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VL-Reader: Vision and Language Reconstructor is an Effective
Scene Text Recognizer

Anonymous Authors

ABSTRACT
Text recognition is an inherent integration of vision and language,
encompassing the visual texture in stroke patterns and the semantic
context among the character sequences. Towards advanced text
recognition, there are three key challenges: (1) an encoder capable
of representing the visual and semantic distributions; (2) a decoder
that ensures the alignment between vision and semantics; and (3)
consistency in the framework during pre-training, if exist, and fine-
tuning. Inspired by masked autoencoding, a successful pre-training
strategy in both vision and language, we propose an innovative
scene text recognition approach, named VL-Reader. The novelty of
the VL-Reader lies in the pervasive interplay between vision and
language throughout the entire process. Concretely, we first intro-
duce a Masked Visual-Linguistic Reconstruction (MVLR) objective,
which aims at simultaneously modeling visual and linguistic in-
formation. Then, we design a Masked Visual-Linguistic Decoder
(MVLD) to further leverage masked vision-language context and
achieve bi-modal feature interaction. The architecture of VL-Reader
maintains consistency from pre-training to fine-tuning. In the pre-
training stage, VL-Reader reconstructs both masked visual and text
tokens, while in the fine-tuning stage, the network degrades to re-
construct all characters from an image without any masked regions.
VL-reader achieves an average accuracy of 97.1% on six typical
datasets, surpassing the SOTA by 1.1%. The improvement was even
more significant on challenging datasets. The results demonstrate
that vision and language reconstructor can serve as an effective
scene text recognizer.

CCS CONCEPTS
• Applied computing→ Optical character recognition.

KEYWORDS
Scene Text Recognition, OCR, Vision-Language Reconstruction

1 INTRODUCTION
Reading text from natural scenes has drawn significant attention in
recent years since it is a crucial prerequisite for numerous computer
vision tasks, including scene understanding, autonomous driving,
and document-based large language models. Scene text recognition
(STR), as an essential component in scene text reading, aims to
decode a natural scene text image into a sequence of characters.
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(a) Models with a vision-dominated decoder may
produce incorrect prediction “chinmey”.

book

linguistic: ×
visual: ✓ incorrect

chinmey

linguistic: ✓
visual: ✓

chimney correct

linguistic: ✓
visual: ×

incorrect

rock
linguistic: ✓
visual: ✓

correct

(b) Models with a language-dominated decoder
may produce incorrect prediction “book”.

Vision
Encoder

Language-Dominated
Decoder

Vision
Encoder

Vision-Dominated
Decoder

Vision
Encoder

Vision-Language
Decoder

Vision
Encoder

Vision-Language
Decoder

Figure 1: (a) Models with vision-dominated decoders mainly
rely on visual context and are incapable of handling low-
quality images. (b) Models with language-dominated de-
coders mainly rely on linguistic context and may generate
semantically correct but visually incorrect predictions.

Retrospective studies show a steady stream of methods propelling
the advancement of STR, including vision-dominated methods [16,
34, 35], and language-aware methods [4, 9].

A comprehensive consideration of both vision and language is
essential in designing advanced STR. Since text images possess
both the textual texture in stroke patterns and the semantics in
words or lines. The significance of the interplay between vision and
semantics becomes evident when dealing with occluded charac-
ters, blurred backgrounds, or messy handwriting. Previous vision-
dominated methods [16, 34, 47] treat characters simply as distinct
visual symbols and directly classify them into different categories
mainly based on visual features, overlooking the underlying se-
mantics. Recent language-aware methods [44, 46, 49] incorporate a
language-aware module into the decoding stage to rectify recog-
nition results, but fail to adequately account for the collaborative
influence of vision and semantics. Both of these approaches fail to
simultaneously consider bi-modal information in both the encoding
and decoding stages. Vision-dominated decoder tends to prioritize
visual facts, which is occasionally ambiguous, as exemplified by the
blurred characters "m" and "n" in the Fig. 1(a) representing "chim-
ney". While language-dominated decoder is more likely to select
a word with a higher frequency in the dictionary, such as "book"
instead of "rock" as seen in Fig. 1(b).

To enhance robustness against various visual conditions and
improve the model’s understanding of context and syntax in text,
we advocate that an optimal text recognition model should pos-
sess the following three key properties: 1) representativeness: an
encoder capable of representing the visual and semantic distribu-
tion, 2) multi-modal decoding ability: a decoder that ensures the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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V Encoder Decoder
LM

VL
Encoder

VL
Decoder

Masked
Images

Images
Masked Images
Masked Texts

Images
TextsMasked Texts

Texts

(a) visual reconstruction (b) linguistic reconstruction (c) visual-linguistic reconstruction

V Encoder V DecoderImages

Figure 2: The comparison between different reconstruction pipelines. (a) Visual Reconstruction follows the pipeline of MAE and
its decoder will be discarded in the recognizer (dashed gray box). (b) Linguistic Reconstruction utilizes a standalone language
model for linguistic refinement after visual results. (c) Our Visual-Linguistic Reconstruction reconstructs both visual and
linguistic information and can inherit the entire architecture.

alignment between vision and semantics, and 3) structural con-
sistency: consistency in the framework during the pre-training
and fine-tuning. In terms of representativeness, masked autoen-
coding has been shown to be effective in learning either vision (
MAE [11] ) or language ( BERT [19] ) representation. In this work,
we investigate that text recognition itself can be viewed as the
reconstruction of masked characters. Therefore, we can seamlessly
transfer a vision-language reconstruction model into a text recog-
nition model, requiring no extra layers. This results in a simple
yet effective text recognizer, which we have named VL-Reader.
Concretely, we first introduce a Masked Visual-Linguistic Recon-
struction (MVLR) objective, which learns visual and semantic repre-
sentations by means of self-supervised masked autoencoders. Then,
we devise a Masked Visual-Linguistic Decoder (MVLD) to further
leverage masked vision-language context and achieve bi-modal
feature interaction. The architecture of VL-Reader maintains con-
sistency from pre-training to fine-tuning. In the first training stage,
the VL-Reader reconstructs both masked visual and text tokens,
while in the second stage, the network degrades to reconstruct all
characters from an image without any masked regions.

Different from previous methods that reconstruct signals from
either visual or linguistic modality, our work emphasizes the impor-
tance of jointly reconstructing both visual and linguistic signals (see
Fig. 2). The proposed training objective MVLR forces effective coop-
eration between the visual and linguistic modalities, thereby aiding
in building a strong cross-modal feature representation. Thanks
to the generality of Transformer [40], we are able to model visual
and textual information, which have different levels of densities,
in the same dimension. Furthermore, the entire architecture can
be seamlessly transitioned from pre-training to fine-tuning, simply
with a change of masking matrix, which will be detailed in Sec. 3.2.

Experiments are conducted on six standard benchmarks as well
as seven more challenging benchmarks. VL-Reader achieves state-
of-the-art performance on all thirteen benchmarks (Table 1 and
Table 2). The magnitude of improvement achieved is particularly
significant when compared to the already high baseline accuracy
in the field. Moreover, our method demonstrates an even more
significant performance boost on seven more challenging datasets,
additionally validating the effectiveness and robustness of our pro-
posed VL-Reader.

The contributions of our work are summarized as follows:

• We propose VL-Reader, a novel STR approach that leverages
masked vision and language for auto-encoding and reconstruc-
tion for text decoding. This method demonstrates a concise yet
highly effective architecture.

• We introduce masked visual-linguistic reconstruction for STR,
which jointly learns representations of the vision and semantics
of text images.

• We design a cross-modal masked visual-linguistic decoder, which
serves the dual purpose of supervising the reconstruction task
and acting as the output for recognition results.

• Experiments on extensive benchmarks show that the proposed
VL-Reader outperforms the existing methods by a significant
margin, demonstrating that vision and language reconstructor
can serve as an effective scene text recognizer.

2 RELATEDWORK
2.1 Vision-dominated Methods
Vision-dominated methods treat characters as distinct visual sym-
bols and directly classify them into different categories solely based
on visual features. CTC-based methods [12, 13, 34] utilize a CTC
decoder for converting a sequence of features into a sequence of
characters. Segmentation-based methods [24, 25, 42] employ a se-
mantic segmentation pipeline to address the scene text recognition
task. Recent methods [16, 47] integrate masked image modeling
(MIM) as an additional pre-training step to enhance visual represen-
tation. DiG [47] combines masked image modeling and contrastive
learning to improve discriminative and generative representation.
MAE-Rec [16] adopts the pipeline of MAE and utilizes large-scale
unlabeled data to develop a strong visual encoder. Although these
approaches have achieved promising progress in standard bench-
marks, their lack of integration of linguistic knowledge may hinder
performance when handling low-quality images.

2.2 Language-aware Methods
Recent approaches [4, 9, 44, 46, 49] have recognized the importance
of linguistic knowledge and have started to integrate it into their
systems. SRN [49] adopts a semantic reasoning module to model
contextual information and achieves promising results. ABINet [9]
introduces an iterative refinement stage, where linguistic knowl-
edge is used to progressively correct text recognition results with a
standalone language model. VisionLAN [46] successfully integrates
visual and linguistic information into a single model. MGP-STR [44]
recognizes characters in a multi-granularity approach by addition-
ally predicting subwords. PARSeq [4] utilizes linguistic knowledge
in an implicit way by using a permuted auto-regressive sequence
model. Despite integrating linguistic knowledge into their models,
these methods typically consider it as merely a supplement to visual
knowledge. Thus we need a comprehensive exploration of jointly
modeling visual and linguistic knowledge.
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Figure 3: Overall architecture of VL-Reader and its detailed structure for the masked visual-linguistic decoder. In the first
training phase, VL-Reader is trained under the supervision of MVLR. In the second phase, VL-Reader disables the visual
reconstruction task and focuses on the text recognition task only. Black patches indicate masked visual patches and "#" indicates
a masked language token.

Attentionmask for permuted
sequence: O→A→N→L

Attentionmask formasking
out character “A”

Query-TextMask𝑚!,#
used in MVLD

&

&

Attentionmask for permuted
sequence: L→O→A→N

Attentionmask formasking
out character “A”

Query-TextMask𝑚!,#
used in MVLD

Figure 4: The generation process of query-text attention
mask𝑚𝑞,𝑙 . In the second training phase, the attention mask
for masking out characters will be a matrix completely filled
with "1"s.

3 METHODOLOGY
3.1 Overall Architecture
The overview of the proposed VL-Reader is depicted in Fig. 3(a)
which consists of a visual encoder, a linguistic embedding layer,
a masked visual-linguistic decoder, and two reconstruction heads.
We will first introduce the proposed training objective Masked
Visual-Linguistic Reconstruction (MVLR). After that, the details of
all components are presented in the subsequent sections.

3.2 Masked Vision-Language Reconstruction
In recent years, drawing inspiration from MAE [11], several ap-
proaches [16, 47] have adopted visual reconstruction as the training

objective to enhance visual representation learning. These meth-
ods attempt to reconstruct masked visual patches based on the
unmasked ones. By deciphering the underlying information con-
tained within unmasked visual patches, they can forge a strong
visual representation.

However, models that solely reconstruct visual information still
face several challenges. (1) Visual reconstruction is trained solely
based on visual information and lacks integration of linguistic in-
formation. Models trained with such an objective may have trouble
when handling low-quality images. (2) After the visual reconstruc-
tion training, only the encoder component can be utilized for fine-
tuning text recognizers while the decoder part will be wasted.

In this work, we propose a novel training objective termed
Masked Visual-Linguistic Reconstruction (MVLR) for robust scene
text recognition. MVLR is designed to (1) simultaneously recon-
struct visual and linguistic information and (2) inherit the entire
architecture across different training stages.

Visual-Linguistic Reconstruction Objective. The reconstruc-
tion objective can be further divided into two parts, the visual
reconstruction and the linguistic reconstruction. In the case of vi-
sual reconstruction, the model is trained to reconstruct the masked
visual patches utilizing both the unmasked patches and unmasked
text tokens. Similarly, for linguistic reconstruction, the model is
trained to reconstruct the masked text tokens by leveraging both
the unmasked tokens and unmasked visual patches. By effectively
integrating visual and linguistic information, VL-Reader is capable
of learning strong cross-modal feature representation.

Visual-Linguistic Masking. For an image 𝐼 ∈ 𝑅𝐻×𝑊 ×𝐶 and its
corresponding text sequence 𝑇 , we first cut the image with patch
size (𝑝ℎ, 𝑝𝑤) and then randomly mask a subset of patches with
ratio 𝑟𝑣 . The remaining patches 𝐼∗ are visible patches and will be
encoded by the ViT encoder. For text sequence 𝑇 , we randomly
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mask a subset of tokens with ratio 𝑟𝑙 and replace such tokens with
text mask token [MASKl]. All the text tokens will be encoded by a
text embedding vector, which follows PARSeq [4]. The effects of 𝑟𝑣
and 𝑟𝑙 will be discussed in the ablation studies.

Encoder. Our encoder consists of a visual encoder to encode
visual information and a linguistic encoder to convert character
tokens into embedding. Following prior works [4, 16, 44], the visual
encoder employs the architecture of ViT [8] but is applied only on
visible patches 𝐼∗. The visual encoding process can be formulated
as follows:

𝐹𝑣 = 𝑉𝑖𝑇 (𝑖 |𝑖 ∈ 𝐼∗) +𝑉𝑒𝑐 (𝑖 |𝑖 ∉ 𝐼∗), (1)
where 𝑖 is the image patch. The first part denotes the visible patches
encoded by 𝑉𝑖𝑇 , and the second part denotes the masked patches
with random vectors 𝑉𝑒𝑐 . 𝐹𝑣 is the final visual embedding.

As for encoding context information, we adopt a text embedding
layer to convert character tokens into context embedding. The
contextual encoding process can be formulated as follows:

𝐹𝑙 = 𝐸𝑚𝑏 (𝑡 |𝑡 ∈ 𝑇 ), (2)

where 𝑡 is the character token. Different from visual encoding, the
visible characters and masked characters are encoded in the same
way. 𝐹𝑙 represents the final contextual embedding.

Note that, both visual and text mask token [MASKv] and [MASKl]
are shared and learnable vectors, indicating a visual patch or a text
token to be reconstructed. Besides, we omit position embedding
in the formulas for brevity, both visual embedding and contextual
embedding contain position embedding.

MaskedVisual-Linguistic Decoder.TheMasked Visual-Lingu-
istic Decoder (MVLD) has 𝑁𝑑 layers. The detailed structure of each
layer is illustrated in Fig. 3 (c). During decoding, we use a sequence
of query tokens 𝐹𝑞 ∈ 𝑅𝐿𝑞×𝐶 as the bridge to gather visual-linguistic
information and carry out cross-modal feature interaction. Con-
cretely, we adopt a visual self-attention to model visual context, a
query-language cross-attention to model linguistic context, and a
visual-linguistic cross-attention to model the interaction between
visual and linguistic modality. All attention layers are implemented
with standard Multi-Head AttentionMHA(q, k, v,m), where q, k, v
and m indicates query, key, value and an optional attention mask.
The decoding process in 𝑛 𝑡ℎ layer can be formulated as follows:

𝐻𝑣 = MHA(𝐹𝑛−1𝑣 , 𝐹𝑛−1𝑣 , 𝐹𝑛−1𝑣 ) (3)

𝐻𝑞 = MHA(𝐹𝑛−1𝑞 , 𝐹𝑙 , 𝐹𝑙 ,𝑚𝑞,𝑙 ) (4)
𝐹𝑛𝑣 = MHA(𝐻𝑣, 𝐻𝑞, 𝐻𝑞) (5)
𝐹𝑛𝑞 = MHA(𝐻𝑞, 𝐻𝑣, 𝐻𝑣) (6)

where, 𝑛 ∈ [0, 1, . . . , 𝑁𝑑 ] indicates the 𝑛 𝑡ℎ layer of MVLD, 𝐻𝑣 and
𝐻𝑞 represent hidden layers for visual self-attention and linguistic
cross attention respectively. 𝐹𝑛−1𝑣 is the output visual features of
the (𝑛 − 1) 𝑡ℎ layer and is also the input of the 𝑛 𝑡ℎ layer. 𝐹𝑙 is the
encoded linguistic feature introduced in Equation 2, and remains
the same across all 𝑁𝑑 layers. 𝐹𝑛−1𝑞 is the input query tokens of
the 𝑛 𝑡ℎ layer and 𝐹 0𝑞 is randomly initialized before the first layer.
We employ attention mask𝑚𝑞,𝑙 in the query-text cross-attention to
avoid information leakage. The positions with masked characters
are set as [-inf] in𝑚𝑞,𝑙 , as exemplified in Fig. 4. Concretely, we
adopt the permuted attention mask for robust context modeling
and the masked attention mask to avoid information leakage. Then

we merge them with an AND operation to form our query-text
attention mask𝑚𝑞,𝑙 .

For the reconstruction of each layer, we also send the decoded
visual and linguistic features 𝐹𝑘𝑣 and 𝐹𝑘𝑞 to the visual and linguistic
reconstruction head respectively:

𝑣𝑛 = 𝐻𝑒𝑎𝑑𝑣 (𝐹𝑛𝑣 ) (7)
𝑙𝑛 = 𝐻𝑒𝑎𝑑𝑙 (𝐹𝑛𝑙 ) (8)

where 𝑣𝑛 and 𝑙𝑛 indicate the reconstructed visual patches and lin-
guistic tokens of the 𝑛 𝑡ℎ layer. 𝐻𝑒𝑎𝑑𝑣 and 𝐻𝑒𝑎𝑑𝑙 both consist of
several linear layers. Mean Square Error (MSE) and CrossEntropy
loss functions are adopted to supervise the visual and linguistic
reconstruction objectives respectively.

Optimization. The model is trained end-to-end using the fol-
lowing objective:

𝐿 = 𝜆𝑣𝐿𝑣 + 𝜆𝑡𝐿𝑙 (9)
where 𝐿𝑣 and 𝐿𝑙 indicate the loss of visual and linguistic reconstruc-
tion respectively.

We use Mean Square Error (MSE) for 𝐿𝑣 :

𝐿𝑣 =
1

|𝑀𝑣 |
1
𝑁𝑑

𝑁𝑑∑︁
𝑛=1

∑︁
𝑖∈𝑀𝑣

(𝑣𝑛𝑖 − 𝑦𝑖 )2 (10)

where 𝑀𝑣 represents the masked visual patches, 𝑣𝑛
𝑖
and 𝑦𝑖 rep-

resents the 𝑖 𝑡ℎ reconstructed and ground-truth pixel of the 𝑛 𝑡ℎ

layer.
We use Cross-Entropy loss for 𝐿𝑙 :

𝐿𝑙 =
1

|𝑀𝑙 |
1
𝑁𝑑

𝑁𝑑∑︁
𝑛=1

∑︁
𝑖∈𝑀𝑙

𝐿𝑐𝑒 (𝑙𝑛𝑖 , 𝑡𝑖 ) (11)

where𝑀𝑙 indicates the masked language tokens, 𝑙𝑛
𝑖
and 𝑡𝑖 indicates

the 𝑖 𝑡ℎ reconstructed and ground-truth language token of the 𝑛 𝑡ℎ

layer.

3.3 Training and Inference
Training. The training process of VL-Reader has two phases, as
illustrated in Fig. 3. In the first phase, we adopt MVLR as the train-
ing objective, in which both image and text reconstruction are
implemented. Under the guidance of MVLR, our model learns a
cross-modal representation. Compared to the methods that use a
single visual reconstruction, our method takes into consideration
the accuracy of text during the visual reconstruction process. On
the contrary, compared to the method of simply using a language
model for text correction, our approach also takes into account the
visual context during text reconstruction.

The second training phase, also known as the fine-tuning phase,
involves performing text recognition tasks based on the architec-
ture from the first phase. In this stage, we deactivate the visual
reconstruction and focus solely on the linguistic reconstruction.

Specifically, we set 𝜆𝑣 and 𝜆𝑙 as 1.0, 𝑟𝑣 as 0.75, and 𝑟𝑙 as 0.2 dur-
ing the first training phase to activate both visual and linguistic
reconstruction. We set 𝜆𝑣 as 0 during the second training phase
to deactivate visual reconstruction and focus on linguistic recon-
struction. To further enhance the language capabilities during the
recognition stage, we utilize the permutation language model strat-
egy from PARSeq [4]. This only requires substituting the attention
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mask in the MVLD module (see Fig. 4). In summary, the two train-
ing phases have the same model architecture. The only variation
lies in the presence of the mask in the input and the attention mask
in the decoder.

Inference. We adopt an auto-regressive pattern to decode char-
acters in the reading order during inference. For the first itera-
tion, we use only the first query token q1 of the initial query se-
quence 𝐹 0𝑞 . And for the succeeding iteration 𝑡 , we use query tokens
[q1, q2, . . . , q𝑡 ]. We set the visual masking ratio 𝑟𝑣 as 0 to allow full
visual perception. Inspired by prior works [4, 9], a refinement stage
is employed to further adjust predicted results. We use the cloze
mask as the attention mask𝑚𝑞,𝑙 for query-text cross-attention in
the refinement stage.

4 EXPERIMENTS
4.1 Datasets and Implementation Details
Datasets. Following prior works [4][16], we use both synthetic and
real datasets for training. The synthetic datasets include MJSynth
(MJ) [14, 15] and SynthText (ST) [10]. The real datasets are intro-
duced in PARSeq [4], including ArT [5], COCO-Text [41], LSVT [39],
MLT-19 [29], RCTW17 [36], ReCTS [52], Uber [53], TextOCR [37]
and OpenVINO [22]. To evaluate our method as fair as possible, we
train our model on three groups of datasets (i.e., synthetic datasets
only, real datasets only and a mixture of synthetic and real datasets).

To conduct a fair comparison with previous methods, we follow
the evaluation protocol of PARSeq [4]. Concretely, (1) six stan-
dard benchmark datasets including IIIT5K (IIIT) [27], ICDAR2013
(IC13) [18], ICDAR2015 (IC15) [17], Street View Text (SVT) [43],
Street View Text-Perspective (SVTP) [31] and CUTE80 (CUTE) [33]
are used for evaluation. (2) In addition, we also evaluate our model
on sevenmore challenging datasets, including two occluded datasets
WOST and HOST [46], two handwritten datasets IAM [26] and
CVL [21] and three large-scale datasets COCO-Text [41] (low-
resolution, occluded), ArT [5] (curved, rotated) and Uber [53] (ver-
tical, rotated) to validate the robustness of our methods in more
challenging scenarios.

Implementation Details. The training process has two phases.
In the first phase, we employ MVLR as our training objective to
simultaneously reconstruct visual and linguistic information. In the
second phase, we set 𝜆𝑣 , 𝑟𝑣 , 𝑟𝑙 as 0 to disable visual reconstruction
and focus on the text recognition task only. We train our model for
20 epochs for real datasets or 10 epochs for synthetic datasets with
an initial learning rate of 7𝑒 − 4 in the first phase. We fine-tune our
model for another 10 epochs with an initial learning rate of 1𝑒 − 4
in the second phase. All models are trained with a total batch size
of 768 on 4 GPUs (192 images per GPU).

Following previous state-of-the-arts [2, 44, 47], we use ViT-
Base [8] as visual encoder with a patch size of 4×8. Unless specified,
the decoder depth 𝑁𝑑 is set to 4, and the visual masking ratio 𝑟𝑣
and linguistic masking ratio 𝑟𝑙 are set as 0.75 and 0.2 respectively.
We employ the Adam optimizer [20] together with the 1cycle [38]
learning rate scheduler. During the second training phase, the Per-
mutation Language Modeling (PLM) [48] introduced in [4] is also
adopted for better context modeling and we set the number of per-
mutations as 6. Following prior works [4, 35], the maximum label
length is set to 25. Images with label lengths larger than 25 will be

neglected during training. During evaluation, we set the charset
size as 36, including lower-case alphanumeric characters.

For image pre-processing, RandAugment [6] with 3 layers and
a magnitude of 5 excluding Sharpness is employed as our data
augmentation strategy. Following PARSeq [4], we also add Invert,
GaussianBlur and PoissonNoise due to their effectiveness in STR
task. After augmentation, all images will be resized to a fixed size
of (32, 128) and will be normalized to [−1, 1].

4.2 Comparisons with State-of-the-Arts
To make a fair comparison with prior arts, We follow the evaluation
protocol of PARSeq [4] and choose word accuracy as our evaluation
metric. We evaluate our model on thirteen benchmark datasets,
including six standard benchmarks and seven more challenging
benchmarks.

4.2.1 Standard Benchmarks. We evaluate VL-Reader on six stan-
dard benchmark datasets, including three regular datasets (IIIT5K,
SVT, and IC13) and three irregular datasets (IC15, SVTP, andCUTE80).
Results are presented in Table 1.When trained on synthetic datasets,
VL-Reader achieves state-of-the-art performance. Specifically, in
comparison to previous SOTA methods, VL-Reader exhibits supe-
rior results on IIIT5K (97.1%), SVTP (92.9%), and CUTE80 (92.7%),
while maintaining competitive results on the remaining datasets.
The utilization of real-world data further amplifies the performance
enhancement for the VL-Reader model, enabling it to attain state-of-
the-art performance consistently across six standard benchmarks
with an average accuracy of 96.9%. Furthermore, leveraging a hy-
brid dataset composed of both synthetic and real images, the VL-
Reader model successfully maintains consistent performance im-
provements, ultimately attaining an average accuracy of 97.1% and
setting new state-of-the-art benchmarks.

4.2.2 More Challenging Benchmarks. The model is also evaluated
on seven more challenging benchmarks, including two occluded
datasets (WOST and HOST), two handwritten datasets (IAM and
CVL), and three large-scale datasets (COCO, ArT, and Uber). As
indicated in Table 2, VL-Reader significantly outperforms previous
works on the occluded datasets WOST(+4.4%) and HOST (+7.8%).
One key factor may be that VL-Reader develops a robust cross-
modal representation, enabling it to effectively handle visually
challenging images. Furthermore, VL-Reader achieves a consistent
performance boost across two handwritten datasets (IAM (+2.7%)
CVL (+1.2%)) and three large-scale datasets (COCO (+2.4%), ArT
(+0.7%) and Uber (+1.9%)). These results demonstrate the enhanced
robustness of VL-Reader on large real world benchmarks.

By utilizing the hybrid dataset of synthetic and real images,
VL-Reader consistently attains improved performance. However,
VL-Reader does not demonstrate improved results on Uber. This
might be attributed to the fact that synthetic images are mainly
horizontal, which could hamper the performance on Uber as it
primarily contains vertical and rotated images.

4.3 Ablation Study
4.3.1 Effectiveness of MVLR. The proposed MVLR plays a key role
in the training process of VL-Reader. We conduct several experi-
ments to validate the effectiveness and explore the impact of MVLR.
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Table 1: Word accuracy on six standard benchmark datasets. "S" represents synthetic datasets (MJ and ST), and "R" represents
real datasets introduced by [4]. Superscript "−" and "+" represent using a subset of data and using external data respectively.
The bold and underline results represent the best and the second-best respectively. † indicates results are from [4].

Methods Train
Data

Regular Irregular Weighted
Avg.IIIT SVT IC13 IC15 SVTP CUTE

3000 647 857 1015 1811 2077 645 288
ESIR [51] S 93.3 90.2 - 91.3 - 76.9 79.6 83.3 86.8
DAN [45] S 94.3 89.2 - 93.9 - 74.5 80.0 84.4 86.9

RobustScanner [50] S+ 95.4 89.3 - 94.1 - 79.2 82.9 92.4 89.2
TextScanner [42] S 93.9 90.1 - 92.9 79.4 - 84.3 83.3 -

SRN [49] S 94.8 91.5 95.5 - 82.7 - 85.1 87.8 -
VisionLAN [46] S 95.8 91.7 95.7 - 83.7 - 86.0 88.5 -

TRBA [3] S 96.3 92.8 96.3 95.0 84.3 80.6 86.9 91.3 90.6
ABINet [9] S+ 96.2 93.5 97.4 - 86.0 - 89.3 89.2 -

ViTSTR-B [2] S 88.4 87.7 93.2 92.4 78.5 72.6 81.8 81.3 83.8
PIMNet [32] S 95.2 91.2 95.2 93.4 83.5 81.0 84.3 84.4 89.5

DiG-ViT-B [47] S 96.7 94.6 - 96.9 87.1 - 91.0 91.3 -
TrOCR-Base [23] S 90.1 91.0 97.3 96.3 81.1 75.0 90.7 86.8 86.8
MATRN [28] S 96.6 95.0 97.9 95.8 86.6 82.8 90.6 93.5 92.0
MGP-STR [44] S 96.4 94.7 97.3 96.6 87.2 83.8 91.0 90.3 92.2
LevOCR [7] S 96.6 92.9 96.9 - 86.4 - 88.1 91.7 -
PARSeqA [4] S 97.0 93.6 97.0 96.2 86.5 82.9 88.9 92.2 91.9
VL-Reader S 97.1 94.4 97.6 96.6 86.6 83.3 92.9 92.7 92.6

CRNN† [34] R 94.6 90.7 94.1 94.5 82.0 78.5 80.6 89.1 88.5
TRBA† [3] R 98.6 97.0 97.6 97.6 89.8 88.7 93.7 97.7 95.2
ABINet† [9] R 98.6 97.8 98.0 97.8 90.2 88.5 93.9 97.7 95.3
ViTSTR-S† [2] R 98.1 95.8 97.6 97.7 88.4 87.1 91.4 96.1 94.2
PIMNet [32] R− 96.7 94.7 96.6 95.4 88.7 85.9 88.2 92.7 92.6

DiG-ViT-B [47] R− 97.6 96.5 - 97.6 88.9 - 92.9 96.5 -
PARSeqA [4] R 99.1 97.9 98.3 98.4 90.7 89.6 95.7 98.3 96.0
MAE-Rec [16] R+ 98.5 97.8 - 98.1 - 89.5 94.4 98.6 95.6
VL-Reader R 99.4 99.1 98.7 98.5 92.6 91.7 97.5 99.3 96.9
VL-Reader R+S 99.6 98.5 99.4 99.3 92.4 91.4 98.1 99.3 97.1

Table 2: Word accuracy on occluded, handwritten, and large-scale benchmark datasets. "S" represents synthetic datasets (MJ and
ST), and "R" represents real datasets introduced by [4]. The bold and underline results represent the best and the second-best
respectively. † indicates results are from [4].

Methods Train
Data

Occluded Handwritten Large-scale
WOST HOST IAM CVL COCO ArT Uber
2416 2416 13752 12012 9825 35149 80551

VisionLAN [46] S 70.3 50.3 - - - - -
ViTSTR-S† [2] S - - - - 56.4 66.1 37.6
DiG-ViT-B [47] S 82.3 74.9 87.0 91.3 - - -
SeqCLR [1] S - - 79.9 77.8 - - -

TextAdaIN [30] S - - 87.3 78.2 - - -

CRNN† [34] R - - - - 66.8 62.2 51.0
ViTSTR-S† [2] R 77.9 64.5 - - 73.6 81.0 78.2
ABINet† [9] R 85.0 72.2 - - 76.5 81.2 71.2
PARSeqA [4] R 85.4 74.4 89.7 90.0 79.8 84.5 84.1
VL-Reader R 89.8 82.7 92.4 92.5 82.0 85.0 86.0
VL-Reader R+S 92.9 87.3 92.0 92.5 82.2 85.2 84.7
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Table 3: Comparisons between enabling and disabling visual
or linguistic reconstruction. "Knowledge" indicates integrat-
ing visual/linguistic knowledge or not.

Methods Knowledge MVLR Avg.(S)Visual Linguistic
#1

√ × × 94.7
#2

√ √ × 96.1
#3

√ √ √
96.9

Table 4: Comparisons of different model sizes. "Avg.(S) and
Avg.(O)" represent the weighted average accuracy on six
Standard and two Occluded benchmarks respectively.

Methods Encoder Avg.(S) Avg.(O) Params(M)
ABINetLV - 95.3 78.6 36.7
VL-Reader Tiny 95.45 79.80 9.06
VL-Reader Small 96.48 85.35 35.7
VL-Reader Base 96.90 86.28 142

The baseline model (#1) bypasses the MVLR training phase and
is directly trained solely on visual knowledge. In experiment (#2),
linguistic knowledge is integrated alongside visual knowledge into
our model, but the MVLR training phase is still bypassed. In Exper-
iment (#3), we integrate visual and linguistic knowledge in the full
setting.

The results can be seen in Table 3. By integrating linguistic
knowledge, VL-Reader boosts recognition performance by +1.4%.
With the addition of the proposed MVLR, there is an additional
improvement of 0.8%, resulting in an overall improvement of 2.2%.
Compared to experiment #2 which solely integrates linguistic in-
formation but is not trained under the MVLR objective, integrating
MVLR could obtain a +0.8% performance gain, demonstrating the
effectiveness of MVLR.

4.3.2 Analysis of visual masking ratio 𝑟𝑣 . To examine the impact
of varying visual masking ratios (𝑟𝑣 ) on ultimate performance, we
manipulated 𝑟𝑣 while maintaining a constant 𝑟𝑙 of 0.2 during the
initial training phase. We fix the left hyper-parameters in various
masking-ratio settings. The results are presented in Fig. 5 (a). The
performance reaches the peak with a masking ratio around 0.7-0.75
and gradually decreases when enlarging or decreasing the visual
masking ratio 𝑟𝑣 . When 𝑟𝑣 is set to less than 0.65, the VL-Reader
encounters a significant performance drop. The results demonstrate
that the visual reconstruction task with an appropriate masking
ratio is capable of boosting text recognition performance. As a
result, we set the visual masking ratio 𝑟𝑣 as 0.75 in our work.

4.3.3 Analysis of linguistic masking ratio 𝑟𝑙 . Similarly, we also ex-
amine the impact of varying linguistic mask ratios 𝑟𝑙 . We set differ-
ent 𝑟𝑙 while maintaining a fixed 𝑟𝑣 of 0.75. The results are shown
in Fig. 5 (b). The performance of VL-Reader reaches the peak when
𝑟𝑙 is set around 0.15-0.2. However, further increasing the linguistic
masking ratio results in a subsequent decrease in performance. This
decline is attributed to the escalating training difficulty associated
with enlarging 𝑟𝑙 , as reconstructing 50% of characters based on the
remaining 50% becomes increasingly challenging.
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Figure 5: Analysis of (a) different visualmasking ratios 𝑟𝑣 and
(b) different linguisticmasking ratios 𝑟𝑙 . All other parameters
are fixed during training. VL-Reader reaches the highest
average accuracy on six standard benchmarks around 𝑟𝑣 =

0.75 and 𝑟𝑙 = 0.2.

4.3.4 Analysis of Model Size. We conduct an analysis of model size
by implementing our model with different ViTs, specifically, tiny,
small, and large. As can be seen from Table 4, when employing ViT-
Tiny, VL-Reader can outperform ABINet by +0.15% on standard
benchmarks and by +1.2% on occluded benchmarks with much
smaller model size (9M vs. 36M). When utilizing ViT-Small, our
VL-Reader consistently outperforms ABINet by +1.18% and +6.75%
on standard and occluded benchmarks with similar model size.
Furthermore, VL-Reader with ViT-Base achieves 96.9% and 86.28%
on such benchmarks, surpassing all previous methods.

4.3.5 Qualitative Results of Recognition. We perform qualitative
comparisons of VL-Reader and previous state-of-the-art models on
typical images from standard and more challenging benchmarks.
As illustrated in Fig. 6, we present some representative images to
study the reason that VL-Reader succeeds but prior works fail. The
results demonstrate that VL-Reader can obtain correct results on
various challenging scenarios including occluded, artistic, blurred,
and rotated images. Moreover, the VL-Reader is more robust to
low-quality images and disturbances due to its comprehensive uti-
lization of visual-linguistic context. For the occluded image "rock"
(the second sample of "Occluded Text"), VL-Reader produces the
correct answer while previous methods predict it as "book". In the
heavily blurred scenario (refer to the "mandarin" sample, the fourth
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Figure 6: Qualitative comparison of VL-Reader and previous SOTA methods on challenging samples. Text from top to bottom
are ground-truth text (top) and predicted results from ABINet(row#2), PARSeq (row#3) and VL-Reader (bot). Red characters
indicate incorrect, missing, or redundant predictions.

instance in the "Blurred Text"), other methods incorrectly identify
"n" as "ri", while VL-Reader recognizes it accurately. For the ro-
tated scenario (see "symphony", the second sample of "Rotated &
Curved Text"), the character "N" is hard to be distinguished from
character "R" from the visual perspective due to adhered strokes
under a perspective view. Thus Previous methods all incorrectly
predict the character "N" as "R", while VL-Reader correctly identifies
the word "symphony" with a valid linguistic meaning. These results
demonstrate the robustness of VL-Reader on various challenging
scenarios.

Figure 7: Reconstruction results on images of benchmark
datasets (not used in training). For each column, we show
the ground truth (top), the masked image (middle), and the
reconstructed image (bottom). The visual masking ratio 𝑟𝑣 is
set to 0.75.

4.3.6 Reconstruction results of VL-Reader. VL-Reader can simulta-
neously reconstruct visual and linguistic information. We showcase
several of the reconstruction outcomes on images from benchmark
datasets (i.e., images not utilized in training). As depicted in Fig. 7,
VL-Reader effectively reconstructs most of the visual information
even when the source image is heavily blurred (column#1). Ad-
ditionally, the VL-Reader is able to reconstruct a character that
is completely masked (the last character "g" in column#6). These
reconstruction results confirm the successful acquisition of visual-
linguistic representation by VL-Reader. Moreover, we also present
a further discussion regarding the vision-language reconstruction
results in our supplementary materials.

5 CONCLUSION AND FUTUREWORK
In this paper, we have presented a novel scene text recognition
approach by tuning a vision and language reconstructor to a text
recognizer. Our approach, based on mask and reconstruction, not
only learns rich visual and semantic representation but also en-
sures consistency in pre-training and fine-tuning stages. Benefiting
from the architecture and innovative modules, our model achieves
state-of-the-art performance on standard STR, particularly demon-
strating significant improvement in challenging scenarios. Moving
forward, there are two potential directions for future expansion:
developing a multilingual variant of the proposed method and ex-
tending it to line recognition and whole-image recognition.
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