely be set to 0. This is the case in the experiments we present in Sec. 5.1.
2Note how we use upper case P for the ground truth posterior and lower case p for the likelihood and the Bayesian posterior

predictive estimator.

7



Published in Transactions on Machine Learning Research (02/2023)

2. In regression settings with the squared loss, where A(x) equals the variance of P (Y | X = x) (Ex. 1),
if we have access to an oracle that samples Y given a query x from the environment P (Y | x) (e.g., in
active learning or SMO), then A(x) can be estimated using the empirical variance of different outcomes of
the oracle at the same input x. It is common practice for example to perform replicate experiments in
biological assays and use variation across replicates to estimate aleatoric uncertainty (Lee et al., 2000;
Schurch et al., 2016).
More formally, if we have multiple independent outcomes y1, . . . , yK ∼ P (Y | x) for each input point x,
then training a predictor a with the squared loss on (input, target) examples

(
x, K

K−1 V ar(y1, . . . , yK)
)

,
where V ar denotes the empirical variance, yields an estimator of the aleatoric uncertainty.
Naturally, this estimator is asymptotically unbiased if the learning algorithm ensures asymptotic convergence
to a Bayes predictor. This is due to the known fact that

Ey1,...,yK∼P (Y |x)

[
K

K − 1V ar(y1, . . . , yK)
]

= V arP (Y |x)[Y |x]. (10)

We illustrate how such an estimator could be used to obtain EU estimates from the error predictor in
Appendix E.

3. In cases where it is not possible to estimate the aleatoric uncertainty, we can use the expected loss estimate
e(f, x) as a pessimistic (i.e. conservative) proxy for u(f, x), i.e. set a(x) to 0 in (9). This is particularly
relevant for settings when uncertainty estimates are used only to rank different data-points, and in which
there is no reason to suspect that there is a significant variability in aleatoric uncertainty across the input
space. This is actually the implicit assumption made whenever the variance or entropy of the posterior
predictive (which, in principle, accounts for aleatoric uncertainty) is used to measure epistemic uncertainty.
This is the case in the experiments we present in Sec. 5.3.

In real life settings, an estimator x 7→ a(x) of aleatoric uncertainty can be available (e.g. margins of errors
of instruments used in a wet lab experiment), and can thus readily be plugged into (9). In the following
subsections, we thus assume that x 7→ a(x) is available, whether it is identically equal to 0 or not, and focus
on estimating the point-wise risk or expected loss R(f, x). In Sec. 3.1, we present DEUP in a fixed training
set setting, when the learner has access to a held-out validation set. In Sec. 3.2, we demonstrate how the
challenges brought about by interactive settings actually bypass the need for the validation set required to
train the error predictor.

3.1 Fixed Training Set

Using the notations introduced in Sec. 2, we first consider the scenario where we are interested in estimating
EU for one predictor hzN , trained on a given training set zN of a certain size N , and a held-out validation
set z′K is available. Recall that the goal is to obtain an estimator x 7→ e(hzN , x) of the point-wise risk
x 7→ R(hzN , x) = EP (Y |x)[l(Y, hzN (x))].

Each z′
i = (x′

i, y′
i) in the validation dataset can be used to compute an out-of-sample error e′

i = l(y′
i, hzN (x′

i)).
Training a secondary predictor e on input-target pairs (x′

i, e′
i), for i ∈ {1, . . . , K} yields the desired estimator

x 7→ e(hzN , x). The procedure is summarized in Algorithm 1. It is used for the example provided in Fig. 1

Algorithm 1 DEUP with a fixed training set
Inputs: h = hzN , a trained predictor. a, an estimator of aleatoric uncertainty. z′K = {(x′

i, y′
i)}i∈{1,...,K}, a

validation set.
Outputs: u : X → R, an estimator of the EU of h.
Training:
Create input-error dataset De = {(x′

i, l(y′
i, h(x′

i))}i∈{1,...,K}
Fit an estimator x 7→ e(x) on De, using the squared loss l(e, e′) = (e− e′)2

Return: The predictor x 7→ u(x) = e(x)− a(x).
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3.2 Interactive Settings

Interactive settings, in which EU estimates are used to guide the acquisition of new examples, provide a more
interesting use case for DEUP. However, they bring their own challenges, as the main predictor is retrained
multiple times with the newly acquired points. We discuss these challenges below, along with simple ways to
mitigate them.

First, as the growing training set zN = {(xi, yi)}i∈{1,...,N} for the main predictor hzN changes at each
acquisition step (as zN becomes zN+1 by incorporating the pair (xN+1, yN+1) for example), it is necessary to
view the risk estimate e(hzN , x) as a function of the pair (x, zN ), rather than a function of x only, unlike
the fixed training set setting. The error predictor e, used to guide acquisition, needs to provide accurate
uncertainty estimates as soon as the main predictor changes from hzN to hzN+1 (for clarity, we assume that
only one point is acquired at each step, but this is not a requirement for DEUP). This means that e needs to
generalize not only over input data x, but also over training datasets zN . e should thus be trained using a
dataset De of input-target pairs ((x, zN ), l(y, hzN (x))), where (x, y) is not part of zN . This would make the
error predictor robust to feedback covariate shift (Fannjiang et al., 2022), i.e. the distribution shift resulting
from the acquired points being a function of the training data. Conditioning on the dataset explicitly also
address concerns from Bengs et al. (2022) which shows that directly estimating uncertainty using a second
order predictor trained simply with input data using L2 error yields poor uncertainty estimates. A learning
algorithm with good generalization properties (such as modern neural networks), would in principle be able
to extrapolate from De, and estimate the errors made by a predictor h on points x ∈ X not seen so far, i.e.
belonging to what we call the frontier of knowledge.

Second, the learner usually does not have the luxury of having access to a held-out validation set, given
that the goal of such an interactive learner is to learn the Bayes predictor f∗ using as little data as possible.
This makes Algorithm 1 inapplicable to this setting. While it might be tempting to replace the held-out set
z′K in Algorithm 1 with the training set zN , this would lead to an error predictor trained with in-sample
errors rather that out-of-sample errors, thus severely limiting its ability to generalize its resulting uncertainty
estimates out-of-sample and generally underestimating EU.

Denoting by N0 ≥ 0 the number of initially available training points before any acquisition, and observing
that for i > N0, the pair (xi, yi) is not used to train the predictors hzN0 , hzN0+1 , . . . , hzi−1 , we propose to use
the future acquired points as out-of-sample examples for the past predictors, in order to build the training
dataset De for the error estimator. At step M > N0, i.e. after acquiring (M −N0) additional input-output
pairs (x, y) and obtaining the predictor hzM , De is equal to:

De =
M⋃

i=N0+1

i−1⋃
N=N0

{((xi, zN ), l(yi, hzN (xi)))}. (11)

Using De (11) requires storing in memory all versions of the main predictor h (i.e. hzN0 , . . . , hzM ), which
is impractical. Additionally, it requires using predictors that take as an input a dataset of arbitrary size,
which might lead to overfitting issues as the dataset size grows. Instead, we propose the following two
approximations of De:

1. We embed each input pair (xi, zN ) in a feature space Φ, and replace each such pair in De with the
feature vector ϕzN (x), hereafter referred to as the stationarizing features of the dataset zN at x.

2. To alleviate the need of storing multiple versions of h, we make each pair (xi, yi) contribute
to De once rather than i − N0 times, by replacing the inner union of (11) with the singleton
{((xi, zi−1), l(yi, hzi−1(xi)))}. Said differently, for each predictor hzN , only the next acquired point
(xN+1, yN+1) is used to populate De.

These approximations result in the following training dataset of the error estimator at step M :

De = {(ϕzi−1(xi), l(yi, hzi−1(xi)))}i∈{N0+1,...,M}. (12)
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Algorithm 2 Pre-filling the uncertainty estimator training dataset De

De ← ∅
while |De| < Npretrain do

Split Dinit = zN0 into K random subsets D1, . . . ,DK of equal size. Define D̃ =
⋃K−1

k=1 Dk.
Fit a new predictor hD̃ on D̃, and fit the features ϕD̃ on D̃.
De ← De ∪

⋃
(x,y)∈DK

{(ϕD̃(x), l(y, hD̃(x)))}.
end

In this paper, we explored ϕzN (x) =
(

x, s, q̂(x | zN ), V̂ (L̃, zN , x)
)

or a subset of these 4 features, where
q̂(x | zN ) is a density estimate from data zN at x, s = 1 if x is part of zN and otherwise 0, L̃ a learner that
produces a distribution over predictors, e.g. a GP or an ensemble of neural networks (Lakshminarayanan
et al., 2017)), and V̂ (L̃, zN , x) is an estimate of the model variance of L̃(zN ) at x. Note that L̃ can be chosen
to be the same as L (Sec. 2). For numerical reasons, we found it preferable to use log q̂ and log V̂ instead
of q̂ or V̂ as input features. q̂ can be obtained by training a density estimator (such as a Kernel Density
Estimator or a flow-based deep network (Rezende & Mohamed, 2015)). Like the other predictors, the density
estimator also needs to be fine-tuned when new data is added to the training set. While these features are
not required per se to train DEUP, they provide clues to help training the uncertainty estimator, and one
can play with the trade-off of computational cost versus usefulness of each clue. They also provide DEUP
the flexibility to incorporate useful properties. For instance, the density can help in incorporating distance
awareness which Liu et al. (2020) show is critical for uncertainty estimation. They sometimes come at no
greater cost, if our main predictor is the mean prediction of the learner’s output distribution, and if we use
the corresponding variance as the only extra feature, as is the case in the experiments of Sec. 5.1 with GPs.
As (12) is merely an approximation of (11), not all subsets of features are expected to be useful in all settings.
In the ablations presented in Appendices A and C, we experimentally confirm that x alone is not sufficient,
and the stationarizing features are critical for reliable uncertainty estimates. Additionally, we observe that
having x as part of ϕzN can help in some tasks and hurt in others. We note that the choice of features here is
a design choice, and the usage of other features could be investigated in future work.

Pre-training the error predictor: If the learner cannot afford to wait for a few rounds of acquisition in
order to build a dataset De large enough to train the error predictor (e.g. when the prediction target y is the
output of a costly oracle), it is possible to pre-fill De using the N0 initially available training points zN0 only,
following a strategy inspired by K−fold cross validation. We present one such strategy in Algorithm 2. The
procedure stops when the training dataset for the secondary learner, Du, contains at least Npretrain elements.
In our experiments, we choose Npretrain to be a small multiple of the number of initial training points.

Putting all these things together yields the pseudo-code for DEUP in interactive learning settings provided in
Algorithm 3. In practice, in addition to out-of-sample errors, the secondary predictor can be trained with
in-sample errors, which inform the error predictor that the uncertainty at the training points should be low.
The stopping criterion is defined by the interactive learning task. It can be a fixed number of iterations
for example, a criterion defined by a metric evaluated on a validation set, or a criterion defined by the
optimal value reached (maximum or mimumim) in SMO. The algorithm is agnostic to the acquisition function
or policy π(. | h, u), the acquisition machinery that proposes new input points from X , using the current
predictor h and its corresponding EU estimator u. Examples of acquisition functions in the context of SMO
include Expected Improvement (Močkus, 1975) and Upper Confidence Bound (UCB, Srinivas et al. (2010)).

4 Related Work

Bayesian Learning. Bayesian approaches have received significant attention as they provide a natural
way of representing epistemic uncertainty in the form of the Bayesian posterior distributions. Gaussian
Processes (Williams & Rasmussen, 1995) are a popular way to estimate EU, as the variance among the
functions in the posterior (given the training data) can be computed analytically. Beyond GPs, efficient
MCMC-based approaches have been used for approximating samples from the Bayesian posterior on large
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Algorithm 3 Training procedure for DEUP in an Interactive Learning setting
Inputs: Dinit = zN0 = {(xi, yi)}i∈{1,...,N0}. a, an estimator of aleatoric uncertainty. Φ, the embedding
space (i.e. the chosen stationarizing features). π, the acquisition machinery.
De ← ∅, training dataset for the error predictor e
D ← Dinit, dataset of training points for the main predictor
xacq ← ∅, yacq ← ∅
Optional: Pre-fill De using Algorithm 2
while stopping criterion not reached do

Fit predictor hD and features ϕD on D
Fit a predictor ϕ 7→ e(ϕ) on De

xacq ∼ π(. | hD, x 7→ e(ϕD(x))− a(x)) (can be either a single point, or a batch of points)
Sample outcomes from the ground truth distribution: yacq ∼ P (. | xacq)
De ← De ∪ {(ϕD(xacq), l(yacq, hD(xacq)))}
D ← D ∪ {(xacq, yacq)}

end

datasets (Welling & Teh, 2011; Zhang et al., 2020; Vadera et al., 2020a). In the deep learning context,
Blundell et al. (2015); Kendall & Gal (2017); Depeweg et al. (2018) use the posterior distribution of weights
in Bayesian Neural Networks (BNNs) (MacKay, 1992) to capture EU. SWAG (Maddox et al., 2019) fits
a Gaussian distribution on the first moments of SGD iterates building upon SWA (Izmailov et al., 2018)
to define the posterior over the neural network weights. This distribution is then used as a posterior over
the neural network weights. Dusenberry et al. (2020) parametrize the BNN with a distribution on a rank-1
subspace for each weight matrix. Other techniques that rely on measuring the discrepancy between different
predictors as a proxy for EU include MC Dropout (Gal & Ghahramani, 2016), that interprets Dropout (Hinton
et al., 2012) as a variational inference technique in BNNs. These approaches, relying on sampling of weights
or dropout masks at inference time, share some similarities with ensemble-based methods, that include
bagging (Breiman, 1996) and boosting (Efron & Tibshirani, 1994), where multiple predictors are trained and
their outputs are averaged to make a prediction, although the latter measure variability due to the training
set instead of the spread of functions compatible with the given training set, as in Bayesian approaches. Deep
Ensembles (Lakshminarayanan et al., 2017) are closer to the Bayesian approach, using an ensemble of neural
networks that differ because of randomness in initialization and training (as you would have with MCMC,
albeit in a more heuristic way). Wen et al. (2020) present a memory-efficient way of implementing deep
ensembles, by using one shared matrix and a rank-1 matrix for the parameters per member, while Vadera et al.
(2020b); Malinin et al. (2020) improve the efficiency of ensembles by distilling the distribution of predictions
rather than the average, thus preserving the information about the uncertainty captured by the ensemble.
Classical work on Query by committee (Seung et al., 1992; Freund et al., 1992; Gilad-Bachrach et al., 2005;
Burbidge et al., 2007) also studied the idea of using discrepancy as a measure for information gain for the
design of experiments. Tagasovska & Lopez-Paz (2019) propose using orthonormal certificates which capture
the distance between a test sample and the dataset. Liu et al. (2020) further establish the importance of
this notion of distance awareness for uncertainty estimation, and along with proceeding methods DUE (van
Amersfoort et al., 2021), and DDU (Mukhoti et al., 2021) combine feature representations learnt by deep
neural networks with exact Bayesian inference methods like GPs and Gaussian Discriminant Analysis. This
line of work falls in the umbrella of Deep Kernel Learning (Wilson et al., 2016, DKL;). van Amersfoort et al.
(2020) present an alternative instantiation of DKL using RBF networks (LeCun et al., 1998). DUN (Antoran
et al., 2020) uses the disagreement between the outputs from intermediate layers as a measure of uncertainty.
Another line of work that has received attention in the community recently is that of evidential uncertainty
estimation (Malinin & Gales, 2018; Sensoy et al., 2018; Amini et al., 2020) which estimates EU based on a
parameteric estimate of the model variance, which has been shown to have poor uncertainty estimates in
recent work by Bengs et al. (2022). Finally, Tran et al. (2022) combine several of these techniques in the
context of large neural networks. Also closely related to the stationarizing features introduced in Sec. 3.2,
Morningstar et al. (2021); Haroush et al. (2021) use estimators of statistical features to capture the uncertainty
for OOD detection.
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Distribution-Free Uncertainty Estimation. Conformal Prediction (Vovk et al., 2005; Shafer & Vovk, 2008;
Angelopoulos & Bates, 2021) is an alternative to Bayesian methods for uncertainty estimation. Conformal
prediction involves building statistically rigorous uncertainty sets and intervals for model predictions, which
are guaranteed to contain the ground truth with a specified probability. It is also closely linked to the
statistical paradigm of hypothesis testing (Angelopoulos & Bates, 2021). Conformal prediction is an appealing
alternative to Bayesian approaches as it can be applied on top of existing models, and does not require any
special training procedure. Recent work has demonstrated the efficacy of applying conformal prediction with
neural network models for time series (Lin et al., 2022; Zaffran et al., 2022) and image data (Angelopoulos
et al., 2020). Fannjiang et al. (2022) study conformal prediction within an active learning setting. While
DEUP can broadly be categorized as a distribution-free uncertainty estimation methods, it differs from
Conformal Prediction as it does not require a pre-defined degree of confidence before outputting a prediction
set.

Loss Prediction. Kull & Flach (2015) present several decompositions of the total expected loss, including
the decomposition into the epistemic and irreducible (aleatoric) loss. They present additive adjustments that
reduce the scoring rules like the log-loss and Brier score, but do not tackle the general problem of uncertainty
estimation. More closely related to DEUP, Yoo & Kweon (2019) propose a loss prediction module for learning
to predict the value of the loss function. Hu et al. (2020) also propose using a separate network that learns to
predict the variance of an ensemble. These methods, however, are trained only to capture the in-sample error,
and do not capture the out-of-sample error which is more relevant for scenarios like active learning where we
want to pick x where the reducible generalization error is large. EpiOut (Umlauft et al., 2020; Hafner et al.,
2019) propose learning a binary output that simply distinguishes between low or high EU.

5 Experiments

Through the experiments described below, we aim to provide evidence for the following key claims: (C1)
Epistemic uncertainty measured by DEUP leads to significant improvements in downstream decision making
tasks compared to established baselines, and (C2) The error predictor learned by DEUP can generalize to
unseen samples. We emphasize that in order to make fair comparisons, DEUP does not have access
to any additional OOD data during training, in all experiments presented in this section. Instead,
when required, we use Algorithm 2 to generate the OOD data used for training the error predictor. Finally,
note that in terms of computational cost, training DEUP with density and model variance as stationarizing
features is on-par with training an ensemble of 5 networks.

5.1 Sequential Model Optimization

Sequential model optimization is a form of interactive learning, where at each stage, the learner chooses query
examples to label, looking for examples with a high value of the unknown oracle function. Such examples
are selected so they have a high predicted value (to maximize the unknown oracle function) and a large
predicted uncertainty (offering the opportunity of discovering yet higher values). Acquisition functions, such
as Expected Improvement (EI, Močkus (1975)) trade-off exploration and exploitation, and one can select the
next candidate by looking for x’s maximizing the acquisition function. We combine EI with DEUP (and call
the method DEUP-EI, by analogy to GP-EI, a common SMO baseline), treating the main predictor and
DEUP EU predictions at x respectively as mean and standard deviation of a Gaussian distribution for the
learner’s guess of the value of the oracle at x. Similarly, when using MC-Dropout or Deep Ensembles as
predictors, we refer to the resulting methods as MCDropout-EI and Ensembles-EI respectively.

We first consider in Fig. 3 (Left) a synthetic one-dimensional function with multiple local maxima, and
starting from an initial dataset of 6 pairs (x, y), we compare the maximum values reached by each of DEUP-EI,
GP-EI, MCDropout-EI, and Ensembles-EI to a random acquisition strategy (which is an unsurprisingly
strong baseline given the number of local optima of the target function). Because MCDropout and Ensembles
are trained on in-sample data only, they are unable to generalize their uncertainty estimates, which makes
them bad candidates for Sequential Model Optimization, because they are easily stuck in local minima, and
require many iterations before the acquisition function gives more weight to the predicted uncertainties than
the current maximum. For DEUP-EI, the main predictor is a neural network, and the error predictor is a GP
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regressor. The stationarizing features ϕz(x) used are the input x itself and the variance of a GP fit on the
available data at every step. More details are provided in Appendix A.1. In Appendix A.2, we show a similar
experiment on a two-dimensional function. In Appendix A.4, we provide an ablation study of different subsets
of the features ϕz(x), confirming the necessity of extra features and the usefulness of the input x as well.
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Figure 3: Left. Synthetic function to optimize. Right. Maximum value reached by the different methods on
the synthetic function. The shaded areas represent the standard error across 5 different runs, with different
initial sets of 6 pairs. For clarity, the shaded areas are omitted for the two worst performing methods. In
each run, all the methods start with the same initial set of 6 points. GP-EI tends to get stuck in local optima
and requires more than 50 steps, on average, to reach the global maximum.

Next, we showcase how using DEUP to calibrate GP variances (used as the only input for the error predictor)
allows for better performances in higher-dimensional optimization tasks. Specifically, we compare DEUP-EI to
TuRBO-EI (Eriksson et al., 2019), a state-of-the-art method for sequential optimization, that fits a collection
of local GP models instead of a global one in order to perform efficient high-dimensional optimization, on the
Ackley function (Ackley, 2012), a common benchmark for optimization algorithms. This function can be
defined for arbitrary dimensions, and has many local minima.
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Figure 4: Left. Max. value reached by the different optimization methods, for the 10 dimensional Ackley
function. In each run, all the methods start with the same initial 20 points. Shaded areas represent the
standard error across 3 runs. Right. Max. value reached in the budget-constrained setting, on the Ackley
functions of different dimensions. Error bars represent the standard error across 3 different runs, with different
initial sets of 20 pairs. The budget is 120 function calls in total. Higher is better and TuRBO-DEUP-EI is
less hurt by dimensionality.
In Fig. 4 (Left), we compare the different methods on the 10-D Ackley function, and observe that while
GP-EI gets stuck in local optima, DEUP-EI is able to reach the global maximum consistently. In Fig. 4
(Right), we show that for budget-constrained optimization problems, adapting DEUP to TuRBO (called
TuRBO-DEUP-EI) consistently outperforms regular TuRBO-EI, especially in higher dimensions. More details
about the Ackley function and this experiment are provided in Appendix A.3. See also Appendix A for
1D and 2D SMO tasks where DEUP-EI outperforms GP-EI (Bull, 2011), as well as neural networks with
MC-Dropout or Ensembles. The experiments presented in this section thus validate our experimental claim
C1.

5.2 Reinforcement Learning
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Figure 5: Average regret on CartPole task. Error
bars represent standard error across 5 runs.

Similar to SMO, a key challenge in RL is efficient ex-
ploration of the input state space. To investigate the
effectiveness of DEUP’s uncertainty estimates in the con-
text of RL, we present a proof-of-concept for incorporating
epistemic uncertainties predicted by DEUP to DQN (Mnih
et al., 2013), which we refer to as DEUP-DQN. Specifi-
cally, we train the uncertainty predictor with the objective
to predict the TD-error, using log-density estimates as
a stationarizing feature. The predicted uncertainties are

then used as an exploration bonus in the Q-values. As explained in Sec. 3.2, it is the acquired points, before
they are used to retrain the main predictor, that act as the out-of-sample examples to train DEUP. In RL,
because the targets (e.g. of Q-Learning) are themselves estimates and moving, data seen at any particular
point is normally out-of-sample and can inform the uncertainty estimator, when the inputs are used with the
stationarizing features. Details of the experimental setup are in Appendix B. We evaluate DEUP-DQN on
CartPole, a classic RL task from bsuite (Osband et al., 2020), against DQN + ϵ-greedy, DQN + MC-Dropout
(Gal & Ghahramani, 2016) and Bootstrapped DQN (Osband et al., 2016). Fig. 5 shows that DEUP achieves
lower regret faster, compared to all the baselines, which demonstrates the advantage of DEUP’s uncertainty
estimates for efficient exploration, confirming our claim C1. Future work should investigate ways to scale
this method to more complex environments.

5.3 Uncertainty Estimation

5.3.1 Epistemic Uncertainty Estimation for Drug Combinations

We validate DEUP’s ability to generalize its uncertainty estimate (claim C2) in a real-world regression
task predicting the synergy of drug combinations. While much effort in drug discovery is spent on finding
novel small molecules, a potentially cheaper method is identifying combinations of pre-existing drugs which
are synergistic (i.e., work well together). However, every possible combination cannot be tested due to the
high monetary cost and time required to run experiments. Therefore, developing good estimates of EU
can help practitioners select experiments that are both informative and promising. we used the DrugComb
and LINCS L1000 datasets (Zagidullin et al., 2019; Subramanian et al., 2017). DrugComb is a dataset
consisting of pairwise combinations of anti-cancer compounds tested on various cancer cell lines. For each
combination, the dataset provides access to several synergy scores, each indicating whether the two drugs
have a synergistic or antagonistic effect on cancerous cell death. LINCS L1000 contains differential gene
expression profiles for various cell lines and drugs. Differential gene expressions measure the difference in the
amount of mRNA related to a set of influential genes before and after the application of a drug. Because of
this, gene expressions are a powerful indicator of the effect of a single drug at the cellular level. As shown in
Fig. 6(c), the out-of-sample error predicted by DEUP correlates better with residuals of the model on the
test set in comparison to several other uncertainty estimation methods. Moreover, DEUP better captured
the order of magnitude of the residuals as shown in Fig. 6, confirming the claim C2. Details on experiments
and metrics are in Appendix D.

5.3.2 Epistemic Uncertainty Predictions for Rejecting Difficult Examples

Epistemic uncertainty estimates can be used to reject difficult examples where the predictor might fail, such as
OOD inputs3. We thus consider a standard OOD Detection task (Liu et al., 2020; van Amersfoort et al., 2021;
Nado et al., 2021), where we train a ResNet (He et al., 2016) model for CIFAR-10 classification (Krizhevsky,
2009) and reject OOD examples using the estimated uncertainty in the prediction. To facilitate rejection of
classes other than those in the training set, we use a Bernoulli Cross-Entropy Loss for each class following van
Amersfoort et al. (2020): l(f̂(x), y) = −

∑
i yi log f̂i(x) + (1− yi) log(1− f̂i(x)), where y is a one-hot vector

(yi = 1 if i is the correct class, and 0 otherwise), and f̂i(x) = predicted probability for class i. The target for
out-of-distribution data (from other classes) can be represented as y = {0, . . . , 0}. We use Algorithm 1 with
stationarizing features from Sec. 3.2 for training DEUP on this task. At inference time, we can reject an

3e.g. rare but challenging inputs can be directed to a human, avoiding a costly mistake
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(a) Ensemble (b) DEUP

Model Corr. w. res. U. Bound Ratio Log Likelihood
MC-Dropout 0.14± 0.07 0.56± 0.05 0.25± 0.12 −20.1± 6.8
Deep Ensemble 0.30± 0.09 0.59± 0.04 0.50± 0.13 −14.3± 4.7
DUE 0.12± 0.12 0.15± 0.03 0.80 ± 0.79 −13.0± 0.52
DEUP 0.47 ± 0.03 0.63± 0.05 0.75 ± 0.07 −3.5 ± 0.25

(c) Quality of uncertainty estimates from different methods.

Figure 6: Drug Combinations. Predicted mean and uncertainty (error bars) on 50 test examples ordered by
increasing value of true synergy score (orange). Model predictions and uncertainties in blue. Ensemble (a)
(and MC-dropout, not shown) consistently underestimate uncertainty while DEUP (b) captures the right
order of magnitude. (c) Corr. w. res. shows correlation between model residuals and predicted uncertainties
σ̂. A best-case Upper Bound on Corr. w. res. is obtained from the correlation between σ̂ and true samples
from N (0, σ̂). Ratio is the ratio between col. 1 and 2 (larger is better). Log-likelihood: average over 3 seeds
of per sample predictive log-likelihood.

example based on the estimated epistemic uncertainty. To ascertain how well an epistemic error estimate
sorts unseen examples by the above NLL loss, we consider the rank correlation between the predicted
uncertainty and the observed generalization error. Note that we can compute the generalization error for
OOD examples with y = {0, . . . , 0} directly since we are using a Binary Cross-Entropy loss. We use examples
from SVHN (Netzer et al., 2011) as the OOD examples. This metric focuses on the quality of the uncertainty
estimates rather than just their ability to simply classify in- vs out-of-distribution examples. This metric is also
an indicator of how accurate the uncertainty estimates are for out-of-distribution examples. We also report
the standard AUROC for the OOD detection task. We use MC-Dropout (Gal & Ghahramani, 2016), Deep
Ensembles (Lakshminarayanan et al., 2017), DUE (van Amersfoort et al., 2021) and DUQ (van Amersfoort
et al., 2020) as the baselines. As the primary focus of our work is estimating epistemic uncertainty, we do not
consider specialized methods for OOD detection (Morningstar et al., 2021; Haroush et al., 2021). Additionally,
to study the effect of model capacity we consider ResNet-18 and ResNet-50 as the main predictors for all the
methods. Additional training details along with results for ResNet-50 are presented in Appendix C.

Table 1 shows, supporting experimental claim C2, that with the variance from DUE (van Amersfoort et al.,
2021) and the density from MAF (Papamakarios et al., 2017) as stationarizing features, DEUP provides
uncertainty estimates that have high rank correlation with the underlying generalization error on OOD data.
We also achieve competitive AUROC with the strong baselines, demonstrating that uncertainty estimates
from DEUP result in better performance on the downstream task of OOD detection. Additionally, since
the error predictor is trained separately from the main predictor, there is no explicit trade-off between the
accuracy of the main predictor and the quality of uncertainty estimates. We achieve competitive accuracy
of 93.89% for the main predictor. We ignore the effect of aleatoric uncertainty (due to inconsistent human
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Model SRCC AUROC
MC-Dropout 0.287± 0.002 0.894± 0.008
Deep Ensemble 0.381± 0.004 0.933 ± 0.008
DUQ 0.376± 0.003 0.927± 0.013
DUE 0.378± 0.004 0.929± 0.005
DEUP (D+V) 0.426 ± 0.009 0.933 ± 0.010

Table 1: Spearman Rank Correlation Coefficient (SRCC) between predicted uncertainty and OOD gener-
alization error (SVHN); Area under ROC Curve (AUROC) for OOD Detection (SVHN) with CIFAR-10
ResNet-18 models (3 seeds). DEUP significantly outperforms baselines in terms of SRCC and is equivalent to
Deep Ensembles but scoring better than the other methods in terms of the coarser AUROC metric.

labelling), which would require a human study to ascertain. We note that we choose the DUE baseline as it
is representative of related methods such as SNGP (Liu et al., 2020) and DDU (Mukhoti et al., 2021), and
performs best in our experiments. We present additional results in a distribution shift setting in Appendix C.
Note that in the pretraining phase of the uncertainty estimator (Algorithm 2), we obtain the subsets by
splitting the data based on classes, with each split containing ⌊n/K⌋ classes. So when we train on K − 1
subsets, the ⌊n/K⌋ classes from the remaining subset become out-of-distribution.

6 Conclusion and Future Work

Whereas standard measures of epistemic uncertainty focus on variance (due to approximation error), we argue
that bias (introduced by misspecification) should also be accounted for as part of the epistemic uncertainty,
as it is reducible for predictors like neural networks whose effective capacity is a function of the training
data. By analyzing the sources of lack of knowledge, we describe how the excess risk is a sounds measure
of epistemic uncertainty. This motivates the DEUP framework, where we train a second model to predict
the risk of the main predictor. In interactive settings, this nonetheless raises non-stationarity challenges
for this estimator, and we propose extra input features to tackle this issue, and show experimentally their
advantages. Future work should investigate ways to improve the computational efficiency of DEUP (for
instance by considering different choices of stationarizing features or alternate ways of incorporating the
dataset as input to the secondary predictor), and ways to estimate aleatoric uncertainty when no estimator
thereof is readily available and when one cannot simply query an oracle several times on the same input x.
Theoretically studying the properties of DEUP under model misspecification is another important direction
to explore in future work.
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A Sequential Model Optimization Experiments

For all our Sequential Optimization algorithms, we use Algorithm 3 to train DEUP uncertainty estimators.
We found that the optional step of pre-filling the uncertainty estimator dataset De was important given
the low number of available training points. We used half the initial training set (randomly chosen) as
in-sample examples (used to train the main predictor and an extra-feature generator) and the other half as
out-of-sample examples to provide instances of high epistemic uncertainty to train an uncertainty predictor;
we repeated the procedure by alternating the roles of the two halves of the dataset. We repeated the whole
procedure twice using a new random split of the dataset, thus ending up with 4 training points in De for
every initial training point in Dinit.

The error predictor is trained with the log targets (i.e. log MSE between predicted and observed error). This
helps since the scale of the errors varies over multiple orders of magnitude.

Computationally, the training time of DEUP-EI depends on various choices (e.g. the features used to train
the epistemic uncertainty predictor, the dimension of the input, the learning algorithms, etc..). Additionally,
the training time for the uncertainty predictor varies at each step of the optimization. In total, the sequential
optimization experiments took about 1 CPU day.

We use BoTorch4 (Balandat et al., 2020) as the base framework for our experiments.

A.1 One-dimensional function

For Random acquisition, we sampled for different seeds 56 points, and used the (average across the seeds
of the) maximum of the first 6 values as the first value in the plots (Figs. 3 and 4). Note that because the
function is specifically designed to have multiple local maxima, GP-EI also required more optimization steps,
and actually performed worse than random acquistion.

As a stationarizing input feature, we used the variance of a GP fit on the available data at every step. We
found that the binary (in-sample/out-of-sample) feature and density estimates were redundant with the
variance feature and didn’t improve the performance as captured by the number of additional function
calls. We used a GP for the DEUP uncertainty estimator. Using a neural net provided similar results,
but was computationally more expensive in this 1-D case with few datapoints. We used a 3-hidden layer
neural network, with 128 neurons per layer and a ReLU activation function, with Adam (Kingma & Ba,
2015) and a learning rate of 10−3 (and default values for the other hyperparameters) to train the main
predictor for DEUP-EI (in order to fit the available data). The same network architecture and learning rate
were used for the Dropout and Ensemble baselines. We used 3 networks for the Ensemble baseline, and a
dropout probability of 0.3 for the Dropout baseline, with 100 test-time forward passes to compute uncertainty
estimates.

4https://botorch.org/
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A.2 Two-dimensional function

To showcase DEUP’s usefulness for Sequential Model Optimization in with a number of dimensions greater
than 1, we consider the optimization of the Levi N.13 function, a known benchmark for optimization. The
function f takes a point (x, y) in 2D space and returns:

f(x, y) = −
(
sin2(3πx) + (x− 1)2(1 + sin2(3πy)) + (y − 1)2(1 + sin2(2πy))

)
We use the box [−10, 10]2 as the optimization domain. In this domain, the maximum of the function is 0,
and it is reached at (1, 1). The function has multiple local maxima, as shown in Fig. 7(a)5.

Similar to the previous one-dimensional function, MCDropout and Ensemble provided bad performances
and are omitted from the plot in Fig. 7(b). We used the same setting and hyperparameters for DEUP as for
the previous function. DEUP-EI is again the only method that reaches the global maximum consistently in
under 56 function evaluations.

(a) Visualization of (x, y) 7→ −f(x, y)
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Figure 7: Sequential Model Optimization on the Levi N.13 function

A.3 Additional details for the Ackley function experiment, for synthetic data in higher dimensions

The Ackley function of dimension d is defined as:

Ackleyd : B → R

x 7→ A exp

−B

√√√√1
d

d∑
i=1

x2
i

+ exp
(

1
d

d∑
i=1

cos(cxi)
)
−A− exp(1)

where B is a hyperrectangle of Rd. (0, . . . , 0) is the only global optimizer of Ackleyd, at which the function is
equal to 0. We use BoTorch’s default values for A, B, c, which are 20, 0.2, 2π respectively.

In our experiments, we used B = [−10, 15]d for all dimensions d.

For the TurBO baseline, we use BoTorch’s default implementation, with Expected Improvement as an
acquisition function, and a batch size of 1 (i.e. acquiring one point per step).

For fair comparisons, for DEUP, we use a Gaussian Process as the main model, and use its variance as the
only input of the epistemic uncertainty predictor. This means that we calibrate the GP variance to match the
out-of-sample squared error, using another GP to perform the regression. TurBO-DEUP is a combination of
both, in which we perform the variance calibration task for the local GP models of TurBO. The uncertainty

5Plot of the function copied from https://www.sfu.ca/ ssurjano/levy13.html
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Figure 8: We train DEUP-EI to optimize the synthetic function of Fig. 3, with different subsets of the
stationarizing features as inputs to the error predictor, for 50 iterations. All the instances of the algorithm
start with an initial set of 6 (x, y) pairs, (Left) Maximum value reached at the 40-th iteration for each subset
of the stationarizing features. The box plots represent the resulting distributions across 5 different runs.
(Right) Evolution of the mean (across the 5 runs) of the maximum value reached at each iteration, for the
subsets of features that surpassed the 0.9 threshold.

predictor, i.e. the GP regressor, is trained with log targets, as in Appendix A.1, but also with log variances
as inputs.

Note that only the stationarizing feature is used as input for the uncertainty predictor. When we used the
input x as well, we found that the GP error predictor overfits on the x part of the input (x, v), and it was
detrimental to the final performances. For all experiments, we used 20 initial points.

A.4 Ablation study for the stationarizing features

In order to study the usefulness of each subset of the “xdvb” features (respectively representing the input
x, a density estimate, a variance estimate, and a bit indicating whether x was part of the training set), we
compare in Fig. 8 the different subsets of the features ϕz(x) used as input to the error predictor. Most notably,
this confirms the importance of the stationarizing features besides the input x, and shows that incorporating
x to the features can help improve the performances of an interactive learner.

B Reinforcement Learning Experiments

For RL experiments, we used bsuite (Osband et al., 2020), a collection of carefully designed RL environments.
bsuite also comes with a list of metrics which aim to evaluate RL agents from different aspects. We compare
the agents based on the basic metric and average regret as they capture both sample complexity and final
performance. The default DQN agent is used as the base of our experiments with a 3 layer fully-connected (FC)
neural network as its Q-network. For the Bootstrapped DQN baseline, we used the default implementation
provided by bsuite. To implement DQN + MC-Dropout, following the implementation from Gal & Ghahramani
(2016), two dropout layers with dropout probability of 0.1 are used before the second and the third FC layers.
In order take an action, the agent performs a single stochastic forward pass through the Q-network, which
is equivalent to taking a sample from the posterior over the Q-values, as done in Thompson sampling, an
alternative to ϵ−greedy exploration.

As a density estimator, we used a Kernel Density Estimator (KDE) with a Gaussian kernel and bandwidth of
1 to map states to densities. This KDE is fit after each 10000 steps (actions) with a batch of samples from the
replay buffer (which is of size 10000). The uncertainty estimator network (E-network) has the same number
of layers as the Q-network, with an additional Softplus layer at the end. All other hyperparameters are the
same as the default implementation by Osband et al. (2020). One complete training run for the DEUP-DQN
with 5 seeds experiments takes about 0.04-0.05 GPU days on a V100 GPU. In total RL experiments took
about 0.15 GPU days on a Nvidia V100 GPU.
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Algorithm 4 DEUP-DQN
Initialize replay buffer D with capacity N
Qθ(s, a): state-action value predictor
Eϕ(log d): uncertainty estimator network, which takes the log-density of the states as the input
d(s): Kernel density estimator (KDE)
K: KDE fitting frequency
W: Number of warm-up episodes
for episode=1 to M do

set s0 as the initial state
for t=1 to max-steps-per-episode do

with probability ϵ: take a random action, otherwise:
if episode ≤ W: a = maxaQθ(st, a), else: a = maxa

[
Qθ(st, a) + κ× Eϕ(log d(st))(a)

]
store (st, at, rt, st+1) in D
Sample random minibatch B of transitions (sj , aj , rj , sj+1) from D
if sj is a final state: yj = rj , else: yj = rj + γmaxaQ(st, a)
Update Q-network:
θ ← θ + αQ.∇θ E(s,a)∼B

[(
yj −Qθ(s, a)

)2
]

Update E-network:

ϕ← ϕ + αE .∇ϕ E(s,a)∼B

[[(
yj −Qθ(s, a)

)2 − Eϕ(log d(st))(a)
]2
]

if mod(total-steps, K) = 0: fit the KDE d on the states of D
end

end

C Rejecting Difficult Examples

We adapt the standard OOD rejection task (van Amersfoort et al., 2020; Liu et al., 2020) and mea-
sure the Spearman Rank Correlation of the predicted uncertainty with the true generalization error,
in addition to the OOD Detection AUROC. MC-Dropout and Deep Ensemble baselines are based on
https://github.com/google/uncertainty-baselines, DUQ based on https://github.com/y0ast/deterministic-
uncertainty-quantification and DUE based on https://github.com/y0ast/DUE.Note that for the ResNet50
DEUP model we continue using the ResNet-18 based DUE as variance source.

Table 2: Spearman Rank Correlation between predicted uncertainty and the true generalization error on
OOD data (SVHN) with ResNet-50 models (3 seeds) trained on CIFAR-10.

Model ResNet-50
MC-Dropout 0.312± 0.003
Deep Ensemble 0.401± 0.004
DUQ 0.399± 0.003
DEUP (D+V) 0.465 ± 0.002

Training The baselines were trained with the CIFAR-10 training set with 10% set aside as a validation set
for hyperparameter tuning. The hyperparameters are presented in Table 3 and Table 4. The hyperparameters
not specified are set to the default values. For DEUP, we consider the log-density, model-variance estimate
and the seen-unseen bit as the features for the error predictor. The density estimator we use is Masked-
Autoregressive Flows (Papamakarios et al., 2017) and the variance estimator used is DUE (van Amersfoort
et al., 2021). Note that as indicated earlier x, the input image, is not used as a feature for the error predictor.
We present those ablations in the next sub-section. For training DEUP, the CIFAR-10 training set is divided
into 5 folds, with each fold containing 8 unique classes. For each fold, we train an instance of the main
predictor, density estimator and model variance estimator on only the corresponding 8 classes. The remaining
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2 classes act as the out-of-distribution examples for training the error predictor. Using these folds we construct
a dataset for training the error predictor, a simple feed forward network. The error predictor is trained
with the log targets (i.e. log MSE between predicted and observed error). This helps since the scale of the
errors varies over multiple orders of magnitude. We then train the main predictor, density estimator and the
variance estimator on the entire CIFAR-10 dataset, for evaluation. The hyperparameters are presented in
Table 4. For all models, we train the main predictor for 75 and 125 epochs for ResNet-18 and ResNet-50
respectively. We use SGD with Momentum (set to 0.9), with a multi-step learning schedule with a decay of
0.2 at epochs [25, 50] and [45, 90] for ResNet-18 and ResNet-50 respectively. One complete training run for
DEUP takes about 1.5-2 GPU days on a V100 GPU. In total these set of experiments took about 31 GPU
days on a Nvidia V100 GPU.

Table 3: Left: Hyperparameters for training Deep Ensemble (Lakshminarayanan et al., 2017). Right:
Hyperparameters for training MC-Dropout (Gal & Ghahramani, 2016).

Parameters Model
ResNet-18 ResNet-50

Number of members 5 5
Learning Rate 0.05 0.01

Parameters Model
ResNet-18 ResNet-50

Number of samples 50 50
Dropout Rate 0.15 0.1
L2 Regularization Coefficient 6e-5 8e-4
Learning Rate 0.05 0.01

Table 4: Left: Hyperparameters for training DUQ (van Amersfoort et al., 2020). Right: Hyperparameters
for training DUE (van Amersfoort et al., 2021).

Parameters Model
ResNet-18 ResNet-50

Gradient Penalty 0.5 0.65
Centroid Size 512 512
Length scale 0.1 0.2
Learning Rate 0.05 0.025

Parameters Model
ResNet-18

Inducing Points 50
Kernel RBF
Lipschitz Coefficient 2
BatchNorm Momentum 0.99
Learning Rate 0.05
Weight Decay 0.0005

Ablations We also perform some ablation experiments to study the effect of each feature for the error
predictor. The Spearman rank correlation coefficient between the generalization error and the variance
feature, V , from DUE (van Amersfoort et al., 2021) alone is 37.84 ± 0.04, and the log-density, D, from
MAF (Papamakarios et al., 2017) alone is 30.52 ± 0.03. With only the image (x) the SRCC is 36.58± 0.16

Table 6 presents the results for these experiments. We observe that combining all the features performs the
best. Also note that using the log-density and variance as features to the error predictor we observe better
performance than using them directly, indicating that the error predictor perhaps captures a better target for
the epistemic uncertainty. The boolean feature (B) indicating seen examples, discussed in Sec. 3.2, also leads
to noticeable improvments.

Table 5: Hyperparameters for training DEUP.

Parameters Model
ResNet-18 ResNet-50

Uncertainty Predictor Architecture [1024] x 5 [1024] x 5
Uncertainty Predictor Epochs 100 100
Uncertainty Predictor LR 0.01 0.01
Main Predictor Learning Rate 0.05 0.01
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Table 6: Spearman Rank Correlation between predicted uncertainty and the true generalization error on
OOD data (SVHN) with variants of DEUP with different features as input for the uncertainty predictor.
D indicates the log-density from MAF (Papamakarios et al., 2017), V indicates variance from DUQ (van
Amersfoort et al., 2020) and B indicates a bit indicating if the data is seen.

Features Model
ResNet-18 ResNet-50

D+V +B 0.426 ± 0.009 0.465 ± 0.002
D+V 0.419 ± 0.003 0.447 ± 0.003
V +B 0.401 ± 0.004 0.419 ± 0.004
D+B 0.403 ± 0.003 0.421 ± 0.002
x 0.352 ± 0.004 0.376 ± 0.001
x + D + V 0.382 ± 0.006 0.397 ± 0.002

C.1 Predicting Uncertainty under Distribution Shift

We also consider the task of uncertainty estimation in the setting of shifted distributions (Ovadia et al., 2019;
Hendrycks & Dietterich, 2019). We evaluate the uncertainty predictions of models trained with CIFAR-10,
on CIFAR-10-C (Hendrycks & Dietterich, 2019) which consists of images from CIFAR-10 distorted using 16
corruptions like gassian blur, impulse noise, among others. Fig. 9 shows that even in the shifted distribution
setting, the uncertainty estimates of DEUP correlate much better with the error made by the predictor,
compared to the baselines.
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Figure 9: Spearman Rank Correlation Coefficient between the predicted uncertainty and true error for models
trained with CIFAR-10, and evaluated on CIFAR-10-C. DEUP outperforms the baselines on all types of
corruptions.

D Drug Combination Experiments

To validate DEUP’s uncertainty estimates in a real-world setting, we measured its performance on a regression
task predicting the synergy of drug combinations. While much effort in drug discovery is spent on finding
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novel small molecules, a potentially cheaper method is identifying combinations of pre-existing drugs which
are synergistic (i.e., work well together). Indeed, drug combinations are the current standard-of-care for a
number of diseases including HIV, tuberculosis, and some cancers (Cihlar & Fordyce, 2016; Organization &
Initiative, 2010; Mokhtari et al., 2017).

However, due to the combinatorial nature of drug combinations, identifying pairs exhibiting synergism is
challenging. Compounding this problem is the high monetary cost of running experiments on promising drug
combinations, as well as the length of time the experiments take to complete. Uncertainty models could
be used by practitioners downstream to help accelerate drug combination treatment discoveries and reduce
involved development costs.

To test DEUP’s performance on this task we used the DrugComb and LINCS L1000 datasets (Zagidullin
et al., 2019; Subramanian et al., 2017). DrugComb is a dataset consisting of pairwise combinations of
anti-cancer compounds tested on various cancer cell lines. For each combination, the dataset provides access
to several synergy scores, each indicating whether the two drugs have a synergistic or antagonistic effect
on cancerous cell death. LINCS L1000 contains differential gene expression profiles for various cell lines
and drugs. Differential gene expressions measure the difference in the amount of mRNA related to a set of
influential genes before and after the application of a drug. Because of this, gene expressions are a powerful
indicator of the effect of a single drug at the cellular level.

In our experiments, each drug is represented by its Morgan fingerprint (Morgan, 1965)6 (with 1,024 bits
and a radius of 3) as well as two differential gene expression profiles (each of dimension 978) from two cell
lines (PC-3 and MCF-7). In order to use gene expression features for every drug, we only used drug pairs in
DrugComb where both drugs had differential gene expression data for cell lines PC-3 and MCF-7.

We first compared the quality of DEUP’s uncertainty estimations to other uncertainty estimation methods
on the task of predicting the combination sensitivity score (Malyutina et al., 2019) for drug pairs tested on
the cell line PC-3 (1,385 examples). We evaluated the uncertainty methods using a train, validation, test
split of 40%, 30%, and 30%, respectively. The underlying model used by each uncertainty estimation method
consisted of a single drug fully connected neural network (2 layers with 2048 hidden units and output of
dimension 1024) and a combined drug fully connected neural network (2 layers, with 128 hidden units). The
embeddings of an input drug pair’s drugs produced by the single drug network are summed and passed to
the combined drug network, which then predicts final synergy. By summing the embeddings produced by the
single drug network, we ensure that the model is invariant to permutations in order of the two drugs in the
pair. The models were trained with Adam (Kingma & Ba, 2015), using a learning rate of 1e-4 and weight
decay of 1e-5. For MC-Dropout we used a dropout probability of 0.1 on the two layers of the combined drug
network and 3 test-time forward passes to compute uncertainty estimates. The ensemble used 3 constituent
models for its uncertainty estimates. Both Ensemble and MC-Dropout models were trained with the MSE
loss.

We also compared against DUE (van Amersfoort et al., 2021) which combines a neural network feature
extractor with an approximate Gaussian process. Spectral normalization was added to all the layers of the
combined drug network and of the single drug network. Let demb denote the dimension of the output of
the combined drug network, which is also the input dimension of the approximate Gaussian process. We
conducted a grid-search over different values of demb (from 2 to 100), the number of inducing points (from 3
to 200), the learning rate, and the kernel used by the Gaussian process. The highest correlation of uncertainty
estimates with residuals was attained with demb = 10, 100 inducing points, a learning rate of 1e-2, and the
Matern12 kernel.

6The Morgan fingerprint represents a molecule by associating with it a boolean vector specifying its chemical structure.
Morgan fingerprints have been used as a signal of various molecular characteristics to great success (Ballester & Mitchell, 2010;
Zhang et al., 2006).
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Algorithm 5 DEUP for Drug Combinations
Data: D dataset of pairwise drug combinations, along with synergy scores ((d1, d2), y)
Initialization:
Split training set into two halves, in-sample Din and out-of-sample Dout

fµ(d1, d2): µ̂ predictor which takes a pair of drugs as input
f in

σ (d1, d2): In-sample σ̂in error predictor
fout

σ (d1, d2): Out-of-sample σ̂out error predictor
Training:
while training not finished do

In-sample update
Get an in-sample batch (d1,in, d2,in, yin) ∼ Din

Predict µ̂ = fµ(d1,in, d2,in) and in-sample error σ̂in = f in
σ (d1,in, d2,in)

Compute NLL: log(σ̂2
in)

2 + (µ̂−yin)2

2σ̂2
in

Backpropagate through fµ and f in
σ and update.

Out-of-sample update
Get an out-of-sample batch (d1,out, d2,out, yout) ∼ Dout

Estimate µ̂ = fµ(d1,out, d2,out) and out-of-sample error σ̂out = fout
σ (d1,out, d2,out)

Compute NLL: log(σ̂2
out)

2 + (µ̂−yout)2

2σ̂2
out

Backpropagate through fout
σ and update.

end

The DEUP model we used outputs two heads
[

µ̂
σ̂

]
and is trained with the NLL log(σ̂2)

2 + (µ̂−y)2

2σ̂2 in a similar
fashion as in (Lakshminarayanan et al., 2017). To obtain a predictor of the out-of-sample error, we altered our
optimization procedure so that the µ and σ heads were not backpropagated through at all times. Specifically,
we first split the training set into two halves, terming the former the in-sample set Din and the latter the
out-of-sample set Dout. We denote as f in

σ the in-sample error predictor and fout
σ the out-of-sample error

predictor. fout
σ is used to estimate total uncertainty. Note that in this setting, fout

σ predicts the square root
of the epistemic uncertainty (σ̂out) rather than the epistemic uncertainty itself (σ̂2

out).

In our experiments, an extra bit is added as input to the model in order to indicate whether a given batch is
from Din or Dout. Through this, the same model is used to estimate f in

σ and fout
σ with the model estimating

f in
σ when the bit indicates an example is drawn from Din and fout

σ otherwise. When the batch is drawn
from Din, both heads are trained using NLL using a single forward pass. However, when the data is drawn
from Dout only the σ̂ head is trained. To do this, we must still predict µ̂ in order to compute the NLL. But
the µ̂ predictor fµ must be agnostic to the difference between Din and Dout. To solve this, we perform two
separate forward passes. The first pass computes µ̂ and sets the indicator bit to 0 so fµ has no notion of
Dout, while the second pass computes σ̂, setting the bit to 1 to indicate the true source of the batch. Finally,
we backpropagate through the σ̂ head only. The training procedure is described in Algorithm 5

We report several measures for the quality of uncertainty predictions on a separate test set in Table 7.

Model Corr. w. res. U. Bound Ratio Log Likelihood Coverage Probability CI width
MC-Dropout 0.14± 0.07 0.56± 0.05 0.25± 0.12 −20.1± 6.8 11.4± 0.2 3.1± 0.1
Deep Ensemble 0.30± 0.09 0.59± 0.04 0.50± 0.13 −14.3± 4.7 10.8± 1.4 3.4± 0.6
DUE 0.12± 0.12 0.15± 0.03 0.80 ± 0.79 −13.0± 0.52 15.2± 1.0 3.5± 0.1
DEUP 0.47 ± 0.03 0.63± 0.05 0.75 ± 0.07 −3.5 ± 0.25 36.1 ± 2.5 13.1 ± 0.9

Table 7: Drug combinations: quality of uncertainty estimates from different methods. Corr. w. res. shows
correlation between model residuals and predicted uncertainties σ̂. A best-case Upper Bound on Corr. w.
res. is obtained from the correlation between σ̂ and true samples from N (0, σ̂). Ratio is the ratio between
col. 1 and 2 (larger is better). Log-likelihood: average over 3 seeds of per sample predictive log-likelihood.
Coverage Probability: Percentage of test samples which are covered by the 68% confidence interval. CI width:
width of the 86% confidence interval.
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For each model, we report the per sample predictive log-likelihood, coverage probability and confidence
interval width, averaged over 3 seeds.

We also computed the correlation between the residuals of the model |µ̂(xi)−yi| and the predicted uncertainties
σ̂(xi). We noted that the different uncertainty estimation methods lead to different distributions p(σ̂(x)). For
example, predicted uncertainties obtained with DUE always have a similar magnitude. By contrast, DEUP
yields a wide range of different predicted uncertainties.

These differences between the distributions p(σ̂(x)) obtained with the different methods may have an impact
on the correlation metric, possibly biasing the comparison of the different methods. In order to account for
differences in the distribution p(σ̂(x)) across methods, we report another metric which is the ratio between
the observed correlation Corr(|µ̂(x) − y|, σ̂(x)) and the maximum achievable correlation given a specific
distribution p(σ̂(x)).

This maximum achievable correlation (refered to as the upper bound) is not per se a comparison metric,
and is estimated (given a specific p(σ̂(x))) as follows: we assume that, for each example (xi, yi), the
predictive distribution of the model N (µ̂(xi), σ̂(xi)) corresponds exactly to the distribution of the target,
i.e. yi ∼ N (µ̂(xi), σ̂(xi)). Under this assumption, the residual of the mean predictor follows a distribution
N (0, σ̂(xi)). We can then estimate the upper bound by computing the correlation between the predicted
uncertainties σ̂(xi) and samples from the corresponding Gaussians N (0, σ̂(xi)). 5 samples were drawn from
each Gaussian for our evaluation. This upper bound is reported in the Table.

Finally, we reported our comparison metric: the ratio between the correlation Corr(|µ̂(x)− y|, σ̂(x)) and the
upper bound. The higher the ratio is, the closer the observed correlation is to the estimated upper bound
and the better the method is doing.

It is interesting to note that the upper bound is much lower for DUE compared to other methods, as its
predicted uncertainties lie within a short range of values.

Predicted µ̂ and uncertainty estimates can be visualized in Fig. 10 for different models. MC-dropout, Ensemble
and DUE consistently underestimate uncertainty, while the out-of-sample uncertainties predicted by DEUP
are much more consistent with the order of magnitude of the residuals. Moreover, we observed that DUE
predicted very similar uncertainties for all samples, resulting in a lower upper-bound for the correlation
between residuals and predicted uncertainties compared to other methods. We observed a similar pattern
when experimenting with the other kernels available in the DUE package, including the standard Gaussian
kernel.

Finally, we note that in the context of drug combination experiments, aleatoric uncertainty could be estimated
by having access to replicates of a given experiment (c.f. Sec. 3), allowing us to subtract the aleatoric part
from the out-of-sample uncertainty, leaving us with the epistemic uncertainty only.
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(a) MC-dropout (b) Ensemble (c) DUE (d) DEUP

Figure 10: Predicted mean and uncertainty for different models on a separate test set. 50 examples from the
test set are ordered by increasing value of true synergy score (orange). Model predictions and uncertainties
are visualized in blue. MC-Dropout, Ensemble and DUE consistently underestimate the uncertainty while
DEUP seems to capture the right order of magnitude. Figures made using The Uncertainty Toolbox (Chung
et al., 2020).

One complete training run for the drug combination experiments takes about 0.01 GPU days on a V100 GPU.
In total these set of experiments took about 0.2 GPU days on a Nvidia V100 GPU.

E DEUP in the presence of aleatoric uncertainty

We consider a scenario similar to that of Fig. 1, but in which Gaussian noise is added to the ground truth
oracle before providing training examples. Because of the noisy training dataset, GP conflates epistemic
and aleatoric uncertainty, which makes the gap between the predicted epistemic uncertainty (as measured
by the GP variance) and the true epistemic uncertainty (as measured by the mean squared error between
the GP mean and the noiseless ground truth function) higher than in the deterministic setting of Fig. 1.
The goal of this experiment is to illustrate that using the noisy training set allows learning an estimator of
aleatoric uncertainty (AU), which could be subtracted from DEUP’s error predictor e to obtain an estimator
of epistemic uncertainty. The estimator of AU is obtained using (10). A simple linear regressor is used to
estimate AU, to ovoid overfitting issues.

A key distinction of this setting, is that DEUP’s training data (the errors of the main predictor) are
themselves noisy, which makes it important to use more out-of-sample data to obtain reasonable total
uncertainty estimates (from which we subtract the estimates of the aleatoric uncertainty).
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Figure 11: Top. A GP is trained to regress a function using noisy samples. GP uncertainty (model standard
deviation) is shaded in blue. Bottom left. Using GP variance as a proxy for epistemic uncertainty misses
out on more regions of the input space, when compared to Figure ?? . Bottom right. Using additional
out-of-sample data in low density regions, a second GP is trained to predict the generalization error of the
first GP (total uncertainty). Using second samples from the oracle for each of the training points, a linear
regressor fits the training pairs (x, 1

2 (y1 − y2)2) to estimate the point-wise aleatoric uncertainty. Note that no
constraint is imposed on DEUP’s outputs, which explains the predicted negative values for uncertainties. In
practice, if these predicted uncertainties were to be used, (soft) clipping should be used.
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