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ABSTRACT

Low-rank decomposition and sparsification are two important techniques for deep
neural network (DNN) compression. To date, these two popular yet distinct ap-
proaches are typically used in a separate way; while their efficient integration for
better compression performance is little explored. In this paper we perform sys-
tematic co-exploration on the model low-rankness and sparsity towards compact
neural networks. We first investigate and analyze several important design factors
for the joint low-rank factorization and pruning, including operational sequence,
low-rank format, and optimization objective. Based on the observations and out-
comes from our analysis, we then propose RASPA, a unified DNN compression
framework that can simultaneously capture model low-RAnkness and SPArsity
in an efficient way. Empirical experiments demonstrate very promising perfor-
mance of our proposed solution. Notably, on CIFAR-10 dataset, our approach can
bring 1.25%, 1.02% and 0.16% accuracy increase over the baseline ResNet-20,
ResNet-56 and DenseNet-40 models, respectively, and meanwhile the storage and
computational costs are reduced by 70.4% and 71.1% (for ResNet-20), 37.5% and
39.3% (for ResNet-56) and 52.4% and 61.3% (for DenseNet-40), respectively. On
ImageNet dataset, our approach can enable 0.52% accuracy increase over baseline
model with 48.7% fewer parameters.

1 INTRODUCTION

Deep neural network (DNN) has served as the backbone machine learning technique in many mod-
ern intelligent systems. To facilitate the low-cost deployment of DNN on the resource-constrained
platforms, model compression, as a powerful strategy that can efficiently reduce DNN model size,
has been extensively studied in recent years. To date, numerous compression approaches have been
proposed to provide compact DNNs for many practical applications (Han et al. (2015b); Gong et al.
(2019); Liao et al. (2021)).

Among various types of model compression techniques, sparsification (a.k.a., pruning) and low-
rank decomposition are two representative and popular solutions (Wang et al. (2021); Gao et al.
(2021); Li et al. (2021a); Xu et al. (2020)). As revealed by their names, the low-rank and sparse
methods aim to explore and leverage the potential low-rankness and sparsity of the uncompressed
DNNs, respectively. In practice, supported by the widely existed overparameterization phenomenon
(Denil et al. (2013); Han et al. (2015b)), such hypothesized structure-level redundancy usually exists
and thus it can be safely removed while still preserving high model performance.

Co-exploring Low-rankness & Sparsity: Motivation. Considering the current prosperity of these
two methods and their very distinct structural assumptions, an interesting and promising research
topic is to explore the efficient integration of low-rank and sparse approaches towards a better model
compression solution. As indicated and observed by Yu et al. (2017), DNN models tend to exhibit
both low-rankness and sparsity simultaneously. For instance, the smooth components in the weight
filters can be represented in the low-rank space, and meanwhile some other important information
is sparsely scattered. Evidently, fully leveraging such co-existence of these structure-level patterns,
if being performed properly, can potentially bring a powerful compression solution with attractive
performance.

Existing Works. Unlike the current extensive research activities on individual low-rank and sparse
methods, the investigations on integrating these two approaches, in an efficient and non-trivial way,
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are little explored. To date, only very few efforts study the joint exploration of low-rankness and
sparsity for DNN model compression. As the pioneering work along this direction, Yu et al. (2017)
develops a singular value decomposition (SVD)-free approach to closely approximate original DNN
model via combining sparse representation and low-rank matrix factorization. Built on the inter-
esting connection between filter decomposition and filter pruning, Li et al. (2020) interprets the
decomposition and pruning of convolutional filter in a unified perspective. Most recently, Li et al.
(2021b) proposes a collaborative compression scheme to integrate SVD into model sparsification.
By adopting a multi-step heuristic removal strategy, this post-training approach achieves promising
task and compression performance.

Unanswered Questions. Although these prior works have demonstrated the huge potentials and
attractive benefits of jointly decomposing and pruning, the systematic investigation on their effi-
cient integration is still missing. To be specific, several fundamental and critical questions, whose
answers will directly impact the integration scheme and overall compression performance, have
not been comprehensively explored yet. For instance, because pruning and decomposition can be
jointly performed in several different ways, such as in parallel (Yu et al. (2017)) or in sequence
(Li et al. (2021b)), which collaborative strategy is the best fit for the target DNN compression task?
Also, considering low-rankness can be exploited from different perspectives, which type of low-rank
approach should be adopted? The matrix factorization used in Li et al. (2020; 2021b)? Or even high-
order tensor decomposition? In addition, to achieve promising compression performance, what is
the most suitable optimization objective that the integration scheme should aim? The approximation
error focused in Yu et al. (2017)? The low-rankness/sparsity regularized loss in Yang et al. (2020)?
Or some other new alternatives?

Technical Preview and Contributions. To answer these questions and develop efficient integrated
model compression solution, in this paper we perform systematic co-exploration on the model low-
rankness and sparsity towards compact neural networks. To be specific, we first review and analyze
several important design factors for the joint low-rank decomposition and pruning. Based on the
observations and outcomes from our analysis, we then propose RASPA, a unified DNN compression
framework that can simultaneously capture model low-RAnkness and SPArsity in an efficient way.
Overall, the contributions of this paper are summarized as follows:

• We systematically investigate and analyze the critical design knobs when co-exploring
model low-rankness and sparsity, including operational sequence, low-rank format, and
optimization objective. Based on our qualitative and quantitative analysis, we propose sev-
eral recommended design options for efficient joint low-rank decomposition and pruning.

• We develop a unified framework that formulates the integration of low-rank decomposi-
tion and pruning to an optimization problem with low-tensor-rank and sparse constraints.
We then derive a training-aware approach to solve this challenging non-convex high-order
tensor-format problem, and thereby leading to efficient exploration of rich low-rankness
and sparsity in the model.

• We empirically evaluate our proposed co-exploration solution for various DNN models
on different datasets, and the experimental results demonstrate its very promising perfor-
mance. Notably, on CIFAR-10 dataset, our solution can bring 1.25%, 1.02% and 0.16% ac-
curacy increase over the baseline ResNet-20, ResNet-56 and DenseNet-40 models, respec-
tively, and meanwhile the storage and computational costs are reduced by 70.4% and 71.1%
(for ResNet-20), 37.5% and 39.3% (for ResNet-56) and 52.4% and 61.3% (for DenseNet-
40), respectively. On ImageNet dataset, our approach can enable 0.52% accuracy increase
over baseline model with 48.7% fewer parameters.

2 RELATED WORK

Sparsification. Sparsification, also known as pruning, has been extensively studied for model com-
pression (Han et al. (2015a); Wen et al. (2016); Gao et al. (2019); Guo et al. (2016); Rao et al.
(2021)). In general sparsifying a DNN can be realized via two ways. The first one is to use a certain
criterion, e.g., weight magnitude (Han et al. (2015a)), to directly remove some part of the model,
and then perform fine-tuning to recover the accuracy. The second one is to add the sparsity-induced
regularization during the training, such as `1 or group lasso term (Wen et al. (2016)), to enforce the
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sparsity on the model. In addition, in order to achieve good balance between accuracy and complex-
ity reduction, Gao et al. (2019); Guo et al. (2016); Rao et al. (2021) also proposes dynamic pruning.
In such scenario, the DNN sparsification is essentially performed in an input-aware way – which
part of model should be pruned is dynamically determined by each input data.

Low-Rank Decomposition. Low-rank decomposition is another popular DNN compression ap-
proach. Based on different interpretation of the neural network models, the low-rank method can
be categorized to matrix decomposition and tensor decomposition. Matrix decomposition views the
4-D weight tensor as the folded matrix, and hence it flattens the 4-D objective to 2-D format and
decomposes the reshaped matrix to the product of two small matrices (Tai et al. (2016); Li & Shi
(2018); Xu et al. (2020)). On the other aspect, tensor decomposition directly factorizes the 4-D
weight tensor to multiple small tensor cores without flattening operations. Such explicit high-order
processing, by its nature, can better preserve the important spatial information and correlation ex-
isted in the weight tensors. To date several tensor decomposition techniques, such as tensor train,
Tucker and tensor ring etc., have been used for DNN model compression (Kim et al. (2016); Novikov
et al. (2015); Wang et al. (2018)).

Joint Pruning and Decomposition. As observed by Yu et al. (2017), a well-trained DNN tends to
exhibit both sparsity and low-rankness simultaneously. Motivated by this observation, some prior
efforts propose to co-explore these two complementary properties for model compression. As the
pioneering work, Yu et al. (2017) decomposes the weight tensors of a pre-trained DNN model into
independent low-rank and sparse parts and minimizes the reconstruction error. Different from this
parallel scheme, Dubey et al. (2018); Li et al. (2021b) adopt a sequential compression strategy via
performing matrix factorization on a pruned model. In addition, Li et al. (2020) proposes to use the
sparse/low-rank regularization term, instead of reconstruction error, to enforce the desired structural
patterns. Also, notice that all of the existing works focus on using either SVD-based or SVD-free
matrix decomposition to exploit the low-rankness of DNN model.

3 CO-EXPLORING LOW-RANKNESS AND SPARSITY: ANALYSIS

As outlined in Section 2, the integration of low-rank decomposition and pruning can be specified
by several important factors, including operational sequence, low-rankness format and the overall
optimization objective. The existence of such large variety of different factors and their combina-
tions, by its nature, calls for the systematic investigation on the best-suited co-exploration scheme
for DNN compression. Such analysis framework, if being properly developed, can facilitate the
optimal selection of various design factors already proposed in the existing literatures. More impor-
tantly, the outcome from this systematic study will further guide and provide the better integration
choices that have not been discovered before.

Questions to be Answered. Next we analyze the critical design knobs and factors for efficient co-
exploration on model low-rankness and sparsity. To that end, three important questions need to be
answered.

Question #1: What is the more suitable operational sequence when jointly low-rank decomposing
and pruning DNN models?

Analysis. In general, the co-existence of model low-rankness and sparsity can be explored in dif-
ferent ways (see Figure 1). For instance, as adopted in Yu et al. (2017), a well-trained DNN can
be closely approximated as the combination of a low-rank component and a sparse component. In
other words, the two types of structure-level properties are imposed and leveraged in a spatially
parallel way, and we denote this strategy as L+S, where L and S represent low-rank decomposition
and sparsification, respectively. On the other hand, the joint use of factorization and pruning can
also be performed in a temporally sequential way. As illustrated in Figure 1, the original model can
be first imposed with low-rankness (or sparsity), and the size of the resulting partially compressed
model can be further reduced by the second-stage pruning (or low-rank decomposition). Following
the similar notation, such sequential operation can be denoted as S(L) and L(S). In practice L(S) is
a preferable choice that has been adopted in the prior works (Dubey et al. (2018); Li et al. (2021b)).

Our Proposal. Among the above described three general operational schemes, we believe L+S is the
more suitable choice when considering to integrate pruning and decomposition together for model
compression. This is because unlike S(L) and L(S), which ultimately still produce the compressed
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Figure 1: Different operational sequences when jointly performing low-rank decomposition and pruning. Here
L and S represent low-rank decomposition and sparsification, respectively.

model in a single representation (sparse or low-rank) space, L+S enables the simultaneous represen-
tation of rich information of DNN models across different subspace, and thereby better preserving
the structural characteristics and reducing the potential information loss. To verify our hypothesis,
we examine the approximation error incurred by three integration schemes. As shown in Figure
2, with the same compression ratio for the weight tensor of one layer of a pre-trained ResNet-20
on CIFAR-10 dataset, L+S shows much lower approximation error than its counterparts, especially
in high compression ratio region. This experimental phenomenon demonstrates that L+S scheme
indeed can capture both the low-rank and sparse characteristics of DNN model in an efficient way.

Figure 2: The approximation error when compress-
ing the weight tensor of one layer in ResNet-20 using
different operational sequences (L+S, S(L) and L(S)).
Here mean square error (MSE) is used to measure the
difference between the original uncompressed weight
tensor and the reconstruction. SVD is adopted as the
low-rank decomposition method (L). It is seen that
L+S can bring much smaller approximation error
than its counterparts with the same compression ra-
tio. More detailed results are reported in Appendix B.1.

Question #2: What is the best suitable low-
rank decomposition approach used when co-
exploring low-rankness and sparsity?

Analysis. From the perspective of linear alge-
bra, the low-rankness of a DNN model can
be exploited using different ways. As illus-
trated in Figure 3, for an example convolu-
tional layer, imposing the low-rank structure
can be realized by performing simple matrix
factorization or high-order tensor decomposi-
tion. Specifically, Yu et al. (2017) chooses
SVD-free method to factorize DNN model and
obtain the low-rank component, and Li et al.
(2021b) proposes to use SVD-based decompo-
sition to serve as the second-stage compression
approach in its adopted L(S) scheme. Notice
that though the weights of convolutional layer
essentially form a 4-D tensor format, the ex-
isting works exploit the low-rankness via using
matrix decomposition – the 4-D tensor needs to
be first flatten to a 2-D matrix and it is then fac-
torized to two small matrix components.

Our Proposal. We argue that the high-order tensor decomposition, the option that has not been ex-
plored in the integration scheme before, is the better choice than the low-order matrix decomposition
adopted in the existing works. This is because as a reshaping-free technique that can directly factor-
ize the tensor-format data to multiple tensor cores, tensor decomposition, such as Tensor Train (TT)
and Tucker, can naturally capture and preserve the important spatial information and correlation of
the original weight tensors in a more efficient way. Therefore, less information loss is expected after
performing low-rank tensor-based DNN compression. To verify our hypothesis, we compare the
feature maps of the compressed convolutional layer of ResNet-20 on CIFAR-10 dataset using dif-
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Figure 3: Exploring low-rankness of convolutional layer via matrix decomposition (Top) and tensor decompo-
sition (Bottom). Here tensor train (TT) decomposition is adopted for illustration.

Figure 4: Output feature maps of one layer of ResNet-20 after non-compression (Left), tensor decomposition
(Middle) and matrix decomposition (Right). The visualization shown here is based on the information of one
channel. It is seen that high-order tensor decomposition makes the feature map of the compressed layer
more similar to that of the original uncompressed layer. More detailed results are reported in Appendix B.2.

ferent low-rank methods. As visualized in Figure 4, compared with the matrix decomposition-based
approach with the same compression ratio, tensor decomposition can make the output feature map
of the compressed layer much more similar to the feature map of the original uncompressed layer.
In other words, low-rank tensor method can provide better preservation of the important feature
information and thus it can bring potential higher model compression performance.

Question #3: What is the best suitable optimization objective that the integrated compression
scheme should aim?

Analysis. To efficiently realize the joint exploration of model low-rankness and sparsity with promis-
ing compression performance, different optimization strategies have been proposed in the existing
works. For instance, Yu et al. (2017); Ma et al. (2019) aim to minimize the difference between the
original weight matrix/tensor and the approximated reconstruction. In addition, Ma et al. (2019) pro-
poses to explicitly add the low-rank and sparse regularization terms to the overall objective function,
which can guide the training-aware procedure to enforce the desired structural patterns.

Our Proposal. Different from the existing approximation error-centered or regularized loss-based so-
lutions, we propose that the efficient co-exploration scheme should be interpreted as the optimization
procedure with the low-rank and sparse constraints. Our rationale lies on two important observations
of the inherent drawbacks of the prior efforts. First, the approximation strategy adopted in Yu et al.
(2017); Ma et al. (2019) focuses on making the reconstructed model approach the original model as
close as possible. However, since 1) the approximation error always exists; and 2) the original model
is not the only choice to achieve the desired accuracy, such strategy inherently can only search the
low-rank and sparse components in a limited exploration space, thereby affecting the overall com-
pression performance. Second, though adding the regularization terms into loss function indeed fa-
cilitates the extraction of low-rank and sparse patterns, the effect of such simple regularizing method
is still limited, especially considering the efforts of pushing for sparsity and for low-rankness may
interfere with each other, thereby potentially causing unexpected conflicts. Instead, by explicitly im-
posing the low-rank and sparse constraints on the overall optimization problem, these two structural
requirement can be simultaneously satisfied with the proper use of optimization technique (to be
discussed in Section 4). As reported in Appendix A, our proposed constrained optimization strategy
can successfully impose the desired low-rankness and sparsity onto the DNN models efficiently.

Summary of Our Analysis. ¶ Performing joint low-rank decomposition and pruning in a spatially
parallel way (L+S) is the preferable operational sequence. · High-order tensor decomposition is
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the most suitable choice for the low-rank approach used in the integrated compression scheme. ¸
Imposing low-rankness and sparsity as the direct hard constraints on the loss optimization should be
adopted to better satisfy the desired structural requirement.

4 CO-EXPLORING LOW-RANKNESS AND SPARSITY: OUR METHOD

Based on the above three key takeaways obtained from Section 3, in this section we propose a unified
framework to co-explore low-rankness and sparsity in an efficient way. To be specific, we first
formulate the integration of low-rank tensor decomposition and pruning to a unified optimization
problem, and then develop an efficient algorithm to solve this non-convex high-order tensor-format
problem.

4.1 PROBLEM FORMULATION

Recall that the analysis in Section 3 brings three important observations/proposals: using L+S oper-
ational sequence, choosing tensor decomposition, and directly imposing hard constraints. Built on
such three fundamental principles, we are now ready to formulate the integration of pruning and ten-
sor decomposition to a unified optimization problem. To be specific, given an uncompressed DNN
model with weight tensor W ∈ RO×I×K×K of each layer, our goal is to find another compact
model with weight tensors L + S, which consists of low-rank component L ∈ RO×I×K×K and
sparse component S ∈ RO×I×K×K for each layer, to minimize the following loss function:

min
L,S

f(L,S),

s.t. rank(L) ≤ γ0, γ1, · · · , γd︸ ︷︷ ︸
Low-tensor-rank constraint

, card(S) ≤ κ︸ ︷︷ ︸
Sparse constraint

, (1)

where f(·) is the loss over the entire training dataset, and γ0, γ1, · · · , γd and κ are the desired
tensor ranks and the number of non-zero entries for L and S, respectively. Notice that without
loss of generality, we choose tensor train (TT) decomposition as the component high-order low-
rank method in our framework. So here d is the number of decomposed tensor cores with TT
decomposition.

4.2 OPTIMIZATION

Directly optimizing problem (1) is challenging because of the co-existence of the non-differentiable
rank(·) and card(·) as well as its inherent high-order tensor format. To efficiently solve this problem,
we propose to leverage alternating direction optimization method to split these two constraints. To
be specific, after introducing two auxiliary variables L̂ and Ŝ that represent the desired low-TT-
rankness and sparsity in the optimization process, problem (1) can be then rewritten as:

min
L,S,L̂∈P,Ŝ∈Q

f(L,S),

s.t. L = L̂,S = Ŝ,
(2)

where P = {L|rank(L) ≤ γ1, · · · , γd} is the set of all tensors that satisfy the low-tensor-rank
constraint, and Q = {S|card(S) ≤ κ} is the set of all tensors that satisfy the sparse constraint.
Then, we further relax the hard constraints to the corresponding augmented Lagrangian form and
now we only need to optimize the following new constraint-free min-max problem:

min
L,S,L̂∈P,Ŝ∈Q

max
U ,V

f(L,S) +
λ

2
(‖L− L̂ + U‖2F + ‖S − Ŝ + V‖2F + ‖U‖2F + ‖V‖2F ), (3)

where U and V are the dual multipliers associated to L and S, respectively, and λ is the penalty pa-
rameters. To solve this minmax problem, we can split it into three separated parts, and independently
optimize them in an iterative way.

Update L and S with SGD. The first independent optimization objective can be formulated as:

min
L,S

f(L,S) +
λ

2
(‖L− L̂ + U‖2F + ‖S − Ŝ + V‖2F ). (4)
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Since there are no hard constraints on the target variables L and S, standard DNN optimizer (e.g.,
stochastic gradient descent (SGD)) can be directly applied with learning rate α as:

L← L− α[∇Lf(L,S) + λ(L− L̂ + U)], (5)

S ← S − α[∇Sf(L,S) + λ(S − Ŝ + V)]. (6)

Update L̂ with TT Decomposition. To update the introduced L̂, the optimization objective is:

min
L̂∈P

λ

2
‖L− L̂ + U‖2F . (7)

Because L̂ is strictly constrained to stay in the low-tensor-rank set P , the desired update can be
performed using an analytical solution via TT-rank truncation, i.e.

L̂← truncP(L + U). (8)

To realize such truncating operation, we first define a temporary tensor T = L + U and reshape it
as a new tensor T̃ ∈ R(K×K)×(O1×I1)×···×(Od×Id) with O =

∏d
k=1Ok, I =

∏d
k=1 Ik. Then T̃

can be decomposed to d+ 1 TT-cores as:

T̃ ((k1, k2), (oi, i1), · · · , (od, id))) = C0(k1, k2)C1(:, o1, i1, :) · · ·Cd(:, od, id, :), (9)

where C0 ∈ RK×K ,Cj ∈ RRj−1×Oj×Ij×Rj , j = 1, · · · , d. In this TT-format, the dimensions of
TT-ranks in TT-cores are truncated to the desired target, i.e., C′j = Cj(1 : γj−1, :, :, 1 : γj). After
that we use the truncated TT-cores to recover the original tensor via:

T̃
′
((k1, k2), (oi, i1), · · · , (od, id))) = C0(k1, k2)C′1(:, o1, i1, :) · · ·C′d(:, od, id, :). (10)

And finally T̃
′

is reshaped to the original shape of L̂ to serve as the updated L̂.

Update Ŝ with Projection. For updating Ŝ, the third optimization objective is:

min
Ŝ∈Q

λ

2
‖S − Ŝ + V‖2F . (11)

Similar to the low-tensor-rank L̂, the sparse-constrained Ŝ can also be analytically updated as

Ŝ ← projQ(S + V), (12)

where proj(·) is the projection that removes the smallest values to ensure that the updated Ŝ can
satisfy the sparse constraint.

Update Multipliers U ,V . Upon the update of L̂ and Ŝ, the dual multipliers U and V can be then
directly updated as:

U ← U + L− L̂, V ← V + S − Ŝ. (13)

Notice that after the iterative update finishes, the low-rank component L is explicitly decomposed
to TT-cores {C}dj=0, and the entire compressed model consisting of TT-cores and sparse part S is
finally fine-tuned with standard SGD. The overall RASPA algorithm is summarized in Algorithm 1.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Dataset and Baseline. We evaluate our proposed approach on two image classification datasets
(CIFAR-10 and ImageNet). For experiments on CIFAR-10 dataset, three CNN models (ResNet-20,
ResNet-56 and DenseNet-40) are compressed and tested. For experiments on ImageNet dataset,
we evaluate our approach for ResNet-50 and compare its performance with state-of-the-art model
compression methods.
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Algorithm 1 The overall RASPA algorithm for
co-exploring model low-rankness and sparsity
Input: Pre-trained weight tensor W , target TT-
ranks {γj}dj=0, sparse target κ, training epochs T .
Output: TT-cores {C}dj=0, sparse component S.

1: Initialize L, L̂,S, Ŝ with W ;
2: Initialize U := 0,V := 0
3: for t = 1 to T do
4: Update U ,V using Eq. 13;
5: Update L and S using Eq. 5 and Eq. 6;
6: // Update L̂ using TT-truncation
7: L̂← truncP(L + U);
8: // Update Ŝ using projection
9: Ŝ ← projQ(S + V);

10: end for
11: Decompose L to TT-cores {C}dj=0;
12: Fine-tune model with {C}dj=0 and S.

Hyperparameter. All the experiments are
conducted using SGD optimizer with batch
size, momentum and weight decay as 128, 0.9
and 0.0005, respectively. The learning rates
adopted in the optimization and fine-tuning pro-
cess are set as 0.1 and 0.005, respectively.
Within the total 180 epochs, the learning rate
is divided by 5 at epoch 54, 108, 144 and 171
gradually. The entire training procedure is per-
formed on RTX 3090 GPUs with Pytorch 1.8.1.

5.2 EVALUATION
AND COMPARISON ON CIFAR-10 DATASET

Table 1 shows the evaluation results of the com-
pressed ResNet-20, ResNet-56 and DenseNet-
40 models on CIFAR-10 dataset. For each
model, we compare the performance of our
proposed RASPA with several types of com-
pression methods, including decomposition-
only (L), pruning-only (S), first-pruning-then-

decomposition (L(S)), and layer-wise either-pruning-or-decomposition (S/L)).

ResNet-20. For ResNet-20 model, the proposed RASPA solution can bring 1.25% accuracy in-
crease over baseline model with 70.4% and 71.1% model size and FLOPs reductions, respectively.
With even more aggressive compression strategy aiming 85.3% smaller model size and 86.1% fewer
FLOPs, our approach can still enable 0.88% higher accuracy than the original ResNet-20 model.

ResNet-56. For ResNet-56 model, our approach can bring 1.02% accuracy increase over baseline
model with 37.5% and 39.3% model size and FLOPs reductions, respectively. When we perform
more aggressive compression with 65.6% and 66.0% fewer parameters and computations, our com-
pressed ResNet-56 can still enjoy 0.64% higher accuracy than the original uncompressed model,
thereby exhibiting very superior performance than other state-of-the-art DNN compression meth-
ods.

DenseNet-40. For DenseNet-40 model, our proposed sparsity/low-rankness co-exploration can
bring 0.16% accuracy increase over the baseline model with 52.4% and 61.3% model size and
FLOPs reductions, respectively. Moreover, with further higher compression effect, our RASPA
approach can still enable 0.07% higher accuracy than the original uncompressed model with 65.3%
and 74.5% fewer parameters and computations, respectively; while the existing approaches suffer
accuracy loss with even lower compression ratio.

5.3 EVALUATION AND COMPARISON ON IMAGENET DATASET

Table 2 summarizes the compression performance of our approach and other existing works for
ResNet-50 on ImageNet dataset. It is seen that our RASPA solution can bring 0.52% accuracy
increase over baseline model with 48.7% fewer parameters. When targeting for generating more
compact model, our approach can still achieve high performance – it only has 0.25% accuracy drop
with 58.6% model size reduction, which means it shows better test accuracy than its counterparts
with even higher compression ratio.

5.4 DISCUSSION & ANALYSIS

To obtain deep understanding of our proposed approach, we also perform some empirical analysis
and ablation studies on the co-exploration procedure. The details are referred to Appendix A.

6 CONCLUSION

In this paper we propose to systematically co-explore DNN low-rankness and sparsity for efficient
model compression. By performing comprehensive analysis on critical design factors, we propose
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Table 1: Experimental results on CIFAR-10 dataset. Here “L” denotes low-rank decomposition and “S”
denotes sparsification (pruning). Notice that no prior tensor decomposition work reports performance for
compressing ResNet-56 and DenseNet-40.

Compression Method Type Decomp.
Format

Top-1 Accuracy (%) Params. FLOPs
Baseline Comp. ∆ ↓ (%) ↓ (%)

ResNet-20
PSTRN (Li et al. (2021a)) L Tensor 91.25 90.80 -0.45 55.6 N/A
PSTRN (Li et al. (2021a)) L Tensor 91.25 89.30 -1.95 85.2 N/A
TRP (Xu et al. (2020)) L Matrix 91.74 90.88 -0.86 48.1 51.0
SVDT (Yang et al. (2020)) L Matrix 90.93 90.97 +0.04 N/A 54.5
Hinge (Li et al. (2020)) S/L Matrix 92.54 91.84 -0.70 55.5 54.5
SCOP (Tang et al. (2020)) S N/A 92.22 90.75 -1.47 56.3 55.7
FPGM (He et al. (2019)) S N/A 92.20 90.44 -1.76 51.0 54.0
RASPA (Ours) L+S Tensor 91.25 92.50 +1.25 70.4 71.1
RASPA (Ours) L+S Tensor 91.25 92.13 +0.88 85.3 86.1

ResNet-56
TRP (Xu et al. (2020)) L Matrix 93.14 92.77 -0.37 N/A 56.7
HRank (Lin et al. (2020)) S N/A 93.26 93.52 +0.26 16.8 29.3
HRank (Lin et al. (2020)) S N/A 93.26 93.17 -0.09 42.4 50.0
SVDT (Yang et al. (2020)) L Matrix 93.28 93.67 +0.39 N/A 63.0
CC (Li et al. (2021b)) L(S) Matrix 93.33 93.87 +0.54 36.5 42.4
CC (Li et al. (2021b)) L(S) Matrix 93.33 93.64 +0.31 48.2 52.0
RASPA (Ours) L+S Tensor 93.27 94.29 +1.02 37.5 39.3
RASPA (Ours) L+S Tensor 93.27 93.91 +0.64 65.6 66.0

DenseNet-40
HRank (Lin et al. (2020)) S N/A 94.81 94.24 -0.57 36.5 40.8
HRank (Lin et al. (2020)) S N/A 94.81 93.68 -1.13 53.8 61.0
Hinge (Li et al. (2020)) S/L Matrix 94.74 94.67 -0.07 27.5 44.4
CC (Li et al. (2021b)) L(S) Matrix 94.81 94.67 -0.14 51.9 47.0
CC (Li et al. (2021b)) L(S) Matrix 94.81 94.40 -0.41 64.4 60.4
RASPA (Ours) L+S Tensor 94.81 94.97 +0.16 52.4 61.3
RASPA (Ours) L+S Tensor 94.81 94.88 +0.07 65.3 74.5

Table 2: Experimental results on ImageNet dataset. Here “L” denotes low-rank decomposition and “S” de-
notes sparsification (pruning). Notice that no prior tensor decomposition work reports performance for
compressing ResNet-50.

Compression Method Type Decomp.
Format

Top-1 Accuracy (%) Top-5 Accuracy (%) Params.
Base. Comp. ∆ Base. Comp. ∆ ↓(%)

ResNet-50
TRP (Xu et al. (2020)) L Matrix 75.90 74.06 -1.84 92.70 92.07 -0.63 44.4
HRank(Lin et al. (2020)) S N/A 76.15 74.98 -1.17 92.87 92.33 -0.54 36.7
SCOP (Tang et al. (2020)) S N/A 76.15 75.95 -0.20 92.87 92.79 -0.08 42.8
SVDT (Yang et al. (2020)) L Matrix N/A N/A N/A 91.91 91.97 +0.06 30.6
CC (Li et al. (2021b)) L(S) Matrix 76.15 75.59 -0.56 92.87 92.64 -0.23 48.4
RASPA (Ours) L+S Tensor 76.13 76.65 +0.52 92.86 93.14 +0.28 48.7
TRP (Xu et al. (2020)) L Matrix 75.90 72.69 -3.21 92.70 91.41 -1.29 56.5
HRank (Lin et al. (2020)) S N/A 76.15 71.98 -4.17 92.87 91.01 -1.86 46.0
SCOP (Tang et al. (2020)) S N/A 76.15 75.26 -0.89 92.87 92.53 -0.34 51.8
Hinge (Li et al. (2020)) S/L Matrix 76.15 74.70 -1.45 N/A N/A N/A 53.5
CC (Li et al. (2021b)) L(S) Matrix 76.15 74.54 -1.61 92.87 92.25 -0.62 58.6
RASPA (Ours) L+S Tensor 76.13 75.29 -0.84 92.86 92.61 -0.25 58.6

RASPA, a unified compression framework that can capture model low-rankness and sparsity simul-
taneously and efficiently. Evaluation results show that our proposed approach can bring significant
model size and computational cost reductions while still preserving high model accuracy.
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A DETAILS OF EMPIRICAL ANALYSIS IN SECTION 5.4

In this section we present the details of our empirical analysis and discussion in Section 5.4. Notice
that the example model investigated and evaluated here is ResNet-20 on CIFAR-10 dataset.

Simultaneously Obtaining Low-rankness and Sparsity. Figure 5 shows the loss curves during
the model optimization procedure. Notice that here besides overall training loss, the individual low-
rank and sparse loss component, which directly reflects the progress of enforcing low-rankness and
sparsity, respectively, is also explicitly reported in this figure. It is seen that our proposed approach
indeed successfully imposes the desired low-tensor-rankness and sparsity with hard constraints onto
the model, and thereby ensuring that the compressed model can fully exhibit both low-rank and
sparse characteristics after the optimization.

Effect of Optimization Procedure. We also study the benefits of using our proposed optimization
procedure described in Algorithm 1 to solve problem (2). Here we compare our approach with a
direct method that performs TT decomposition and pruning on the uncompressed model straight-
forwardly with the same TT-ranks and sparsity settings. In addition, the same fine-tuning process
that RASPA adopts is also applied in this direct method. Figure 6 shows the comparison results with
respect to different compression ratios. It is seen that our proposed optimization procedure brings
significant accuracy increase.

Visualization. Figure 7 visualizes the weight tensor of one convolutional layer in a pre-trained
ResNet-20 model before and after performing our proposed compression approach. Here the visu-
alization of the low-rank and sparse components of the compressed layer is also illustrated in this
figure. It is seen that most of the weight information is preserved in the low-rank component, and
meanwhile the sparse component contains some spatial pattern as well.

Figure 5: Loss curves of a ResNet-20 trained on CIFAR-10 dataset using our RASPA algorithm. Here the curves
of the individual low-rank and sparse loss components are also illustrated. It is seen that the low-rankness
and sparsity are indeed imposed on the model via using RASPA.

Figure 6: The effect of optimization procedure for jointly TT decomposing and pruning ResNet-20 on CIFAR-
10. Here RASPA and the direct method use the same TT-rank setting and sparsity ratio. However, the direct
method does not perform optimization on original model. Instead, it first performs TT decomposition and then
prunes the difference between original model and the low-rank component to obtain the sparse component. The
two components generated by this direct method will then be fine-tuned with the same way that RASPA uses.
It is seen that our proposed optimization procedure in RASPA brings significantly accuracy increase.
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Figure 7: Visualization of one layer of ResNet-20 before and after performing our proposed RASPA compres-
sion. Here the low-rank and sparse components of the compressed layer are also visualized. It is seen that
low-rank component preserve most of weight information, and some spatial patterns are contained in
the sparse component.

B DETAILS OF ANALYSIS IN SECTION 3

B.1 MORE RESULTS FOR ANALYSIS IN QUESTION #1

Table 3,4 and 5 show the layer-wise approximation errors incurred by three operational sequences
(L+S, S(L) and L(S)). Here the baseline models include well-trained ResNet-20, ResNet-56 on
CIFAR-10 dataset, and ResNet-50 on ImageNet dataset, and the compression ratio is set as 3.0 for
all the layers. It is seen that L+S scheme always brings the smallest approximation errors.

Table 3: Approximation errors for different layers of ResNet-20 with different operational se-
quences. The compression ratio is set as 3.0 for all the layers.

Layer
Name

Weight
Shape

L+S S(L) L(S)
rank sparse error rank sparse error rank sparse error

l1b1.conv1 (16, 16, 3, 3) 3 0.9 1.32 5 0.1 1.73 4 0.1 1.95
l1b1.conv2 (16, 16, 3, 3) 3 0.9 1.31 5 0.1 1.61 4 0.1 1.83
l1b2.conv1 (16, 16, 3, 3) 3 0.9 1.29 5 0.1 1.63 4 0.1 1.78
l1b2.conv2 (16, 16, 3, 3) 3 0.9 1.33 5 0.1 1.53 4 0.1 1.67
l1b3.conv1 (16, 16, 3, 3) 3 0.9 1.65 5 0.1 2.05 4 0.1 2.25
l1b3.conv2 (16, 16, 3, 3) 3 0.9 1.37 5 0.1 1.60 4 0.1 1.81
l2b1.conv1 (16, 32, 3, 3) 6 0.9 1.91 9 0.1 2.22 8 0.1 2.36
l2b1.conv2 (32, 32, 3, 3) 6 0.9 2.44 10 0.1 2.84 9 0.1 2.97
l2b2.conv1 (32, 32, 3, 3) 6 0.9 2.34 10 0.1 2.81 9 0.1 2.92
l2b2.conv2 (32, 32, 3, 3) 6 0.9 2.20 10 0.1 2.54 9 0.1 2.65
l2b3.conv1 (32, 32, 3, 3) 6 0.9 2.36 10 0.1 2.80 9 0.1 2.91
l2b3.conv2 (32, 32, 3, 3) 6 0.9 2.02 10 0.1 2.34 9 0.1 2.44
l3b1.conv1 (32, 64, 3, 3) 12 0.9 2.98 19 0.1 3.41 17 0.1 3.59
l3b1.conv2 (64, 64, 3, 3) 13 0.9 3.98 21 0.1 4.63 19 0.1 4.82
l3b2.conv1 (64, 64, 3, 3) 13 0.9 4.18 21 0.1 4.86 19 0.1 5.05
l3b2.conv2 (64, 64, 3, 3) 13 0.9 3.49 21 0.1 4.01 19 0.1 4.18
l3b3.conv1 (64, 64, 3, 3) 13 0.9 3.86 21 0.1 4.47 19 0.1 4.65
l3b3.conv2 (64, 64, 3, 3) 13 0.9 0.40 21 0.1 0.42 19 0.1 0.44

B.2 MORE RESULTS FOR ANALYSIS IN QUESTION #2

Table 6 shows the difference (in term of mean square error (MSE)) between the output feature maps
of original layer and the compressed one in ResNet-20 on CIFAR-10 dataset. Here SVD and tensor
train (TT) are adopted for matrix decomposition and tensor decomposition, respectively. It is seen
that, with the same or even higher compression ratio, high-order tensor decomposition always
brings smaller approximation error than the matrix decomposition..

Table 7 shows the difference between the output feature maps of one original layer and the com-
pressed version in ResNet-20 on CIFAR-10 dataset and the difference of the final accuracy. Here
SVD, Tucker and TT are adopted for low-rank decompositions. It is seen that high-order tensor
decomposition always brings smaller approximation error than the matrix decomposition and
TT always has the least impact on the final accuracy.
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Table 4: Approximation errors for different layers of ResNet-56 with different operational se-
quences. The compression ratio is set as 3.0 for all the layers.

Layer
Name

Weight
Shape

L+S S(L) L(S)
rank sparse error rank sparse error rank sparse error

l1b1.conv1 (16, 16, 3, 3) 3 0.9 1.71 5 0.1 2.20 4 0.1 2.52
l1b1.conv2 (16, 16, 3, 3) 3 0.9 1.93 5 0.1 2.48 4 0.1 2.72
l1b2.conv1 (16, 16, 3, 3) 3 0.9 2.32 5 0.1 2.81 4 0.1 3.19
l1b2.conv2 (16, 16, 3, 3) 3 0.9 2.29 5 0.1 2.69 4 0.1 3.00
l1b3.conv1 (16, 16, 3, 3) 3 0.9 2.03 5 0.1 2.48 4 0.1 2.70
l1b3.conv2 (16, 16, 3, 3) 3 0.9 2.17 5 0.1 2.57 4 0.1 2.81
l1b4.conv1 (16, 16, 3, 3) 3 0.9 2.07 5 0.1 2.46 4 0.1 2.72
l1b4.conv2 (16, 16, 3, 3) 3 0.9 2.16 5 0.1 2.48 4 0.1 2.70
l1b5.conv1 (16, 16, 3, 3) 3 0.9 2.24 5 0.1 2.73 4 0.1 3.04
l1b5.conv2 (16, 16, 3, 3) 3 0.9 1.87 5 0.1 2.25 4 0.1 2.47
l1b6.conv1 (16, 16, 3, 3) 3 0.9 1.84 5 0.1 2.28 4 0.1 2.55
l1b6.conv2 (16, 16, 3, 3) 3 0.9 1.73 5 0.1 2.07 4 0.1 2.33
l1b7.conv1 (16, 16, 3, 3) 3 0.9 2.59 5 0.1 3.21 4 0.1 3.53
l1b7.conv2 (16, 16, 3, 3) 3 0.9 2.07 5 0.1 2.38 4 0.1 2.63
l1b8.conv1 (16, 16, 3, 3) 3 0.9 2.52 5 0.1 2.90 4 0.1 3.38
l1b8.conv2 (16, 16, 3, 3) 3 0.9 1.91 5 0.1 2.20 4 0.1 2.50
l1b9.conv1 (16, 16, 3, 3) 3 0.9 1.76 5 0.1 2.14 4 0.1 2.46
l1b9.conv2 (16, 16, 3, 3) 3 0.9 1.45 5 0.1 1.76 4 0.1 1.95
l2b1.conv1 (32, 16, 3, 3) 6 0.9 3.45 9 0.1 4.12 8 0.1 4.38
l2b1.conv2 (32, 32, 3, 3) 6 0.9 4.22 10 0.1 4.89 9 0.1 5.14
l2b2.conv1 (32, 32, 3, 3) 6 0.9 2.72 10 0.1 3.38 9 0.1 3.55
l2b2.conv2 (32, 32, 3, 3) 6 0.9 2.89 10 0.1 3.37 9 0.1 3.53
l2b3.conv1 (32, 32, 3, 3) 6 0.9 3.36 10 0.1 4.08 9 0.1 4.27
l2b3.conv2 (32, 32, 3, 3) 6 0.9 3.34 10 0.1 3.92 9 0.1 4.09
l2b4.conv1 (32, 32, 3, 3) 6 0.9 3.35 10 0.1 4.05 9 0.1 4.26
l2b4.conv2 (32, 32, 3, 3) 6 0.9 3.21 10 0.1 3.73 9 0.1 3.90
l2b5.conv1 (32, 32, 3, 3) 6 0.9 3.39 10 0.1 4.02 9 0.1 4.21
l2b5.conv2 (32, 32, 3, 3) 6 0.9 3.00 10 0.1 3.51 9 0.1 3.67
l2b6.conv1 (32, 32, 3, 3) 6 0.9 3.38 10 0.1 4.00 9 0.1 4.20
l2b6.conv2 (32, 32, 3, 3) 6 0.9 3.04 10 0.1 3.55 9 0.1 3.73
l2b7.conv1 (32, 32, 3, 3) 6 0.9 3.40 10 0.1 4.02 9 0.1 4.21
l2b7.conv2 (32, 32, 3, 3) 6 0.9 2.83 10 0.1 3.34 9 0.1 3.51
l2b8.conv1 (32, 32, 3, 3) 6 0.9 3.31 10 0.1 3.93 9 0.1 4.12
l2b8.conv2 (32, 32, 3, 3) 6 0.9 2.84 10 0.1 3.36 9 0.1 3.53
l2b9.conv1 (32, 32, 3, 3) 6 0.9 3.40 10 0.1 4.03 9 0.1 4.21
l2b9.conv2 (32, 32, 3, 3) 6 0.9 2.61 10 0.1 3.06 9 0.1 3.22
l3b1.conv1 (64, 32, 3, 3) 12 0.9 5.13 19 0.1 5.92 17 0.1 6.26
l3b1.conv2 (64, 64, 3, 3) 13 0.9 6.45 21 0.1 7.63 19 0.1 7.99
l3b2.conv1 (64, 64, 3, 3) 13 0.9 5.36 21 0.1 6.63 19 0.1 6.92
l3b2.conv2 (64, 64, 3, 3) 13 0.9 5.94 21 0.1 6.88 19 0.1 7.17
l3b3.conv1 (64, 64, 3, 3) 13 0.9 5.65 21 0.1 6.77 19 0.1 7.08
l3b3.conv2 (64, 64, 3, 3) 13 0.9 5.40 21 0.1 6.34 19 0.1 6.62
l3b4.conv1 (64, 64, 3, 3) 13 0.9 6.38 21 0.1 7.55 19 0.1 7.88
l3b4.conv2 (64, 64, 3, 3) 13 0.9 5.43 21 0.1 6.30 19 0.1 6.58
l3b5.conv1 (64, 64, 3, 3) 13 0.9 6.43 21 0.1 7.59 19 0.1 7.91
l3b5.conv2 (64, 64, 3, 3) 13 0.9 4.94 21 0.1 5.73 19 0.1 7.91
l3b6.conv1 (64, 64, 3, 3) 13 0.9 6.30 21 0.1 7.34 19 0.1 7.65
l3b6.conv2 (64, 64, 3, 3) 13 0.9 4.25 21 0.1 4.84 19 0.1 5.08
l3b7.conv1 (64, 64, 3, 3) 13 0.9 5.31 21 0.1 6.14 19 0.1 6.42
l3b7.conv2 (64, 64, 3, 3) 13 0.9 3.32 21 0.1 3.76 19 0.1 3.95
l3b8.conv1 (64, 64, 3, 3) 13 0.9 4.12 21 0.1 4.71 19 0.1 4.98
l3b8.conv2 (64, 64, 3, 3) 13 0.9 2.14 21 0.1 2.39 19 0.1 2.55
l3b9.conv1 (64, 64, 3, 3) 13 0.9 3.32 21 0.1 3.65 19 0.1 3.87
l3b9.conv2 (64, 64, 3, 3) 13 0.9 1.41 21 0.1 1.49 19 0.1 1.60
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Table 5: Approximation errors for different layers of ResNet-50 with different operational se-
quences. The compression ratio is set as 3.0 for all the layers.

Layer
Name

Weight
Shape

L+S S(L) L(S)
rank sparse error rank sparse error rank sparse error

l1b1.conv1 (64, 64, 1, 1) 7 0.9 1.65 11 0.1 2.43 10 0.1 2.60
l1b1.conv2 (64, 64, 3, 3) 13 0.9 1.73 21 0.1 1.82 19 0.1 2.01
l1b1.conv3 (256, 64, 1, 1) 11 0.9 1.62 18 0.1 1.82 17 0.1 1.95
l1b2.conv1 (64, 256, 1, 1) 11 0.9 1.49 18 0.1 1.79 17 0.1 1.86
l1b2.conv2 (64, 64, 3, 3) 13 0.9 2.34 21 0.1 2.73 19 0.1 2.88
l1b2.conv3 (256, 64, 1, 1) 11 0.9 1.70 18 0.1 2.32 17 0.1 2.40
l1b3.conv1 (64, 256, 1, 1) 11 0.9 1.55 18 0.1 1.79 17 0.1 1.85
l1b3.conv2 (64, 64, 3, 3) 13 0.9 2.93 21 0.1 3.26 19 0.1 3.44
l1b3.conv3 (256, 64, 1, 1) 11 0.9 1.56 18 0.1 2.20 17 0.1 2.28
l2b1.conv1 (128, 256, 1, 1) 19 0.9 2.63 31 0.1 2.99 28 0.1 3.20
l2b1.conv2 (128, 128, 3, 3) 26 0.9 4.27 42 0.1 4.78 38 0.1 5.07
l2b1.conv3 (512, 128, 1, 1) 23 0.9 2.94 37 0.1 3.84 34 0.1 4.06
l2b2.conv1 (128, 512, 1, 1) 23 0.9 1.04 37 0.1 1.17 34 0.1 1.24
l2b2.conv2 (128, 128, 3, 3) 26 0.9 1.90 42 0.1 2.00 38 0.1 2.17
l2b2.conv3 (512, 128, 1, 1) 23 0.9 1.58 37 0.1 2.04 34 0.1 2.18
l2b3.conv1 (128, 512, 1, 1) 23 0.9 2.48 37 0.1 2.78 34 0.1 2.93
l2b3.conv2 (128, 128, 3, 3) 26 0.9 3.67 42 0.1 4.15 38 0.1 4.40
l2b3.conv3 (512, 128, 1, 1) 23 0.9 3.09 37 0.1 3.63 34 0.1 3.82
l2b4.conv1 (128, 512, 1, 1) 23 0.9 2.81 37 0.1 3.18 34 0.1 3.33
l2b4.conv2 (128, 128, 3, 3) 26 0.9 4.38 42 0.1 4.95 38 0.1 5.22
l2b4.conv3 (512, 128, 1, 1) 23 0.9 2.84 37 0.1 3.57 34 0.1 3.73
l3b1.conv1 (256, 512, 1, 1) 39 0.9 4.96 63 0.1 5.72 56 0.1 6.11
l3b1.conv2 (256, 256, 3, 3) 53 0.9 6.18 85 0.1 6.77 76 0.1 7.27
l3b1.conv3 (1024, 256, 1, 1) 47 0.9 5.55 75 0.1 6.42 68 0.1 6.83
l3b2.conv1 (256, 1024, 1, 1) 47 0.9 3.12 75 0.1 3.47 68 0.1 3.71
l3b2.conv2 (256, 256, 3, 3) 53 0.9 5.09 85 0.1 5.56 76 0.1 5.94
l3b2.conv3 (1024, 256, 1, 1) 47 0.9 4.94 75 0.1 5.79 68 0.1 6.08
l3b3.conv1 (256, 1024, 1, 1) 47 0.9 3.37 75 0.1 3.72 68 0.1 3.95
l3b3.conv2 (256, 256, 3, 3) 53 0.9 5.37 85 0.1 5.94 76 0.1 6.32
l3b3.conv3 (1024, 256, 1, 1) 47 0.9 4.54 75 0.1 5.27 68 0.1 5.55
l3b4.conv1 (256, 1024, 1, 1) 47 0.9 4.22 75 0.1 4.78 68 0.1 5.04
l3b4.conv2 (256, 256, 3, 3) 53 0.9 5.76 85 0.1 6.48 76 0.1 6.85
l3b4.conv3 (1024, 256, 1, 1) 47 0.9 4.55 75 0.1 5.32 68 0.1 5.59
l3b5.conv1 (256, 1024, 1, 1) 47 0.9 4.66 75 0.1 5.33 68 0.1 5.59
l3b5.conv2 (256, 256, 3, 3) 53 0.9 5.77 85 0.1 6.52 76 0.1 6.88
l3b5.conv3 (1024, 256, 1, 1) 47 0.9 4.49 75 0.1 5.29 68 0.1 5.54
l3b6.conv1 (256, 1024, 1, 1) 47 0.9 5.31 75 0.1 6.11 68 0.1 6.39
l3b6.conv2 (256, 256, 3, 3) 53 0.9 5.85 85 0.1 6.61 76 0.1 6.98
l3b6.conv3 (1024, 256, 1, 1) 47 0.9 4.83 75 0.1 5.66 68 0.1 5.93
l4b1.conv1 (512, 1024, 1, 1) 79 0.9 8.85 126 0.1 10.13 113 0.1 10.63
l4b1.conv2 (512, 512, 3, 3) 107 0.9 9.47 170 0.1 10.11 153 0.1 10.76
l4b1.conv3 (2048, 512, 1, 1) 95 0.9 8.21 151 0.1 9.24 136 0.1 9.78
l4b2.conv1 (512, 2048, 1, 1) 95 0.9 7.82 151 0.1 8.74 136 0.1 9.24
l4b2.conv2 (512, 512, 3, 3) 107 0.9 9.94 170 0.1 11.06 153 0.1 11.66
l4b2.conv3 (2048, 512, 1, 1) 95 0.9 7.91 151 0.1 8.94 136 0.1 9.43
l4b3.conv1 (512, 2048, 1, 1) 95 0.9 10.10 151 0.1 11.46 136 0.1 12.05
l4b3.conv2 (512, 512, 3, 3) 107 0.9 8.61 170 0.1 9.02 153 0.1 9.68
l4b3.conv3 (2048, 512, 1, 1) 95 0.9 7.11 151 0.1 7.83 136 0.1 8.42

C DISTRIBUTION OF TT-RANK AND SPARSITY RATIO

Table. 8, 9, 10 and 11 list the layer-wise TT-rank and sparsity ratio of four compressed model.
Here Model I and Model II in each table correspond to two reported models of each network with
different Top-1 accuracy in Table 1 and 2.
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Table 6: Approximation errors for the feature maps of different layers of ResNet-20 on CIFAR-10
dataset with matrix decomposition (SVD) and tensor decomposition (TT).

Layer Name Weight Shape Compression Ratio Approximation Error (MSE)
SVD TT SVD TT

l1b1.conv1 (16, 16, 3, 3) 1.59 1.59 14.16 11.96
l1b1.conv2 (16, 16, 3, 3) 1.59 1.59 8.37 7.91
l1b2.conv1 (16, 16, 3, 3) 1.79 1.85 25.35 13.79
l1b2.conv2 (16, 16, 3, 3) 1.79 1.85 8.49 5.72
l1b3.conv1 (16, 16, 3, 3) 1.79 1.85 27.20 26.61
l1b3.conv2 (16, 16, 3, 3) 1.79 1.85 8.22 6.57
l2b1.conv1 (16, 32, 3, 3) 2.00 2.11 15.40 10.13
l2b1.conv2 (32, 32, 3, 3) 1.91 2.03 8.81 5.17
l2b2.conv1 (32, 32, 3, 3) 1.91 2.03 15.12 12.72
l2b2.conv2 (32, 32, 3, 3) 1.91 2.03 4.13 2.99
l2b3.conv1 (32, 32, 3, 3) 1.91 2.03 14.88 11.97
l2b3.conv2 (32, 32, 3, 3) 1.91 2.03 3.23 2.18
l3b1.conv1 (32, 64, 3, 3) 2.01 2.01 10.52 2.95
l3b1.conv2 (64, 64, 3, 3) 1.98 2.01 5.14 3.85
l3b2.conv1 (64, 64, 3, 3) 1.98 2.01 12.42 8.52
l3b2.conv2 (64, 64, 3, 3) 1.98 2.01 2.70 2.04
l3b3.conv1 (64, 64, 3, 3) 1.98 2.01 12.46 6.72
l3b3.conv2 (64, 64, 3, 3) 1.98 2.01 0.21 0.16

Table 7: Feature map approximation error of layer3.0.conv2 in ResNet-20 and the corresponding
accuracy drop with SVD, Tucker and TT in different compression ratio settings.

SVD Tucker TT
Compr.
Ratio

Approx.
Error

Acc.
∆ (%)

Compr.
Ratio

Approx.
Error

Acc.
∆ (%)

Compr.
Ratio

Approx.
Error

Acc.
∆ (%)

1.47× 4.29 -1.06 1.48× 3.72 -0.43 1.51× 3.16 -0.31
1.98× 5.60 -3.0 1.97× 4.80 -2.1 2.01× 4.16 -0.8
2.50× 6.57 -5.27 2.50× 5.41 -3.46 2.50× 5.13 -1.86
3.03× 7.35 -7.62 3.09× 6.02 -3.76 3.09× 6.06 -3.18
3.38× 7.71 -9.66 3.46× 6.42 -4.54 3.57× 6.40 -4.03
4.11× 8.31 -11.32 4.18× 6.81 -6.04 4.20× 6.94 -5.41

D OTHER EXPERIMENTAL RESULTS

Please check Table 12, 13, 14 and 15 for other experimental results including different setting of
compressed ResNet-20 and comparison with more related works from [L1] to [A3].

E RELATED WORK

Pruning. Pruning is a very popular compression strategy that explores the sparsity of DNN models.
Existing pruning methods can be performed with different granularity, e.g., weight pruning [E1] and
channel pruning [E2][E3], or with different pruning criteria, such as magnitude based [E1], rank
based [E2], and nuclear norm based [E4].

Low-rank Decomposition. Low-rank compression methods aim to explore the intrinsic linear cor-
relations of weights. In general, low-rank decomposition can be performed via exploring matrix
decomposition [E5][E6] and tensor decomposition [E7]. For compressing convolutional neural net-
works, tensor decomposition is typically more suitable choice since high-order tensor decomposition
can properly explore multidimensional correlation in the weight tensor; while the existing matrix
decomposition-based works [E5][E6] suffer the loss of important spatial information incurred by
inevitable tensor flatten operation.
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Table 8: Layer-wise distribution of TT-Rank and sparsity ratio for the compressed ResNet-20 models
on CIFAR-10 dataset.

Layer Name Weight Shape Model I with 92.13% Acc. Model II with 92.50% Acc.
TT Ranks Sparsity (%) TT Ranks Sparsity (%)

l1b1.conv1 (16, 16, 3, 3) (1, 10, 10, 1) 90.0 (1, 16, 16, 1) 85.0
l1b1.conv2 (16, 16, 3, 3) (1, 8, 8, 1) 90.0 (1, 12, 12, 1) 85.0
l1b2.conv1 (16, 16, 3, 3) (1, 8, 8, 1) 90.0 (1, 12, 12, 1) 85.0
l1b2.conv2 (16, 16, 3, 3) (1, 5, 5, 1) 90.0 (1, 12, 12, 1) 85.0
l1b3.conv1 (16, 16, 3, 3) (1, 5, 5, 1) 90.0 (1, 10, 10, 1) 85.0
l1b3.conv2 (16, 16, 3, 3) (1, 5, 5, 1) 90.0 (1, 10, 10, 1) 85.0
l2b1.conv1 (16, 32, 3, 3) (1, 5, 5, 1) 90.0 (1, 10, 10, 1) 85.0
l2b1.conv2 (32, 32, 3, 3) (1, 3, 3, 1) 90.0 (1, 20, 16, 1) 85.0
l2b2.conv1 (32, 32, 3, 3) (1, 3, 3, 1) 90.0 (1, 10, 10, 1) 85.0
l2b2.conv2 (32, 32, 3, 3) (1, 3, 3, 1) 90.0 (1, 10, 10, 1) 85.0
l2b3.conv1 (32, 32, 3, 3) (1, 3, 3, 1) 90.0 (1, 10, 10, 1) 85.0
l2b3.conv2 (32, 32, 3, 3) (1, 4, 4, 1) 90.0 (1, 10, 10, 1) 85.0
l3b1.conv1 (32, 64, 3, 3) (1, 4, 4, 1) 90.0 (1, 20, 15, 1) 85.0
l3b1.conv2 (64, 64, 3, 3) (1, 4, 4, 1) 90.0 (1, 10, 10, 1) 85.0
l3b2.conv1 (64, 64, 3, 3) (1, 4, 4, 1) 90.0 (1, 10, 10, 1) 85.0
l3b2.conv2 (64, 64, 3, 3) (1, 5, 5, 1) 90.0 (1, 10, 10, 1) 85.0
l3b3.conv1 (64, 64, 3, 3) (1, 5, 5, 1) 90.0 (1, 10, 10, 1) 85.0
l3b3.conv2 (64, 64, 3, 3) (1, 5, 5, 1) 90.0 (1, 10, 10, 1) 85.0

Co-exploring Sparsity/Low-rankness for Model Compression. Recently, several papers have
been proposed to co-explore sparsity and low-rankness for efficient DNN model compression.
In particular, additive compression strategy (L+S) have been explored in some prior works
[E8][E9][E10]. However, the low-rank component of all of these existing works are based on matrix
decomposition. As analyzed before, high-order tensor decomposition is a more suitable low-rank
methods for CNN compression; while this important technique has not been explored by the existing
additive compression efforts yet. Also, [E8][E9] aims to closely approximate original models. As
we analyze in Question #3, this strategy is not the optimal solution for DNN model compression,
since our task goal is to generate a compressed model instead of close approximation to the original
model. Different from these existing works, our approach is built on tensor decomposition with con-
strained formulation as the optimization objective, thereby demonstrating better performance than
[E8][E9][E10].

Co-exploring Sparsity/Low-rankness for Matrix Approximation/Estimation. Co-exploring
sparsity/low-rankness for efficient matrix approximation/estimation has also been explored [E11-
E14]. However, the feasibility and efficiency of those general methods for DNN model compression
is not verified and not clear yet. To be specific, our approach aims to perform model compression on
deep neural networks with high accuracy; while those general methods aim to approximate/estimate
a matrix with low approximation error. Consider modern DNN models consist of many large-size
layers and they need maintain high accuracy on large-scale dataset, our approach is focusing a very
different problem that these general methods do not work on. Though it is possible that those gen-
eral techniques may be applied to DNN model compression after certain unknown modification, the
feasibility is not really verified yet, especially on large-scale dataset such as ImageNet. Also, the
corresponding computational costs and accuracy performance are unknown.

ADMM-based Model Compression. In recent years ADMM has been used in several model com-
pression papers, including single pruning [E15][E16], single low-rank compression [E18], joint
quantization and pruning [E17] and additive compressing [E8][E10]. Our approach focuses on ad-
ditive compression with distinct difference from [E8][E10] and other ADMM-based works. This is
because low-rank approach used in [E8][E10] is based on matrix decomposition, which is not the
best solution for compression CNNs; while we adopt high-order tensor decomposition in our pro-
posed additive compression. From the perspective of ADMM process, the projection towards tensor
decomposition is much more complicated than the one for matrix factorization. This is because
1) it is involved with advanced high-order tensor operation instead of straightforward 2-D matrix
computation; and 2) tensor decomposition (e.g., TT) outputs multiple 4-D tensor cores; while ma-
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trix factorization only generates two 2-D matrices. Such huge difference makes the corresponding
projection on the decomposed tensor cores is significantly different from the projection on low-rank
used in [E8][E10] or sparse matrix used in [E15][E16][E17].

[E1] Song Han et al. ”Deep Compression: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding,” ICLR’16

[E2] Mingbao Lin et al. ”HRank: Filter Pruning using High-Rank Feature Map,” CVPR’20

[E3] Yehui Tang et al. ”SCOP: Scientific Control for Reliable Neural Network Pruning,” NeurIPS’20

[E4] Yang Sui et al. ”CHIP: CHannel Independence-based Pruning for Compact Neural Networks,”
NeurIPS’21

[E5] Huanrui Yang et al. ”Learning low-rank deep neural networks via singular vector orthogonality
regularization and sin-gular value sparsification,” CVPR Wokrshop’20

[E6] Yuhui Xu et al, ”Trp: Trained rank pruning for efficient deep neural networks,” IJCAI’20

[E7] Nannan Li et al, ”Heuristic rankselection with progressively searching tensor ring net-
work.Complex Intelligent Systems,” Complex and intelligent system, 2021.

[E8] Yuzhe Ma et al, ”A unified approximation framework for compressing and accelerating deep
neural networks,” ICTAI’19

[E9] Xiyu Yu et al, ”On compressing deep models by low-rank and sparse decomposition,” CVPR’17

[E10] Yerlan Idelbayev et al, ”More General and Effective Model Compression via an Additive
Combination of Compressions,” ECML’21

[E11] Handbook of Robust Low-Rank and Sparse Matrix Decomposition. Applications in Image
and Video Processing (CRC Publishers 2016)

[E12] Emile Richard et al, ”Intersecting singularities for multi-structured estimation,” ICML’13

[E13] Emile Richard et al, ”Estimation of Simultaneously Sparse and Low Rank Matrices,” ICML’12

[E14] Xi Luo ”Recovering Model Structures from Large Low Rank and Sparse Covariance Matrix
Estimation,” JSM’11

[E15] Tianyuan Zhang et al, ”A Systematic DNN Weight Pruning Framework using Alternating
Direction Method of Multipliers,” ECCV’18

[E16] Yerlan Idelbayev et al, “Learning-Compression” Algorithms for Neural Net Pruning,”
CVPR’18

[E17] Haichuan Yang et al, ”Automatic Neural Network Compression by Sparsity-Quantization
Joint Learning: A Constrained Optimization-based Approach,” CVPR’20

[E18] Yerlan Idelbayev et al, ”Low-Rank Compression of Neural Nets: Learning the Rank of Each
Layer,” CVPR 2020
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Table 15: Overall comparison

Method Model Top-1 Acc. (%) Top-5 Acc. (%) Params. ↓
CIFAR-10

[L4] ResNet-20 90.2 N/A 66.67%
Ours 92.5 70.40%
[P1] ResNet-56 93.08 N/A 85.0%
Ours 93.26 85.1%
[P2] ResNet-20 91.29 N/A 16.00×
Ours 92.09 16.00×
[A1] VGG16 93.34 N/A 60.99×
Ours 93.38 61.16×
[A3] VGGNet-7 86.17 N/A 76.09%
Ours 86.44 76.22%

[Ma. 2019] VGG-16 91.65 N/A 77.48%
Ours 93.39 77.60%

ImageNet
[L1] VGG-16 N/A 88.9 80.00%
Ours 89.03 93.94%
[L3] ResNet-18 69.29 88.78 58.68%
Ours 70.23 89.43 58.70%

[L1] Accelerating Very Deep Convolutional Networks for Classification and Detection (IEEE
TPAMI 2016)

[L2] GroupReduce: Block-Wise Low-Rank Approximation for Neural Language Model Shrinking,
NeurIPS2018

[L3] Automated Multi-Stage Compression of Neural Networks (ICCV Workshops 2019)

[L4] Low-Rank Compression of Neural Nets: Learning the Rank of Each Layer (CVPR 2020)

[L5] Factorized Higher-Order CNNs with an Application to Spatio-Temporal Emotion Estimation
(CVPR 2020) Relevant pruning works:

[P1] “Learning-Compression” Algorithms for Neural Net Pruning (CVPR 2018)

[P2] Automatic Neural Network Compression by Sparsity-Quantization Joint Learning: A Con-
strained Optimization-based Approach (CVPR 2020) Relevant additive combinations work:

[A1] More General and Effective Model Compression via an Additive Combination of Compres-
sions (ECML 2021)

[A2] Handbook of Robust Low-Rank and Sparse Matrix Decomposition. Applications in Image and
Video Processing (CRC Publishers 2016)

[A3] Compressing by Learning in a Low-Rank and Sparse Decomposition Form (IEEE Access
2019)
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Table 9: Layer-wise distribution of TT-Rank and sparsity ratio for the compressed ResNet-56 models
on CIFAR-10 dataset.

Layer Name Weight Shape Model I with 94.29% Acc. Model II with 93.91% Acc.
TT Ranks Sparsity TT Ranks Sparsity

l1b1.conv1 (16, 16, 3, 3) (1, 16, 16, 1) 0.8 (1, 16, 16, 1) 0.85
l1b1.conv2 (16, 16, 3, 3) (1, 16, 16, 1) 0.8 (1, 16, 16, 1) 0.85
l1b2.conv1 (16, 16, 3, 3) (1, 16, 16, 1) 0.8 (1, 16, 16, 1) 0.85
l1b2.conv2 (16, 16, 3, 3) (1, 16, 16, 1) 0.8 (1, 16, 16, 1) 0.85
l1b3.conv1 (16, 16, 3, 3) (1, 16, 16, 1) 0.8 (1, 10, 10, 1) 0.85
l1b3.conv2 (16, 16, 3, 3) (1, 16, 16, 1) 0.8 (1, 10, 10, 1) 0.85
l1b4.conv1 (16, 16, 3, 3) (1, 16, 16, 1) 0.8 (1, 10, 10, 1) 0.85
l1b4.conv2 (16, 16, 3, 3) (1, 16, 16, 1) 0.8 (1, 10, 10, 1) 0.85
l1b5.conv1 (16, 16, 3, 3) (1, 16, 16, 1) 0.8 (1, 10, 10, 1) 0.85
l1b5.conv2 (16, 16, 3, 3) (1, 16, 16, 1) 0.8 (1, 10, 10, 1) 0.85
l1b6.conv1 (16, 16, 3, 3) (1, 16, 16, 1) 0.8 (1, 10, 10, 1) 0.85
l1b6.conv2 (16, 16, 3, 3) (1, 16, 16, 1) 0.8 (1, 10, 10, 1) 0.85
l1b7.conv1 (16, 16, 3, 3) (1, 16, 16, 1) 0.8 (1, 10, 10, 1) 0.85
l1b7.conv2 (16, 16, 3, 3) (1, 16, 16, 1) 0.8 (1, 10, 10, 1) 0.85
l1b8.conv1 (16, 16, 3, 3) (1, 16, 16, 1) 0.8 (1, 10, 10, 1) 0.85
l1b8.conv2 (16, 16, 3, 3) (1, 16, 16, 1) 0.8 (1, 10, 10, 1) 0.85
l1b9.conv1 (16, 16, 3, 3) (1, 16, 16, 1) 0.8 (1, 10, 10, 1) 0.85
l1b9.conv2 (16, 16, 3, 3) (1, 16, 16, 1) 0.8 (1, 10, 10, 1) 0.85
l2b1.conv1 (32, 16, 3, 3) (1, 32, 20, 1) 0.8 (1, 25, 20, 1) 0.85
l2b1.conv2 (32, 32, 3, 3) (1, 32, 20, 1) 0.8 (1, 25, 20, 1) 0.85
l2b2.conv1 (32, 32, 3, 3) (1, 32, 20, 1) 0.8 (1, 16, 16, 1) 0.85
l2b2.conv2 (32, 32, 3, 3) (1, 32, 20, 1) 0.8 (1, 16, 16, 1) 0.85
l2b3.conv1 (32, 32, 3, 3) (1, 20, 20, 1) 0.8 (1, 16, 16, 1) 0.85
l2b3.conv2 (32, 32, 3, 3) (1, 20, 20, 1) 0.8 (1, 16, 16, 1) 0.85
l2b4.conv1 (32, 32, 3, 3) (1, 20, 20, 1) 0.8 (1, 16, 16, 1) 0.85
l2b4.conv2 (32, 32, 3, 3) (1, 20, 20, 1) 0.8 (1, 16, 16, 1) 0.85
l2b5.conv1 (32, 32, 3, 3) (1, 20, 20, 1) 0.8 (1, 16, 16, 1) 0.85
l2b5.conv2 (32, 32, 3, 3) (1, 20, 20, 1) 0.8 (1, 16, 16, 1) 0.85
l2b6.conv1 (32, 32, 3, 3) (1, 20, 20, 1) 0.8 (1, 10, 10, 1) 0.85
l2b6.conv2 (32, 32, 3, 3) (1, 20, 20, 1) 0.8 (1, 10, 10, 1) 0.85
l2b7.conv1 (32, 32, 3, 3) (1, 20, 20, 1) 0.8 (1, 10, 10, 1) 0.85
l2b7.conv2 (32, 32, 3, 3) (1, 16, 16, 1) 0.8 (1, 10, 10, 1) 0.85
l2b8.conv1 (32, 32, 3, 3) (1, 16, 16, 1) 0.8 (1, 10, 10, 1) 0.85
l2b8.conv2 (32, 32, 3, 3) (1, 16, 16, 1) 0.8 (1, 10, 10, 1) 0.85
l2b9.conv1 (32, 32, 3, 3) (1, 16, 16, 1) 0.8 (1, 10, 10, 1) 0.85
l2b9.conv2 (32, 32, 3, 3) (1, 16, 16, 1) 0.8 (1, 10, 10, 1) 0.85
l3b1.conv1 (64, 32, 3, 3) (1, 40, 30, 1) 0.8 (1, 10, 10, 1) 0.85
l3b1.conv2 (64, 64, 3, 3) (1, 40, 30, 1) 0.8 (1, 10, 10, 1) 0.85
l3b2.conv1 (64, 64, 3, 3) (1, 40, 30, 1) 0.8 (1, 10, 10, 1) 0.85
l3b2.conv2 (64, 64, 3, 3) (1, 40, 30, 1) 0.8 (1, 10, 10, 1) 0.85
l3b3.conv1 (64, 64, 3, 3) (1, 40, 30, 1) 0.8 (1, 16, 16, 1) 0.85
l3b3.conv2 (64, 64, 3, 3) (1, 40, 30, 1) 0.8 (1, 16, 16, 1) 0.85
l3b4.conv1 (64, 64, 3, 3) (1, 40, 30, 1) 0.8 (1, 16, 16, 1) 0.85
l3b4.conv2 (64, 64, 3, 3) (1, 40, 30, 1) 0.8 (1, 16, 16, 1) 0.85
l3b5.conv1 (64, 64, 3, 3) (1, 20, 20, 1) 0.8 (1, 16, 16, 1) 0.85
l3b5.conv2 (64, 64, 3, 3) (1, 30, 20, 1) 0.8 (1, 16, 16, 1) 0.85
l3b6.conv1 (64, 64, 3, 3) (1, 30, 20, 1) 0.8 (1, 16, 16, 1) 0.85
l3b6.conv2 (64, 64, 3, 3) (1, 30, 20, 1) 0.8 (1, 20, 20, 1) 0.85
l3b7.conv1 (64, 64, 3, 3) (1, 30, 20, 1) 0.8 (1, 20, 20, 1) 0.85
l3b7.conv2 (64, 64, 3, 3) (1, 30, 20, 1) 0.8 (1, 20, 20, 1) 0.85
l3b8.conv1 (64, 64, 3, 3) (1, 30, 20, 1) 0.8 (1, 20, 20, 1) 0.85
l3b8.conv2 (64, 64, 3, 3) (1, 30, 20, 1) 0.8 (1, 20, 20, 1) 0.85
l3b9.conv1 (64, 64, 3, 3) (1, 30, 20, 1) 0.8 (1, 20, 20, 1) 0.85
l3b9.conv2 (64, 64, 3, 3) (1, 30, 20, 1) 0.8 (1, 20, 20, 1) 0.85

20



Under review as a conference paper at ICLR 2022

Table 10: Layer-wise distribution of TT-Rank and sparsity ratio for the compressed DenseNet-40
models on CIFAR-10 dataset.

Layer Name Weight Shape Model I with 94.97% Acc. Model II with 94.88% Acc.
TT Ranks Sparsity TT Ranks Sparsity

b1l0.conv1 (12, 24, 3, 3) (1, 18, 16, 1) 0.9 (1, 18, 16, 1) 0.9
b1l1.conv1 (12, 36, 3, 3) (1, 20, 18, 1) 0.9 (1, 20, 18, 1) 0.9
b1l2.conv1 (12, 48, 3, 3) (1, 30, 18, 1) 0.9 (1, 20, 18, 1) 0.9
b1l3.conv1 (12, 60, 3, 3) (1, 30, 24, 1) 0.9 (1, 20, 20, 1) 0.9
b1l4.conv1 (12, 72, 3, 3) (1, 30, 25, 1) 0.9 (1, 20, 20, 1) 0.9
b1l5.conv1 (12, 84, 3, 3) (1, 15, 15, 1) 0.9 (1, 15, 15, 1) 0.9
b1l6.conv1 (12, 96, 3, 3) (1, 15, 15, 1) 0.9 (1, 15, 15, 1) 0.9
b1l7.conv1 (12, 108, 3, 3) (1, 15, 15, 1) 0.9 (1, 15, 15, 1) 0.9
b1l8.conv1 (12, 120, 3, 3) (1, 15, 15, 1) 0.9 (1, 15, 15, 1) 0.9
b1l9.conv1 (12, 132, 3, 3) (1, 15, 15, 1) 0.9 (1, 15, 15, 1) 0.9

b1l10.conv1 (12, 144, 3, 3) (1, 25, 25, 1) 0.9 (1, 10, 10, 1) 0.9
b1l11.conv1 (12, 156, 3, 3) (1, 25, 25, 1) 0.9 (1, 10, 10, 1) 0.9
b2l0.conv1 (12, 168, 3, 3) (1, 30, 30, 1) 0.9 (1, 25, 25, 1) 0.9
b2l1.conv1 (12, 180, 3, 3) (1, 30, 30, 1) 0.9 (1, 25, 25, 1) 0.9
b2l2.conv1 (12, 192, 3, 3) (1, 30, 30, 1) 0.9 (1, 20, 20, 1) 0.9
b2l3.conv1 (12, 204, 3, 3) (1, 30, 30, 1) 0.9 (1, 20, 20, 1) 0.9
b2l4.conv1 (12, 216, 3, 3) (1, 15, 15, 1) 0.9 (1, 10, 10, 1) 0.9
b2l5.conv1 (12, 228, 3, 3) (1, 15, 15, 1) 0.9 (1, 10, 10, 1) 0.9
b2l6.conv1 (12, 240, 3, 3) (1, 15, 15, 1) 0.9 (1, 10, 10, 1) 0.9
b2l7.conv1 (12, 252, 3, 3) (1, 15, 15, 1) 0.9 (1, 10, 10, 1) 0.9
b2l8.conv1 (12, 264, 3, 3) (1, 15, 15, 1) 0.9 (1, 10, 10, 1) 0.9
b2l9.conv1 (12, 276, 3, 3) (1, 20, 20, 1) 0.9 (1, 10, 10, 1) 0.9

b2l10.conv1 (12, 288, 3, 3) (1, 20, 20, 1) 0.9 (1, 10, 10, 1) 0.9
b2l11.conv1 (12, 300, 3, 3) (1, 20, 20, 1) 0.9 (1, 10, 10, 1) 0.9
b3l0.conv1 (12, 312, 3, 3) (1, 30, 30, 1) 0.9 (1, 20, 20, 1) 0.9
b3l1.conv1 (12, 324, 3, 3) (1, 30, 30, 1) 0.9 (1, 20, 20, 1) 0.9
b3l2.conv1 (12, 336, 3, 3) (1, 30, 30, 1) 0.9 (1, 15, 15, 1) 0.9
b3l3.conv1 (12, 348, 3, 3) (1, 30, 30, 1) 0.9 (1, 15, 15, 1) 0.9
b3l4.conv1 (12, 360, 3, 3) (1, 25, 25, 1) 0.9 (1, 15, 15, 1) 0.9
b3l5.conv1 (12, 372, 3, 3) (1, 25, 25, 1) 0.9 (1, 15, 15, 1) 0.9
b3l6.conv1 (12, 384, 3, 3) (1, 25, 25, 1) 0.9 (1, 15, 15, 1) 0.9
b3l7.conv1 (12, 396, 3, 3) (1, 25, 25, 1) 0.9 (1, 15, 15, 1) 0.9
b3l8.conv1 (12, 408, 3, 3) (1, 25, 25, 1) 0.9 (1, 15, 15, 1) 0.9
b3l9.conv1 (12, 420, 3, 3) (1, 25, 25, 1) 0.9 (1, 15, 15, 1) 0.9

b3l10.conv1 (12, 432, 3, 3) (1, 25, 25, 1) 0.9 (1, 20, 20, 1) 0.9
b3l11.conv1 (12, 444, 3, 3) (1, 25, 25, 1) 0.9 (1, 20, 20, 1) 0.9
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Table 11: Layer-wise distribution of TT-Rank and sparsity ratio for the compressed ResNet-50 mod-
els on ImageNet dataset.

Layer Name Weight Shape Model I with 76.65% Acc. Model II with 75.29% Acc.
TT Ranks Sparsity TT Ranks Sparsity

l1.0.conv2 (64, 64, 3, 3 ) (1, 64, 64, 1) 0.8 (1, 64, 64, 1) 0.85
l1.1.conv2 (64, 64, 3, 3 ) (1, 64, 64, 1) 0.8 (1, 64, 64, 1) 0.85
l1.2.conv2 (64, 64, 3, 3 ) (1, 64, 64, 1) 0.8 (1, 64, 64, 1) 0.85
l2.0.conv2 (128, 128, 3, 3) (1, 50, 50, 1) 0.8 (1, 50, 50, 1) 0.85
l2.1.conv2 (128, 128, 3, 3) (1, 50, 50, 1) 0.8 (1, 50, 50, 1) 0.85
l2.2.conv2 (128, 128, 3, 3) (1, 50, 50, 1) 0.8 (1, 50, 50, 1) 0.85
l2.3.conv2 (128, 128, 3, 3) (1, 50, 50, 1) 0.8 (1, 50, 50, 1) 0.85
l3.0.conv2 (256, 256, 3, 3) (1, 64, 64, 1) 0.8 (1, 40, 40, 1) 0.85
l3.0.conv3 (1024, 256, 1, 1) (1, 50, 50, 1) 0.8 (1, 30, 30, 1) 0.85
l3.1.conv2 (256, 256, 3, 3) (1, 64, 64, 1) 0.8 (1, 40, 40, 1) 0.85
l3.1.conv3 (1024, 256, 1, 1) (1, 50, 50, 1) 0.8 (1, 30, 30, 1) 0.85
l3.2.conv2 (256, 256, 3, 3) (1, 64, 64, 1) 0.8 (1, 40, 40, 1) 0.85
l3.2.conv3 (1024, 256, 1, 1) (1, 50, 50, 1) 0.8 (1, 30, 30, 1) 0.85
l3.3.conv2 (256, 256, 3, 3) (1, 64, 64, 1) 0.8 (1, 40, 40, 1) 0.85
l3.3.conv3 (1024, 256, 1, 1) (1, 50, 50, 1) 0.8 (1, 30, 30, 1) 0.85
l3.4.conv2 (256, 256, 3, 3) (1, 64, 64, 1) 0.8 (1, 40, 40, 1) 0.85
l3.4.conv3 (1024, 256, 1, 1) (1, 50, 50, 1) 0.8 (1, 30, 30, 1) 0.85
l3.5.conv2 (256, 256, 3, 3) (1, 64, 64, 1) 0.8 (1, 40, 40, 1) 0.85
l3.5.conv3 (1024, 256, 1, 1) (1, 50, 50, 1) 0.8 (1, 30, 30, 1) 0.85
l4.0.conv1 (512, 1024, 1, 1) (1, 50, 50, 1) 0.8 (1, 30, 30, 1) 0.85
l4.0.conv2 (512, 512, 3, 3) (1, 80, 80, 1) 0.8 (1, 30, 30, 1) 0.85
l4.0.conv3 (2048, 512, 1, 1) (1, 64, 64, 1) 0.8 (1, 30, 30, 1) 0.85
l4.1.conv1 (512, 2048, 1, 1) (1, 64, 64, 1) 0.8 (1, 30, 30, 1) 0.85
l4.1.conv2 (512, 512, 3, 3) (1, 80, 80, 1) 0.8 (1, 30, 30, 1) 0.85
l4.1.conv3 (2048, 512, 1, 1) (1, 64, 64, 1) 0.8 (1, 30, 30, 1) 0.85
l4.2.conv1 (512, 2048, 1, 1) (1, 64, 64, 1) 0.8 (1, 30, 30, 1) 0.85
l4.2.conv2 (512, 512, 3, 3) (1, 80, 80, 1) 0.8 (1, 30, 30, 1) 0.85
l4.2.conv3 (2048, 512, 1, 1) (1, 64, 64, 1) 0.8 (1, 30, 30, 1) 0.85

Table 12: Experimental results on CIFAR-10 dataset targeting lower target rank.

Top-1 Accuracy (%) Params. Rank
Ratio Sparsity

Baseline Compressed ∆ ↓ (%)
ResNet-20

91.25 93.15 +1.9 30.8 2.0× 80%
91.25 93.27 +2.02 37.1 2.3× 80%
91.25 93.00 +1.75 43.8 2.7× 80%
91.25 93.17 +1.92 50.8 3.4× 80%
91.25 93.14 +1.89 55.8 4.1× 80%
91.25 92.48 +1.23 61.7 5.4× 80%
91.25 92.74 +1.49 67.1 7.6× 80%
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Table 13: Experimental results on CIFAR-10 dataset targeting higher sparsity.

Top-1 Accuracy (%) Params. Rank
Ratio Sparsity

Baseline Compressed ∆ ↓ (%)
ResNet-20

91.25 93.04 +1.79 35.9 3.4× 65%
91.25 92.99 +1.74 40.9 3.4× 70%
91.25 93.11 +1.86 45.8 3.4× 75%
91.25 93.17 +1.92 50.8 3.4× 80%
91.25 93.02 +1.77 55.7 3.4× 85%
91.25 92.72 +1.47 60.7 3.4× 90%
91.25 92.24 +0.99 65.6 3.4× 95%

Table 14: Experimental results on CIFAR-10 dataset with the same overall compression ratio.

Top-1 Accuracy (%) Params. Rank
Ratio Sparsity

Baseline Compressed ∆ ↓ (%)
ResNet-20

91.25 93.13 +1.88 55.6 10.3× 65%
91.25 93.04 +1.79 55.6 6.8× 70%
91.25 93.13 +1.88 55.7 5.1× 75%
91.25 93.14 +1.89 55.8 4.1× 80%
91.25 93.02 +1.77 55.7 3.4 × 85%
91.25 93.05 +1.80 55.9 2.9× 90%
91.25 92.63 +1.38 55.6 2.5× 95%
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