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Abstract
Simplicity bias, the propensity of deep models
to over-rely on simple features, has been iden-
tified as a potential reason for limited out-of-
distribution generalization of neural networks
(Shah et al., 2020). Despite the important im-
plications, this phenomenon has been theoret-
ically confirmed and characterized only under
strong dataset assumptions, such as linear sep-
arability (Lyu et al., 2021). In this work, we char-
acterize simplicity bias for general datasets in
the context of two-layer neural networks initial-
ized with small weights and trained with gradi-
ent flow. Specifically, we prove that in the early
training phases, network features cluster around a
few directions that do not depend on the size of
the hidden layer. Furthermore, for datasets with
an XOR-like pattern, we precisely identify the
learned features and demonstrate that simplicity
bias intensifies during later training stages. These
results indicate that features learned in the middle
stages of training may be more useful for OOD
transfer. We support this hypothesis with experi-
ments on image data.

1. Introduction
Out-of-distribution (OOD) generalization is a key chal-
lenge towards the widespread adoption of machine learning.
Specifically, since training data may not always cover all
possible test scenarios, networks often rely on shortcuts:
spurious rules that hold on the training distribution but not
in more complicated real-world situations (Geirhos et al.,
2020). For example, convolutional networks often prioritize
texture over shape (Geirhos et al., 2019), or transformers
might rely on simplistic heuristics in natural language infer-
ence (McCoy et al., 2019).

One possible mechanism behind shortcuts is simplicity bias,
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the propensity of neural networks to rely only on “simple”
features. As Shah et al. (2020) demonstrated, this bias might
be persistent and hurt OOD generalization in image classifi-
cation tasks. Simplicity bias is also a peculiar phenomenon
from a theoretical perspective. Since many neural architec-
tures are universal function approximators (Cybenko, 1989;
Hornik et al., 1989), one might hope that models will learn
other, more sophisticated patterns within the data.

Despite the importance of simplicity bias, a thorough the-
oretical understanding of this phenomenon is still lacking.
To the best of our knowledge, existing works on simplicity
bias (Lyu et al., 2021; Safran et al., 2022; Morwani et al.,
2023) only demonstrate its emergence by employing strin-
gent assumptions, which restrict training data to be linearly
separable or one-dimensional.

Contributions We give the first proof of the existence of
simplicity bias and a precise mathematical characterization
of the features learned during training beyond linearly sepa-
rable data. We do so for two-layer neural networks trained
with gradient flow from a small initialization, a model popu-
lar in the theoretical literature (Luo et al., 2021a; Lyu et al.,
2021; Boursier et al., 2022). We characterize simplicity bias
as a property that only a small set of prominent neurons gov-
erns the behavior of the network. These prominent neurons
cluster in several directions, which do not depend on the
size of the hidden layer.

Specifically, our theoretical analysis divides training into
three stages. During the first two stages (Section 4), in which
the weights grow from small to constant scale, we prove for
general datasets that the most prominent features recovered
by the training dynamics cluster around the extrema of a
data-dependent function, which does not depend on the num-
ber of neurons and disentangles the interactions between
them. For the last stage, where the network converges to
zero loss, we prove that simplicity bias can become extreme
even in non-linearly-separable datasets. In this stage, we
cover the case of XOR-like data under an assumption about
the convergence of a 4-neuron network, which we validate
experimentally. On a methodological level, our work gen-
eralizes the analysis of Lyu et al. (2021) beyond linearly
separable data and provides an implicit description of the
most prominent features for general datasets.
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Our theoretical findings additionally lead to a hypothesis
with potential practical implications: networks trained to a
very small loss may be prone to stronger simplicity bias and,
hence, may be harder to finetune to new tasks. We test this
intuition with experiments on a domino dataset of MNIST-
CIFAR10 pairs (Shah et al., 2020) and observe experimental
support for our hypothesis.1

2. Related Work
Simplicity bias of features The simplicity bias of neural
networks was observed and linked to generalization and
OOD performance in prior work (Valle-Perez et al., 2019;
Shah et al., 2020). Several works show that two-layer net-
works provably learn a linear decision boundary on linearly
separable datasets (Brutzkus et al., 2018; Pellegrini & Biroli,
2020; Sarussi et al., 2021; Phuong & Lampert, 2021; Lyu
et al., 2021; Englert & Lazic, 2022; Frei et al., 2023b; Kou
et al., 2023; Morwani et al., 2023; Wang & Ma, 2023; Chis-
tikov et al., 2023; Min et al., 2024). While we use some
of the techniques developed by these works, we focus on
the non-linearly-separable case, which requires further the-
oretical analysis. Safran et al. (2022) prove that, on one-
dimensional data, two-layer networks converge to a model
with few linear regions. In contrast, we study datasets in Rd.
Brutzkus & Globerson (2019) also show simplicity bias for
XOR-like data, but only for a 4-point dataset in R2, while
we focus on datasets of arbitrary size in Rd.

Simplicity bias of training dynamics A direction related
to our work is simplicity bias in terms of training dynamics,
the propensity of neural networks to learn simple patterns
first in training. This property was observed in several em-
pirical works (Arpit et al., 2017; Xu et al., 2019; Rahaman
et al., 2019; Kalimeris et al., 2019) and demonstrated theo-
retically in certain settings (Arora et al., 2019; Basri et al.,
2020; Luo et al., 2021a; Bowman & Montufar, 2022). An-
other closely related topic is the distributional simplicity
bias proposed by Refinetti et al. (2023). In contrast to these
works, we seek to characterize the learned features instead
of analyzing some complexity invariant.

Small initialization and initial condensation Our results
in Section 4 provably demonstrate initial condensation, the
propensity of neural networks to condense neurons in few
directions during early stages of training, for two-layer net-
works with small initialization. Several theoretical works
have analyzed this phenomenon previously. Maennel et al.
(2018) study condensation in regression and classification
problems with two-layer ReLU networks. While they also
recognize the function G we use to describe the network
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dynamics as an important factor in learning, their deriva-
tions and discussions of the near-zero initialization regime,
which we study in our paper, are informal. In addition,
their bounds for the speed of neuron alignment are insuffi-
cient to differentiate between prominent and non-prominent
neurons, as we do in Section 4. Zhou et al. (2022) give
another theoretical description of condensation in regres-
sion tasks. However, their results do not apply to ReLU
activation or our differentiable approximation of ReLU (due
to irregularity at 0). Boursier et al. (2022) also identify the
condensation phenomenon in regression tasks, but only for
orthogonal data, while we put considerably milder assump-
tions on the data. Additionally, Xu & Du (2023) recognize
the condensation phenomenon in a regression setting with a
one-neuron teacher network, which is similar to a linearly
separable case because the direction of the gradients will be
correlated with the direction of the teacher neuron.

Finally, the concurrent work of Boursier & Flammarion
(2024) proves an alignment result similar to that in our
Theorem 4.1. However, their result does not quantify the
differences in the neurons’ growth rates and, hence, can not
differentiate between prominent and non-prominent neurons.
Moreover, there are several technical differences. Boursier
& Flammarion (2024) work directly with (leaky) ReLU and
make milder assumptions on the initialization. However,
they require the function G to have no saddle points and
only show alignment results for neurons that satisfy a certain
technical condition (Condition 1 in their manuscript).

Small initialization and mean-field regime Since we
work in the small initialization regime of two-layer net-
works, our setting is similar to the mean-field regime (Chizat
& Bach, 2018; Mei et al., 2018; Wei et al., 2019; Li et al.,
2020; Ge et al., 2021). However, in our setting, we do not
increase the number of neurons when we decrease the initial-
ization scale (which corresponds to the condensed regime in
the classification of Luo et al., 2021b). Thus, in our limit, at
the beginning of training, the neurons evolve independently,
while, in the mean-field limit, they interact via the velocity
field (the derivative of a loss function). At the same time,
some techniques in our work are similar to the mean-field
techniques since both we and the mean-field works analyze
the behavior of a loss function near zero.

3. Setting
Throughout the paper, we analyze feature learning on a
binary classification problem with a two-layer network ini-
tialized with small random parameter values.

Notation We use the following notation: vj is jth compo-
nent of vector v, so that v = (v1, v2, . . . , vd)T, ∥v∥ :=√∑d

j=1(v
j)2 is the usual l2-norm of v, v̂ := v

∥v∥ is
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the unit direction of v, Pv := I − v̂v̂T is the projec-
tor on the space orthogonal to v, [k] := {1, . . . , k},
Sd−1 :=

{
x ∈ Rd

∣∣ ∥x∥ = 1
}

is the unit sphere, Dd :={
x ∈ Rd

∣∣ ∥x∥ < 1
}

is the unit disk.

Objective Denote by f(θ, ·) a network parameterized by
θ. The sign of f stands for the classification result. Denote
by D := (xi ∈ Rd, yi ∈ {−1, 1})ni=1 an arbitrary training
dataset, such that ∀i ∥xi∥ ≤ 1. We consider networks
trained to minimize the cross-entropy loss

L(θ) :=
1

n

n∑
i=1

ℓ(f(θ,xi)yi), where ℓ(z) := ln(1 + e−z).

Architecture We consider two-layer networks

f(θ,x) :=
m∑
j=1

ujϕ(vj ,x),

where θ := (u1, . . . , um,v
T
1 , . . . ,v

T
m)T, uj ∈ R and

vj ∈ Rd, are the network parameters and ϕ is an ac-
tivation function. We denote ∀A ⊆ [m] ∥θ∥A :=
maxj∈A max(|uj |, ∥vj∥).

One of the most commonly used activation functions is
ReLU, for which ϕ(v,x) = (vTx)+ = max(vTx, 0). In
our paper, for the technical reasons, we need the activation to
be smooth to avoid some degenerate cases in the dynamics
of gradient flow. Since this property does not hold for ReLU,
we consider a differentiable approximation,

ϕ(v,x) := ϕQ,ξ(v,x) :=

∫
Rd

(vT(x+ ξz))+Q(dz),

where ξ > 0, Q is the uniform measure on Dd, and (z)+ :=
max(0, z). For the purposes of our analysis, ξ could be set
to be much smaller than machine precision. Thus, there is
no practical difference between our activation and ReLU.
We also note that in our experiments in Sections 6 and 7 we
use the usual ReLU activation.

We call a function f(x, y) k-positively homogeneous in x
if f(cx, y) = ckf(x, y) for all vectors x, y and all c > 0.
Notice that ϕ(v,x) is 1-positively homogeneous in v, i.e.,
∀c > 0 ϕ(cv,x) = cϕ(v,x). This property implies that
f(θ,x) is 2-positively homogeneous in θ.

Optimization We consider the training of f via gradient
flow, dθ

dt = −∇L(θ), which implies dynamics

duj
dt

=
1

n

n∑
i=1

(−ℓ′(f(θ,xi)yi))ϕ(vj ,xi)yi,

dvj

dt
=
uj
n

n∑
i=1

(−ℓ′(f(θ,xi)yi))∇vϕ(vj ,xi)yi.

(1)

We initialize the system with a small weights θ(0) = σθ0,
where σ ≈ 0, similarly Lyu et al. (2021). For simplicity, we
assume that |u0j | = ∥v0

j ∥. The results of Du et al. (2018)
imply that u2j − ∥vj∥2 = const. Then, sign(uj) =: sj is
constant (Lemma 1, Boursier et al., 2022).

4. Simplicity Bias for General Data
First, we analyze Equation (1) in the early (Section 4.1) and
middle (Section 4.2) training phases, in which θ remains
small or grow to a constant scale, respectively. These phases
correspond to Phases 1 and 2 of Lyu et al. (2021).

Key challenge The key challenge in characterizing the
features learned throughout training is the lack of univer-
sal training invariants to trace. To compensate for this,
most of the works that describe features of neural networks
make structural assumptions about the dataset, such as lin-
ear separability (Lyu et al., 2021), orthogonality or near-
orthogonality (e.g., Brutzkus & Globerson, 2019; Phuong
& Lampert, 2021; Frei et al., 2023a) or high-dimensionality
(e.g., Ba et al., 2022).

In contrast to these works, we do not make structural as-
sumptions about the data. Instead, we exploit that, for small
weights, a simpler data-dependent function, G, which does
not depend on the number of neurons, can approximate the
network dynamics. Specifically, we link the features learned
by the original system to the global extrema ofG. While our
results do not explicitly characterize the learned features,
they are sufficient to prove the presence of simplicity bias.

4.1. Feature Learning from a Small Initialization

Disentangling training dynamics First, we informally
motivate our approximation of Equation (1) for a small
initialization. By the mean value theorem,

ℓ′(f(θ,x)y)− ℓ′(0) =ℓ′′(ζ)f(θ,x)y

=⇒ |ℓ′(f(θ,x)y)− ℓ′(0)| ≤|f(θ,x)| sup
z∈R

|ℓ′′(z)|,

for some ζ ∈ [0, f(θ,x)y]. Since f(θ,x) is 2-
homogeneous, we get |ℓ′(f(θ,x)y) − ℓ′(0)| = O(∥θ∥2).
Thus, when σ ≈ 0, Equation (1) behaves similarly to the
following system with linearized loss (Maennel et al., 2018),

dulj
dt

:= G(vl
j) :=

1

n

n∑
i=1

(−ℓ′(0))ϕ(vl
j ,xi)yi,

dvl
j

dt
:= ulj∇G(vl

j),

(2)

where ulj(0) = uj(0) and vl
j(0) = vj(0).

Note that the neurons in Equation (2) evolve independently
of each other, while the neurons in Equation (1) interact
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via ℓ′(f(θ,xi)yi). This property significantly facilitates the
analysis of Equation (2) compared to the original system.

The following theorem formalizes the link between the two
systems and links the features learned by the original dy-
namics (1) to the global extrema of the function G.

Theorem 4.1 (Proof in Appendix B). Assume that θ follows
Equation (1), ∀i ∥xi∥ ≤ 1, d ≥ 2, and d is odd. Then
∃κ∗ > 0, P ⊆ [m], (κj > 0, u∗j ∈ R, v̂∗

j ∈ Sd−1)mj=1 such
that for σ = r1+κ∗

, T1 := 1
λ ln

(
r
σ

)
, and r → 0, we get

∀j ∈ P |uj(T1)− ru∗j | ≤O(r1+κ∗
),

∥v̂j(T1)− v̂∗
j ∥ ≤O(rκ

∗
), sjG(v̂

∗
j ) = λ,

∀j ∈ R |uj(T1)| = ∥vj(T1)∥ ≤O(r1+κj ),

where R := [m] \ P , λ := maxv̂∈Sd−1 |G(v̂)| and G is
defined by Equation (2).

Moreover, to ensure that a particular global extrema v̂∗ of
|G| (|G(v̂∗)| = λ) is captured (∃j ∈ P : v̂∗

j = v̂∗) with
probability at least 1− δ over isotropic initialization of θ0,
we need m = O(− ln(δ)) neurons, where the constants in
the big-O notation depend only on the properties of data.

Remark 4.2. We expect that the result can be extended to
the case of even d. However, this extension will require
exploiting the concept of o-minimal structures and proving
a corresponding Lojasiewicz inequality for the o-minimal
structure containing arcsin function (see our proof, Ji & Tel-
garsky (2020), and Example 1.5 of Loi (2010)). Since such
an analysis is not necessarily informative from a machine
learning perspective, we stick to d being odd for simplicity.

Discussion Theorem 4.1 suggests that, when we start
training from small initialization (σ → 0), the neurons
either align with the global extrema of G (j ∈ P ) or
grow very slowly (j ∈ R). In particular, for the neu-
rons in R, |uj(T1)| = ∥vj(T1)∥ = O(r1+κj ). There-
fore, their contribution to the decision boundary is neg-
ligible compared to the prominent neurons in P , for which
|uj(T1)| = ∥vj(T1)∥ = Θ(r|u∗j |) = Θ(r). Thus, at the
start of the training, the network exhibits simplicity bias: re-
gardless of the number of neurons, m, only prominent ones
contribute to the network’s decision boundary. Moreover,
these prominent neurons are aligned with the global extrema
directions of G, which do not depend on m. When the num-
ber of neurons is sufficiently large (m = Ω(− ln(δ))), the
network will learn all global extrema directions of G, which
makes the characterization very precise for small σ.

4.2. Feature Growth to a Constant Scale

Next, we extend our analysis beyond the stage studied in
Theorem 4.1 to the point when the network weights reach
a constant scale. Specifically, we show that the prominent

features preserve their alignment and that the network es-
sentially behaves like a smaller p-neuron network, where p
is the number of extrema of G.

Embedding function To formalize our claim, we consider
a specific smaller network that describes Equation (1) well.
Since the prominent neurons (j ∈ P ) cluster around the
global extrema of G at the end of the first phase, we can
divide them according to their direction

P = ⊔p
k=1Pk s.t. ∀k∀i, j ∈ Pkv̂

∗
i = v̂∗

j

∧ ∀k ̸= k′∀i ∈ Pk, j ∈ Pk′ v̂∗
i ̸= v̂∗

j .

We denote by v̂∗
Pk

the direction of neurons in Pk and by
sPk

:= sign(G(v̂∗
Pk
)). Now, consider the following auxil-

iary system

duek
dt

=
1

n

n∑
i=1

(−ℓ′(f(θe,xi)yi))ϕ(v
e
k,xi)yi,

dve
k

dt
=
uek
n

n∑
i=1

(−ℓ′(f(θe,xi)yi))∇vϕ(v
e
k,xi)yi,

(3)

where

uek(T1) = sPk
r

√∑
j∈Pk

(u∗j )
2, ve

k(T1) = r|uek(T1)|v̂∗
Pk
.

These equations describe the dynamics of a p-neuron net-
work θe = (ve

1,v
e
2, . . . ,v

e
p, u

e
1, u

e
2, . . . , u

e
p), initialized in a

way that preserves the alignment and scale of θ.

Our goal will be to show that each neuron in the original
network can be approximated by corresponding neuron in
the p-neuron network. To do it, below, we define an em-
bedding function (Lyu et al., 2021) that maps the p-neuron
network θe to a m-neuron network θχ := χ(θe)

∀j ∈ Pk uχj =
ru∗j

uek(T1)
uek, vχ

j =
ru∗j

uek(T1)
ve
k,

∀j ∈ R uχj =0, vχ
j =0.

(4)

Propagation of simplicity bias We prove that the original
network behaves approximately as an image of the embed-
ding above. We only require a mild assumption on the data
that avoids degenerate cases in which a data point perfectly
aligns with an extrema of G.

Definition 4.3. A direction v̂ is∆-regular if ∀i |v̂Txi| ≥ ∆.

The following result holds under the assumption that all
global extrema of G are regular. We note that this is a
generalization of Assumption 4.5 of Lyu et al. (2021) for
the case of non-linearly-separable data.

Theorem 4.4 (Proof in Appendix C). In the setting of Theo-
rem 4.1, consider Equation (3) and assume that ∀j ∈ P v̂∗

j
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is (ξ + 2∆)-regular. Then, ∀ε ≤ min{∆, 1/2}, the follow-
ing holds. First, ∃θε,∗ := limr→0 θ

e(T ε
2 ), where T ε

2 :=

T1 + tε4, t
ε
4 := 1

2λ ln
(

λε
2ar2∥θ∗∥2

[m]

)
, and a := m(1+ξ)2

4 . Sec-

ond, denote θχ,ε,∗ := χ(θε,∗), then, as r → 0, we have

∀j ∈ P |uj(T ε
2 )− uχ,ϵ,∗j | =O(rκ + r2),

∥v̂j(T
ε
2 )− v̂χ,ε,∗

j ∥ =O(rκ + r2),

∀j ∈ R |uj(T ε
2 )| = ∥vj(T

ε
2 )∥ =O(rκj ),

where κ := min{κ∗,minj∈R κj}.

Moreover, |uχ,ε,∗j | = Θ(
√
ε) and ∀j ∈ P ∥v̂χ,ε,∗

j −v̂∗
j ∥ ≤ ε.

Remark 4.5. The assumption that the critical directions
v̂∗ are regular is essentially needed only to show that the
Hessian matrix ∇2|G|(z) is negative semi-definite in some
(ξ + 2∆)-neighborhood of v̂∗. Since the Hessian matrix
is semi-negative at z = v̂∗ and G is twice continuously
differentiable, this assumption appears rather mild.

Discussion Similarly to Theorem 4.1, the neurons in R
have a negligible effect on the network since uj and vj are
of smaller magnitude compared to the remaining weights.
Theorem 4.4 suggests that the network experiences the sim-
plicity bias not only at the start of the training but also
until the weights grow to a constant scale Θ(

√
ε). Even

in the second phase, the prominent neurons in P stay near
the extrema of G, which they learned initially. In addi-
tion, θ(T ε

2 ) ≈ θχ,ε,∗ implies that the original network is an
approximate embedding of the p-neural network above.

Theorems 4.1 and 4.4 show an interesting separation of
the training dynamics of two-layer networks trained from
small initialization. First, the hidden layer features traverse
the unit sphere until some become prominent, capturing a
supremum direction of G and aligning with it. Then, the
prominent features grow without much change in direction.

5. Extreme Simplicity Bias for Specific Data
Our results so far describe the features learned by two-layer
networks in the early stages of training, as the parameters
go from small to constant scale. However, as indicated
by Lyu et al. (2021); Shah et al. (2020), the simplicity bias
might persist not only in the initial stages of training but also
when the network reaches perfect accuracy on a training
dataset. To test to what extent our mechanism outlined in
Section 4 can explain this empirical observation, we extend
our analysis to the infinite time training limit.

A key challenge in this setup is the lack of convergence
guarantees for non-convex models, which necessitates at
least some assumptions on the train data. Given our focus on
non-linearly-separable data, we focus on datasets in Rd that
feature an XOR-like pattern in a 2-dimensional subspace as
a prime example that breaks the linear separability.

5.1. Data with an XOR-pattern

We consider train data in Rd that follows an XOR pattern
in the 2-dimensional subspace generated by coordinate vec-
tors e1 and e2. Specifically, the points cluster around four
vectors, e1,−e1, e2,−e2. They are symmetric w.r.t. the
permutation of the first and second coordinate, the reflection
of the first and second coordinate axes, and the reflection
through the hyperplane generated by the first and second
axes. Points that cluster around the directions e1 and −e1
have positive labels; others have negative labels. Finally,
we make an additional assumption on the non-alignment
of data points with coordinate axes (which would allow us
to apply Theorem 4.4 to this dataset). Notice that similar
assumptions appear in Lyu et al. (2021), but in our case the
resulting dataset is not linearly separable.

To formalize these assumptions, denote P := I + (e2 −
e1)e

T
1 + (e1 − e2)e

T
2 (permutation of the first and second

coordinates), ∀a ∈ {1, 2} : Ra := I− 2eae
T
a (reflection of

ath coordinate), Rr := 2(e1e
T
1+e2e

T
2)−I (reflection of the

rest of the coordinates), and Dx := {xi}ni=1 for xi ∈ Rd.
Then, the formal assumptions will be the following.
Assumption 5.1. Denote a(k) := k mod 2, b(k) :=
2
⌊
k−1
2

⌋
− 1. There exists {S1, S2, S3, S4} : ⊔kSk = [n]

such that the following properties hold.

1.
∃δ <

√
2/2 : ∀i ∈ Sk ∥xi − b(k)ea(k)+1∥ ≤ δ

∧ yi = 1− 2a(k).

2. ∀a ∈ {1, 2, r}RaDx = Dx.

3. PDx = Dx.

4. ∃∆ > 0 : ∀i, k |eTkxi| ≥ ξ + 2∆.

5.2. Initial stages of training

We first use the results of Section 4 to analyze the behavior
of a two-layer network trained from small initialization
on our XOR-like dataset. To apply Theorem 4.1, we first
describe the global extrema of G.
Lemma 5.2 (Proof in Appendix D.1). If Assumption 5.1
holds and ξ + δ < 1/6, the function |G| have four extrema
directions: e1,−e1, e2,−e2.

Lemma 5.2 and Theorem 4.1 imply that, at the start of the
training, the big neurons will converge in the four directions:
±e1 and ±e2. To evaluate the probability of the network
capturing all extrema of G, we show the following fact.
Lemma 5.3 (Proof in Appendix D.2). Assume the setting of
Lemma 5.2. The probability of successful initialization that
will capture all extrema of G is greater than (1− hm)4 ≥
1 − 4(3/4)

m
(1 + O(δ + ξ)) − O((9/16)

m
) for m → ∞

and δ + ξ → 0, where h := 1 − 1
2

Vol(A)
Vol(Sd−1)

and A ={
x ∈ Sd−1

∣∣ eT1x ≥ δ + ξ
}

.
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The lemmas above and Theorems 4.1 and 4.4 suggest that,
with high probability, at the end of Phase 2, θε,∗, the
four-neuron approximation of the original network, has
features aligned with the cluster directions of the data,
∥v̂ε,∗

k − b(k)ea(k)+1∥ ≤ ε.

5.3. Training Dynamics in the Infinite Time Limit

Now we are interested in the training dynamics on the XOR
dataset, beyond the stage described by Theorem 4.4 and as
T → ∞. To study that, we use the fact that θe provides a
good approximation of the original network θ and formalize
this beyond the time T ε

2 used in Theorem 4.4.

The next result proves that the limit dynamics (1) of the
original network converge to the same features as those
learned by the simpler 4-neuron network from Section 5.2.
Our result assumes that the features of the 4-neuron network
remain aligned with the extrema of G from Lemma 5.2.
Assumption 5.4. In the setting of Lemma 5.2, the 4-neuron
network initialized at θε,∗ converges in direction to θmm,
in which ∀i, j ∥vmm

i ∥ = |umm
i | = |umm

j | and ∀k v̂mm
k =

b(k)ea(k)+1.

We provide experimental and theoretical evidence that this
assumption holds in the next subsection. We also note that
this assumption concerns the two-layer 4-neuron network
and can be checked directly in an experimental manner.
In contrast, the result below holds for any sufficiently big
two-layer neural networks trained from small initialization.
Lemma 5.5 (Proof in Appendix D.5). In the setting of
Lemma 5.2 under Assumption 5.4, the original network θ
converges in direction to χ(θmm) if the initialization scale
σ is small:

∃σ∗ : ∀σ < σ∗ lim
t→∞

∥∥∥∥ θ(t)

∥θ(t)∥
− χ(θmm)

∥χ(θmm)∥

∥∥∥∥ = 0.

(Notice θ(0) = σθ0 and χ depends on θ0 but not on σ.)

This lemma shows that the conclusions of Theorems 4.1
and 4.4 not only propagate to the later stages of training for
the XOR data, but also exacerbate. The network forgets all
features except those learned at the beginning of training,
causing an extreme simplicity bias (Shah et al., 2020).

Proof sketch Our proof builds upon concepts studied in
Lyu & Li 2020. Following their notation, we define the
normalized margin γ(θ) of f on dataset D by

γ := min
i
f(θ,xi)yi/∥θ∥2.

Notice that, due to 2-homogeneity of f , γ depends only
on the direction of θ: ∀λ > 0 γ(λθ) = γ(θ). We call a
direction that is a (local) solution to the max-margin problem
maxθ γ(θ) a (local-)max-margin direction. The main result
we build upon in our proof is the following.

Theorem 5.6 (Theorem 5.6, Lyu et al. 2021). Consider
2-positively-homogeneous network f trained with gradient
flow on logistic loss. For any local-max-margin direction,
θ̂∗, and ζ > 0, ∃ω > 0, ρ ≥ 1 such that for any θ0 with
∥θ0∥ ≥ ρ and ∥θ̂0 − θ̂∗∥ ≤ ω, gradient flow starting with
θ0 directionally converges to some direction θ̂ with the same
normalized margin γ as θ̂∗, and ∥θ̂ − θ̂∗∥ ≤ ζ.

We use this result in the following manner. First, we show
that the assumed limit direction of θe is a local-max-margin
direction. Second, we employ Theorem 4.4 and classical
theorems about continuous dependency on initial conditions
for initial value problems to show that our original system
will satisfy the conditions of Theorem 5.6. Finally, we apply
Theorem 5.6 to prove the desired result.

5.4. Convergence Behavior of Four-Neuron Network

Finally, we provide evidence for Assumption 5.4. Unfortu-
nately, a precise characterization of this smaller network on
our dataset is challenging. First, as far as we are aware, gen-
eral results about convergence to perfect accuracy or zero
loss of two-layer networks exist only for 1-neuron networks
(Awasthi et al., 2023; Chistikov et al., 2023). Second, even
if one can prove that the network converges to zero loss, the
additional challenge to analyze the resulting limit direction
remains. The only characterization of the limit directions
of networks that we are aware of is in terms of the KKT
conditions for the dual margin-maximization problem (Lyu
& Li, 2020). However, in the general case a direct analysis
of the KKT conditions remains intractable.

Thus, we give a theoretical motivation for the proposed
direction θmm and validate our assumption empirically.

5.4.1. THEORETICAL EVIDENCE

Convergence to perfect accuracy First, we prove that
the network converges to perfect accuracy.

Proposition 5.7 (Proof in Appendix D.3). Assume that
maxi,j |ue

i (0)|/|ue
j (0)| ≤ 1000, maxk|uek(0)| ∈ (0.001, 0.5),

and δ + ξ ≤ 0.01. Then there exist a time T 0 such that
∀i f(θe(T 0),xi)yi > 4.67 > 0.

To comment on the plausibility of the assumptions in this
result, first notice that in the setting of Theorem 4.1 neurons
evolve almost independently. Thus, due to the symmetry of
our dataset, at the end of Phase 1 the scales u∗j will be sums
of m identically distributed values. Then by the law of large
numbers they will converge to the same values in the limit
m → ∞. Thus, when m is big, at the end of Phase 1, the
ratios |ue

i (0)|/|ue
j (0)| will be close to one. Since in Phase 2

the scales of neurons and the deviation of features is small,
we expect these ratios to increase by no more than 1+O(ε),
implying that these ratios again will be close to one.
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Figure 1. Evolution of 4-neuron network initialized at (ue
1(0), u

e
2(0), u

e
3(0), u

e
4(0)) = (10−4,−10−5, 10−7,−10−6). The first column

depicts the whole training process. We additionally depict different stages of training process for visual convenience: the second column
depicts the first 3584 training epochs; the third column depicts the epochs from 3584 to 15872; the last column depicts training after the
15872th epoch. Notice that α1 ≈ α3 and α2 ≈ α4, where αi are the angles between the network features and the cluster directions.

The assumption that maxk|uek(0)| ∈ (0.001, 0.5) is implied
by the property uε,∗j = Θ(

√
ε). If we assume that ∆ ≈

0.001 and choose ε = ∆, we can expect that θe will have
the desired scale. Finally, we assume δ + ξ ≤ 0.01 for
technical reasons related to the proof technique. We expect
that the property will hold for wider ranges of δ.

Implicit bias at the end of training The previous result
about perfect accuracy also suggests that the network may
achieve small loss at the end of training. Then, by Theorem
4.4 of Lyu & Li (2020) and Theorem 3.1 of Ji & Telgarsky
(2020), the network converges to some KKT point of dual
margin-maximization problem

min
θ

∥θ∥2 s.t. ∀i f(θ,xi)yi ≥ 1.

Under the additional assumption that the features of this
margin direction are (ξ + 2∆)-regular for some ∆ > 0,
a slight modification of the results of Vardi et al. (2022)
implies that this direction is a local-max-margin direction.
Finally, we show that θmm is one strict local-max-margin
direction, which motivates our hypothesis.

Proposition 5.8 (Proof in Appendix D.4). Assume the set-
ting of Lemma 5.2. Then, the direction of θmm is a strict
local-max-margin in the weight space of the 4-neuron net-
work, while its embedding, χ(θmm) is a strict local-max-
margin in the original weight space.

5.4.2. EMPIRICAL EVIDENCE

Here we present experimental evidence for Assumption 5.4.
To this end, we construct a random dataset in R2 that
will satisfy Assumption 5.1 with δ ≤ 0.01 and train a

four neuron ReLU network using gradient descent for dif-
ferent initializations, in which the neurons are aligned
with cluster directions, corresponding to the setting of
Lemma 5.2. Specifically, after we pick initialization scales
(ue1(0), u

e
2(0), u

e
3(0), u

e
4(0)), we initialize the first layer as

ve
k(0) = uek(0)ea(k)+1 and train our network using plain

gradient descent.

We used the following adaptive learning rate schedule ηt.
During the first part of training, which corresponds to the
evolution initialized at the limit point from Theorem 4.1 to
the limit point in Theorem 4.4, the gradients are very stable.
Therefore, we use constant-scale learning rates ηt = 4 for
t < 12 and ηt = 2−7 for 12 ≤ t < 213. The next part
corresponds to the training initialized at the limit point from
Theorem 4.4. At around t = 213 all features reach constant
scales and the cross-entropy loss starts to dump gradients.
This allows us to progressively increase the learning rate,
in order to speed up the simulation, in the third part of
schedule, setting ηt = 2−7

(
1 + 25

(
t

213 − 1
))

for 213 ≤
t < 214. Finally, at the end of the third part, the cross-
entropy loss causes gradients to decay exponentially and the
training process almost stops. To combat this and simulate
the later stages of training, we use an exponential learning

rate ηt = 2−7
(
1 + 25+

t−214

29

)
for t ≥ 214.

Figure 1 depicts the evolution of the 4-neuron network.
Here, plots titled “Angles” depict the signed angles between
the network features and the cluster directions. And plots
titled “Scales” depict ∥ve

k∥. (See more experiments in Ap-
pendix E.) As we can see, eventually the scales of the neu-
rons became almost identical and the network start to con-
verge to the desired local-max-margin direction θmm (forth
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column), empirically supporting our assumption.

6. Empirical Validation of Results
In this section, we empirically validate the predictions of
Theorems 4.1, 4.4, and Lemma 5.5. We consider a skewed
XOR-like dataset in R2, similar to the dataset covered by
Assumption 5.1, but in which the angle between cluster
directions can be arbitrary. We consider two angles: α = π/2
and α = π/3. The experiments for α = π/2 seek to verify
our predictions from Section 5, while the experiments for
α = π/3 test if these predictions transfer to non-orthogonal
cases. We train a two-layer neural network with m = 212

randomly initialized neurons with initialization scale σ =
2−7. We train this network for 213 epochs using gradient
descent with lr = 2−4. At that stage, we observed that the
network essentially converged.

When α = π/2, the scale of the first layer grows from 0.3 to
5.5 during the training (Figure 2, first row, left). At the same
time, almost all neurons end up aligned in four directions
(Figure 2, second row, left): 0, π/2, π,−π/2, which are the
global extrema of the function G. Similarly, when α = π/3
the scale of the first layer grows from 0.3 to 5.9 during the
training (Figure 2, first row, right). At the same time, almost
all neurons end up aligned in four directions (Figure 2,
second row, right): −π/6, π/2, 5π/6,−π/2, which again are
the global extrema of the function G. In both cases, the
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Figure 2. Empirical evidence of simplicity bias on XOR-like data.
Relative scale in the second row defined as ∥vi∥2/

∑m
j=1∥vj∥2.

few non-aligned neurons have smaller weights than aligned
ones (Figure 2, second row). Therefore, our theory indeed
predicts the alignment well in this setting.

7. Effects of Extreme Simplicity Bias
Finally, we test the possible implications of our theoretical
characterization of simplicity bias on real-world datasets.
Our previous results suggest that simplicity bias dispropor-
tionally amplifies “simple” features that are very informative
about the target. Additionally, in the case of extreme sim-
plicity bias, if the “simple” features are enough to classify
the training set perfectly, the network effectively “forgets”
all features except for the “simple” ones.

The latter fact suggests that if spurious features are enough
to classify the target in the train distribution, then the net-
work should progressively lose its ability to fine-tune out of
distribution. We test this hypothesis on the MNIST-CIFAR-
10 domino dataset proposed by Shah et al. (2020).

Figure 3. Examples of domino with a car (class 1 in CIFAR-10)
in train (left) and test (right) dataset. Notice that the top MNIST
image is an image of 1 only for the train data.

Setup The dataset contains vertical concatenations of
MNIST and CIFAR-10 images and uses CIFAR-10 image
labels. On the train distribution, the MNIST and CIFAR-10
labels of the images are perfectly correlated: digit i from
MNIST will always be concatenated with the image from
class i in CIFAR-10. On the test distribution, MNIST and
CIFAR-10 labels are not correlated, i.e., the concatenations
of images from different classes are random. Thus, MNIST
images represent “simple” spurious features that can be used
to perfectly classify the data. (See Figure 3.)

We fit a ResNet-18 model (He et al., 2016) on this domino
dataset and track its parameter trajectory. We use the stan-
dard PyTorch initialization, multiplied by 2−5 to mimic the
small initialization regime studied in the previous sections.
We train this model for 28 epochs using the usual SGD opti-
mizer with Nesterov momentum and linear schedule with
warm-up (similar training recipe was used by Jain et al.,
2023). Periodically during training, we apply the current
model to our test set and extract its last layer features, X ,
on test data. We normalize these last layer features (to
make feature scales comparable across different epochs),
Xnorm = X√

1
n

∑n
i=1

∑k
j=1 X2

ij

, where n is the number of test
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Figure 4. Accuracy and scale of the logistic regression on the vali-
dation part of the OOD test set (y-axis) vs. the training epoch at
which the ResNet features are extracted (x-axis).

samples, k is the number of features. We then use these
normalized last layer features to train simple logistic re-
gression model. We train two types of linear models: with
small regularization (with inverse regularization strength
equal to 1000) and without regularization. We plot the ac-
curacy on the validation part of the test distribution and the
quadratic mean of the regression coefficients on Figure 4.
(See training details in Appendix F.1.)

Analysis First, we can see that the model can not make
reliable predictions on the test set, peaking in accuracy at
about 45%. This is in contrast to training the model using
the same recipe on plain CIFAR-10 data, where it achieves
around 90% accuracy. At the same time, using the MNIST
labels on the test set, we get around 99% accuracy (see
Figure 8 in Appendix F.2; in line with the results of Shah
et al., 2020; Hermann & Lampinen, 2020). These facts sug-
gest that the network indeed experiences a simplicity bias
and mainly relies on “simple” MNIST features for predic-
tion. Second, as we can see, the OOD accuracy increases
fast at the beginning of training. This may indicate that
even simple MNIST features are better for classification
of CIFAR-10 data compared to random features. Finally,
we can see that the OOD accuracy does not increase in the
latter stages of training, indicating that the simplicity bias
persists even if we train longer. In Appendix F.2, we present
additional setups, where we do not scale the initialization
(Figure 9) or break the perfect correlation between MNIST
and CIFAR-10 labels on the train set (Figure 10). In both

cases, we also observe the presence of simplicity bias.

Finally, we can see some evidence in favor of the extreme
simplicity bias mechanism described in Section 5. For the
small regularization setup, we observe a significant drop
in OOD accuracy when using features from later training
stages (the drop between epochs 64 and 256 is approxi-
mately 8.13%± 0.80%, which gives a p-value around 10−6

according to the t-test). This result suggests a potential pres-
ence of extreme simplicity bias, which impedes the learning
of complex features and makes the network forget the ini-
tial random features. For the no regularization setup, we
can see that the network does not lose OOD accuracy, but
the last-layer weights become much bigger. This result is
again consistent with the presence of extreme simplicity
bias, as our proposed mechanism does not force the net-
work to forget “non-simple” features directly. Instead, it
makes “simple” features grow faster, so the regression can
only use “non-simple” features by applying huge weights
(approximately 50× bigger than the regularized regression).

Discussion We can draw three practical conclusions from
these experiments. Suppose the training data can be classi-
fied using a simple heuristic. Then, it might be beneficial to
train networks in a more “lazy regime” (Chizat et al., 2019),
which forces the network to remember randomly initialized
features. Similarly, one could apply early stopping of train-
ing. In this way, one could benefit from new features learned
from the training data without losing access to potentially
beneficial random features. Finally, since simplicity bias
works by making “simple” features disproportionally large,
the natural countermeasure is to use additional normaliza-
tion layers, which have already been proven effective for
few-shot transfer (e.g., Perez et al., 2018). At the same
time, the “lazy regime” or early stopping might harm in-
distribution generalization performance (Telgarsky, 2023;
Lyu et al., 2024). Thus, a practical method would need to
trade off the benefits of the “lazy regime” or early stopping
for the OOD task to their potential harm to generalization.

8. Conclusion
We characterize simplicity bias beyond linearly separable
datasets as the tendency of features to cluster in several
directions, which do not depend on the network size. We
also demonstrate that extreme simplicity bias may appear
for non-linearly-separable datasets and observe it experi-
mentally on image data. We see our results as an indication
that the characterization of simplicity bias is a crucial step
toward improving out-of-distribution generalization.

9



Simplicity Bias of Two-Layer Networks beyond Linearly Separable Data

Acknowledgments
This research was partially funded from the Ministry of Ed-
ucation and Science of Bulgaria (support for INSAIT, part
of the Bulgarian National Roadmap for Research Infrastruc-
ture). The authors thank Ivan Kirev and Kristian Minchev
for their helpful feedback and discussions on this work.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Arora, S., Du, S., Hu, W., Li, Z., and Wang, R. Fine-Grained

Analysis of Optimization and Generalization for Over-
parameterized Two-Layer Neural Networks. In Chaud-
huri, K. and Salakhutdinov, R. (eds.), Proceedings of the
36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research,
pp. 322–332. PMLR, 09–15 Jun 2019.

Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio,
E., Kanwal, M. S., Maharaj, T., Fischer, A., Courville,
A., Bengio, Y., and Lacoste-Julien, S. A Closer Look
at Memorization in Deep Networks. In Precup, D. and
Teh, Y. W. (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceed-
ings of Machine Learning Research, pp. 233–242. PMLR,
06–11 Aug 2017.

Awasthi, P., Tang, A., and Vijayaraghavan, A. Agnostic
Learning of General ReLU Activation Using Gradient
Descent. In The Eleventh International Conference on
Learning Representations, 2023.

Ba, J., Erdogdu, M. A., Suzuki, T., Wang, Z., Wu, D.,
and Yang, G. High-dimensional Asymptotics of Feature
Learning: How One Gradient Step Improves the Rep-
resentation. In Koyejo, S., Mohamed, S., Agarwal, A.,
Belgrave, D., Cho, K., and Oh, A. (eds.), Advances in
Neural Information Processing Systems, volume 35, pp.
37932–37946. Curran Associates, Inc., 2022.

Basri, R., Galun, M., Geifman, A., Jacobs, D., Kasten, Y.,
and Kritchman, S. Frequency Bias in Neural Networks for
Input of Non-Uniform Density. In III, H. D. and Singh, A.
(eds.), Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pp. 685–694. PMLR, 13–18
Jul 2020.

Boursier, E. and Flammarion, N. Early alignment in two-
layer networks training is a two-edged sword, 2024.

Boursier, E., Pillaud-Vivien, L., and Flammarion, N. Gradi-
ent flow dynamics of shallow ReLU networks for square
loss and orthogonal inputs. In Koyejo, S., Mohamed, S.,
Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 35, pp. 20105–20118. Curran Associates, Inc., 2022.

Bowman, B. and Montufar, G. Implicit Bias of MSE Gra-
dient Optimization in Underparameterized Neural Net-
works. In International Conference on Learning Repre-
sentations, 2022.

Brutzkus, A. and Globerson, A. Why do Larger Models
Generalize Better? A Theoretical Perspective via the
XOR Problem. In Chaudhuri, K. and Salakhutdinov, R.
(eds.), Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pp. 822–830. PMLR, 09–15
Jun 2019.

Brutzkus, A., Globerson, A., Malach, E., and Shalev-
Shwartz, S. SGD Learns Over-parameterized Networks
that Provably Generalize on Linearly Separable Data. In
International Conference on Learning Representations,
2018.

Chistikov, D., Englert, M., and Lazic, R. Learning a Neuron
by a Shallow ReLU Network: Dynamics and Implicit
Bias for Correlated Inputs. In Oh, A., Neumann, T.,
Globerson, A., Saenko, K., Hardt, M., and Levine, S.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 36, pp. 23748–23760. Curran Associates,
Inc., 2023.

Chizat, L. and Bach, F. On the Global Convergence of Gra-
dient Descent for Over-parameterized Models using Opti-
mal Transport. In Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018.

Chizat, L., Oyallon, E., and Bach, F. On Lazy Training in
Differentiable Programming. In Wallach, H., Larochelle,
H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Gar-
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Supplementary Material
The supplementary material is structured as follows.

• Appendix A explains some additional notation used in proofs.

• Appendix B contains the proof of Theorem 4.1.

• Appendix C contains the proof of Theorem 4.4.

• Appendix D contains the proofs of the results from Section 5.

• Appendix E contains the additional experimental results for Section 5.

• Appendix F.1 contains additional experimental results for Section 7.

A. Additional Notation
Denote g(v) := ∇vG(v).

B. Proof of Theorem 4.1
We will prove the theorem in several stages. First, we will analyze Equation (2). Then, we couple Equations (1) and (2).
This will allow us to prove the desired result.

B.1. Analysis of Equation (2)

B.1.1. DIRECTIONAL CONVERGENCE

Now, we want to apply the results of Ji & Telgarsky (2020) about the directional convergence to Equation (2).

Dynamics of neuron direction Notice that

dv̂

dv
=

dv/∥v∥

dv
=

∥v∥2 − vvT

∥v∥3
. (5)

Thus,
dv̂l

j

dt
=

dv̂l
j

dvl
j

dvl
j

dt
= sjPv̂lg(v̂l

j)

and v̂l(0) = v0

∥v0∥ does not depend on σ.

Consider the auxiliary system
drj
dt

= sj∇rG(r̂j) =
sj

∥rj∥
Prj

g(r̂j), (6)

where rj(0) = v̂l
j(0). Notice that

rj
drj
dt

= 0 ∧ ∥rj(0)∥ = 1 =⇒ drj
dt

= sjPr̂j
g(r̂j).

Thus, ∀t rj(t) = v̂l
j(t): we could use rj instead of v̂l

j in further derivations.

We want to show the convergence of rj similarly to Theorem 3.1 of Ji & Telgarsky (2020). To do it, we want to use Lemma
B.11 of Ji & Telgarsky (2020).

Lemma B.1 (Lemma B.11 of Ji & Telgarsky 2020). Given a locally Lipschitz definable function f : A→ R with an open
bounded domain A, there exists ν > 0 and a definable desingularizing function ψ on [0, ν) such that

∀v ∈ f−1((0, ν)) ψ′(f(v))∥∇vf(v)∥ ≥ 1.

14



Simplicity Bias of Two-Layer Networks beyond Linearly Separable Data

To apply it, we need to show that G(r̂) is locally Lipschitz and definable. And since

G(v̂) =
−ℓ′(0)
n

n∑
i=1

ϕ(v̂,xi)yi,

we only need to show the desired properties for ϕ.

Proposition B.2. Denote c := max
(
−1,min

(
1, vTx

ξ∥v∥

))
and the class of all polynomials of x1, . . . , xp by Poly(x1, . . . , xp).

We have

ϕ(v,x) =

∫ 1

−c

(vTx+ ξ∥v∥a)(1− a2)
d−1
2

Vol(Dd−1)

Vol(Dd)
da ∈ ξ∥v∥Poly(c,

√
1− c2).

Proof. By the definition

ϕ(v,x) =

∫
∥z∥≤1

(vT(x+ ξz))+
dz

Vol(Dd)
=

∫ 1

−1

∫
∥b∥2≤1−a2

(vTx+ ξ∥v∥a)+
dbda

Vol(Dd)

=

∫ 1

−1

(vTx+ ξ∥v∥a)+(1− a2)
d−1
2

Vol(Dd−1)

Vol(Dd)
da =

∫ 1

−c

(vTx+ ξ∥v∥a)(1− a2)
d−1
2

Vol(Dd−1)

Vol(Dd)
da

=

∫ π/2

− arcsin(c)

(vTx+ ξ∥v∥ sin(φ)) cos(φ)dVol(D
d−1)

Vol(Dd)
dφ,

where a := v̂Tz and b := Pvz. To prove that the right hand part is a polynomial in c and
√
1− c2, notice the following

identities. ∫ π/2

− arcsin(c)

sin(φ) cos(φ)d dφ =
cos(arcsin(c))d+1

d+ 1
=

(1− c2)
d+1
2

d+ 1
.

∫ π/2

− arcsin(c)

cos(φ)d dφ =

∫ π/2

− arcsin(c)

(
eiφ + e−iφ

2

)d

dφ =

d−1
2∑

k=0

(
d

k

)
ei(d−2k)φ − e−i(d−2k)φ

i(d− 2k)2d

∣∣∣∣π/2
− arcsin(c)

=

d−1
2∑

k=0

(
d

k

)
sin((d− 2k) arcsin(c)) + sin( (d−2k)π

2 )

(d− 2k)2d−1
.

Finally, notice that

sin(k arcsin(c)) = Im(eik arcsin(c)) = Im((
√

1− c2 + ic)k) ∈ Poly(c,
√
1− c2).

Thus, ϕ(v,x) ∈ ξ∥v∥Poly(c,
√
1− c2).

Remark B.3. Notice that, for even d, the activation function will have a term proportional to arcsin(c) in addition to the
polynomial in c. While arcsin(c) is not definable in the smallest structure on (R,+,×) (see discussion below), this function
is definable on the structure (R,+,×,A), where A is the class of all restricted functions on [−1, 1]n (Example 1.5 of Loi,
2010).

Definability of ϕ To prove that ϕ is definable in the o-minimal structure on (R,+,×), we will employ the following
properties of definable functions (Appendix B.1, Ji & Telgarsky, 2020).

1. Let f, g : D → R be definable functions. Then ∀α, β ∈ R αf + βg and fg are definable. If g ̸= 0, f/g is definable. If
f ≥ 0, ∀l ∈ N l

√
f is definable.

2. Let f : D → Rd. Then f is definable iff all coordinate projections of f are definable.

3. Composition of definable functions is definable.

4. Any coordinate permutation of a definable set is definable.
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5. The image and pre-image of a definable set by a definable function is definable.

6. Any combination of finitely many definable functions with disjoint domains is definable. For example, the point-wise
maximum and minimum of definable functions are definable.

7. Polynomial functions are definable.

Now, notice that vTx is a linear function, ∥v∥ is a square root of a quadratic polynomial. Thus, their ratio vTx
ξ∥v∥ is definable.

Therefore, c is definable since it a composition of the maxima and minima of definable functions. Finally, ϕ(v̂,x) is
definable since it is a polynomial of two definable functions c and

√
1− c2.

Local Lipschitzness To prove that ϕ(v̂,x) is locally Lipschitz on A, we prove a stronger property that ϕ(v,x) is twice
continuously differentiable on A, which would be useful later. Notice that

ϕ(v,x) =

∫ 1

−c

(vTx+ ξ∥v∥a)(1− a2)
d−1
2

Vol(Dd−1)

Vol(Dd)
da.

Denote H(z,v,x) :=
∫ 1

−z
(vTx+ ξ∥v∥a)(1− a2)

d−1
2

Vol(Dd−1)
Vol(Dd)

da. Notice that ϕ(v,x) = H(c,v,x).

By the chain rule for total derivative and the Leibniz integral rule (notice that vTx+ ξ∥v∥a is smooth for v ̸= 0), when
vTx
ξ∥v∥ /∈ {−1, 1}, we get

∇vϕ(v,x) =
∂H

∂c
∇vc+∇vH

=(vTx− ξ∥v∥c)(1− c2)
d−1
2

Vol(Dd−1)

Vol(Dd)
∇vc+

∫ 1

−c

(
x+ ξ

v

∥v∥
a

)
(1− a2)

d−1
2

Vol(Dd−1)

Vol(Dd)
da

=

∫ 1

−c

(
x+ ξ

v

∥v∥
a

)
(1− a2)

d−1
2

Vol(Dd−1)

Vol(Dd)
da.

Thus, ∇vϕ(v,x) exists and is continuous when vTx
ξ∥v∥ /∈ {−1, 1}. When vTx

ξ∥v∥ ∈ {−1, 1} (which implies c ∈ {−1, 1}), we
could find the derivative by the definition. Notice that c is locally Lipschitz in v when v ̸= 0 since it is a clipping of a
continuously differentiable function. Now, using the Leibniz rule again, we get

lim
dv→0

ϕ(v + dv,x)− ϕ(v,x)

∥dv∥

= lim
dv→0

H(c(v + dv),v + dv,x)−H(c(v + dv),v,x) +H(c(v + dv,v,x)−H(c(v),v,x)

∥dv∥

= lim
dv→0

∫ 1

−c(v+dv)

(
x+ ξ

v + dv

∥v + dv∥
a

)
(1− a2)

d−1
2

Vol(Dd−1)

Vol(Dd)
da+ o(1)

+

∫ −c(v)

−c(v+dv)
(vTx+ ξ∥v∥a)(1− a2)

d−1
2

Vol(Dd−1)
Vol(Dd)

da

∥dv∥
.

Since |c(v)| = 1, the integrand in the last expression satisfy

|(vTx+ ξ∥v∥a)(1− a2)
d−1
2 | ≤(|vTx|+ ξ∥v∥)(c(v)2 − c(v + dv)2)

d−1
2

≤(|vTx|+ ξ∥v∥)2
d−1
2 |c(v)− c(v + dv)|

d−1
2

=O(∥dv∥
d−1
2 ).
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Thus, using Lebesgue’s dominated convergence theorem, we get

lim
dv→0

ϕ(v + dv,x)− ϕ(v,x)

∥dv∥

= lim
dv→0

∫ 1

−c(v+dv)

(
x+ ξ

v + dv

∥v + dv∥
a

)
(1− a2)

d−1
2

Vol(Dd−1)

Vol(Dd)
da+ o(1) + O(∥dv∥

d−1
2 )

=

∫ 1

−c

(
x+ ξ

v

∥v∥
a

)
(1− a2)

d−1
2

Vol(Dd−1)

Vol(Dd)
da.

Therefore, ϕ(v,x) is continuously differentiable in v when v ̸= 0.

Similarly, we get the following Hessian

∇2
vϕ(v,x)

=

∫ 1

−c

ξa

∥v∥
Pv(1− a2)

d−1
2

Vol(Dd−1)

Vol(Dd)
da+

(
x− ξ

v

∥v∥
c

)
(1− c2)

d−1
2

Vol(Dd−1)

Vol(Dd)
(∇vc)

T

=Pv
ξ(1− c2)

d+1
2

(d+ 1)∥v∥
Vol(Dd−1)

Vol(Dd)
+

(
x− ξ

v

∥v∥
c

)
(1− c2)

d−1
2

Vol(Dd−1)

Vol(Dd)
(∇vc)

T.

Notice that when c ∈ (−1, 1)

∇vc = Pv
x

ξ
, x− ξ

v

∥v∥
c = Pvx.

Thus, the Hessian exists, is continuous, and has the form ∇2
vϕ(v,x) = PvA(v,x)Pv .

Convergence of rj First, notice that ∃ limt→∞ sjG(rj) =: G
∗
j because sjG(rj) is monotonically increasing, rj ∈ Sd−1,

and G is continuous. Now, consider function ζj(t) :=
∫ t

0

∥∥∥drj

dt

∥∥∥dτ , function fj(rj) := G∗
j − sjG(r̂j), and desingularizing

function ψj , corresponding to fj . Then for big enough t we have

dfj
dζj

= −∥∇rG(r̂j)∥ = −∥∇rfj(rj)∥ ≤ − 1

ψ′
j(fj(rj))

=⇒ −dψj

dt
≥ dζj

dt
=⇒ ζj(t) ≤ ζj(t0) + ψj(t0)− ψj(t).

Thus, ζj is bounded, and hence limt→∞ ζj exists. Therefore, the trajectory of rj has a finite length, and hence limt→∞ rj =:
v̂∗
j exists. Also, since

dfj
dt

= −∥∇rG(r̂j)∥2,

∇rG(r̂) is differentiable, and r̂j converges. Moreover, limt→∞∥∇rG(r̂j)∥ = 0 (otherwise f would increase to infinity).
Thus, v̂∗

j is critical: Pv̂∗
j
g(v̂∗

j ) = 0.

B.1.2. DYNAMICS AROUND CRITICAL DIRECTIONS

We divide all neurons into two categories: prominent and non-prominent. Prominent neurons achieve the optimum of
function G: sjG(v̂∗

j ) = λ := maxv̂∈Sd−1 |G(v̂)|. Denote λj := sjG(v̂
∗
j ), P := {j | λj = λ} (prominent neurons), and

R := [m] \ P (non-prominent neurons).

Dynamics of small neurons First, we describe the dynamics of neurons from R. We have

ulj = uj(0) exp

(∫ t

0

sjG(v̂
l
j) dτ

)
≤ uj(0)e

λjt.

Notice that the norm growth of these neurons is slower than eλt.
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Dynamics of the big neurons’ directions Now, we describe the dynamics of neurons from P . Near critical directions,
the Hessian of G restricted on the unit sphere is non-positive if sj = 1 and non-negative if sj = −1 due to the local
characterization of extremum. Consider the case sj = 1 (the case sj = −1 is similar). Near critical direction, we have

(v̂∗
j )

T
dv̂l

j

dt
= (v̂∗

j )
TPv̂l

j
g(v̂l

j) = (v̂∗
j )

TPv̂l
j
(g(v̂∗

j ) +∇2G(v̂∗
j )(v̂

l
j − v̂∗

j ) + O(∥v̂l
j − v̂∗

j ∥2))

Denote v̂l
j = cos(α)v̂∗

j + sin(α)ϵ, where cos(α) = (v̂∗
j )

Tv̂l
j and ϵ :=

Pv̂∗
j
v̂l
j

∥Pv̂∗
j
v̂l
j∥

. We get

Pv̂l
j
v̂∗
j = (1− cos(α)2)v̂∗

j − sin(α) cos(α)ϵ.

Since G is homogeneous, we get
g(v̂∗

j ) = λj v̂
∗
j .

Also, we know that

∇2G(v̂) = Pv̂∇2G(v̂)Pv̂ =⇒ ∇2G(v̂∗
j )(v̂

l
j − v̂∗

j ) = ∇2G(v̂∗
j ) sin(α)ϵ.

These equations give

(v̂∗
j )

T
dv̂l

j

dt
=((1− cos(α)2)v̂∗

j − sin(α) cos(α)ϵ)T(λv̂∗
j +∇2G(v̂∗

j ) sin(α)ϵ+O(α2))

=λ(1− cos(α)2)− ϵT∇2G(v̂∗
j )ϵ sin(α)

2 cos(α) + O(α3)

≥λ∥v̂∗
j − v̂l

j∥2 +O(α3).

This equation implies

d∥v̂l
j − v̂∗

j ∥2

dt
≤ −2λ∥v̂l

j − v̂∗
j ∥2 + 2δ∥v̂l

j − v̂∗
j ∥3 =⇒

∥v̂l
j − v̂∗

j ∥
1− δ

λ∥v̂
l
j − v̂∗

j ∥
≤

∥v̂l
j(t0,j)− v̂∗

j (t0,j)∥e−λ(t−t0,j)

1− δ
λ∥v̂

l
j(t0,j)− v̂∗

j (t0,j)∥

=⇒ ∥v̂l
j − v̂∗

j ∥ ≤
∥v̂l

j(t0,j)− v̂∗
j (t0,j)∥e−λ(t−t0,j)

1− δ
λ∥v̂

l
j(t0,j)− v̂∗

j (t0,j)∥(1− e−λ(t−t0,j))
,

where 2δ∥v̂l
j − v̂∗

j ∥3 comes from the term O(α3) and t0,j is chosen such that ∥v̂l
j − v̂∗

j ∥ is sufficiently small to bound our
big-O term and, at the same time, δ

λ∥v̂
l
j(t0)− v̂∗

j (t0)∥ ≤ 1
2 . Thus, we get an exponentially fast convergence near the critical

direction.

Denote
t0 := max

j
t0,j , c0 := max

j
2∥v̂l

j(t0,j)− v̂∗
j (t0,j)∥eλt0,j .

We get
∀j ∈ P, t ≥ t0 ∥v̂l

j − v̂j∥ ≤ c0e
−λt.

Dynamics of the big neurons’ scales Now, we will describe the dynamics of ulj . Notice

dulj
dt

= uljG(v̂
l
j) =⇒ ulj = ulj(0) exp

(∫ t

0

G(v̂l
j) dτ

)
.

This equality motivates us to consider a limit
u∗j := lim

t→∞
ulje

−λt.

This limit exists since the right hand part is monotonically decreasing. We get

ulj = ulj(0) exp

(∫ t

0

G(v̂l
j) dτ

)
= u∗j exp

(
λt+

∫ ∞

t

(λ−G(v̂l
j)) dτ

)
.

Thus,

u∗je
λt ≤ ulj ≤ u∗j exp

(
λt+

∫ ∞

t

c0b0e
−λτ dτ

)
= u∗j exp

(
λt+

c0b0
λ

e−λt

)
,

where b0 := supv ̸=v′
|G(v)−G(v′)|

∥v−v′∥ . Notice that this derivation also implies that neurons in P grow as Θ(eλt).
Remark B.4. It is easy to see that b0 ≤ (−ℓ′(0))(1 + ξ).
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Neuron capture Notice that all global extrema are attractive. Therefore, for isotropic initialization, with probability at
least 1− (fj)

m, some point will be attracted to the global extremum v̂∗
j , where fj := 1− volume of attraction region

volume of shpere .

B.2. Coupling Equations (1) and (2)

B.2.1. NORM GROWTH RATE

First, we prove the following proposition and lemma.

Proposition B.5. Assuming ∥xi∥ ≤ 1, the following identities hold∣∣∣∣∣ 1n
n∑

i=1

(−ℓ′(f(θ,xi)yi) + ℓ′(0))ϕ(v̂,xi)yi

∣∣∣∣∣ ≤ a∥θ∥2[m],∣∣∣∣∣ 1n
n∑

i=1

(−ℓ′(f(θ,xi)yi) + ℓ′(0))∇vϕ(z,xi)|z=v̂yi

∣∣∣∣∣ ≤ a∥θ∥2[m],

where a := m(1+ξ)2

4 .

Proof. Notice that

|f(θ,xi)| ≤
m∑
j=1

u2j |ϕ(v̂j ,xi)| ≤ (1 + ξ)

m∑
j=1

u2j ≤ m(1 + ξ)∥θ∥2[m],

and

|−ℓ′(f(θ,xi)yi) + ℓ′(0)| ≤ |f(θ,xi)| sup
z
|ℓ′′(z)| ≤ m(1 + ξ)

4
∥θ∥2[m].

Thus, ∣∣∣∣∣ 1n
n∑

i=1

(−ℓ′(f(θ,xi)yi) + ℓ′(0))ϕ(v̂,xi)yi

∣∣∣∣∣ ≤ m(1 + ξ)

4
∥θ∥2[m] max

i,v̂
|ϕ(v̂,xi)| ≤ a∥θ∥2[m].

Similarly for the gradients of activation.

Lemma B.6. Assume that θ follows Equation (1) and |uj(0)| = ∥vj(0)∥. Then

∀t ≤ t1 ∥θ∥2[m] ≤ 2∥θ(0)∥2[m]e
2λt,

where t1 := 1
2λ ln

(
λ

2a∥θ(0)∥2
[m]

)
.

Proof. Thus,

duj
dt

= G(vj) +
1

n

n∑
i=1

(pi(θ) + ℓ′(0))ϕ(vj ,xi)yi =⇒
∣∣∣∣dujdt

∣∣∣∣ ≤ |uj ||G(v̂j)|+ a∥θ∥2[m]|uj | ≤ λ∥θ∥[m] + a∥θ∥3[m]

=⇒
∫ d∥θ∥2[m]

∥θ∥2[m] +
a
λ∥θ∥

4
[m]

≤ 2λt =⇒ ∥θ∥2[m] ≤
∥θ(0)∥2[m]e

2λt

1− a
λ∥θ(0)∥

2
[m](e

2λt − 1)
.

Therefore,

∥θ∥2[m] ≤ 2∥θ(0)∥2[m]e
2λt ∀t ≤ 1

2λ
ln

(
λ

2a∥θ(0)∥2[m]

)
.
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B.2.2. COUPLING DIRECTIONS

We have

dv̂j

dt
= sjPv

(
g(v̂j) +

1

n

n∑
i=1

(−ℓ′(f(θ,xi)yi) + ℓ′(0))∇vϕ(vj ,xi)yi

)
,

dv̂l
j

dt
= sjPvlg(v̂l

j).

Denote b1 := supv̂,v̂′∈Sd−1,v̂ ̸=v̂′
∥Pv̂g(v̂)−Pv̂′g(v̂′)∥

∥v̂−v̂′∥ (since ϕ is twice continuously differentiable, this constant is defined).

Remark B.7. It is easy to see that b1 ≤ 2 supv̂∥g(v̂)∥+ (−ℓ′(0)) supi,v̂∥∇2
vϕ(v,xi)∥ =⇒ b1 = O(1/ξ), when ξ → 0.

We get

d∥v̂j − v̂l
j∥

dt
≤

∥∥∥∥∥dv̂j

dt
−

dv̂l
j

dt

∥∥∥∥∥ ≤

∥∥∥∥∥ 1n
n∑

i=1

(−ℓ′(f(θ,xi)yi) + ℓ′(0))∇vϕ(vj ,xi)yi

∥∥∥∥∥+ ∥Pv̂g(v̂)− Pv̂lg(v̂l)∥

≤a∥θ∥2[m] + b1∥v̂j − v̂l
j∥.

Consider function h := ∥v̂j − v̂l
j∥e−b1t, we get

∀t ≤ t1
dh

dt
≤ a∥θ∥2[m]e

−b1t =⇒ ∀t ≤ t1 h ≤
∫ t

0

2a∥θ(0)∥2[m]e
(2λ−b1)τ dτ

=⇒ ∀t ≤ t1 h ≤ 2a

b1 − 2λ
∥θ(0)∥2[m](1− e(2λ−b1)t) =⇒ ∀t ≤ t1 ∥v̂j − v̂l

j∥ ≤ 2a

b1 − 2λ
∥θ(0)∥2[m]e

b1t,

where we have assumed that b1 > 2λ (which holds for small enough ξ).

B.2.3. COUPLING SCALES

We have

duj
dt

= G(vj) +
1

n

n∑
i=1

(−ℓ′(f(θ,xi)yi) + ℓ′(0))ϕ(vj ,xi)yi,

dulj
dt

= G(vl
j).

It gives

∀t ≤ t1
d|uj − ulj |

dt
≤

∣∣∣∣∣dujdt
−

dulj
dt

∣∣∣∣∣ ≤ a∥θ∥2[m]|uj |+ |ulj ||G(v̂j)−G(v̂l
j)|+ |uj − ulj ||G(v̂j)|

≤2
√
2a∥θ(0)∥3[m]e

3λt +
2ab0∥θ(0)∥3[m]

b1 − 2λ
e(λj+b1)t + λ|uj − ulj |.

As previously, consider function h := |uj − ulj |e−λt, we get

∀t ≤ t1 h ≤ 2
√
2a∥θ(0)∥3[m]e

2λt +
2ab0∥θ(0)∥3[m]

b1 − 2λ
e(λj+b1−λ)t

=⇒ ∀t ≤ t1 |uj − ulj | ≤
a
√
2

λ
∥θ(0)∥3[m](e

3λt − eλt) +
2ab0

(b1 − 2λ)(λj + b1 − λ)
∥θ(0)∥3[m](e

(λj+b1)t − eλt)

=⇒ ∀t ≤ t1 |uj − ulj | ≤ c1∥θ(0)∥3[m]e
(λj+b1)t,

where we have assumed that b1 ≥ 4λ and denoted c1 := a
√
2

λ + 2ab0
(b1−2λ)2 .
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B.3. Final Bound

The result of the previous sections show

∀j ∈ P, t ∈ [t0, t1] ∥v̂j − v̂∗
j ∥ ≤ ∥v̂j − v̂l

j∥+ ∥v̂l
j − v̂∗

j ∥ ≤ 2a

b1 − 2λ
∥θ(0)∥2[m]e

cgt + c0e
−λt,

∀j ∈ P, t ∈ [t0, t1] |uj − u∗je
λt| ≤ |uj − ulj |+ |ulj − u∗je

λt|

≤ c1∥θ(0)∥3[m]e
(λ+b1)t + |u∗j |eλt

(
exp

(
c0b0
λ

e−λt

)
− 1

)
,

∀j ∈ R, t ∈ [0, t1] |uj | ≤ c1∥θ(0)∥3[m]e
(λj+cg)t + |uj(0)|eλjt.

We want to control these errors until the point when the fastest growing directions will have a predefined scale, r. To do this,
we will choose T1 = 1

λ ln
(
r
σ

)
and σ = rκ+1. (Notice that t0 does not depend on r, and t1 = −ln(σ)/λ +O(1). Thus, for

sufficiently small r, we have t0 < T1 < t1.)

This functional form will give us the following errors:

∀j ∈ P ∥v̂j − v̂∗
j ∥ ≤O(r2−κ(b1/λ−2) + rκ),

∀j ∈ P |uj − u∗je
λT1 | ≤O(r3−κ(b1/λ−2) + r1+κ),

∀j ∈ R |uj | ≤O

(
r3−κ

(
b1+λj

λ −3
)
+ r1+κ

(
1−

λj
λ

))
.

We choose κ∗ = 2
b1
λ −1

. It will give

∀j ∈ P ∥v̂j − v̂∗
j ∥ ≤O(rκ

∗
),

∀j ∈ P |uj − u∗je
λT1 | ≤O(r1+κ∗

),

∀j ∈ R |uj | ≤O(r1+κj ),

where κj := κ∗(1− λj/λ).

C. Proof of Theorem 4.4
By Lemma 5.3 of Lyu et al. (2021), we could write the following dynamics for embedding (4)

duχj
dt

=
1

n

n∑
i=1

(−ℓ′(f(θχ,xi)yi))ϕ(v
χ
j ,xi)yi,

dvχ
j

dt
=
uχj
n

n∑
i=1

(−ℓ′(f(θχ,xi)yi))∇vϕ(v
χ
j ,xi)yi.

(7)

Denote θ∗ := θχ(T1)/r.

We will prove the theorem in two stages. First, we will couple Equations (1) and (7). Then we will investigate the sensitivity
of Equation (7) to initialization scale. This analysis will allow us to analyze the solution to Equation (1).

C.1. Coupling Equations (1) and (7)

C.1.1. NORM GROWTH

Since ∥θχ(T1)∥[m] = Θ(r) and ∥θχ(T1)− θ(T1)∥[m] = o(r), we have that ∥θ(T1)∥ ≤
√
2∥θχ(T1)∥ for sufficiently small

r. Using this fact and Lemma B.6, we get

∀t ∈ [T1, T1 + t3] ∥θ(T1)∥2[m] ≤2q2e2λ(t−T1),

∀t ∈ [T1, T1 + t3] ∥θχ(T1)∥2[m] ≤2q2e2λ(t−T1),

where t3 := 1
2λ ln

(
λ

2aq2

)
and q2 := 2∥θχ(T1)∥2[m] = 2r2∥θ∗∥2[m].
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C.1.2. BOUNDING ∥v̂χ
j − v̂∗

j ∥

W.l.o.g. assume that sj = 1. Additionally, assume ∥v̂χ
j − v̂∗

j ∥ ≤ ε and denote v̂χ
j = cos(α′)v̂∗

j + sin(α′)ϵ. First, notice
that ∥v̂χ

j − v̂∗
j ∥ ≤ ε ≤ ∆ implies

ϕ(v̂χ
j ,xi) = ((v̂χ

j )
Txi)+ =⇒ g(v̂χ

j ) = g(v̂∗
j ).

We have

∀j ∈ P (v̂∗
j )

T
dv̂χ

j

dt
=(Pv̂χ

j
v̂∗
j )

T

(
g(v̂χ

j ) +
1

n

n∑
i=1

(−ℓ′(f(θχ,xi)yi) + ℓ′(0))∇vϕ(v
χ
j ,xi)yi

)
≥((1− cos(α′)2)v̂∗

j − sin(α′) cos(α′)ϵ)Tg(v̂χ
j )− sin(α′)a∥θχ∥2[m]

=λ sin(α′)2 − sin(α′)a∥θχ∥2[m]

where z ∈ [v̂∗
j , v̂

χ
j ]. It implies

∀t ∈ [T1, T1 + t3]
dα′

dt
≤ 2aq2e2λ(t−T1) − λ sin(α′) =⇒ α′ ≤ a

λ
q2(e2λ(t−T1) − 1).

So, to ensure ∥v̂χ
j − v̂∗

j ∥ ≤ ε, it is sufficient to have

a

λ
q2e2λ(t−T1) ≤ ε ⇐= t− T1 ≤ 1

2λ
ln

(
λε

aq2

)
=: tε4.

C.1.3. BOUNDING ∥θ − θχ∥

Coupling Directions First, we want to bound ∥v̂j − v̂χ
j ∥. Assuming that ∥v̂j − v̂χ

j ∥ ≤ ε, we get ∥v̂j − v̂∗
j ∥ ≤ 2ε and

d∥v̂j − v̂χ
j ∥2

dt
=− v̂Tj

dv̂χ
j

dt
− (v̂χ

j )
T dv̂j

dt

=− (Pv̂χ
j
v̂j)

T

(
g(v̂χ

j ) +
1

n

n∑
i=1

(−ℓ′(f(θχ,xi)yi) + ℓ′(0))∇vϕ(v
χ
j ,xi)yi

)

− (Pv̂j
v̂χ
j )

T

(
g(v̂j) +

1

n

n∑
i=1

(−ℓ′(f(θ,xi)yi) + ℓ′(0))∇vϕ(vj ,xi)yi

)
=− (Pv̂χ

j
v̂j)

T(g(v̂χ
j )− g(v̂j))

− (Pv̂χ
j
v̂j)

T

(
1

n

n∑
i=1

(−ℓ′(f(θχ,xi)yi) + ℓ′(0))(∇vϕ(v
χ
j ,xi)−∇vϕ(vj ,xi))yi

)

− (Pv̂χ
j
v̂j)

T

(
1

n

n∑
i=1

(−ℓ′(f(θχ,xi)yi) + ℓ′(f(θ,xi)yi))∇vϕ(vj ,xi)yi

)

− (Pv̂χ
j
v̂j + Pv̂j

v̂χ
j )

T

(
g(v̂j) +

1

n

n∑
i=1

(−ℓ′(f(θ,xi)yi) + ℓ′(0))∇vϕ(vj ,xi)yi

)

=− (Pv̂χ
j
v̂j)

T

(
1

n

n∑
i=1

(−ℓ′(f(θχ,xi)yi) + ℓ′(f(θ,xi)yi))∇vϕ(vj ,xi)yi

)

− (Pv̂χ
j
v̂j + Pv̂j

v̂χ
j )

T

(
g(v̂j) +

1

n

n∑
i=1

(−ℓ′(f(θ,xi)yi) + ℓ′(0))∇vϕ(vj ,xi)yi

)
.

Denote cos(β) := v̂Tj v̂
χ
j . We get

∥Pv̂j
v̂χ
j ∥

2 = ∥v̂χ
j − cos(β)v̂j∥2 = 1− cos(β)2 ≤ ∥v̂j − v̂χ

j ∥
2.
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Now, notice

|f(θ,xi)− f(θχ,xi)| =

∣∣∣∣∣∣
m∑
j=1

(u2jϕ(v̂j ,xi)− (uχj )
2ϕ(v̂χ

j ,xi))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
m∑
j=1

((u2j − (uχj )
2)ϕ(v̂j ,xi) + (uχj )

2(ϕ(v̂j ,xi)− ϕ(v̂χ
j ,xi)))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
m∑
j=1

((u2j − (uχj )
2)ϕ(v̂j ,xi) + (uχj )

2[(v̂∗
j )

Txi ≥ 0](v̂j − v̂χ
j )

Txi)

∣∣∣∣∣∣
≤|P |(1 + ξ)(∥θ∥P + ∥θχ∥P )U + |R|(1 + ξ)∥θ∥2R + |P |∥θ∥2[m]V,

where U := maxj∈P |uj − uχj |, V := maxj∈P ∥v̂j − v̂χ
j ∥. This formula implies

∥∥∥∥∥(Pv̂χ
j
v̂j)

T

(
1

n

n∑
i=1

(−ℓ′(f(θχ,xi)yi) + ℓ′(f(θ,xi)yi))∇vϕ(vj ,xi)yi

)∥∥∥∥∥
≤ aU(∥θ∥[m] + ∥θχ∥[m])∥v̂j − v̂χ

j ∥+ a∥θ∥2R∥v̂j − v̂χ
j ∥+ a∥θχ∥2[m]V ∥v̂j − v̂χ

j ∥.

Finally,

Pv̂χ
j
v̂j + Pv̂j

v̂χ
j = (1− cos(β))(v̂j + v̂χ

j ) = ∥v̂j − v̂χ
j ∥

2
v̂j + v̂χ

j

2
,

which gives

(Pv̂χ
j
v̂j + Pv̂j

v̂χ
j )

T

(
g(v̂j) +

1

n

n∑
i=1

(−ℓ′(f(θ,xi)yi) + ℓ′(0))∇vϕ(vj ,xi)yi

)

≥ λ∥v̂j − v̂χ
j ∥

2 cos(α) + cos(α′)

2
− a∥θ∥2[m]∥v̂j − v̂χ

j ∥
2,

where cos(α) = v̂Tj v̂
∗
j . Together, we get

dV 2

dt
≤a(∥θ∥2[m] + ∥θχ∥2[m])V

2 + a∥θ∥2RV + a(∥θ∥[m] + ∥θχ∥[m])UV

≤4aq2e2λ(t−T1)V 2 + a∥θ∥2RV + 2
√
2aqeλ(t−T1)UV

=⇒ dV

dt
≤2aq2e2λ(t−T1)V +

a

2
∥θ∥2R +

√
2aqeλ(t−T1)U.

Bounding ∥θ∥R We get

duj
dt

= G(vj) +
1

n

n∑
i=1

(−ℓ′(f(θ,xi)yi) + ℓ′(0))ϕ(vj ,xi)yi =⇒
∣∣∣∣dujdt

∣∣∣∣ ≤ |uj |(λ+ a∥θ∥2[m]).

Thus,

|uj | ≤ |uj(T1)| exp
(∫ t

T1

λ+ a∥θ∥2[m] dτ

)
≤ |uj(T1)| exp

(
λ(t− T1) +

a

λ
q2e2λ(t−T1)

)
.

If t− T1 ≤ tε4, we get

|uj | ≤ eλ(t−T1)+ε|uj(T1)| =⇒ ∥θ∥R ≤ eλ(t−T1)+ε∥θ(T1)∥R.
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Bounding U Similarly to the previous cases, we have

d|uj − uχj |
dt

≤

∣∣∣∣∣dujdt
−

duχj
dt

∣∣∣∣∣
≤
∣∣ujG(v̂j)− uχjG(v̂

χ
j )
∣∣+ ∣∣∣∣∣ 1n

n∑
i=1

((ℓ′(0)− ℓ′(f(θ,xi)yi))ϕ(vj ,xi)− (ℓ′(0)− ℓ′(f(θχ,xi)yi))ϕ(v
χ
j ,xi))yi

∣∣∣∣∣ ≤
λU + ∥θχ∥[m]|(v̂j − v̂χ

j )
Tg(v̂j)|+ a∥θχ∥[m](U(∥θ∥[m] + ∥θχ∥[m]) + ∥θ∥2R + ∥θχ∥2[m]V ) + a∥θ∥2[m]∥vj − vχ

j ∥.

Notice

|(v̂j − v̂χ
j )

Tg(v̂j)| =λ|cos(α)− cos(α′)| = 2λ sin

(
α+ α′

2

)
sin

(
|α− α′|

2

)
≤ 2λ sin

(
β

2

)
sin

(
β

2
+ α′

)
≤λ∥v̂j − v̂χ

j ∥
(∥v̂j − v̂χ

j ∥
2

+ α′
)
.

Also, notice
∥vj − vχ

j ∥ = ∥uj v̂j − uχj v̂
χ
j ∥ ≤ |uj − uχj |+ |uχj |∥v̂j − v̂χ

j ∥.

It will give

dU

dt
≤ λU + 6aq2e2λ(t−T1)U + λ

√
2qeλ(t−T1)

V 2

2
+

√
2aq∥θ(T1)∥2Re3λ(t−T1)+ε + 5

√
2aq3e3λ(t−T1)V

Bounding U and V Consider h(t) := exp
(
−
∫ t

T1
2aq2e2λ(τ−T1) dτ

)
≤ 1, Ũ := U

q e
−λ(t−T1)h(t)3 and Ṽ := V h(t).

Notice that

h(t) = exp

(
−aq

2

λ
e2λ(t−T1)

)
≥ e−ε ∀t ∈ [T1, T

ε
2 ],

where T ε
2 := T1 + tε4. For t ∈ [T1, T

ε
2 ], we get

dŨ

dt
≤

√
2λ

2
Ṽ 2 +

√
2ae2λ(t−T1)+ε∥θ(T1)∥2R + 5

√
2aq2e2λ(t−T1)Ṽ ,

dṼ

dt
≤ a

2
e2λ(t−T1)+ε∥θ(T1)∥2R +

√
2aq2e2λ(t−T1)+2εŨ .

Consider W̃ := max{Ṽ , Ũ}. We get

dW̃

dt
≤ λW̃ 2 + 2ae2λ(t−T1)+ε∥θ(T1)∥2R + 8aq2e2λ(t−T1)+2εW̃ .

Again, consider W := W̃h(t)4, we get

dW

dt
≤ λe4εW 2 + 2ae2λ(t−T1)+5ε∥θ(T1)∥2R.

Now, consider the following system

dW̄

dt
= λe4εW̄ 2 + 2ae2λ(t−T1)+5ε∥θ(T1)∥2R.

where W̄ (T1) = W (T1). It is easy to see that W̄ ≥ W since the right-hand part is the same function in both cases, this
function is increasing in W , and the initial conditions are the same. Also, notice that W̄ is increasing. It implies

W̄ (t) ≤ W̄ (T1) + λe4εW̄ (t)2(t− T1) +
a

λ
e2λ(t−T1)+5ε∥θ(T1)∥2R.
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Assuming that λe4εW̄ (t)(t− T1) ≤ 1
2 , we get

W̄ ≤ 2W̄ (T1) +
2a

λ
e2λ(t−T1)+5ε∥θ(T1)∥2R ≤ 2W̄ (T1) +

2εe5ε

q2
∥θ(T1)∥2R = O(rκ

∗
+ rκR),

where κR := minj∈R κj . Thus, λe4εW̄ (t)(t− T1) = O(− ln(r)(rκ
∗
+ rκR)). So, for sufficiently small r, our assumption

holds.

Therefore, we get the following bounds

U = O(rκ
∗
+ rκR), V = O(rκ

∗
+ rκR), ∀j ∈ R |uj | = O(rκj ).

C.2. Finding a limit of Equation (7)

Now, we want to find limr→0 θ
χ(T ε

2 ) to couple θ(T ε
2 ) with the vector that does not depend on r. To do this, we want to

shift time t 7→ t− T ε
2 and consider Equation (7) for different r.

duχ,rj

dt
=

1

n

n∑
i=1

(−ℓ′(f(θχ,r,xi)yi))ϕ(v
χ,r
j ,xi)yi,

dvχ,r
j

dt
=

1

n

n∑
i=1

(−ℓ′(f(θχ,r,xi)yi))u
χ,r
j ∇vϕ(v

χ,r
j ,xi)yi,

(8)

where

uχ,rj (−tε,r4 ) =

{
ru∗j , j ∈ P,

0, j ∈ R,
vχ,r
j (−tε,r4 ) =

{
r|u∗j |v̂∗

j , j ∈ P,

0, j ∈ R,

and tε,r4 := 1
2λ ln

(
λε

2ar2∥θ∗∥2
[m]

)
.

Similarly to the previous subsections, we get

∀t ∈ [−tε,r4 , 0] ∥θχ,r∥2[m] ≤ 2r2∥θ∗∥2[m]e
2λ(t+tε,r4 ),

and
αr(t) := arccos((v̂∗

j )
Tv̂χ,r

j ) ≤ a

λ
r2∥θ∗∥2[m](e

2λ(t+tε,r4 ) − 1).

Therefore, for r′ ≥ r

αr(−tε,r
′

4 ) ≤ a

λ
r2∥θ∗∥2[m](e

2λ(−tε,r
′

4 +tε,r4 ) − 1) =
a

λ
∥θ∗∥2[m]((r

′)2 − r2) = O((r′)2).

For uχ,rj , we get

d(sju
χ,r
j e−λ(t+tε,r4 ))

dt
=|uχ,rj |e−λ(t+tε,r4 )

(
λ(cos(αr)− 1) +

1

n

n∑
i=1

(−ℓ′(f(θχ,r,xi)yi) + ℓ′(0))|uχj |ϕ(v̂
χ
j ,xi)yi

)
≤a∥θχ,r∥2[m]|u

χ,r
j |e−λ(t+tε,r4 )

=⇒ |
uχ,rj e−λ(t+tε,r4 )

ru∗
| ≤ exp

(
a

∫ t

−tε,r4

∥θχ,r∥2[m]

)
≤ exp

(a
λ
r2∥θ∗∥2[m](e

2λ(t+tε,r4 ) − 1)
)
.

Notice that since ε ≤ 1/2, we get αr
/4 ≤ ε/4 ≤ 1. Thus,

1− cos(αr) ≤ (αr)2

2
≤ 2αr.
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It gives

d(sju
χ,r
j e−λ(t+tε,r4 ))

dt
≥ |uχ,rj |e−λ(t+tε,r4 )(λ(cos(αr)− 1)− a∥θχ,r∥2[m]) ≥ |uχ,rj |e−λ(t+tε,r4 )(−2λαr − a∥θχ,r∥2[m])

=⇒ |
uχ,rj e−λ(t+tε,r4 )

ru∗
| ≥ exp

(
−2a

λ
r2∥θ∗∥2[m](e

2λ(t+tε,r4 ) − 1)

)
.

Therefore, ∣∣∣∣∣ln
(
uχ,rj (−tε,r

′

4 )

uχ,r
′

j (−tε,r′4 )

)∣∣∣∣∣ ≤ 2a

λ
∥θ∗∥2[m]((r

′)2 − r2) =⇒ |uχ,rj (−tε,r
′

4 )− uχ,r
′

j (−tε,r
′

4 )| ≤ O((r′)3).

Notice that the above derivations also imply that

uχ,rj (0) = Θ(ru∗je
λtε,r4 ) = Θ(

√
ε).

Thus, we can use the results of previous subsection with κ = 2 and get that

∥v̂χ,r
j (0)− v̂χ,r′

j (0)∥ = O((r′)2), |uχ,rj (0)− uχ,r
′

j (0)| = O((r′)2).

This property ensures that the sequences v̂χ,r
j (0) and uχ,rj (0) are fundamental. Since uχ,rj (0) is also bounded,

∃ limr→0 θ
χ,r(0) = θχ,ε,∗. Since θχ,r(0) is an image of embedding (4), we could find θε,∗ such that θχ,ε,∗ = χ(θε,∗).

Also, since we have ∀j ∈ P ∥v̂χ,ε,r
j (0)− v̂∗∥ ≤ ε, this property will also hold for the limit parameters.

C.3. Final Bound

Finally, using the results of both subsections, we have

∀j ∈ P |uj(T ε
2 )− uχ,ε,∗j | =O(r2 + rκ

∗
+ rκR),

∀j ∈ P ∥v̂j(T
ε
2 )− v̂χ,ε,∗

j ∥ =O(r2 + rκ
∗
+ rκR),

∀j ∈ R |uj(T ε
2 )| =O(rκj ).

D. Proofs for Section 5
D.1. Proof of Lemma 5.2

We only proof that e1 and −e1 are the maxima of function G. The proof that e2 and −e2 are the minima is similar.

First, we have

G(e1) =
−ℓ′(0)
n

(∑
i∈S1

ϕ(e1,xi) +
∑
i∈S3

ϕ(e1,xi)−
∑
i∈S2

ϕ(e1,xi)−
∑
i∈S4

ϕ(e1,xi)

)
.

Notice ∑
i∈S1

ϕ(e1,xi) +
∑
i∈S3

ϕ(e1,xi) =
∑
i∈S1

x1
i ≥ n

4
(1− δ),

∑
i∈S2

ϕ(e1,xi) +
∑
i∈S4

ϕ(e1,xi) ≤
∑
i∈S2

(x1
i + ξ)+ +

∑
i∈S4

(x1
i + ξ)+ ≤ n

2
(δ + ξ).

Thus,

G(e1) ≥
−ℓ′(0)

4
(1− 3δ − 2ξ).
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Let v̂∗ be a maximum direction of G. W.l.o.g., assume that eT1 v̂
∗ ≥ 0. Then we have∑

i∈S1

ϕ(v̂∗,xi) +
∑
i∈S3

ϕ(v̂∗,xi) ≤
n

4
(eT1 v̂

∗ + 2ξ + 2δ),

∑
i∈S2

ϕ(v̂∗,xi) +
∑
i∈S4

ϕ(v̂∗,xi) ≥0.

Therefore,

G(v̂∗) ≤ −ℓ′(0)
4

(eT1 v̂
∗ + 2ξ + 2δ).

These properties imply
eT1 v̂

∗ ≥ 1− 5δ − 4ξ > δ + ξ.

Hence, v̂∗ should satisfy
∀i ∈ S3 (v̂∗)Txi ≤− ξ =⇒ ϕ(v̂∗,xi) = 0,

∀i ∈ S1 (v̂∗)Txi ≥ξ =⇒ ϕ(v̂∗,xi) = (v̂∗)Txi.

Thus, ∑
i∈S3

ϕ(v̂∗,xi) +
∑
i∈S1

ϕ(v̂∗,xi) = (v̂∗)T

(∑
i∈S1

xi

)
.

Similarly, ∑
i∈S3

ϕ(e1,xi) +
∑
i∈S1

ϕ(e1,xi) = eT1

(∑
i∈S1

xi

)
≥ n

4
(1− δ).

Notice that, due to symmetry R2RrDx = Dx,
∑

i∈S1
xi is the multiple of e1. Thus,

(v̂∗)T

(∑
i∈S1

xi

)
= v̂∗,1eT1

(∑
i∈S1

xi

)
.

Now, consider the points from S2 and S4. Define xr
i by the following equality (x1i , (x

r
i )

T)T = xi. Since R2RrDx = Dx,
all points i ∈ S2 have corresponding point i− ∈ S4 such that xi− = R2Rrxi. Since R1Dx = Dx, all i ∈ S2 have a
corresponding point i+ ∈ S2 such that xi+ = R1xi. Thus,∑
i∈S2

ϕ(v̂,xi) +
∑
i∈S4

ϕ(v̂,xi) =
∑
i∈S2

ϕ(v̂,xi) + ϕ(v̂,xi−)

=
∑
i∈S2

x1
i>0

ϕ(v̂,xi) + ϕ(v̂,xi−) + ϕ(v̂,xi+) + ϕ(v̂,x(i+)−) +
∑
i∈S2

x1
i=0

ϕ(v̂,xi) + ϕ(v̂,xi−).

Now,

ϕ(v̂,xi) + ϕ(v̂,xi−) =

∫
z∈Dd

((v̂)T(xi + ξz))+ + ((v̂)TR2Rr(xi + ξz))+Q(dz).

Denote x := xi + ξz and consider integrand

((v̂)Tx)+ + ((v̂)TR2Rrx)+ = (v̂1x1 + (v̂r)Txr)+ + (v̂1x1 − (v̂r)Txr)+ ≥ (v̂1x1)+.

Therefore,

ϕ(v̂,xi) + ϕ(v̂,xi−) ≥
∫
z∈Dd

(v̂1(x1i + ξz1))+Q(dz).

So, ∑
i∈S2

ϕ(v̂,xi) +
∑
i∈S4

ϕ(v̂,xi) ≥
∑
i∈S2

x1
i>0

∫
z∈Dd

|v̂1||x1i + ξz1|Q(dz) +
∑
i∈S2

x1
i=0

∫
z∈Dd

|v̂1|(ξz1)+Q(dz).
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Similarly,∑
i∈S2

ϕ(e1,xi) +
∑
i∈S4

ϕ(e1,xi) =
∑
i∈S2

x1
i>0

∫
z∈Dd

|x1i + ξz1|Q(dz) +
∑
i∈S2

x1
i=0

∫
z∈Dd

(ξz1)+Q(dz) ≤ n

2
(δ + ξ).

Thus, ∑
i∈S2

ϕ(v̂,xi) +
∑
i∈S4

ϕ(v̂,xi)−
∑
i∈S2

ϕ(e1,xi)−
∑
i∈S4

ϕ(e1,xi)

≥(|v̂1| − 1)

(∑
i∈S2

x1
i>0

∫
z∈Dd

|x1i + ξz1|Q(dz) +
∑
i∈S2

x1
i=0

∫
z∈Dd

(ξz1)+Q(dz)

)

≥n
2
(|v̂1| − 1)(δ + ξ).

So, we have

0 ≥ G(e1)−G(v̂∗) ≥ (−ℓ′(0))
4

(1− v̂∗,1)(1− δ)− (−ℓ′(0))
2

(1− v̂∗,1)(δ + ξ) ≥ (−ℓ′(0))
4

(1− v̂∗,1)(1− 3δ − 2ξ).

Therefore, v̂∗,1 = 1 =⇒ v̂∗ = e1.

D.2. Proof of Lemma 5.3

W.l.o.g., consider direction e1. We will show that this direction is attractive for positive neurons (sj = 1) at the beginning
of training in the region eT1 v̂

∗ ≥ δ + ξ. Thus, the direction e1 captures the random neuron with probability greater than
h := 1

2
Vol(A)

Vol(Sd−1)
≥ 1

2

(
1
2 − Vol(Dd−2)

Vol(Sd−1)
arcsin(δ + ξ)

)
= 1

4 (1 − O(δ + ξ)), where A =
{
x ∈ Sd−1

∣∣ eT1x ≥ δ + ξ
}

. This
bound implies the following probability of success

Pr(success) ≥ (1− (1− h)m)4 = 1− 4(1− h)m −O((1− h)2m) = 1− 4

(
3

4

)m

(1 + O(δ + ξ))−O

((
9

16

)m)
.

Now, we will proof that A is attractive region for e1. Consider positive neuron with v̂ ∈ Sd−1 such that eT1 v̂ ≥ δ + ξ.
Equation (5) gives

dv̂

dt
= Pv̂g(v̂).

We have
d∥v̂ − e1∥2

dt
= −2eT1

dv̂

dt
.

So, we only need to show that e1 dv̂
dt is positive.

Denote v̂ =: e1 cos(α) + ϵ sin(α). Notice

Pv̂e1 = e1 − v̂ cos(α) = e1 sin(α)
2 − ϵ sin(α) cos(α).

Similarly to the proof of Lemma 5.2, we have

g(v̂) =
−ℓ′(0)
n

(∑
i∈S1

xi −
∑
i∈S2

∇v(ϕ(z,xi) + ϕ(z,R2Rrxi))|z=v̂

)
.

Notice

∇v(ϕ(z,xi) + ϕ(z,R2Rrxi))|z=v̂

=

∫
z∈Dd

([v̂T(xi + ξz) ≥ 0](xi + ξz) + [v̂TR2Rr(xi + ξz) ≥ 0]R2Rr(xi + ξz))Q(dz).

Consider the integrand. Denote x := xi + ξz. We have four potential cases:
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1. v̂Tx ≤ 0 ∧ v̂TR2Rrx ≤ 0,

2. v̂Tx > 0 ∧ v̂TR2Rrx ≤ 0,

3. v̂Tx ≤ 0 ∧ v̂TR2Rrx > 0,

4. v̂Tx > 0 ∧ v̂TR2Rrx > 0.

In the first case, the contribution of the integrand to expression e1
dv̂
dt is zero. In the fourth case, the contribution of the

integrand is
−(Pv̂e1)

T(x+R2Rrx) = −2x1 sin(α)2 ≥ −2(δ + ξ) sin(α)2.

The second and third cases are symmetric. So, we consider only the second case. In the second case, we have

v̂Tx = x1 cos(α) + ϵTxr sin(α) ≥ 0.

Thus, ϵTxr ≥ 0 (otherwise v̂TR2Rrx ≥ v̂Tx > 0). It implies

−(Pv̂e1)
Tx = −x1 sin(α)2 + ϵTx cos(α) sin(α) ≥ −x1 sin(α)2.

Therefore, we get

e1
dv̂

dt
≥ −ℓ′(0)

n

(n
4
(1− δ)− n

4
(2(δ + ξ))

)
sin(α)2 ≥ −ℓ′(0)

8
sin(α)2.

It gives
dα

dt
≤ −ℓ′(0)

8
sin(α) ≤ −ℓ′(0)

4π
α,

which implies exponentially fast convergnce to e1.

D.3. Proof of Proposition 5.7

First, notice that, due to symmetry RrDx = Dx, the features of 4-neuron network belong to a sub-space generated by
vectors e1 and e2 and clustered around these directions.

Lemma D.1. v∗,ε
j form Theorem 4.4 belong to a sub-space generated by vectors e1 and e2 (Rrv

∗,ε
j = v∗,ε

j ). Moreover,
this symmetry is preserved under gradient flow dynamics (1).

Proof. Consider Equation (7). Notice that at the start of function h(x) := f(θχ(T1),x) depends only on x1 and x2. Due to
symmetry RrDx = Dx, this property will hold for the right-hand part of Equation (7). Therefore, features will not be able
to escape the sub-space generated by e1 and e2. Thus, limit features v∗,ε

j will also lie in the sub-space generated by e1 and
e2. Since the limit and dataset respect symmetry Rr, it will propagate to further stages of training.

Consider dynamics

duek
dt

=

n∑
i=1

(−ℓ′(f(θe,xi)yi))ϕ(v
e
k,xi)yi,

dve
k

dt
=

n∑
i=1

(−ℓ′(f(θe,xi)yi))u
e
k∇vϕ(v

e
k,xi)yi,

where uek(0) = sPk

√∑
j∈Pk

(uε,∗j )2 and ve
k(0) = |uek(0)|v̂

ε,∗
Pk

. Notice that, by Lemma D.1, ve
k ∈ span{e1, e2}.

Proposition D.2. Denote a signed angle between R
⌊ k−1

2 ⌋
1 P a(k)ve

k and ea(k)+1 by αk. Then we have |sin(αk)| ≤ δ + ξ.

Proof. W.l.o.g., consider ve
1 and assume α1 ≥ 0. We have

dv̂e
1

dt
=

n∑
i=1

(−ℓ′(f(θe,xi)yi))Pve
1
∇vϕ(v

e
1,xi)yi.
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Notice

eT1Pve
1
∇vϕ(v

e
1,xi)yi =

∫
z∈Dd

[(ve
1)

T(xi + ξz) ≥ 0]eT1Pve
1
(xi + ξz)yiQ(dz).

Consider the integrand and denote zi := xi + ξz. Assuming that α1 ≤ π/4, we get

∀i ∈ S1 [(v
e
1)

Tzi ≥ 0]eT1Pve
1
ziyi = (e1 sin(α1)− e2 cos(α1))

T sin(α1)(e1 + zi − e1) ≥ (sin(α1)− (δ + ξ)) sin(α1),

∀i ∈ S2 [(v
e
1)

Tzi ≥ 0]eT1Pve
1
ziyi = −[(ve

1)
Tzi ≥ 0](e1 sin(α1)− e2 cos(α1))

T sin(α1)(e2 + zi − e2)

≥ (cos(α1)− (δ + ξ)) sin(α1)

≥ 0,

∀i ∈ S3 [(v
e
1)

Tzi ≥ 0]eT1Pve
1
ziyi = 0,

∀i ∈ S4 [(v
e
1)

Tzi ≥ 0]eT1Pve
1
ziyi ≥ −[sin(α1) ≤ δ + ξ](1 + δ + ξ).

Thus, the function h(α1) = max(α1, arcsin(δ + ξ)) is always decreasing (when α1 is less than arcsin(δ + ξ), the time
derivative of h(α1) is zero, when α1 is greater than arcsin(δ + ξ), the time derivative of h(α1) is determined only by the
points from S1 and S2 and hence negative). Therefore, α1 never exceeds arcsin(δ + ξ).

Proof of Proposition 5.7. Denote a := 0.01, b := 0.001, c = 1000, q := 8/3, T := inf{t > 0 |maxk|uek(t)| ≥ q}.

From the previous proposition, we know that |sin(αk)| ≤ δ + ξ ≤ a. Thus, for t ∈ [0, T ] and i ∈ S1, we get

f(θe, xi) = (ue1)
2(v̂e

1)
Txi − (ue2)

2ϕ(v̂e
2,xi)− (ue4)

2ϕ(v̂e
4,xi).

Therefore,

f(θe, xi) ≤ (ue1)
2(1 + δ) ≤ (ue1)

2(1 + a),

f(θe, xi) ≥ (ue1)
2(cos(αk)− δ)− q2(ϕ(v̂e

2,xi) + ϕ(v̂e
4,xi)) ≥ (ue1)

2(1− (δ + ξ)2 − δ)− q2(4δ + 2ξ)

≥ (ue1)
2(1− 2a)− 4q2a,

where the last inequality follows from the following property:

∀j ∈ {2, 4} ϕ(v̂e
j ,xi) =

∫ 1

−1

((v̂e
j )

Txi + ξz)+(1− z2)
d−1
2

Vol(Dd−1)

Vol(Dd)
dz

≤
∫ 1

−1

(|sin(αj)|+ δ + ξz)+(1− z2)
d−1
2

Vol(Dd−1)

Vol(Dd)
dz

≤
∫ 1

−1

(2δ + ξ + ξz)(1− z2)
d−1
2

Vol(Dd−1)

Vol(Dd)
dz

=2δ + ξ.

Similarly, we could derive the same inequalities for S2, . . . , S4.

These inequalities imply

due1
dt

=
1

n

n∑
i=1

(−ℓ′(f(θe,xi)yi))ϕ(v
e
1,xi)yi

≥u
e
1

4

(
1− 2a

1 + exp((ue1)
2(1 + a))

− 2a

1 + exp((ue2)
2(1− 2a)− 4q2a)

− 2a

1 + exp((ue4)
2(1− 2a)− 4q2a)

)
and

due1
dt

≤ ue1(1 + a)

4(1 + exp((ue1)
2(1− 2a)− 4q2a))

.
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Denote x := mink|uek| and y := maxk|uek|. The property above implies

dx

dt
≥ x

4

(
1− 2a

1 + exp(x2(1 + a))
− 4a

1 + exp(x2(1− 2a)− 4q2a)

)
≥ x((1− 2a)e−7q2a − 4a)

4(1 + exp(x2(1− 2a)− 4q2a))
,

dy

dt
≤ y(1 + a)

4(1 + exp(y2(1− 2a)− 4q2a)
.

Now, denote X := x2(1− 2a), Y := y2(1− 2a), A := (1−2a)e−7q2a−4a
2 , B := 1+a

2 , and C := e−4q2a. We get

dX

dt
≥ AX

1 + CeX
=⇒

∫ X(t)

X(0)

dX(1 + CeX)

X
≥At,

dY

dt
≤ BY

1 + CeY
=⇒

∫ Y (t)

Y (0)

dY (1 + CeY )

Y
≤Bt.

Denote h(x) :=
∫ x

1
dz(1+Cez)

z . We get

h(X(t))− h(X(0)) ≥ At, h(Y (t))− h(Y (0)) ≤ Bt.

We have two possible cases: T < ∞ and T = ∞. In the second case, we notice that our lower bound for the derivative
of x holds on the whole timeline. In this case, limt→∞ x(t) = ∞. Thus, at some time point we would get x > q, which
contradicts definition of T . Therefore, T is finite.

Now, notice that Y (T ) = (1− 2a)q2 and we have

B(h(X(T ))− h(X(0))) ≥ ABT ≥ A(h(Y (T ))− h(Y (0)))

=⇒ h(X(T )) ≥ A

B
h(Y (T )) +

B −A

B
h(Y (0))− h(Y (0)) + h(X(0)).

By the definition of h,

h(Y (T )) = ln(Y (T )) + C

∫ Y (T )

1

ez

z
dz,

h(Y (0)) = −
∫ 1

Y (0)

1 + Cez

z
dz ≥ (1 + Ce) ln(Y (0)) = (1 + Ce) ln((1− 2a)b2),

h(Y (0))− h(X(0)) =

∫ Y (0)

X(0)

1 + Cez

z
dz ≤ (1 + CeY (0)) ln

(
Y (0)

X(0)

)
≤ (1 + Ce

1−2a
4 ) ln(c2).

Using numerical integration, we get h(X(T )) ≥ 31.52, which implies that x(T ) ≥ 9/4.

Therefore, at time T , we have

f(θe(T ),xi)yi ≥ (1− 2a)x(T )2 − 4q2a > 4.67 > 0,

the network classifies all points correctly.

D.4. Proof of Proposition 5.8

First, consider direction θmm and w.l.o.g. assume that ∥θmm∥2 = 8, which implies ∀k |umm
k | = 1. Consider some orbit,

M , of data points under the group generated by P ,R1,R2,Rr.

Choose i∗ ∈M ∩ S1 : eT2xi∗ ≥ 0. For this point, we have

f(θmm,xi∗) =

4∑
k=1

(umm
k )2ϕ(v̂mm

k ,xi∗) = ϕ(v̂mm
1 ,xi∗)− ϕ(v̂mm

2 ,xi∗).
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Since ∀a |eTaxi∗ | > ξ, we get
f(θmm,xi∗) = x1i∗ − x2i∗ .

Due to symmetry of the network, all points in M will have the same margin.

Now, consider a small perturbation, θ, of χ(θmm), which does not change activation patterns for points in M . Notice

min
i∈M

f(θ,xi)yi
∥θ∥2

≤ 1

16∥θ∥2
∑
i∈M

f(θ,xi)yi.

However,

∑
i∈M

f(θ,xi)yi =

4∑
k=1

∑
j∈Pk

4∑
l=1

∑
i∈Sl

ujϕ(vj ,xi)yi =
∑
k

∑
j∈Pk

4|uj ||va(k)+1
j |(x1i∗ − x2i∗)

≤
∑
k

∑
j∈Pk

2(|uj |2 + ∥vj∥2)(x1i∗ − x2i∗).

Thus,

min
i∈M

f(θ,xi)yi
∥θ∥2

≤ x1i − x2i
8

= min
i∈M

f(θmm,xi)yi
∥θmm∥2

.

It implies that, for sufficiently small perturbation,

min
i

f(θ,xi)yi
∥θ∥2

= min
M

min
i∈M

f(θ,xi)yi
∥θ∥2

≤ min
i

f(θmm,xi)yi
∥θmm∥2

,

where the equality is achieved only if |uj | = ∥vj∥ and vj is aligned with b(k)ea(k)+1. However, in this case,

f(θ,xi∗) = U2
1x

1
i∗ − U2

2x
2
i∗ ,

where Uk = sPk

√∑
j∈Pk

u2j . W.l.o.g., we could assume that U2
1 = mink U

2
k , then, we get

f(θ,xi∗)

∥θ∥2
≤ U2

1x
1
i∗ − U2

1x
2
i∗

2
∑

k U
2
k

.

But this margin should be equal to x1
i∗−x2

i∗
8 . Thus, 4U2

1 ≥
∑

k U
2
k . However, this implies that U2

1 = U2
2 = U2

3 = U2
4 , i.e., θ

is proportional to χ(θmm). Therefore, χ(θmm) is indeed local extremum. Similarly, we can show that θmm is an isolated
local extremum.

D.5. Proof of Lemma 5.5

Denote 4-neuron network initialized at θε,∗ as θf . We get

dufj
dt

=
1

n

n∑
i=1

(−ℓ′(f(θf ,xi)yi))ϕ(v
f
j ,xi)yi,

dvf
j

dt
=

1

n

n∑
i=1

(−ℓ′(f(θf ,xi)yi))u
f
j∇vϕ(v

f
j ,xi)yi,

where θf (0) = θε,∗.

First, we want to show that ∥θf∥ t→∞−−−→ ∞. Similarly to the proof of Proposition 5.7, using Proposition D.2, we get that for
all i ∈ S1

f(θf ,xi) ≤ (ue1)
2(1 + a),

f(θf ,xi) ≥ (ue1)
2(1− 2a)− 2a((ue2)

2 + (ue4)
2),
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where a := δ + ξ. Since θf converges in direction to θmm, we could find a moment when ratio 8(ue
k)

2

∥θf∥2 will lie in interval
(1− ϵ, 1 + ϵ), where 3ϵ

1−ϵ <
1−6a
4a . Then,

f(θf ,xi) ≥ b∥θf∥2,

where b := (1−ϵ)(1−2a)−(1+ϵ)2a
8 > 0. Similarly, for other clusters. Also define c := (1+ϵ)(1+a)

8 . Now, notice that

1

4

d∥θ∥2

dt
=

4∑
k=1

uek
duek
dt

=
1

n

n∑
i=1

4∑
k=1

uek(−ℓ′(f(θf ,xi)yi))ϕ(v
e
k,xi)yi =

1

n

n∑
i=1

f(θf ,xi)yi
1 + exp(f(θf ,xi)yi)

≥ b∥θf∥2

1 + exp(c∥θf∥)
.

Similarly to the proof of Proposition 5.7, this differential inequality means that ∥θf∥ t→∞−−−→ ∞.

Now, we want to apply Theorem 5.6. To do it, choose ζ small enough so that χ(θmm) becomes the biggest local-max-margin
direction in ζ-neighborhood around its image in the original weight space. Then, apply Theorem 5.6 for χ(θmm), which
gives us parameters ω and ρ. Consider time T when χ(θf ) converged to the desired local-max-margin direction closer than
ω/2 and its scale became bigger than 2ρ. After that, apply Theorem 2.1, Chapter 5 from Hartman (2002) (notice that our
activation function is twice continuously differentiable) and choose the initial scale σ to be sufficiently small so that original
system at time θ(T + T ε

2 ) is bigger than ρ and ω/2-close in direction to θf . Then, θ will converge to some direction with
normalized margin bigger than that of χ(θmm). However, since χ(θmm) is a strict local-max-margin direction, this would
mean that θ will converge in direction to χ(θmm).
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E. Additional Experiments for Section 5
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Figure 5. Evolution of 4-neuron network initialized at (ue
1(0), u

e
2(0), u

e
3(0), u

e
4(0)) = (10−4,−10−5, 10−7,−10−6). The first row

depicts the whole training process; the second row depicts the first 3584 training epochs; the third row depicts the epochs from 3584 to
15872; the last row depicts training after the 15872th epoch. Notice that α1 ≈ α3 and α2 ≈ α4.
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Figure 6. Evolution of 4-neuron network initialized at (ue
1(0), u

e
2(0), u

e
3(0), u

e
4(0)) = (10−4,−10−5, 10−6,−10−7). The first row

depicts the whole training process; the second row depicts the first 3584 training epochs; the third row depicts the epochs from 3584 to
15872; the last row depicts training after the 15872th epoch. Notice that α1 ≈ α3 and α2 ≈ α4.
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Figure 7. Evolution of 4-neuron network initialized at (ue
1(0), u

e
2(0), u

e
3(0), u

e
4(0)) = (10−4,−10−6, 10−5,−10−7). The first row

depicts the whole training process; the second row depicts the first 3584 training epochs; the third row depicts the epochs from 3584 to
15872; the last row depicts training after the 15872th epoch. Notice that α1 ≈ α3 and α2 ≈ α4.
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F. Additional Experimental Results
F.1. Experimental Details

Data We used the usual MNIST and CIFAR-10 datasets for creation of dominos. For creating train and test data, we
used the default train-test split of these datasets, resulting in 50000 images in train set and 10000 images in test set. We
further devoted 25% train and test data for validation, giving us four datasets: train-train, train-validation, test-train, and
test-validation. We also normalize images in these datasets using the default values for MNIST and CIFAR-10. During
training, we also apply random horizontal flip augmentation.

Model We used the standard model from Torchvision library, but changed the first layer to 3× 3 convolutions instead of
the default 7× 7 convolutions. Additionally, after initialization we multiplied all parameters of the model by a factor 2−5 to
capture the desired simplicity bias mechanism.

Optimization procedure We use the standard SGD optimizer from PyTorch and linear learning scheduler with warm-up
from Transformers library. The parameters of data and optimizer are listed below.

batch size 128
lr 0.125
momentum 0.9
nesterov True
weight decay 0.0005
Share of warm-up steps 12.5%

Parameters of logistic regression We used the standard implementation of the logistic regression from scikit-learn library.
By default, we use the following parameters.

penalty l2
C 1000
max iter 20000

Notice that effectively the current version of scikit-learn library does not allow to change the parameter maxfun parameter
of the lbfgs optimizer. Thus, to ensure convergence we rerun fitting procedure 50 times using warm start.

F.2. Additional Experiments

Figures 8, 9, and 10 depict additional results for Section 7.

For Figure 8, we repeated the experiment but used MNIST labels on the test set. As we can see, the learned features are
sufficient to achieve almost perfect accuracy on MNIST label, indicating that the network learned “simple” MNIST features.

For Figure 9, we repeated the experiment but did not scale the model at initialization. As we can see, the drop in OOD
accuracy is less pronounced for the model initialized from the normal scale (approximately 6.43% ± 2.43%, implying
p-value around 0.00062). This experiment indicates that closeness to more lazy training regime is indeed beneficial for
OOD generalization in presence of simplicity bias.

For Figure 10, we repeated the experiment on different train data, on which the correlation between MNIST and CIFAR-10
classes is not perfect and with 5% probability MNIST class might not match CIFAR-10 class. As we can see, the model still
experience simplicity bias. However, the drop in OOD accuracy at the end of training disappears.
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Figure 8. Accuracy and scale of the logistic regression on the validation part of the OOD test set (y-axis) vs. the training epoch at which
the ResNet features are extracted (x-axis).
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Figure 9. Accuracy and scale of the logistic regression on the validation part of the OOD test set (y-axis) vs. the training epoch at which
the ResNet features are extracted (x-axis).
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Figure 10. Accuracy and scale of the logistic regression on the validation part of the OOD test set (y-axis) vs. the training epoch at which
the ResNet features are extracted (x-axis).
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